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Resumo: Para distribuições normais, as distâncias T2 de Hotelling e MEWMA estão 
diretamente relacionadas à distância de Bhattacharyya. Essa relação provê importante uma 
informação a respeito do erro de classificação na forma de um limite superior de 
probabilidade, indicando o grau de sobreposição entre dois processos. Para demonstrar esse 
fato é conduzido um estudo simulado para o monitoramento do vetor de médias em um 
processo Gaussiano bivariado. As características do gráfico de controle de confiança proposto 
são utilizadas para comparar os efeitos da estimação do vetor de médias através do esquema 
MEWMA e janelas móveis, as quais têm pesos uniformes, linear e exponencialmente 
distribuídos. Os resultados demonstram que os gráficos de controle de confiança MEWMA 
são mais fáceis de calibrar e também apresentam menor efeito inercial para grandes 
mudanças. 

Palavras-chave: Processos gaussianos pontuais, vetores de médias, controle estatístico de 
processos, parâmetro de não-centralidade, distancia de Bhattacharyya, janela móvel. 

Abstract: In this work we show that for normal distributions the Hotelling´s T2 and the 
multivariate exponentially weighted moving average (MEWMA) distances are directly related 
to the Bhattacharyya distance. This relationship provides important information concerning 
on the misclassification error probability as an upper bound on it. In fact, this useful 
information indicates the overlap degree between the in- and out-of-control processes. 
Therefore, the first purpose of this simulation study is to monitor the mean vector of a 
bivariate Gaussian process by means of an informative control chart based on probability 
bounds. Additionally, a comparison study is carried to measure the effects of estimating the 
actual mean vector by the MEWMA scheme and sliding window schemes, which are chosen to 
have uniform, linear and exponentially distributed weights. Results demonstrated that the 
confidence MEWMA control chart is easier to calibrate and shows less inertia for big shifts in 
the mean vector than the sliding window approach. 

Keywords: Gaussian point processes, mean vectors, statistical process control, noncentrality 
parameter, Bhattacharyya distance, sliding window. 

  



1. Introduction 

 In many industrial problems the probability of misclassification is a subject of great 
interest, but the calculation is a difficult task even when the observed data is normal. 
Therefore, the idea of monitoring a process by calculating its probability to be in- or out-of-
control is usually discarded. Recent advanced statistical techniques with applications to the �� 
and the �� control chart includes the univariate case (Faraz and Saniga, 2012), and the 
multivariate case, where a recent work also covers the global process monitoring by 
controlling the mean vector and covariance matrix simultaneously (Niaki and Memar, 2009).  

Considering the process control of mean vectors only, the most utilized method to 
monitor big shifts is the Hotelling’s T2 control chart (Hotelling, 1947), while in the case of 
smaller shifts the multivariate exponentially weighted moving average (MEWMA) control 
chart (Lowry et al., 1992) is more popular for being simpler to implement when compared to 
its most famous concurrent, the multivariate cumulative sums (MCUSUM) control chart 
(Crosier, 1988). Although the methodology utilized in this work may be extend for the 
multivariate global process monitoring by probabilities, as an initial propose we only consider 
the process control of multivariate mean vectors. 

If a closed-form for the error probability is not provided, one may seek either an 
approximate expression or an upper bound on the error probability. A closed form for the 
upper bound on the error probability is very useful for many reasons. Beyond of reducing the 
computational effort greatly, the evaluation of a simple formula may provide an insightful 
knowledge about the actual process state. Furthermore, the misclassification error increases 
significantly with the number of dimensions, reducing dramatically the standard confidence 
levels that the process is actually in-control (Fukunaga, 1990). Due to this fact, the evaluation 
of a probability measure instead of raw distances gives more valuable information about the 
price we have to pay for not knowing the alternative process state a priori. Focusing this 
objective, the monitoring of Gaussian mean vectors by means of a simple distance 
transformation that leads to a control chart directly based on probabilities is discussed in this 
work. 

Additionally, another question that arises when the process is monitored for small 
shifts in the mean vector with MEWMA based control charts is the inertial phenomenon 
(Lowry et al., 1992), which delays change detection if the actual shift occurring in the mean 
vector is big and the chart is calibrated for very small shifts. To avoid this phenomenon and 
for practical reasons, the researcher may seek for alternative approaches to estimate the actual 
mean vector, including discarding totally old observations by the utilization of sliding 
window schemes. While the EWMA method accumulates information about all the previous 
observations into the actual mean vector, the sliding window approach discards past 
observations faster and gives most weight only to the recent past. 

