
An analysis of the influence of some prior

specifications in the identification of change

points via product partition model

R. H. Loschi a,1 and F. R. B. Cruz b,2

a Departamento de Estat́ıstica, Universidade Federal de Minas Gerais, 31270-901 -

Belo Horizonte - MG, Brazil

b Department of Mechanical and Industrial Engineering, University of

Massachusetts, Amherst, MA 01003, USA

Abstract

In this paper, we consider the product partition model for the estimation of normal
means and variances of a sequence of observations that experiences changes in these
parameters at unknown times. The estimates of the parameters by using product
partition model are the weighted average of the estimates based in blocks (groups) of
observations by the posterior relevance of these blocks which depends on the prior
cohesions. We implement the Barry and Hartigan’s method to this change point
problem and propose an easy-to-implement modification to their method. We use the
Yao’s prior cohesions and investigate the influence of different prior distributions to
the parameter that indexes these cohesions in the product estimates. A comparison
between the estimates obtained by using both these methods and those provided by
using the Yao’s method is done considering different settings for its application. We
apply the three methods presented in this paper to stock market data. The results
seem to indicate that the method proposed is competitive and also that the prior
specifications influence in the product estimates.

Key words: Change points, product partition model, relevance, Student-t
distribution, Yao’s cohesions

1 Corresponding author, e-mail loschi@est.ufmg.br.
2 On sabbatical leave from the Departamento de Estat́ıstica, Universidade Federal

de Minas Gerais, 31270-901 - Belo Horizonte - MG, Brazil.

Preprint submitted to Computational Statistics & Data Analysis 2 October 2001



1 Introduction

The product partition model (PPM) proposed by Hartigan (1990) is a good
way to model uncertain about a sequence of random quantities, if the prior
opinion about it discloses the existence of blocks of observations produced by
some judgment of similarities among these observations, as well as indepen-
dence among the different blocks. In particular, the PPM is an useful tool to
analyze change points problems.

The PPM establishes that the random partition produced by the change points
has a prior product distribution, and assumes that, given the partition, the
parameters in different blocks have independent prior distributions (Barry and
Hartigan, 1992). Consequently, the posterior estimates of these parameters
(product estimates) are the weighted average of the estimates in each block
by the posterior probability that the block appears in the partition, which is
called the posterior relevance of the block (see details in Section 2). In general,
large number of computations are involved on the product estimates.

The product estimates of the mean of normal random variables with common
variance is considered in detail by Barry and Hartigan (1993) using a Gibbs
sampling scheme. Barry and Hartigan (1993) compare their estimates with
those obtained by Chernoff and Zacks (1964), Yao (1984) and by considering
the Schwartz criterion (Yao, 1988). Barry and Hartigan (1993) conclude that
their method provide more accurate estimates if outliers are observed and that
Yao’s method usually demand more computational time. Recently, Crowley
(1997) provides a new implementation of the Gibbs sampling in order to solve
the problem of estimating normal means by using the general PPM. Loschi
et al. (1999) extend some results from Crowley (1997) and Barry and Hartigan
(1993) by using the PPM to identify multiple change points in the mean
and variance of normal data. Loschi et al. (1999) assume the prior cohesions
proposed by Yao (1984) and consider Yao’s algorithm to compute the product
estimates.

This paper discusses the same change point problem considered by Loschi
et al. (1999). We also assume the Yao’s prior cohesions which depend on the
probability that a change occurs at any time. We implement the method es-
tablished by Barry and Hartigan (1993) and propose an easy-to-implement
modification of this method. Similar estimates are obtained as well as the
computational time involved in their calculation. We also compare our pro-
pose and the Barry and Hartigan’s method with Yao’s method. Yao’s method
usually demands less computational time and provides similar results for the
product estimates in the application we consider. This contradicts Barry and
Hartigan (1993) statements. The ultimate goal is to compare all methods
presented here in different contexts in order to perceive the influence in the
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product estimates of the prior specifications to the parameter involved in the
Yao’s cohesions.

This paper is organized as follows. Section 2 briefly reviews the PPM intro-
duced by Barry and Hartigan (1992). Section 3 presents inferential solutions
to identify change points for random variables which are normally distributed,
given the means and variances, according to Loschi et al. (1999). In Section 4
we introduce the computational procedure to calculate the posterior relevances
based in a Gibbs sampling approach and review the Yao’s algorithm and the
method proposed by Barry and Hartigan (1993). In Section 5, we apply the
methods to the two most important Brazilian indexes, “Índice Geral da Bolsa
de Valores de São Paulo” (IBOVESPA) and “Índice da Bolsa de Valores de
Minas Gerais, Esṕırito Santo e Braśılia” (IBOVMESB), comparing their per-
formance under different prior specifications.

2 Product partition models

In this section, we present a brief revision of the product partition model
(PPM), introduced by Barry and Hartigan (1992) to identify multiple change
points in a sequence of variables observed at consecutive points in time. A
more general definition to PPM can be found in Hartigan (1990).

