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Resumo: Para distribuicBes normais, as distancids dé Hotelling e MEWMA estdo
diretamente relacionadas a distancia de BhattaghaBssa relacdo prové importante uma
informacéo a respeito do erro de classificacdo orend de um limite superior de
probabilidade, indicando o grau de sobreposicare etdis processos. Para demonstrar esse
fato € conduzido um estudo simulado para o momterdo do vetor de médias em um
processo Gaussiano bivariado. As caracteristicagalico de controle de confianga proposto
sao utilizadas para comparar os efeitos da estomdgd/etor de médias através do esquema
MEWMA e janelas moveis, as quais tém pesos unifeyni@ear e exponencialmente
distribuidos. Os resultados demonstram que oscgeifie controle de confianca MEWMA
sdo mais faceis de calibrar e também apresentanormefeito inercial para grandes
mudancgas.

Palavras-chave: Processos gaussianos pontuais, vetores de médiasole estatistico de
processos, parametro de ndo-centralidade, distdadshattacharyya, janela movel.

Abstract: In this work we show that for normal distributiottse Hotelling’s T and the
multivariate exponentially weighted moving averélgd=WMA) distances are directly related
to the Bhattacharyya distance. This relationshipyides important information concerning
on the misclassification error probability as anpgp bound on it. In fact, this useful
information indicates the overlap degree betweee it and out-of-control processes.
Therefore, the first purpose of this simulationdgtus to monitor the mean vector of a
bivariate Gaussian process by means of an informeationtrol chart based on probability
bounds. Additionally, a comparison study is carrtedmeasure the effects of estimating the
actual mean vector by the MEWMA scheme and slidingow schemes, which are chosen to
have uniform, linear and exponentially distributegights. Results demonstrated that the
confidence MEWMA control chart is easier to caliierand shows less inertia for big shifts in
the mean vector than the sliding window approach.

Keywords: Gaussian point processes, mean vectors, statiptmeess control, noncentrality
parameter, Bhattacharyya distance, sliding window.



1. Introduction

In many industrial problems the probability of oi&ssification is a subject of great
interest, but the calculation is a difficult taskea when the observed data is normal.
Therefore, the idea of monitoring a process byuating its probability to be in- or out-of-
control is usually discarded. Recent advancedssizdl techniques with applications to e
and theS? control chart includes the univariate case (Famad Saniga, 2012), and the
multivariate case, where a recent work also coubes global process monitoring by
controlling the mean vector and covariance maimustaneously (Niaki and Memar, 2009).

Considering the process control of mean vectory,dhe most utilized method to
monitor big shifts is the Hotelling’s®Tcontrol chart (Hotelling, 1947), while in the casie
smaller shifts the multivariate exponentially weggh moving average (MEWMA) control
chart (Lowry et al., 1992% more popular for being simpler to implement witempared to
its most famous concurrent, the multivariate cunngasums (MCUSUM) control chart
(Crosier, 1988). Although the methodology utilized this work may be extend for the
multivariate global process monitoring by probdlas, as an initial propose we only consider
the process control of multivariate mean vectors.

If a closed-form for the error probability is notogided, one may seek either an
approximate expression or an upper bound on the erobability. A closed form for the
upper bound on the error probability is very usébulmany reasons. Beyond of reducing the
computational effort greatly, the evaluation ofim@e formula may provide an insightful
knowledge about the actual process state. Furthrerntioe misclassification error increases
significantly with the number of dimensions, redugridramatically the standard confidence
levels that the process is actually in-control (rukga, 1990). Due to this fact, the evaluation
of a probability measure instead of raw distandeesgmore valuable information about the
price we have to pay for not knowing the altermatprocess statea priori. Focusing this
objective, the monitoring of Gaussian mean vectbys means of a simple distance
transformation that leads to a control chart diyelssed on probabilities is discussed in this
work.