Many authors such as Hwarng and Hubele (1993a, 1993b), Guh (2005, 2008) 
suggested a moving window approach as an essential tool for on-line pattern identification. 
However, two problems that can be addressed are how to choose the appropriate window size 
and how to deal with unnatural patterns in which a misalignment of the pattern in time is 
possible. Also, the identified pattern can be different in time from the training pattern 
(Hachicha and Gorbel, 2012) and dynamic window sizes should be more appropriated. 
However, dynamic sizes for the sliding window schemes are not covered in this work. As 
demonstrated in the experiments of this work, to keep the window size fixed reflects directly 
on the shift magnitude to be detected. Additionally, they do not have the property of reducing 
the inertial phenomenon for big shifts. 

To provide an analysis on the effects of estimating the actual mean vector based on the 
MEWMA or sliding window approaches, tree types of sliding windows are proposed for 
comparison purposes. The proposed sliding window observation weights are uniform, linear 
and geometrically distributed. As the sliding window size is an important parameter, the 
probability control charts with the utilization of sliding window schemes can also provide 



benchmarking criteria for existing and future developments. Additionally, the probability 
based control chart facilitates the comparative study by the standardization of the statistical 
distances into the 0-1 interval as upper bounds for the usual confidence levels. 

In the following sections, the main properties of the noncentrality parameter 
traditionally used to monitor the mean vector by the Hotelling’s T2 and MEWMA control 
charts, as well the link with the upper bound on the error probability is described. Next, the 
experiments on the Hotelling’s T2 and the probability control chart performance with 
individual observations are compared. Further, the MEWMA and sliding window approaches 
comparison are carried out by the computation of the average run lengths (ARLs), or average 
time to signal (ATS) as the interval between observations is regular. Finally, some remarks 
and recommendations on the probability control chart and the effects of sliding window 
schemes are made. 

2. Methodology 

It is known that the performance measured by the average run length (ARL) of 
traditional control charts like the Hotelling’s T2 and MEWMA depends only on the 
noncentrality parameter, not depending on the shift’s direction (Lowry et al., 1992). This 
distance is given by 

d�� � ��� 	 
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��
����� 	 
��,    �1� 

where ��, 
� and �� are the observed vector, the in-control mean vector and the in-control 
covariance matrix, respectively. The decision rule gives an out-of-control signal as soon as 
d�� � ��, where �� is a specified threshold that leads to a pre-specified false alarm rate, 
usually defined in terms of the ARL.  

 In his original paper in 1947, Hotelling suggested the utilization of d� instead of d to 
avoid the labor of extracting the square root, but as the computational power has massively 
increased in the last decades it is almost no matter anymore. Thus, to maintain clear the effect 
on the in-control limits, in this work d is used for experiment comparisons varying in the 0-4 
range, which is the Hotelling’s distance squared root. 

While the Hotelling’s T2 considers the global process monitoring by outlying 
observations that are outside the in-control boundaries, the MEWMA statistic considers the 
entire process to be out-of-control as soon as 
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where h is the pre-specified threshold to achieve a desired ARL and 
� is the mean vector 
estimated with past and current information by a MEWMA scheme, such that 


� � �1 	 ��
��� � ���.     �3� 
and 0 � � � 1. Observe that when � � 1, the MEWMA distance reduces to the Hotelling’s 
distance.  

The noncentrality parameter is very popular in the pattern recognition field (Therrien, 
1989), also known as Mahalanobis distance which is derived from the more general cases, the 
Bhattacharyya and Chernoff bounds (Fukunaga, 1990). Particularly, the Bhattacharyya bound 
gives a simplified closed-form expression to compute an upper limit on the Bayes error for the 
case of normal distributed processes such as 
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The term µ�1/2� is called the Bhattacharyya distance and is used as an important 
separability measure between two normal distributions, where 
6 and �6, 7 � 1,2, are the 
mean vector and covariance matrix of each class. This distance is composed of two terms, the 
first one carrying the information about the process difference in the mean vectors, and the 
second part corresponding to the difference in the covariance matrices. 

