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1 Introduction

A situation frequently faced by applied statisticians, especially by biostatisticians, is the
analysis of time-to-event data. Many examples can be found in the medical literature.
Censoring is very common in lifetime data because of time limits and other restrictions on
data collection. In a survival study, patient follow-up may be lost and also data analysis is
usually done before all patients have reached the event of interest. The partial information
contained in the censored observations is just a lower bound on the lifetime distribution.

The Cox regression model (Cox, 1972) is one of the most important methods for the
analysis of censored data and it is employed in several applications ranging from epidemi-
ological studies to the analysis of survival data on patients suffering from chronic diseases.
This model provides a flexible method for exploring the association of covariates with fail-
ure rates and for studying the effect of a covariate of interest, such as the treatment, while
adjusting for confounding factors.

The most popular form of Cox regression model, for covariates not dependent on time,

uses the exponential form for the relative hazard, so that the hazard function is given by

At) = Mo(t) exp(B7x), (1)

where \o(t), the baseline hazard function, is an unknown non-negative function of time, 3 is
a p X 1 vector of unknown parameters to be estimated and x = (z1,...,z,)" is a row vector
of covariates.

Major decisions on censored data studies are often based on a few non-censored obser-
vations. Inference procedures for the Cox regression model rely on the maximum partial
likelihood method (Cox, 1975). A convenient way for obtaining maximum partial likelihood
estimates (MPLESs) B of B is given as an iteratively re-weighted least squares algorithm.

The computation of second-order biases is perhaps one of the most important of all
approximations arising in the theory of estimation by maximum likelihood in nonlinear re-
gression models. Several authors have obtained second-order biases of maximum likelihood

estimates (MLEs) for some commonly used nonlinear regression models. The general for-



mula for the n~! biases of MLEs was developed by Cox and Snell (1968). Anderson and
Richardson (1979) and McLachlan (1980) found the biases of the MLEs in logistic discrimi-
nation problems. Cook et al. (1986) derived a general formula for correcting bias in normal
nonlinear regression models and showed that the bias may be due to the explanatory variable
position in the sample space. Young and Bakir (1987) used bias correction to improve several
pivotal quantities for generalized log-gamma model. Cordeiro and McCullagh (1991) and
Cordeiro and Klein (1994) derived matrix formulae for second-order biases of MLEs of the
parameters in generalized linear models (McCullagh and Nelder, 1989) and ARMA models,
respectively. Paula (1992) derived bias correction for exponential family nonlinear models.
Cordeiro and Vasconcellos (1997) and Cordeiro et al. (1997) presented general bias formulae
in matrix notation for a class of multivariate nonlinear regression models.

The main goal of this paper is to derive general formulae for the second-order biases of
the MPLE B in model (1). A special case of our results include the formulae developed by
Colosimo et al. (2000). Our formulae can be of direct practical use to applied researchers
since they are easily obtained as vectors of coefficients in a suitably defined weighted linear
regression. Our method might be also used as a mean of achieving parsimony by reducing
the bias without incorporating more and more covariates. The plan of the paper is as follows.
Section 2 presents a simple matrix formula for computing the n~! bias of the MPLE in model
(1). In Section 3, this formula is used to derive the n=! bias B for a special case. Finally,
in Section 4, Monte Carlo simulations are presented to compare the MPLE and this bias-
corrected version. These simulation results show that the bias-corrected MPLE can deliver

much more reliable inference than their uncorrected counterparts.

2 Bias of B

The purpose of this section is to use Cox and Snell’s (1968) asymptotic formula for the n=!

bias of the MPLE in order to obtain the second-order bias term of 3 in model (1). Let
[ = I(B) be the partial log-likelihood function, given the sample of n individuals, where

occur k < n failures in times t; <ty < --- < t;, which in the absence of ties is written for



the model (1) as

— i(sz |:ﬂTXz‘ _ lOg ( Z exp(IBTXj))] s (2)

i=1 j€R,)

where R,y = {k: t;, > t;} is the risk set at time ¢; and ¢; is the failure indicator, §; = 1 for
failures and 9; = 0 for censored observations. The MPLE of 3 is obtained by maximizing
(2). The interest is to correct the bias of this estimate and also to show that the n~' bias
of ,@ is easily obtained as a vector of regression coefficients in a weighted linear regression
conveniently defined. The formula for the n~! bias of B is also very simple to be used
algebraically for derivation of closed-form expressions in special cases, since it involves only
simple operations on matrices and vectors.