Let X1, . . . , Xn be a observed time series and consider the index set I =
{1, . . . , n}. Consider a random partition ρ = {i0, i1, · · · , ib} of the set I ∪ {0},
0 = i0 < i1 < · · · < ib = n, and a random variable B to represent the number
of blocks in ρ. Consider that each partition divides the sequence X1, . . . , Xn

into B = b contiguous subsequences, which will be denoted here by X[ir−1ij ] =
(Xir−1+1, . . . , Xir)

′, r = 1, . . . , b. Let c[ij] be the prior cohesion associated with
the block [ij] = {i+1, . . . , j}, i, j ∈ I∪{0}, j > i, which represents the degree
of similarity among the observations in X[ij]

Hence, we say that the random quantity (X1, . . . , Xn; ρ) follows a PPM, de-
noted by (X1, . . . , Xn; ρ) ∼ PPM , if:

i) the prior distribution of ρ is the following product distribution:

P (ρ = {i0, . . . , ib}) =
Πb

j=1c[ij−1ij ]
∑

C Πb
j=1c[ij−1ij ]

, (1)

where C is the set of all possible partitions of the set I into b
contiguous blocks with endpoints i1, . . . , ib, satisfying the condition
0 = i0 < i1 < . . . < ib = n, for all b ∈ I;

ii) conditionally on ρ = {i0, . . . , ib}, the sequence X1, . . . , Xn has the
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joint density given by:

f(X1, . . . , Xn|ρ = {i0, . . . , ib}) = Πb
j=1f[ij−1ij ](X[ij−1ij ]), (2)

where f[ij](X[ij]) is the density of the random vector, called data
factor, X[ij] = (Xi+1, . . . , Xj)

′.

Consequently, if (X1, . . . , Xn; ρ) ∼ PPM, the number of blocks B in ρ has a
prior distribution given by:

P (B = b) ∝
∑

C1

Πb
j=1c[ij−1ij ], b ∈ I, (3)

where C1 is the set of all partitions of I in b contiguous blocks with endpoint
i1, . . . , ib, satisfying the condition 0 = i0 < i1 < . . . < ib = n.

As shown in Barry and Hartigan (1992), the posterior distributions of ρ and
B have the same form of the prior distribution, where the posterior cohesion
for the block [ij] is given by

c∗[ij] = c[ij]f[ij](X[ij]). (4)

In the parametric approach to PPM, a sequence of unknown parameters
θ1, . . . , θn, such that, conditionally in θ1, . . . , θn, the sequence of random vari-
ables X1, . . . , Xn has conditional marginal densities f1(X1|θ1), . . . , fn(Xn|θn),
respectively, is considered. The prior distribution of θ1, . . . , θn is constructed
as follows. Given a partition ρ = {i0, . . . , ib}, b ∈ I, we have that θi = θ[ir−1ir]

for every ir−1 < i ≤ ir, r = 1, . . . , b, and that θ[i0i1], . . . , θ[ib−1ib] are indepen-
dent, with θ[ij] having (block) prior density π[ij](θ), θ ∈ Θ[ij], where Θ[ij] is the
parameter space corresponding to the common parameter, say, θ[ij] = θi+1 =
. . . = θj, which indexes the conditional density of X[ij] = (Xi+1, . . . , Xj)

′. In
this case, we consider that two observations Xi and Xj, i 6= j, are in the same
block, if they are identically distributed. Thus, in this approach to PPM, the
predictive distribution f[ij](X[ij]), which appeared in (2), can be obtained as
follows:

f[ij](X[ij]) =
∫

Θ[ij]

f[ij](X[ij]|θ)π[ij](θ)dθ, (5)

The goal is to obtain the marginal posterior distributions of the parameters ρ,
B, and θk, k = 1, . . . , n. The posterior distributions of ρ and B are obtained
as described before and considering the joint density given in (5). Barry and
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Hartigan (1992) have shown that the posterior distributions of θk is given by:

π(θk|X1, . . . , Xn) =
k−1
∑

i=0

n
∑

j=k

r∗[ij]π[ij](θk|X[ij]), k = 1, . . . , n, (6)

and the posterior expectation (or product estimate) of θk is given by:

E(θk|X1, . . . , Xn) =
k−1
∑

i=0

n
∑

j=k

r∗[ij]E(θk|X[ij]), k = 1, . . . , n, (7)

where r∗[ij] denotes the posterior relevance for the block [ij], that is:

r∗[ij] = P ([ij] ∈ ρ|X1, . . . , Xn),

which, in the situation introduced by Barry and Hartigan (1993) and briefly
described in this section, become:

r∗[ij] =
λ[0i]c

∗
[ij]λ[jn]

λ[0n]

, (8)

with λ[ij] =
∑

Πb
k=1c

∗
[ik−1ik], where the summation is over all partitions of

{i + 1, . . . , j} in b blocks with endpoints i0, i1, . . . , ib satisfying the condition
i = i0 < i1 < . . . < ib = j.