Rao (1947) explained that this distance is an explicit function of the proportion of 
overlapping individuals in the two populations. Rao (1949) also commented that 
Bhattacharyya had developed a perfectly general measure defined by the distance between 
two populations based on a metric of Riemannian geometry, with the angular distance 
between points representing the populations in a unit sphere. 

In the case of single-hypothesis tests, like in statistical process control (SPC) 
problems, the out-of-control state is generally undetermined. Then, instead of utilizing 
equation (4) which supposes two known processes, it is more interesting to evaluate only the 
upper bound for the Type I error, which refers only to the known process and is given by 

ε89 � !P�/P� $ !p��X� # p��X� dX � !P�/P�e�µ��/��.   �6� 
Also, as this work is focused in the monitoring of mean vectors only, the assumption 

of equal covariance matrices reduces the Bhattacharyya distance to the noncentrality 
parameter, except by a constant, assuming the form 
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where 
� is the mean vector estimated at the instant t, 
� is the in-control mean vector and 
�� is the in-control covariance matrix. 

This simplified form preserves all the known properties of the Hotelling’s T2 and 
MEWMA control chart with respect to the performance measured by the average run length. 
The first and second order moments for the Bhattacharyya distance for the case of equal 
covariance matrices are easily deduced from the results on the d2 statistic as presented by 
Fukunaga (1992). The simulated experiments presented in the following section agree with 
the theoretical values for the first and second moments of the Bhattacharyya distance as well 
for the Hotelling’s T2 with high precision. 

2.1. Probability control charts 

The theoretical results presented above provide a different look in the process 
monitoring by transforming the statistical raw distances and theirs respective in-control 
boundaries into probability values as standard patterns. First, if there is no special reason to 
weight the in- and out-of-control process differently, the processes are equally weighted in 
equation (6), thus reducing the upper bound on the Type I error to exp �	μ�1/2��. Different 
weights for the processes will result in a scale modification to be further analyzed, but still 
preserving the 0-1 domain. 

Observe that when the process is actually in-control, the estimated mean vector, or 
individual observations, must show no significant difference from the in-control standard 
error levels. This leads to an upper bound of ε< that is near to one because the in-control and 
current processes are completely overlapped. When the mean vector shifts to the out-of-
control state, the upper bound on ε< decreases indicating less overlapping among the 
processes. By other hand, if the complementary probability is taken, it indicates an upper 
bound on the confidence level which is closer to zero, meaning that the current process is not 
being apart from the in-control state. 

Based on those appointments, the probability control chart when individual 
observations are compared to the in-control mean vector is taken as the standard level for the 
different ways of estimating the mean vector. This approach can be viewed as the MEWMA 
chart with � � 1, or a sliding window chart with unitary window size. For this reason, this 
control chart is identified by the SW1 code (sliding window of unitary size). This control 



chart is a simple scale transformation of the Hotelling’s T2 by the use of Bhattacharyya 
distance, triggering a signal when  
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where �# is the in-control upper limit to achieve a desired ARL0. 
If the individual observed vector is switched by a mean vector, it is possible to utilize 

the MEWMA or sliding window schemes to its estimation. Equation (3) is utilized to estimate 

� in the case of an MEWMA based control chart. For all methods utilizing mean vector 
estimates instead of individual observations, the probability control chart triggers an out-of-
control signal as soon as 
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where �# is chosen to achieve a desired ARL0.  
For all cases of sliding window schemes, only the observation vectors inside current 

window are weighted and the mean vector is given by 

� � ∑ A6

#B6
�
6C��D.� ,     (16) 

with ∑ A6
#�

6C��D.� � 1. The uniform sliding window approach equally weights all the 
observations inside the window of size k with A6

E given by 

A6
E � �

D,      (17) 

7 � F 	 G � 1, … , F. The linear sliding window approach gives more weight to the most 
recent observation and decreases linearly the weight of older vectors as 

A6
I �

J
K

∑ ,J
K0K

JL-
 .      (18) 

In the exponential sliding window scheme, the weights for the observation vectors inside in 
the window are distributed by 

A6
M � NO

∑ �NO�K
JL-

 .      (19) 

where P is a smoothing factor between 0 and 1. When P � 1, the exponentially weighted 
window converges into the uniform window. The smoothing factor P utilized for the 
exponentially weighted window is fixed as 0.7 as it decay below 0.5 after two steps. The 
calculation of individual weights for the three proposed sliding window schemes of size 4 is 
illustrated in Table 1. 