The following notation is introduced for the moments of the partial log-likelihood deriva-
tives: ks = FE(0%1/0B,08s), krst = E(0%1/03,08,08;) and ks = E (0°1/03,08:0l/03;).
Note that ks = —kK,s is a typical element of the Fisher information matrix for 8 and that
Krsy 1s the covariance between 9%1/95,003s and 9*1/03;. Furthermore, the derivatives of the
moments are defined by /{ = OK,s/00;. All K's and their derivatives are assumed to be of
order O(n). The mixed cumulants satisfy certain equations which facilitate their calculation,
such as Ky = K — Ky

Calculation of unconditional expectations would require a full specification of the cen-
soring mechanism. This information is not generally available. However, these expectations
can be taken conditional on the entire history of failures and censoring up to each time ¢
of failure. This is the way used to build up the partial likelihood and allows a direct ver-
ification that the terms of [ do have some of the desirable properties of the increments of
the log-likelihood function (Cox, 1975). In this way the observed and expected values of the
derivatives of [ taken over a single risk set are identical (Cox and Oakes, 1984).

The following notations are useful in order to define the cumulant expressions

Z Vil jr €XP :3 x;)/si,



n
Z ]zx]rx]s eXp /8 X])/SZ7

TSt

Z Vil jrLjsLjt eXp(B X;)/8i-
J=1

where Vii = 1, if tj > ti, or O, if tj < ti, and S; = Z?:l Vji eXp(ﬂij).

Following these notations, the expressions for the cumulants can be written as

st = 2 0; (o/"oft + afal’ + atal® — al*t — 20[20[50[2) .

The Fisher information matrix for 3 is given by K = XTW X, where W = A — A® with
A=Y00 A = diag{éﬂji exp(,Bij)/si}, A®? =5 AEA; with E = 117, where 1
is a n x 1 vector of ones and X is an n x p matrix of fixed regressors with full column rank.

Let B(f,) be the n~! bias of 3,. Cox and Snell’s (1968) formula can be used to ob-
tain B (ﬁAa) This expression is simplified because () = k,, since expected and observed

cumulants are identical. This is
1
_ !, .ar .st
- 5 E R K Rrsty

where —k"* is the corresponding element of the inverse of the information matrix K and '

denotes a summation over all the combinations of the parameters /3, ..., 3,. Hence,
1 n
ZQZ/ﬁarﬁst25 (Oer[St—f-OésOért—f-OéOé TSt QOZT s t) (3)
i=1

Equation (3) involves five summations and each one is a contribution for the bias of Ba.

The corresponding quantities of the bias of B are denoted by 77 up to T5. These terms can
—1

be written in matrix notation in such a way 7T, = (XTWX) XT™W¢,, where v =1,...,5.

We can show after some algebra that the p x 1 bias vector B (B) reduces to

bt



B(j) = (X"WX) " X", (4)
where £ is an n x 1 vector defined by & = & + 2& + &3 + &4 and given in matrix form as
& = %Wfl <Z—|—2M —AZ;—2 A) 1. Here, A = ¥, t;A;, where t; = 1TZ;A1, M =

TLNZN, Z =X (XTX>71XT, is a n X n covariance matrix, Z; = diag(z11,- .-, Zun)
and A: Z?:l UiAi with V; = 1TAZZAZ]_

The expression (4) is easily obtained from a weighted linear regression of £ on the model

1
)

matrix X with weights in W. In the right-hand side of Equation (4), which is of order n~

an estimate of the parameter 3 can be inserted in order to define the corrected MPLE

B.=B— B(B), (5)
where é(o) means the value of B(e) at the point B. The bias-corrected estimate 3, is
expected to have better sampling properties than the uncorrected ones, B In fact, some

simulations are presented in Section 4 that indicate that BC have smaller bias than its corre-

sponding MPLE without variance inflation.

3 Special Case

In this section, a especial case is presented, for which the formulae (4) can be easily simplified
and only require simple operations on matrices and vectors. We consider the one parameter
Cox regression model (p = 1), X is defined as a n x 1 vector, W = A — A®@ isan xn
matrix, where A and A® are defined in Section 2.

The expression (4) for the second-order bias can be simplified as

R ks
B(B) = — 6
B)= 55 (6
where &k = XTWX is the Fisher information matrix for B and ky, =
XT|A+2M—-AZy—2A|1, for & = k'Y, (1Tdiag(XXTA1)A, M =



Y AXXT)A, Z = kPNXXTY), Zs o= ky'diag(ei,.. . zen) and A=
B  (ATA(X XA A,

The expression (6) is in agreement with the results obtained by Colosimo et al. (2000) for
the n~! bias of the MPLE. However, Colosimo et al. (2000) did not use a matrix notation and
their expressions are algebraically huge and difficult to implement in computational terms.