Figure 1 shows a graphical representation of the relationships between the
random objects in the PPM. The conditional dependence between the objects
is represented by arrows liking them. The conditional independence of X1, . . . ,
Xn, given θ1, . . . , θn, is represented by the absence of links between the Xi.
The conditional independence of the parameters θ[ij], given ρ, is represented
by the absence of links between the groups of parameters θi+1, · · · , θj.

Notice that, since the PPM is formulated to allow changes in the parame-
ters through the time, it is a kind of dynamical model (see Pole, West and
Harrison, 1994). If we consider the general definition of the PPM (Hartigan,
1990; Crowley, 1997), we can also observe that the threshold model with delay
parameter equal to zero and m regimes is the particular PPM with

P (ρ = {S1, . . . , Sb}) ∝











c(S1). . . . .c(Sb), if b = m,

0, otherwise,

where S1, . . . , Sb is any partition of the set I = {1, . . . , n}. Notice that when
the product prior distribution is non-zero, only the partitions that provide m
(fixed) blocks are considered.
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Fig. 1. Graphical Representation of the PPM

3 Posterior estimates for the normal means and variances

In order to specify the PPM for the normal case, Loschi et al. (1999) as-
sume that there is a sequence of unknown parameters θ1 = (µ1, σ

2
1), . . . , θn =

(µn, σ
2
n), such that Xk|µk, σ

2
k ∼ N (µk, σ

2
k), k = 1, . . . , n, and that they are

independent.

It is also assumed that each common parameter θ[ij] = (µ[ij], σ
2
[ij]), related

to the block [ij], has the conjugate normal-inverted-gamma prior distribution
denoted by:

(µ[ij], σ
2
[ij]) ∼ NIG(m[ij], v[ij]; a[ij]/2, d[ij]/2),

that is,

µ[ij]|σ
2
[ij] ∼ N (m[ij], v[ij]σ

2
[ij]) and σ2

[ij] ∼ IG(a[ij]/2, d[ij]/2), (9)

where IG(a, d) denotes the inverted-gamma distribution with parameters a
and d, m[ij] ∈ R, and a[ij], d[ij] and v[ij] are positive values. Hence, the condi-
tional distribution of θ[ij] = (µ[ij], σ

2
[ij]), given the observations in X[ij], is the

normal-inverted-gamma distribution given by:

(µ[ij], σ
2
[ij])|X[ij] ∼ NIG(m

∗
[ij], v

∗
[ij]; a

∗
[ij]/2, d

∗
[ij]/2), (10)
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where

m∗
[ij] =

(j−i)v[ij]X̄[ij]

(j−i)v[ij]+1
+

m[ij]

(j−i)v[ij]+1
,

v∗
[ij] =

v[ij]

(j−i)v[ij]+1
,

d∗
[ij] = d[ij] + j − i,

a∗
[ij] = a[ij] + q[ij](X[ij]),



















































(11)

with

X̄[ij] =
1

j − i

j
∑

r=i+1

Xr,

q[ij](X[ij]) =
j

∑

r=i+1

(Xr − X̄[ij])
2 +

(j − i)(X̄[ij] −m[ij])
2

(j − i)v[ij] + 1
.

Consequently, it follows from (10) that, given X[ij], the conditional marginal
densities of µ[ij] and σ2

[ij] are, respectively:

µ[ij]|X[ij] ∼ t(m∗
[ij], v

∗
[ij], a

∗
[ij], d

∗
[ij]) and σ2

[ij]|X[ij] ∼ IG(a
∗
[ij]/2, d

∗
[ij]/2), (12)

for which it is observed that

E(µ[ij]|X[ij]) = m∗
[ij] (if d∗

[ij] > 1) (13)

and

E(σ2
[ij]|X[ij]) =

a∗
[ij]

d∗
[ij] − 2

(if d∗
[ij] > 2). (14)

The interested reader may find details in O’Hagan (1994).

From (7), (13) and (14), it follows that the product estimates for the param-
eters µk and σ2

k, k = 1, . . . , n, are given by:

µ̂k = E(µk|X1, . . . , Xn) =
k−1
∑

i=0

n
∑

j=k

r∗[ij]m
∗
[ij] (if d∗

[ij] > 1) (15)
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and

σ̂2
k = E(σ2

k|X1, . . . , Xn) =
k−1
∑

i=0

n
∑

j=k

r∗[ij]
a∗

[ij]

d∗
[ij] − 2

( ifd∗
[ij] > 2), (16)

respectively, where m∗
[ij], a∗

[ij] and d∗
[ij] are defined as in (11).

Let 1n be the n × 1 vector of ones and In the n × n identity matrix. The
posterior relevances r∗[ij] can be obtained from (8) and (4) where the random
vector X[ij] follows a (j − i)-dimensional Student-t distribution denoted by
X[ij] ∼ tj−i(m[ij],V[ij]; a[ij], d[ij]) with density function given by

f(X[ij]) = c(d[ij], j − i)a
d[ij]/2

[ij] |V[ij]|
−1/2×

{a[ij] + (X[ij] −m[ij])
′V−1

[ij](X[ij] −m[ij])}
−(d[ij]+j−i)/2,

(17)

where c(d, k) = Γ[d+k
2

]{Γ[d
2
] π

k
2 }−1 and m[ij] = m[ij]1j−i and V[ij] = Ij−i +

v[ij]1j−i1
′
j−i.