Table 1. Weights computation for sliding window schemes with size 4 
Window Position t-3 t-2 t-1 t Σ 

Uniform distribution 
1
4 

1
4 

1
4 

1
4 

4
4 

Uniform Weights 0.250 0.250 0.250 0.250 1 

Linear Smoothing 
1
4 

2
4 

3
4 

4
4 

10
4  

Linear Weights 0.100 0.200 0.300 0.400 1 
Exponential Smoothing 0.7R 0.7S 0.7� 0.7� 1.77 
Exponential Weights 0.135 0.193 0.276 0.395 1 

 The control chart calibration procedure was carried in two steps to achieve an ARL0 = 
200 for all control charts. The first step adjusts a linear regression models in the form 
d� � T � U # ln �VWX�. This procedure gives an approximate first estimative of in-control 
thresholds for each chart. The second step in the calibration procedure iteratively adjusts the 
threshold by interpolation. Next section illustrates the functionality of the proposed control 
chart and analyses the comparative experiments. 

3. Results and discussion 

The first part of the experiments compares the Hotelling’s T2 and the SW1 control chart, 
which performs a scale transformation of the Hotelling’s distance. Figure 1 part (a) shows the 



signal pattern for the case of no change in the mean vector, d = 0. Parts (b) and (c) shifts the 
mean vector process at time t = 201 to the distances d = 3 and 6, respectively. In the scatter-
plot below the control chart, the out-of-control observation vectors are marked with red dots 
in the scatter-plot, while the in-control dots are black. The vertical line in the middle of the 
chart delimits the change point. The horizontal dashed lines are the in-control thresholds for 
the pre-defined ARL0 = 200. Given in probability value, the in-control upper limit for the 
SW1 chart is �YZ�

# � 0.7362. The correspondent in-control noncentral distance that holds for 
an ARL0 = 200 in the Hotelling’s T2 control chart is d = 3.265, which is a scale transformation 
of �YZ�

# . 
Observing Figure 1 (c), notice that most of the out-of-control observation vectors do not 

overlaps the in-control region, resulting in probability values closer to 1. This indicates that 
the confidence level converges to 1 when the processes are not overlapped. This characteristic 
pattern does not happen with the Hotelling’s T2 statistic because it has no bound for 
maximum values, making the interpretation of out-of-control signals difficult to evaluate.  

A more detailed summary of the raw distances and theirs equivalent confidence levels are 
given in Table 2, where d�[[[ and =\ are average values and Sd(*) is the standard deviation from 
100.000 sample replications of size 10. Note that the simulated experiments confirm with 
high precision the parameters of the Hotelling’s T2 statistic �d��. As expected, the ARL for 
both charts are exactly equal, demonstrating that the transformation of the Hotelling’s T2 by 
the Bhattacharyya distance into probabilities does not modify the ARL performance. 

 
Figure 1: Confidence control chart for individual vectors with scatter plots 

When the MEWMA based control chart utilizes λ = 1, it performs identically to the SW1 
control chart as a standard confidence maximum level to protect the global in-control process 
region. Also notice that both USW and ESW control charts with sliding windows of any size 
performs equally when P � 1.  

 Figure 2 is composed of four sets of control charts in part (a) and theirs respective 
two-dimensional scatter plots in part (b). The observation of this figure shows the reducing 
effect on the confidence levels for all control charts. For the MEWMA based control chart 
with λ = 0.7, the transformed in-control limit is  �]M^]_.`

# � 0.5086 (d = 2.3842). Also is 
possible to notice a reduction in the in-control limits of the USW, LSW and ESW charts, 
which are �Ec^

# � 0.4811 (d = 2.2908), �Ic^
# � 0.5166 (d = 2.4115) and �Mc^

# � 0.4901 (d 



= 2.3212). This reduction indicates that the chart become sensitive to smaller changes in the 
mean vector, and does not matter the individual vector’s distances. 