Another case of practical interest is A(t) = exp(,@Tx)f\o(t), the Breslow estimator of
the cumulative hazard function, A(t) = exp(87x)Ao(t), where Ag(t) = 3 Mo(s)ds. Thus,
A(t). = exp (— B(B)"x)A(t) is the bias corrected estimator of this function. Therefore, the

Breslow estimator has a multiplicative bias correction factor given by exp ( — B(,@)TX)

4 Simulation Results

In this section, Monte Carlo simulations comparing the performance of the usual MPLE and
its corrected version are presented. The simulation study is based on a Weibull regression
model with two explanatory variables. For each experiment, the following estimates are
computed: (i) the MPLE B1, By and (ii) the corrected estimate Bies o given by (5). Two
independent sets of independent random variables TT = (T3,...,T;,) and Ut = (Uy,...,U,)
are generated for each repetition and the lifetime min(7;, U;) and 6; are recorded. T; is a
vector of realizations of a two-parameter Weibull[p, exp(87x;)] and Uj, corresponding to the
random censoring mechanism, is U(0,6). The covariate x* = (z;, x5) is generated twice: (i)
as independent standard normal and normal with mean zero and variance equal to four; (ii)
as independent Bernoulli with p = 0.5 and gamma with scale and shape parameters equal to
one. These sets of covariate values are maintained the same in all repetitions. The parameter
BT = (81, B2) is set equal to (1,1) and 10,000 replications are run for each simulation. The
simulations are performed for several combinations varying the sample sizes, n = 10, 20,
30, the proportion of censoring in the sample, F' = 0%, 20%, 40%, and the parameter
p=10.2,0.5,1.0,2.0. The proportion of censoring, P(U; < T;), is obtained by controlling the
value of the parameter 6. Tables 1 and 2 display the simulated sample means and the root

of the mean square error (RMSE).



Table 1: Sample Means and the Root of the Mean Square Errors for X; as Bernoulli(0.5)
and X, as Gamma(1,1)

p F n B RMSE  fic  RMSE Ba RMSE B¢ RMSE
02 0 10 1.343 5561  1.303 4807 1276 3270  1.045 2817
20 1.153 2.902 1.120 2.789 1.051 1.790 0.924 1.727

30 1073 2258  1.038 2213 1037 1269 0961  1.245

20 10 1361 5840 L1311 4921  1.360 3577 1075  2.991

20 1120  3.000  1.096  1.931  1.086 1931  0.926  1.840

30 1.057 2.344 1.012 2.282 1.059 1.361 0.961 1.324

10 10 1364 6734 1332 5510 1585 5380  L157  4.677

20 1.120 3.385 1.046 3.115 1.168 2.269 0.936 2.105

30 1.085 2686  1.005  2.548  1.105 1573 0.962  1.503

0.5 0 10 1.320 2.322 1.201 1.959 1.318 1.449 1.118 1.179
20 1.138 1.191 1.100 1.136 1.105 0.764 1.028 0.725

30 1.068 0916  1.042  0.894  1.072 0543  1.028  0.527

20 10  1.378 2556 1201 2452 1427 1070  LI140  1.861

20 1125 1267  1.076  1.194 1134 0857  1.035  0.798

30 1.079 0985 1035 0953  1.081 0598  1.024  0.574

40 10 1.436 3.458 1.251 2.993 1.621 2.917 1.248 2.595
20 1124 1403  1.049  1.281 1175 1019  1.039  0.931

30 1072 1116  1.017 1054 1103 0700  1.022  0.658

10 0 10 1319 1378  1.136 1022  1.327 0995  1.105 _ 0.697
20 1.115 0.644 1.071 0.605 1.113 0.456 1.047 0.420

30 1.066 0491  1.039 0475  1.071 0324  1.035  0.308

20 10  1.398 1726  L.185 1423 1461 1681  LI85  1.482

20 1126 0709 1.073  0.659  1.139 0533  1.062  0.485

30 1.070  0.540  1.038  0.518  1.084 0367  1.041  0.346

40 10 1.510 2.456 1.274 2.504 1.699 2.639 1.361 2.685
20 1144 0815  1.074 0742 1188  0.668  1.094  0.604

30 1.080  0.622  1.037 058  1.111 0450  1.056  0.419

20 0 10 1352 1064  1.019 0556 1354 09985  0.998  0.406
20 1.106 0.414 1.046 0.371 1.109 0.342 1.037 0.298