The algorithm of this normal case is depicted in Figure 2.

4 Computational procedures

Notice from (15) and (16) that high computational efforts are demanded to cal-
culate the product estimates. To simplify these calculations some procedures
were proposed in the literature. In this section, we review the computational
approach developed by Yao (1984) and introduce a Gibbs sampling scheme to
compute the posterior relevances (and, consequently, the product estimates).
We also describe the Barry and Hartigan (1993) method to calculate the prod-
uct estimates of the means and variances by using PPM.

We will assume the prior cohesions suggested by Yao (1984) and defined below,
since for the PPM shown in this paper, the cohesions can be interpreted as
transition probabilities in the Markov chain defined by the endpoints of the
blocks in ρ.

Let p, 0 ≤ p ≤ 1, be the probability that a change occurs at any instant in
the sequence. Therefore, the prior cohesion for block [ij] is given by:

c[ij] =











p(1− p)j−i−1, if j < n,

(1− p)j−i−1, if j = n,
(18)
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algorithm

read X1, . . . , Xn

for all i, j ∈ {0, . . . , n} such that i < j do

f[ij](X[ij])←
∫

Θ[ij]
f[ij](X[ij]|θ)π[ij](θ)dθ

c∗[ij] ← c[ij]f[ij](X[ij])

end for

compute











λ[0j],∀j = 0, . . . , n;

λ[in],∀i = 1, . . . , n− 1;

for all i, j ∈ {0, . . . , n} such that i < j do

r∗[ij] ←
λ[0i]c

∗

[ij]
λ[jn]

λ[0n]

X̄[ij] ←
1

j−i

∑j
r=i+1 Xr

m∗
[ij] ←

(j−i)v[ij]X̄[ij]

(j−i)v[ij]+1
+

m[ij]

(j−i)v[ij]+1

v∗
[ij] ←

v[ij]

(j−i)v[ij]+1

d∗
[ij] ← d[ij] + j − i

q[ij](X[ij])←
∑j

r=i+1(Xr − X̄[ij])
2 +

(j−i)(X̄[ij]−m[ij])
2

(j−i)v[ij]+1

a∗
[ij] ← a[ij] + q[ij](X[ij])

end for

for k = 1 to n do

E(µk|X1, . . . , Xn)←
∑k−1

i=0

∑n
j=k r∗[ij]m

∗
[ij]

E(σ2
k|X1, . . . , Xn)←

∑k−1
i=0

∑n
j=k r∗[ij]

a∗

[ij]

d∗
[ij]

−2

end for

write E(µ1), E(σ2
1), . . . , E(µn), E(σ2

n)
end algorithm

Fig. 2. Main Algorithm (µ and σ Normal Case)

for all i, j ∈ I, i < j, which corresponds to the probability that a new change
takes place after j− i instants, given that a change has taken place at instant
i.

Consequently, for the normal case presented in Section 3, the posterior cohe-
sion of the block [ij] become:

c∗[ij] =























p(1−p)j−i−1c(d[ij],j−i)a
d[ij]/2

[ij]

(1+(j−i)v[ij])
1/2{a[ij]+q[ij](X[ij])}

(d[ij]+j−i)/2 , if j < n

(1−p)j−i−1c(d[ij],j−i)a
d[ij]/2

[ij]

(1+(j−i)v[ij])
1/2{a[ij]+q[ij](X[ij])}

(d[ij]+j−i)/2 , if j = n,

(19)
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4.1 Yao’s algorithm

Let λ[ij] be the summation presented in (8) where c∗[ij] is the posterior cohe-
sions given in (19). Hence, the exact posterior relevances given in (8), can be
obtained by using the following recursive algorithm:

λ[00] = 1,

λ[01] = c∗[01],

λ[0j] = c∗[0j] +
∑j−1

t=1 λ[0t]c
∗
[tj], ∀j = 2, . . . , n,

λ[(n−1)n] = c∗[(n−1)n],

λ[in] = c∗[in] +
∑n−1

t=i+1 λ[tn]c
∗
[it], ∀i = 1, . . . , n− 2,

λ[nn] = 1.























































































(20)

Notice that in spite of the simplifications introduced by Yao (1984), high
computational efforts are still demanded in PPM. In Section 4.2, we propose
a procedure to simplify the computation of the posterior relevances and, con-
sequently, the product estimates using the transformation suggested by Barry
and Hartigan (1993). We also describe the Barry and Hartigan’s method to
obtain the product estimates of normal means and variances.

4.2 Methods based in Gibbs sampling schemes

In order to implement the Barry and Hartigan’s method and the proposed
method, the following Gibbs sampling scheme is considered.