Table 2: Summary of the Hotelling’s T2 and Confidence statistics with ARL comparison 
d d�[[[ Sd�d�� ARL =\�%� Sd�=��%� ARL 

0.0 2.000 1.850 200.6 20.00 15.74 200.6 

 
0.006 0.006 0.634 0.001 0.000 0.634 

0.5 2.251 2.070 118.8 21.97 16.93 117.7 

 
0.007 0.007 0.376 0.001 0.001 0.372 

1.0 3.001 2.642 43.1 27.62 19.57 43.1 

 
0.009 0.008 0.136 0.001 0.001 0.136 

1.5 4.252 3.407 16.0 36.13 21.96 16.0 

 
0.013 0.011 0.051 0.001 0.001 0.051 

2.0 6.003 4.263 7.0 46.39 22.98 7.0 

 
0.019 0.013 0.022 0.001 0.001 0.022 

2.5 8.253 5.163 3.6 57.19 22.30 3.6 

 
0.026 0.016 0.011 0.002 0.001 0.011 

3.0 11.004 6.086 2.2 67.49 20.13 2.2 

 
0.035 0.019 0.007 0.002 0.001 0.007 

3.5 14.270 7.039 1.5 76.51 16.97 1.5 

 
0.143 0.070 0.005 0.002 0.001 0.005 

4.0 18.021 7.987 1.2 83.86 13.39 1.2 

 
0.180 0.080 0.004 0.003 0.000 0.004 

h(ARL0=200) 10.66 
  

73.62 
  

 

 
(a) Control Charts (b) Confidence Ellipses 

Figure 2: Confidence control charts with λ = 0.7, SW2 and φ = 0.7 

Despite the fact that the control charts become more sensitive to smaller shifts in the 
mean vector, it is interesting to note a drawback of USW, LSW and ESW schemes that allows 
to some extreme values clearly out-of-control to be considered in-control. In the same 
manner, many vectors that could be considered in-control are marked as out-of-control dots. 
This happens because the observation vector at instant t – 1 receives too much weight in the 
SW approach for the actual observation vector compensate unless it is an outlier in the 
opposite side of the out-of-control process. The MEWMA based control chart seems to avoid 
this problem in its respective scatter-plot performing a good differentiation between in- and 



out-of-control vectors. Such behaviors are due to the fact that the MEWMA scheme 
accumulates all the past information in the current mean vector while the SW scheme does 
not. 

When the window size increases to 4 (SW4), the MEWMA based control chart has the 
λ parameter decreased from 0.7 to 0.4 for comparison purpose, marked as MEWMA.4. Figure 
3 illustrates the four confidence control charts standard patterns for a shift of magnitude d = 3. 
The respective in-control limits are very closer each other and all them leads to completely 
separable processes, which are �]M^]_

# � 0.2747 (d = 1.6028), �Ec^
# � 0.2677 (d = 

1.5789), �Ic^
# � 0.3190 (d = 1.7530) and �Mc^

# � 0.3082 (d = 1.7168). More detailed 
information concerning the mean and standard deviation of the transformed statistic for this 
set of control charts are given in Table 3, where it is interesting to note that the reduction on 
the in-control limits to the level of smaller distances. That reduction gives insight about what 
is the optimum distance that can be detected efficiently detected for each chart configuration, 
which is below d = 3 for the MEWMA.7 and SW2 charts and below d = 2 for the MEWMA.4 
and SW4 charts. 

 
Figure 3: Confidence control charts with λ = 0.4, SW4 and φ = 0.7 

A detailed comparison between the confidence MEWMA based control chart baselines 
(mean values) and standard deviations for the in-control process with λ varying from 1 to 0.1 
by 0.1 units is illustrated in Figure 4. To analyse the out-of-control behaviour of the proposed 
statistic, the mean vector is shifted with d varying in the 0-7 range by 0.5 units. This 
information on the first and second order moments of the proposed statistic is also valid to 
inspect in order to have an informative support for the decision maker.  From the results 
presented in Figure 5 is easy to notice the interesting patterns of the out-of-control statistics 
for the confidence chart. Note that when the mean value decreases with the smoothing 
parameter the standard deviation have a point of maximum that is shifted to higher values. 