Additionally, another question that arises when phecess is monitored for small
shifts in the mean vector with MEWMA based contcblarts is the inertial phenomenon
(Lowry et al., 1992), which delays change detectfadhe actual shift occurring in the mean
vector is big and the chart is calibrated for venyall shifts. To avoid this phenomenon and
for practical reasons, the researcher may seeddtiennative approaches to estimate the actual
mean vector, including discarding totally old obsions by the utilization of sliding
window schemes. While the EWMA method accumulatésrination about all the previous
observations into the actual mean vector, the rajidvindow approach discards past
observations faster and gives most weight onlyéorécent past.

Many authors such as Hwarng and Hubele (1993a, @99Guh (2005, 2008)
suggested a moving window approach as an esséwiafor on-line pattern identification.
However, two problems that can be addressed arettahwoose the appropriate window size
and how to deal with unnatural patterns in whichigalignment of the pattern in time is
possible. Also, the identified pattern can be ddfgé in time from the training pattern
(Hachicha and Gorbel, 2012) and dynamic window ssigkould be more appropriated.
However, dynamic sizes for the sliding window sckenare not covered in this work. As
demonstrated in the experiments of this work, tepkéhe window size fixed reflects directly
on the shift magnitude to be detected. Additionaligy do not have the property of reducing
the inertial phenomenon for big shifts.

To provide an analysis on the effects of estimatiregactual mean vector based on the
MEWMA or sliding window approaches, tree types bflisg windows are proposed for
comparison purposes. The proposed sliding windogedation weights are uniform, linear
and geometrically distributed. As the sliding wimdsize is an important parameter, the
probability control charts with the utilization sfiding window schemes can also provide



benchmarking criteria for existing and future deypehents. Additionally, the probability
based control chart facilitates the comparativelystoy the standardization of the statistical
distances into the 0-1 interval as upper bound#i®usual confidence levels.

In the following sections, the main properties dfe tnoncentrality parameter
traditionally used to monitor the mean vector bg thotelling’s ¥ and MEWMA control
charts, as well the link with the upper bound oa dnror probability is described. Next, the
experiments on the Hotelling’'s®Tand the probability control chart performance with
individual observations are compared. Further MEBE&VMA and sliding window approaches
comparison are carried out by the computation efaverage run lengths (ARLS), or average
time to signal (ATS) as the interval between obagowns is regular. Finally, some remarks
and recommendations on the probability control clead the effects of sliding window
schemes are made.

2. Methodology

It is known that the performance measured by therame run length (ARL) of
traditional control charts like the Hotelling’s?Tand MEWMA depends only on the
noncentrality parameter, not depending on the 'shifirection (Lowry et al., 1992). This
distance is given by

d% = (X; — Mo)Tzal(Xt — M), (1)

whereX;, M, andX, are the observed vector, the in-control mean veatd the in-control
covariance matrix, respectively. The decision mikes an out-of-control signal as soon as
d? > h;, whereh, is a specified threshold that leads to a pre-fipdcfalse alarm rate,
usually defined in terms of the ARL.

In his original paper in 1947, Hotelling suggestied utilization ofd? instead of d to
avoid the labor of extracting the square root, dgithe computational power has massively
increased in the last decades it is almost no matigmore. Thus, to maintain clear the effect
on the in-control limits, in this work d is used fexperiment comparisons varying in the 0-4
range, which is the Hotelling’s distance squareat.ro

While the Hotelling’'s T considers the global process monitoring by ougyin
observations that are outside the in-control botiadathe MEWMA statistic considers the
entire process to be out-of-control as soon as

zf = (M, —My)"27 (M, — M) > h, (2)

whereh is the pre-specified threshold to achieve a ddsftBL andM; is the mean vector
estimated with past and current information by aWMEA scheme, such that

Mt = (1 - /l)Mt_l + ){Xt. (3)

and0 < A < 1. Observe that whea = 1, the MEWMA distance reduces to the Hotelling’s
distance.