4.2.1 Gibbs sampling scheme to PPM

Let assume the auxiliary random quantity Ui suggested by Barry and Hartigan
(1993) which reflects whether or not a change point occurs at the time i, that
is:

Ui =











1, if θi = θi+1,

0, if θi 6= θi+1,
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i = 1, . . . , n− 1. Notice that the random partition ρ is perfectly identified by
considering vectors U = (U1, . . . , Un−1) of these random quantities.

Each vector (U s
1 , . . . , U

s
n−1), s ≥ 1, is generated by using the Gibbs sampling

as follows. Starting with an initial values (U0
1 , . . . , U0

n−1) of U, at step s, the
r-th element U s

r is generated from the conditional distribution:

Ur|U
s
1 , . . . , U

s
r−1, U

s−1
r+1 , . . . , U s−1

n−1; X1, . . . , Xn,

r = 1, . . . , n − 1. In order to generate the samples above, it is sufficient to
consider the following ratio:

Rr =
P (Ur = 1|As; X1, . . . , Xn)

P (Ur = 0|As
r; X1, . . . , Xn)

,

r = 1, . . . , n − 1, where As
r = {U s

1 = u1, . . . , U
s
r−1 = ur−1, U

s−1
r+1 =

ur+1, . . . , U
s−1
n−1 = un−1}. Consequently, the criterion of choosing the values

U s
i , i = 1, . . . , n− 1 becomes:

U s
r =











1, if Rr ≥
1−u

u

0, otherwise,

where r = 1, . . . , n− 1 and u ∼ U(0, 1).

Consider the prior cohesions given in (18) and assume that p has the prior
distribution π(p). Let C be the set of all partitions of the set I into b contiguous
blocks with endpoint i0, . . . , ib satisfying the condition 0 = i0 < i1 < . . . <
ib = n, b ∈ I and consider C1 ⊂ C the subset of all partitions that contain the
block [ij] = {i + 1, . . . , j}. Thus, each value U s

r , s ≥ 1, r = 1, . . . , n − 1, can
be generated by using

Rr =
f[xy](X[xy])

∫ 1
0 pb−2(1− p)n−b+1dπ(p)

f[xr](X[xr])f[ry](X[ry])
∫ 1
0 pb−1(1− p)n−bdπ(p)

, (21)

where:

x =























max{i, s.t.: 0 < i < r, U s
i = 0}, if U s

i = 0, for

some i ∈ {1, . . . , r − 1},

0, otherwise,

(22)

11



and

y =























min{i, s.t.: r < i < n, U s−1
i = 0}, if U s−1

i = 0, for

some i ∈ {r + 1, . . . , n− 1},

n, otherwise.

(23)

According to Loschi et al. (2001a), if p has the beta prior distribution with
α > 1 and β > 1 parameters, denoted by p ∼ B(α, β), the value Rr given in
(21) become:

Rr =
f[xy](X[xy])Γ(n + β − b + 1)Γ(b + α− 2)

f[xr](X[xr])f[ry](X[ry])Γ(b + α− 1)Γ(n + β − b)
, b = 1, . . . , n, (24)

where x and y is obtained as in (22) and (23), respectively.

If no prior distribution is considered to p, the value Rr used in the generation
of U s

r can be obtained by using the following ratio:

Rr =
c∗[xy]

c∗[xr]c
∗
[ry]

, (25)

where x and y are given in (22) and (23) (see details in Loschi et al., 1999).
Notice that in this case, as well as in the Yao’s method, we are essentially con-
sidering a degenerate prior distribution to p, which put all its mass probability
to a single value of p.

If the normal case described in Section 3 is considered, the joint density
f[ij](X[ij]) is the Student-t distribution given in (17) and the posterior co-
hesions c∗[ij] are given in (19).

4.2.2 Barry and Hartigan’s method

Barry and Hartigan (1993) obtain the product estimates of µk and σ2
k, k =

1, . . . , n, as follows. For each partition (U s
1 , . . . , U

s
n−1), s ≥ 1, the estimates

(per blocks) given in (13) and (14), that is,

µ̂ks = m∗
[ij] and

(σ̂2)ks =
a∗

[ij]

d∗
[ij] − 2

,

12



for r = i + 1, . . . , j, i, j = 0, 1, . . . , n, i < j, are computed. The product
estimates of µk and σ2

k, k = 1, . . . , n, are approximated, respectively, by

µ̂k =

∑T
s=1 µ̂ks

T
and

σ̂2
k =

∑T
s=1(σ̂

2)ks

T
,

where T is the net size of the generated sample.

The Barry and Hartigan’s algorithm is presented in Figure 3.

4.2.3 Proposed method

We obtain the product estimates as follows. Generate a sample of size T of
the vector (U1, . . . , Un−1). The estimate of the posterior relevance of the block
[ij], i, j = 1, . . . , n, i < j, is computed as follows:

r̂∗[ij] =
M

T
, (26)

where M is the number of vectors in the generate sample where is observed
Ui = 0, Ui+1 = . . . , Uj−1 = 1 and Uj = 0. The product estimates of µk and σ2

k,
k = 1, . . . , n, is obtained substituting (26) in (15) and (16), respectively.

Figure 4 shows the algorithm described above, in pseudo-language.