30 1069  0.309  1.066 0242 1029 0291  1.027  0.224

20 10 1474 1589  1.178  1.540 1493 1422  1.153 1573

20 1120 0484  1.072 0442 1141 0419  1.073  0.375

30 1.076  0.351  1.046  0.333  1.083  0.280  1.048  0.262

40 10 1.631 2.169 1.410 2.218 1.713 2.087 1.437 2.333
20 1166 0591  1.111 0552 1192  0.542  1.129  0.505

30 1.094 0411 1066 0392  1.108  0.340  1.076  0.323




Table 2: Sample Means and the Root of the Mean Square Errors for X; as Normal(0, 1) and
X5 as Normal(0, 4)

p F n B RMSE  fic  RMSE Ba RMSE B¢ RMSE
02 0 10 1541 3615 1509 2918  1.332  1.763  1.078  1.369
20 1.132 1.492 1.066 1.430 1.140 0.830 1.077 0.763

30 1.071 1258  1.037  1.233  1.089 0599  1.062  0.585

20 10 1596 4133 1547  3.161 1466  2.173  LI4l _ 1.682

20 1154 1589  1.077 1510 1181  0.904  1.107  0.852

30 1.079  1.338 1041  1.307  1.108  0.662  1.078  0.646

40 10 1.481 5.197 1.481 4.218 1.659 2.749 1.187 2.135
20 1.185 1.810 1.089 1.688 1.225 1.091 1.143 1.023

30 1.081  1.530  1.030 1481  1.113 0767  1.082  0.750

05 0 10 1461  1.888 1256  1.390  1.372  1.188  1.081 _ 0.856
20 1.126 0.669 1.068 0.624 1.139 0.457 1.079 0.414

30 1.067 0535  1.039 0518  1.037 0314  1.051  0.300

20 10 1548  2.037  1.301  1.501 1482 1476  L.129  1.159

20 1145 0721 1.080  0.666 1167 0528  1.100  0.474

30 1.077 0574 1046 0553  1.091  0.349  1.063  0.331

40 10 1.578 2.566 1.248 2.081 1.607 1.720 1.138 1.436
20 1177 0.841  1.098  0.767 1221  0.657  1.146  0.584

30 1085  0.652  1.045 0621 1115 0411  1.084  0.386

1.0 0 10 1.492 1.422 1.150 0.975 1.441 1.141 1.058 0.863
20 1.131 0.454 1.059 0.401 1.145 0.403 1.067 0.342

30 1.070 0326 1.035 0308  1.077 0251  1.041  0.229

20 10 1566 1594  1.207  1.285 1524 1207  L.119  1.114

20  1.147 0489  1.071 0435 1167 0450  1.083  0.389

30 1.080  0.353 1040 0330  1.090  0.280  1.048  0.251

40 10 1.607 1.758 1.180 1.543 1.592 1.396 1.114 1.297
20 1183 0580  1.097 0522 1225 0585  1.133  0.524

30 1.096 0405  1.048 0373 1119 0339  1.069  0.299

2.0 0 10 1.425 1.060 1.074 0.909 1.428 1.021 1.053 0.922
20  1.139 0460  1.038 0330  1.149 0400  1.039  0.315

30 1.079 0268  1.020 0241  1.085 0250  1.030  0.219

20 10 1448  LIl2  L.110  1.020 1439  Lo04l _ 1.092  1.009

20 1162 0450  1.082 0432 1176 0451  1.089  0.433

30 1.093 0.295 1.045 0.272 1.102 0.282 1.049 0.263

40 10 1.435 1.119 1.069 1.135 1.411 0.999 1.060 1.063
20 1231  0.627 1173  0.626 1262  0.647  1.200  0.648

30 1128 0376 1.088 0372 1147 0379  1.104  0.377




As expected, the bias of the MPLE increases when the sample size n decreases or when the
proportion of censoring F' increases. In general, the bias increases as the shape parameter
of the Weibull distribution increases. It can be observed that the bias is really large for
F = 40% and n = 10.

From Tables 1 and 2, it seems that there is a bias reduction using the corrected estimator
when compared with the standard MPLE. The reduction is larger in the worst cases presented
in the simulations. A similar reduction happens with the root of the mean square error and
that is an indication of no variance inflation when using the corrected estimator.

As a final remark, notice the reader that the reduction may not be not the same in
both estimates in each model. In Table 1, for instance, the reduction is much better for
the estimator associated with the gamma covariate than the Bernoulli. Additionally, better
results in favor of the estimates associated to the Normal(0,4) can be observed in Table 2.
However, a complete understanding of this behavior would be an interesting topic for future

research in the area.
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