The noncentrality parameter is very popular inghéern recognition field (Therrien,
1989), also known as Mahalanobis distance whicteis/ed from the more general cases, the
Bhattacharyya and Chernoff bounds (Fukunaga, 1%}icularly, the Bhattacharyya bound
gives a simplified closed-form expression to corept upper limit on the Bayes error for the
case of normal distributed processes such as

gy = /Py * Py [ /p1(X) * p,(X) dX = /P, * P,e™*(1/2), (4)

where

|21+22|

u(1/2)=§(Mz Ml)T(wZZ) Mz —M,) +3 ln\/|zl||zz| ®)



The termu(1/2) is called theBhattacharyya distance and is used as an important
separability measure between two normal distrimstiovhereM; andX;, i = 1,2, are the
mean vector and covariance matrix of each class. distance is composed of two terms, the
first one carrying the information about the pracedference in the mean vectors, and the
second part corresponding to the difference ircthariance matrices.

Rao (1947) explained that this distance is an epiunction of the proportion of
overlapping individuals in the two populations. Rd4949) also commented that
Bhattacharyya had developed a perfectly generakuneadefined by the distance between
two populations based on a metric of Riemannianmgry, with the angular distance
between points representing the populations initessphere.

In the case of single-hypothesis tests, like intigteal process control (SPC)
problems, the out-of-control state is generally atadmined. Then, instead of utilizing
equation (4) which supposes two known processés nitore interesting to evaluate only the
upper bound for the Type | error, which refers dolyhe known process and is given by

gu; = v/P2/P1 [ {/p1(X) * po(X) dX = /P, /Pre™+(V/2), (6)

Also, as this work is focused in the monitoringnaéan vectors only, the assumption
of equal covariance matrices reduces the Bhattgghadistance to the noncentrality
parameter, except by a constant, assuming the form

n(1/2) = 2 (M, = M)"Z, ™ (M, — My). (7)

whereM; is the mean vector estimated at the instaM, is the in-control mean vector and
X, is the in-control covariance matrix.

This simplified form preserves all the known prdjer of the Hotelling’s T and
MEWMA control chart with respect to the performameasured by the average run length.
The first and second order moments for the Bhatiggta distance for the case of equal
covariance matrices are easily deduced from theltsesn the 8 statistic as presented by
Fukunaga (1992). The simulated experiments pregant¢éhe following section agree with
the theoretical values for the first and second e of the Bhattacharyya distance as well
for the Hotelling’s T with high precision.

2.1. Probability control charts

The theoretical results presented above provideiffereht look in the process
monitoring by transforming the statistical raw distes and theirs respective in-control
boundaries into probability values as standardepadt First, if there is no special reason to
weight the in- and out-of-control process diffetgnthe processes are equally weighted in
equation (6), thus reducing the upper bound orilgfpe | error toexp (—u(1/2)). Different
weights for the processes will result in a scalaification to be further analyzed, but still
preserving the 0-1 domain.

Observe that when the process is actually in-cgntine estimated mean vector, or
individual observations, must show no significaiffedence from the in-control standard
error levels. This leads to an upper bound;ahat is near to one because the in-control and
current processes are completely overlapped. Whenmtean vector shifts to the out-of-
control state, the upper bound ap decreases indicating less overlapping among the
processes. By other hand, if the complementary ginitity is taken, it indicates an upper
bound on the confidence level which is closer twzmeaning that the current process is not
being apart from the in-control state.

Based on those appointments, the probability cobntieart when individual
observations are compared to the in-control meatovés taken as the standard level for the
different ways of estimating the mean vector. Tdpproach can be viewed as the MEWMA
chart withA = 1, or a sliding window chart with unitary window sizFor this reason, this
control chart is identified by the SW1 code (slgliwindow of unitary size). This control



chart is a simple scale transformation of the Hiogs T? by the use of Bhattacharyya
distance, triggering a signal when

pe=1—exp [_%(Xt - M) (X, - Mo)] > h', (14)
whereh* is the in-control upper limit to achieve a desiAdelL,.