4.3 Remarks on the algorithms

There is no essential difference between our method and Barry and Hartigan’s
method. However, the proposed algorithm is immediately linked with the the-
oretical statements because, like Yao’s algorithm, we propose a method to
calculate the posterior relevances. From Figure 3, we also notice that our
method is easy to implement and its efficiency is similar to Barry and Harti-
gan’s method (see the comparison in Section 5).

5 Implementation and analysis

The aim of this section is to compare the different algorithms described in
Section 4. The method we propose and the Barry and Hartigan’s method are
implemented considering three different prior specifications for the parameter

13



algorithm

read X1, . . . , Xn

for all i, j ∈ {0, . . . , n} such that i < j do

f[ij](X[ij])←
∫

Θ[ij]
f[ij](X[ij]|θ)π[ij](θ)dθ

c∗[ij] ← c[ij]f[ij](X[ij])

end for

for k = 1 to SAMPLES do

generate Uk

end for

for all i, j ∈ {0, . . . , n} such that i < j do

X̄[ij] ←
1

j−i

∑j
r=i+1 Xr

m∗
[ij] ←

(j−i)v[ij]X̄[ij]

(j−i)v[ij]+1
+

m[ij]

(j−i)v[ij]+1

v∗
[ij] ←

v[ij]

(j−i)v[ij]+1

d∗
[ij] ← d[ij] + j − i

q[ij](X[ij])←
∑j

r=i+1(Xr − X̄[ij])
2 +

(j−i)(X̄[ij]−m[ij])
2

(j−i)v[ij]+1

a∗
[ij] ← a[ij] + q[ij](X[ij])

end for

for k = 1 to n do

µaux ← 0
σ2
aux ← 0

for all i, j, l such that

U l
i = 0, U l

i+1 = · · · = U l
k = · · · = U l

j = 1, Uk
j+1 = 0

µaux ← µaux + m∗
[ij]

σ2
aux ← σ2

aux +
a∗

[ij]

(d∗
[ij]

−2)

end for

E(µk|X1, . . . , Xn)← µaux/SAMPLES
E(σ2

k|X1, . . . , Xn)← σ2
aux/SAMPLES

end for

write E(µ1), E(σ2
1), . . . , E(µn), E(σ2

n)
end algorithm

Fig. 3. Barry and Hartigan Method (µ and σ Normal Case)

p. Firstly, we assume that p is a fixed value arbitrarily chosen. After that,
we consider that p has a beta prior distribution. Finally, we assume a non-
informative prior distribution for p.

As it is well known, Yao’s method does not consider prior distributions for
p. That is, to use Yao’s method, we ought to be sure about the value of p.
Then, to fairly compare the methods, we consider different values of p. Beta
distributions whose modal values are close to the selected p are also assumed.

Our applications focus on the identification of multiple change points in the
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algorithm

read X1, . . . , Xn

for all i, j ∈ {0, . . . , n} such that i < j do

f[ij](X[ij])←
∫

Θ[ij]
f[ij](X[ij]|θ)π[ij](θ)dθ

c∗[ij] ← c[ij]f[ij](X[ij])

end for

for k = 1 to SAMPLES do

generate Uk

end for

for all i, j ∈ {0, . . . , n} such that i < j do

r∗[ij] ← proportion of samples such that

Uk
i = 0, Uk

i+1 = · · · = Uk
j−1 = 1, Uk

j = 0
end for

for all i, j ∈ {0, . . . , n} such that i < j do

X̄[ij] ←
1

j−i

∑j
r=i+1 Xr

m∗
[ij] ←

(j−i)v[ij]X̄[ij]

(j−i)v[ij]+1
+

m[ij]

(j−i)v[ij]+1

v∗
[ij] ←

v[ij]

(j−i)v[ij]+1

d∗
[ij] ← d[ij] + j − i

q[ij](X[ij])←
∑j

r=i+1(Xr − X̄[ij])
2 +

(j−i)(X̄[ij]−m[ij])
2

(j−i)v[ij]+1

a∗
[ij] ← a[ij] + q[ij](X[ij])

end for

for k = 1 to n do

E(µk|X1, . . . , Xn)←
∑k−1

0

∑n
j=k r∗[ij]m

∗
[ij]

E(σ2
k|X1, . . . , Xn)←

∑k−1
i=0

∑n
j=k r∗[ij]

a∗

[ij]

d∗
[ij]

−2

end for

write E(µ1), E(σ2
1), . . . , E(µn), E(σ2

n)
end algorithm

Fig. 4. Proposed Algorithm (µ and σ Normal Case)

mean (expected return) and variance (volatility) in stock market return series.
We consider the two most important Brazilian indexes, “Índice Geral da Bolsa
de Valores de São Paulo” (IBOVESPA) and “Índice da Bolsa de Valores de
Minas Gerais, Esṕırito Santo e Braśılia” (IBOVMESB), from January, 1991
to August, 1999.

As usual in finance, a return series is defined by using the transformation
Rt = (Pt−Pt−1)/Pt−1, where Pt is the closing price in the month t. IBOVESPA
and IBOVMESB return series are plotted all together in Figure 5.

From Figure 5, it is noticeable that IBOVESPA and IBOVMESB series present
a similar behavior, suggesting the existence of some changes in the mean and
variance of the returns in both series. Despite the similarities, IBOVMESB
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Fig. 5. IBOVESPA and IBOVMESB Return Series

series presents a considerably different return in January, 1992. We are also
interested in identifying which method would work better in such a situation.

We suppose that returns are conditionally independent and distributed accord-
ing to the normal distribution N (µ[ij], σ

2
[ij]), and adopt the natural conjugate

prior distribution for the parameters µ[ij] and σ2
[ij] which, in this case, is a

normal-inverted-gamma distribution.

In accordance to the specifications of Loschi et al. (2001b), the following
normal-inverted-gamma prior distribution is adopted to describe the uncer-
tainty on the parameter (µ[ij], σ

2
[ij]) for both indexes:

µ[ij]|σ
2
[ij] ∼ N (0, σ2

[ij]), and σ2
[ij] ∼ IG

(

0.01

2
,
4

2

)

.

A small number of change points is expected for both indexes which implies
that p should assume lower values with higher probability. Despite this, to
observe the influence of the prior specifications of p, we will consider p =
0.1, 0.5, 0.9 and also the following beta prior distributions of p: p ∼ B(5, 50),
p ∼ B(50, 50) and p ∼ B(50, 5).

In the Gibbs sampling scheme, we generate 10,000 samples of U vector with
dimension 103, starting from a vector of zeros, and discharged the initial 4,000
iterations. A lag of 10 is selected in order to avoid correlation among vectors,
which means that we worked with a net sample size of 600. Other combination
of sample sizes, lags and burn -in periods were considered (not shown) and the
results indicated that the convergence is always fast and the autocorrelation is
low. See details about Gibbs sampling practical implementations in Gamerman
(1997), Robert and Casella (1999) and Gilks et al. (1996).
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5.1 Results analysis

The algorithms presented in Section 4 were coded in C++ and they are avail-
able from the authors upon request. All tests were performed in a PC-like
computer, 166 MHz, 32 MB RAM, running Windows 98, and using the freely
available C++ compiler DJGPP (http://www.delorie.com/djgpp).

5.1.1 IBOVESPA case

In this section, we present the posterior estimates of the mean return and
the volatility of IBOVESPA series obtained by using all methods described in
Section 4.

Figures 6, 7 and 8 show the product estimates obtained by Yao’s method,
Barry and Hartigan’s method, as well as the method here proposed. Once
Yao’s method considers a fixed value for p rather than priors, p was set to the
modal value of the beta prior distribution considered. The computational time
was around 25 seconds for the last two methods considered. It is noticeable
that the three methods produce similar posterior estimates in all cases.

We also tested fixed p’s for all three methods (results not shown). The esti-
mates obtained by Yao’s, Barry and Hartigan’s, and the proposed method are
all equal. We also observe that, in this particular case in which no priors were
considered for p, the results were similar to the results obtained assuming a
beta prior distribution concentrated in values close to the modal value p.

Since the use of non-informative prior distributions is common in Bayesian
statistics, it is important to discuss the performance of Barry and Hartigan’s
method and the proposed method under such an assumption. Thus, assuming
that p has an uniform prior distribution in the (0, 1) interval, denoted by
p ∼ U(0, 1), the product estimates depicted in Figure 9 were obtained. For
comparison purposes, Figure 9 also displays the estimates obtained by Yao’s
method, assuming a p = 0.9.

As in the other scenarios considered before, we notice that the product esti-
mates obtained by using Barry and Hartigan’s method and our method are
coincident. However, in this case, the posterior estimates indicate the exis-
tence of a high number of change points, as we observe in those cases in which
the prior specifications for p consider more mass to high values. It is also im-
portant to notice that the estimates tend to be equal for all three methods,
if a non-informative prior distribution is assumed and we consider values of p
close to one for Yao’s.

Figure 10 shows the product estimates for mean and variance obtained by the
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Fig. 6. Product Estimates to the Expected Returns and Volatilities of IBOVESPA
- p ∼ B(5, 50)

proposed method. In both cases, it is assumed that p = 0.1, p ∼ B(5, 50),
and p ∼ U(0, 1). We notice that the adoption of this beta prior distribution
produces the same product estimates then those obtained by considering a
fixed value to p. Other beta prior distributions which concentrate most of
the mass in lower values of p were also considered, producing very similar
estimates (see an example in Figure 11). Similar behavior (not shown) was
observed for the other scenes.

5.1.2 IBOVMESB case

The IBOVESPA and IBOVMESB series present similar behavior but in
IBOVMESB series we observe a considerably different return in January, 1992
(see Figure 5). Barry and Hartigan (1993) conclude that, considering a com-
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Fig. 7. Product Estimates to the Expected Returns and Volatilities of IBOVESPA
- p ∼ B(50, 50)

pletely Bayesian approach, in which hiperprior distributions are assumed, their
method works better than Yao’s method, in the identification of atypical ob-
servations.