If the individual observed vector is switched bynaan vector, it is possible to utilize
the MEWMA or sliding window schemes to its estimati Equation (3) is utilized to estimate
M; in the case of an MEWMA based control chart. Hbmreethods utilizing mean vector
estimates instead of individual observations, trabability control chart triggers an out-of-
control signal as soon as

pe=1- exp[ _%(Mt — M) 5 (M, — Mo)] > h". (15)
whereh* is chosen to achieve a desired ARL

For all cases of sliding window schemes, only theeovation vectors inside current
window are weighted and the mean vector is given by

M; = Xi_ 1 Wi Vi, (16)
with ¥, ,.,w; = 1. The uniform sliding window approach equally wegyhall the
observations inside the window of sizaith w/ given by

U 1
wy =-— a7

l k’
i=t—k+1,..,t. The linear sliding window approach gives more gheito the most

recent observation and decreases linearly the wefgtider vectors as
j

L k
wy = ~ . (18)
T LTl | o
In the exponential sliding window scheme, the wisdbr the observation vectors inside in
the window are distributed by

E_ __J*

Wi T3 Gey
where ¢ is a smoothing factor between 0 and 1. Whes 1, the exponentially weighted
window converges into the uniform window. The snming factor ¢ utilized for the
exponentially weighted window is fixed as 0.7 aslécay below 0.5 after two steps. The
calculation of individual weights for the three posed sliding window schemes of size 4 is
illustrated in Table 1.

Table 1. Weights computation for sliding window scemes with size 4

(19)

Window Position -8 t-2 t-1 t )y
Uniform distribution 1 1 1 1 f
_ _ 4 4 4 4 4
Uniform Weights 0.250 0.250 0.250 0.250 1
Linear Smoothing 1 E E f 2
_ _ 4 4 4 4 4
Linear Weights 0.100 0.200 0.300 0.400 1
Exponential Smoothing 0.74 0.73 0.72 0.71 1.77
Exponential Weights 0.135 0.193 0.276 0.395 1

The control chart calibration procedure was cdrimetwo steps to achieve an ARt
200 for all control charts. The first step adjuatdinear regression models in the form
d? = a+ b +In (ARL). This procedure gives an approximate first esfiaabf in-control
thresholds for each chart. The second step indhkration procedure iteratively adjusts the
threshold by interpolation. Next section illustsatihe functionality of the proposed control
chart and analyses the comparative experiments.

3. Results and discussion

The first part of the experiments compares the Hiogs T2 and the SW1 control chart,
which performs a scale transformation of the Hotgls distance. Figure 1 part (a) shows the



signal pattern for the case of no change in thennveator, d = 0. Parts (b) and (c) shifts the
mean vector process at tihe 201 to the distances d = 3 and 6, respectivalyhé scatter-
plot below the control chart, the out-of-controlsebvation vectors are marked with red dots
in the scatter-plot, while the in-control dots &tack. The vertical line in the middle of the
chart delimits the change point. The horizontalhédslines are the in-control thresholds for
the pre-defined ARY.= 200. Given in probability value, the in-contugbper limit for the
SW1 chart isigy, = 0.7362. The correspondent in-control noncentral distaheé holds for
an ARL = 200 in the Hotelling’s Tcontrol chart is d = 3.265, which is a scale tfamsation

of hgw1-

Observing Figure 1 (c), notice that most of the-@utontrol observation vectors do not
overlaps the in-control region, resulting in proltigbvalues closer to 1. This indicates that
the confidence level converges to 1 when the pemseare not overlapped. This characteristic
pattern does not happen with the Hotelling’$ Statistic because it has no bound for
maximum values, making the interpretation of outoitrol signals difficult to evaluate.

A more detailed summary of the raw distances aattislequivalent confidence levels are
given in Table 2, wherd? andp are average values and Sd(*) is the standard titavixom
100.000 sample replications of size 10. Note that gsimulated experiments confirm with
high precision the parameters of the Hotelling’ssTatistic(d?). As expected, the ARL for
both charts are exactly equal, demonstrating thatransformation of the Hotelling’s’ by
the Bhattacharyya distance into probabilities dosmodify the ARL performance.
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Figure 1: Confidence control chart for individual vectors with scatter plots

When the MEWMA based control chart utilizes 1, it performs identically to the SW1
control chart as a standard confidence maximunl teverotect the global in-control process
region. Also notice that both USW and ESW contlarts with sliding windows of any size
performs equally whep = 1.