Figures 12 and 13 present the product estimates considering p ∼ B(5, 50) and
p ∼ U(0, 1), respectively, for our method and Barry and Hartigan’s method.
For Yao’s method, we consider p = 0.1 in all circumstances. Notice that, if
the beta prior distribution is assumed, our method and Barry and Hartigan’s
method works better then Yao’s method in estimating the mean and variance
of the atypical observation occurred in January, 1992. Yao’s method also pro-
vide higher estimates to the variance during 1991. From January, 1992 on, the
same product estimates were obtained for all methods. The same analysis can
be done if no prior distribution is assumed. Similarly to IBOVESPA series, if
an uniform prior distribution is considered (see Figure 13) or if the prior spec-
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Fig. 8. Product Estimates to the Expected Returns and Volatilities of IBOVESPA
- p ∼ B(50, 5)

ifications that consider high mass to high values of p are considered, almost
all points are identified as a change point and the atypical observation is not
identified.

5.2 Data analysis

According to Loschi et al. (2001b), a small number of change points is expected
for the Brazilian stock markets. Then, to analyze the data, we consider prior
specifications for p which considers most mass in small values.

We notice from Figures 6 and 12, for example, that change points observed in
IBOVESPA and IBOVMESB series typically occur at the same time and that
the changes are in the same direction. However, some differences in the be-
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Fig. 9. Product Estimates to the Expected Returns and Volatilities of IBOVESPA
- p ∼ U(0, 1) and p = 0.9

havior of these series are observed. The two changes observed in IBOVMESB
series, in August and October, 1991, do not occur in IBOVESPA series. These
change points could be related to the sale of USIMINAS, a very important
state steel company, located in Minas Gerais state. In October, 1991, USIMI-
NAS was sold for a private group. The beginning of the crisis in the Fernando
Collor’s government in March, 1992, which culminate with his impeachment,
in December of the same year, could be the events that produced the change
points in IBOVMESB series, around these two months. Unlike the initial ex-
pectations, these important historical facts do not seem to produce changes
in the behavior of IBOVESPA series.

In July, 1999, Russia’s crisis could have produced the change in the
IBOVMESB series. However, we do not observe changes in the IBOVESPA
series within that period. This different behavior could be explained by the
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Fig. 10. Product Estimates to the Expected Returns and Volatilities of IBOVESPA
- Proposed Method

policy adopted by Brazilian government during Asia’s crisis, in August, 1997,
and because IBOVESPA is the main indicator of Brazilian economy, incorpo-
rating the benefits of the government policies more immediately.

A new currency, the Real, was introduced in July, 1994. The Real period
has presented lower expected returns and volatilities than the previous pe-
riod. Mexico, and Asia’s crises might be responsible for the market warm-up
observed, in January, 1995 and August, 1997, respectively. We notice that
the periods when higher volatility was observed during the Real period have
been smaller than in the preceding period. Some political actions of the Minas
Gerais State Governor, in January, 1999, could be associated with the decrease
of the expected returns and volatilities of both indexes, from this period on.
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Fig. 11. Product Estimates Considering Different Beta Prior Distributions -
IBOVESPA (Proposed Method)

6 Final Comments

We proposed an easy-to-implement method to compute posterior relevances
and, consequently, to calculate the product estimates, considering different
prior specifications to the parameter that indexes Yao’s cohesions. We applied
this method to identify change points in normal means and variances. We also
implemented Barry and Hartigan’s method to the same change point problem.
Both methods were compared with Yao’s method within different settings. The
effect of different prior specifications in the product estimates were studied.

We conclude that our method and Barry and Hartigan’s method produce the
same posterior estimates and take the same computational time. Contradict-
ing the statements of Barry and Hartigan (1993), we obtained that, in general,
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Fig. 12. Product Estimates to the Expected Returns and Volatilities of IBOVMESB
- p ∼ B(5, 50) and p = 0.1

Yao’s method produces comparable estimates taking less computational time
for every scenario we consider. However, our conclusion about the efficiency
of Yao’s method in the identification of atypical observations agree with the
statements of Barry and Hartigan (1993). Our method and Barry and Harti-
gan’s method are more sensitive to the presence of outliers.

Other advantage of our method and Barry and Hartigan’s method is the pos-
sibility of eliciting prior distributions to p, that can give more flexibility in the
use of the PPM. For example, we observe that the product estimates tend to
be close if beta distributions having the most of their mass concentrated in
small values are considered.

The use of non-informative prior distributions to p as well as the use of prior
specifications to p that consider high mass to high values of p identify almost
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Fig. 13. Product Estimates to the Expected Returns and Volatilities of IBOVMESB
- p ∼ U(0, 1) and p = 0.1

every point as a change point, which for the Brazilian stock market is not an
appropriated choice. We also notice that by using these prior specifications
the methods do not identify the atypical observations.

Finally, we observe that the PPM works well in the identification of change
points in the Brazilian stock market if an appropriated prior specification is
done.
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