Figure 2 is composed of four sets of control chamtpart (a) and theirs respective
two-dimensional scatter plots in part (b). The obaston of this figure shows the reducing
effect on the confidence levels for all control thaFor the MEWMA based control chart
with A = 0.7, the transformed in-control limit &3,z 147 = 0.5086 (d = 2.3842). Also is
possible to notice a reduction in the in-controhits of the USW, LSW and ESW chatrts,
which areh};q,, = 0.4811 (d = 2.2908)h} s,y = 0.5166 (d = 2.4115) and},, = 0.4901 (d



= 2.3212). This reduction indicates that the chadtome sensitive to smaller changes in the
mean vector, and does not matter the individualorecdistances.

Table 2: Summary of the Hotelling’s T and Confidence statistics with ARL comparison

d 4z sd(d®)  ARL 5(%) Sd(p)(%)  ARL
0.0 2.000 1.850  200.6 20.00 15.74 200.6
0.006 0.006  0.634 0.001 0.000 0.634
05 2.251 2.070  118.8 21.97 16.93 117.7
0.007 0.007  0.376 0.001 0.001 0.372
1.0 3.001 2.642 43.1 27.62 19.57 43.1
0.009 0.008  0.136 0.001 0.001 0.136
1.5 4.252 3.407 16.0 36.13 21.96 16.0
0.013 0.011  0.051 0.001 0.001 0.051
2.0 6.003 4.263 7.0 46.39 22.98 7.0
0.019 0.013  0.022 0.001 0.001 0.022
2.5 8.253 5.163 3.6 57.19 22.30 3.6
0.026 0.016  0.011 0.002 0.001 0.011
3.0 11.004 6.086 2.2 67.49 20.13 2.2
0.035 0.019  0.007 0.002 0.001 0.007
35 14.270 7.039 1.5 76.51 16.97 1.5
0.143 0.070  0.005 0.002 0.001 0.005
4.0 18.021 7.987 1.2 83.86 13.39 1.2
0.180 0.080  0.004 0.003 0.000 0.004
h(ARL,=200) 10.66 73.62
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Figure 2: Confidence control charts withA. = 0.7, SW2 andp = 0.7

Despite the fact that the control charts becomeensensitive to smaller shifts in the
mean vector, it is interesting to note a drawbddd®wW, LSW and ESW schemes that allows
to some extreme values clearly out-of-control to dmmsidered in-control. In the same
manner, many vectors that could be considered mrgbare marked as out-of-control dots.
This happens because the observation vector ainirist 1 receives too much weight in the
SW approach for the actual observation vector corsge unless it is an outlier in the
opposite side of the out-of-control process. TheVlMEA based control chart seems to avoid
this problem in its respective scatter-plot perfioigna good differentiation between in- and



out-of-control vectors. Such behaviors are due lte fact that the MEWMA scheme
accumulates all the past information in the curmean vector while the SW scheme does
not.

When the window size increases to 4 (SW4), the MEAMMsed control chart has the
A parameter decreased from 0.7 to 0.4 for compapsopose, marked as MEWMA.4. Figure
3 illustrates the four confidence control charendird patterns for a shift of magnitude d = 3.
The respective in-control limits are very closecleather and all them leads to completely
separable processes, which atheyya = 0.2747 (d = 1.6028),hjsy = 0.2677 (d =
1.5789), hjsyy = 0.3190 (d = 1.7530) andhgg, = 0.3082 (d = 1.7168). More detailed
information concerning the mean and standard dewiaif the transformed statistic for this
set of control charts are given in Table 3, wheiis interesting to note that the reduction on
the in-control limits to the level of smaller distees. That reduction gives insight about what
is the optimum distance that can be detected effity detected for each chart configuration,
which is below d = 3 for the MEWMA.7 and SW2 chaatsl below d = 2 for the MEWMA.4
and SW4 charts.
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Figure 3: Confidence control charts withA, = 0.4, SW4 andp = 0.7
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A detailed comparison between the confidence MEWB&&ed control chart baselines
(mean values) and standard deviations for the imrobprocess with. varying from 1 to 0.1
by 0.1 units is illustrated in Figure 4. To analyise out-of-control behaviour of the proposed
statistic, the mean vector is shifted with d vagyim the 0-7 range by 0.5 units. This
information on the first and second order momenmtthe proposed statistic is also valid to
inspect in order to have an informative support tfee decision maker. From the results
presented in Figure 5 is easy to notice the integpatterns of the out-of-control statistics
for the confidence chart. Note that when the mealuer decreases with the smoothing
parameter the standard deviation have a point afrman that is shifted to higher values.

The ARL comparisons between the MEWMA and SW cdntharts are given in
Tables 4. In Figure 6 (a) is shown the ARL comparisf all control charts, while Figure 6
(b) the natural logarithm is taken to amplify thesthods differences. Figure 7 splits the
comparison into two groups. In Figure 7 (a) the SWMEWMA.7 and SW2 control charts are
compared, while in Figure 7 (b) the comparisonasMeen the SW1, MEWMA.4 and SW4
control charts. From that Figures is possible tticeothe higher degree of inertia effect
produced by the SW schemes.

The second set of control charts in Figure 7 (bpgares the SW1, MEWMA.4 and
SW4 charts. Although those control charts perfobetser for shifts below d = 2.0, they have
higher degree of inertial effect than the SW2 chéot shifts (d = 4). Again the USW4 has the
best performance, which is comparable to the MEWAMAhart. With respect to the
robustness against the inertia impact of largetshihe USW approach seems to be more
effective scheme. The LSW and ESW scheme perforarsenn both cases when compared
to the USW scheme for big shifts. While the diffezes between the SW schemes for small
shifts are not evident in the SW2 charts, the LSMid ESW4 charts performs worse than the
USW4 chart also for the smaller shifts.



Table 3: Summary of the MEWMA.4 and SW4 control chart statistics

MEWMA. .4 uSw4 LSWA4 ESW4
d
0.0 5.76 4.7z 5.45 4.28 6.58 5.29 6.32 5.09
0.04 0.0z 0.04 0.03 0.05 0.04 0.04 0.04
0.5 7.84 5.9 7.61 5.65 8.64 6.64 8.39 6.44
0.06 0.0<4 0.05 0.04 0.06 0.05 0.06 0.05
1.0 13.77 8.6¢ 13.73 8.84 14.49 9.82 14.24 9.64
0.10 0.0¢ 0.10 0.06 0.10 0.07 0.10 0.07
15 22.72 11.7: 22.88 12.67 23.25 13.62 22.99 13.51

0.16 0.0¢ 0.16 0.09 0.16 0.10 0.16 0.10
2.0 33.51 14.5: 33.76 16.53 33.68 17.36 33.42 17.40
0.24 0.1C 0.24 0.12 0.24 0.12 0.24 0.12

2.5 44.92 16.7¢ 4504 20.01 4455 20.64 4426  20.88
032 01z 032 014 032 015 0.31 0.15
3.0 55.88 18.3¢ 55.62 22.80 54.81 23.16 54.46  23.62
040 01 039 016 039 016 0.39 0.17
3.5 65.63 19.1° 64.78 2473 63.76 2476 63.35  25.45
046 01/ 046 017 045 018 0.45 0.18
4.0 73.77 19.1¢ 7221 2577 7111 2543 70.63  26.33
052 01/ 051 018 050 0.8 0.50 0.19
h(ARLG=200) 27.47 26.77 31.90 30.82
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Figure 4: Mean value and standard deviation of theConfidence MEWMA CC for the in-
control process with various\’'s

Although the SW2 control charts performs bettenttitee SW1 chart and similarly
the MEWMA.7 chart in Figur7 (a)for small shifts, the inertial effect is visiblerfdistance:
larger than d = 3.0. Ordering the schemes fromdbg to the most serive with respect to
the inertial effect, the MEWMA.7 chart performs teet followed by the USW2, ESW al
LSW charts.
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4. Conclusion

In this work we propose a new manner of monitoi@aussian mean vectors by -
use of an upper bound on the confidence that theegs is i-control. Instead the monitorir
of the noncentralityparameter, we suggest the use of the Bhattachatiggance and it
relationship with the upper bound on the miscléasaiion error. While the Hotelling’s
traditional distance has no maximum values, the@sed confidence control chart basec
probailities for individual observation vectors manifea useful distinction betwee
processes in the D+ange. In this case, when the-of-control process became complet
separable (not overlapped) from th-control process, the proposed statisticverge to 1,
not going to infinity.

Table: ARL comparison between MEWMA and SW control charts varying A and the
window size

d EWMA.7 USWz LSwW2 ESW2 EWMA.4 USwW4 LSW4  ESW4

0.0 198.9  202.i 201.8 201.9 199.3 199.0 199.1 200.7
4.45 4.5 451 4.51 4.46 445 4.45 4.49

0.5 83.2 82.C 84.6 81.0 52.6 544 611 59.2
0.83 0.82 0.85 0.81 0.53 0.54 0.61 0.59
1.0 22.7 22.2 23.7 22.4 12.8 132 154 14.8
0.23 0.22 0.24 0.22 0.13 0.13 0.15 0.15
15 8.4 8.C 8.6 8.1 5.6 5.7 6.7 6.5
0.08 0.0¢ 0.09 0.08 0.06 0.06 0.07 0.06
2.0 4.1 3.€ 4.2 4.0 3.4 3.7 4.3 4.2
0.04 0.04 0.04 0.04 0.03 0.04 0.04 0.04
2.5 2.6 2.5 2.8 2.6 2.5 3.0 3.5 3.5
0.03 0.0c 0.03 0.03 0.03 0.03 0.03 0.03
3.0 1.9 2.C 2.2 2.1 2.0 2.6 3.0 3.0
0.02 0.0z 0.02 0.02 0.02 0.03 0.03 0.03
3.5 15 1.8 2.0 1.9 1.7 2.3 2.6 2.6
0.01 0.01 0.01 0.01 0.02 0.02 0.03 0.03
4.0 1.3 1.€ 1.9 1.8 15 2.1 2.2 2.3

0.01 0.0z 0.02 0.02 0.01 0.02 0.02 0.02
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Figure 6: ARL and In(ARL) comparison for all control charts

Additionally, we show that the probability controhart for individual observatic
vectors can be extended to the more general dasenanitoring of small shifts by the use
MEWMA based control charts and control charts veiiding window schemes. the same
manner of the MEWMA method, instead of using indual observation vectors, the slidi
window approaches are commonly used to estimateath@al mean vector for differe
purposes, including the dime pattern recognition. We show the eqence in performance
measured by the ARL among the MEWMA based contratts and sliding window schem
for specific parameters.

While this equivalence holds for the small shifts the mean vector, the slidil
window approach shows to be more suitab suffer the inertial effect for bigger shifts th
the MEWMA based scheme. Indeed, in the same mahiaéra decrease in the weighti
factor A of the MEWMA chart provides an identification ahaller shifts, the increasing
the sliding window size corsponds to a control chart that is more effectivéhi detectior
of smaller shifts, but at the cost of more ineréifiect for big shifts than the MEWMA bas
chart.
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Figure 7: In(ARL) comparison: (a) SW1, MEWMA.7 and SW2 contrd charts (b)
SW1, MEWMA.4 and SW4 control charts

Future work on this topic includes the monitorinfytbe covariance matrix of
Gaussian process by the use of probability basettalocharts, as well the global proct



monitoring, i.e., the jointly monitoring of the meavector and covariance matrix of a
multivariate Gaussian process.
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