The ARL comparisons between the MEWMA and SW control charts are given in 
Tables 4. In Figure 6 (a) is shown the ARL comparison of all control charts, while Figure 6 
(b) the natural logarithm is taken to amplify the methods differences. Figure 7 splits the 
comparison into two groups. In Figure 7 (a) the SW1, MEWMA.7 and SW2 control charts are 
compared, while in Figure 7 (b) the comparison is between the SW1, MEWMA.4 and SW4 
control charts. From that Figures is possible to notice the higher degree of inertia effect 
produced by the SW schemes.  

The second set of control charts in Figure 7 (b) compares the SW1, MEWMA.4 and 
SW4 charts. Although those control charts performs better for shifts below d = 2.0, they have 
higher degree of inertial effect than the SW2 charts for shifts (d = 4). Again the USW4 has the 
best performance, which is comparable to the MEWMA.4 chart. With respect to the 
robustness against the inertia impact of large shifts, the USW approach seems to be more 
effective scheme. The LSW and ESW scheme performs worse in both cases when compared 
to the USW scheme for big shifts. While the differences between the SW schemes for small 
shifts are not evident in the SW2 charts, the LSW4 and ESW4 charts performs worse than the 
USW4 chart also for the smaller shifts. 



 

Table 3: Summary of the MEWMA.4 a
 MEWMA.4
d  

0.0 5.76 4.72

 
0.04 0.03

0.5 7.84 5.94

 
0.06 0.04

1.0 13.77 8.68

 
0.10 0.06

1.5 22.72 11.73

 
0.16 0.08

2.0 33.51 14.53

 
0.24 0.10

2.5 44.92 16.78

 
0.32 0.12

3.0 55.88 18.34

 
0.40 0.13

3.5 65.63 19.13

 
0.46 0.14

4.0 73.77 19.19

 
0.52 0.14

h(ARL0=200) 27.47 

 
 

Figure 4: Mean value and standard deviation of the 

Although the SW2 control charts performs better than the SW1 chart and  similarly to 
the MEWMA.7 chart in Figure 
larger than d = 3.0. Ordering the schemes from the less to the most sensit
the inertial effect, the MEWMA.7 chart performs better, followed by the USW2, ESW and 
LSW charts.  

 

Summary of the MEWMA.4 and SW4 control chart statistics
MEWMA.4 USW4 LSW4 

    
4.72 5.45 4.28 6.58 5.29 
0.03 0.04 0.03 0.05 0.04 
5.94 7.61 5.65 8.64 6.64 
0.04 0.05 0.04 0.06 0.05 
8.68 13.73 8.84 14.49 9.82 
0.06 0.10 0.06 0.10 0.07 
11.73 22.88 12.67 23.25 13.62 
0.08 0.16 0.09 0.16 0.10 
14.53 33.76 16.53 33.68 17.36 
0.10 0.24 0.12 0.24 0.12 
16.78 45.04 20.01 44.55 20.64 
0.12 0.32 0.14 0.32 0.15 
18.34 55.62 22.80 54.81 23.16 
0.13 0.39 0.16 0.39 0.16 
19.13 64.78 24.73 63.76 24.76 
0.14 0.46 0.17 0.45 0.18 
19.19 72.21 25.77 71.11 25.43 
0.14 0.51 0.18 0.50 0.18 

 26.77  31.90  

 
: Mean value and standard deviation of the Confidence MEWMA 

control process with various λ’s  

Although the SW2 control charts performs better than the SW1 chart and  similarly to 
the MEWMA.7 chart in Figure 7 (a) for small shifts, the inertial effect is visible for distances 
larger than d = 3.0. Ordering the schemes from the less to the most sensit
the inertial effect, the MEWMA.7 chart performs better, followed by the USW2, ESW and 

nd SW4 control chart statistics 
ESW4 

   
6.32 5.09 
0.04 0.04 
8.39 6.44 
0.06 0.05 
14.24 9.64 
0.10 0.07 
22.99 13.51 
0.16 0.10 
33.42 17.40 
0.24 0.12 
44.26 20.88 
0.31 0.15 
54.46 23.62 
0.39 0.17 
63.35 25.45 
0.45 0.18 
70.63 26.33 
0.50 0.19 
30.82  

Confidence MEWMA CC for the in-

Although the SW2 control charts performs better than the SW1 chart and  similarly to 
for small shifts, the inertial effect is visible for distances 

larger than d = 3.0. Ordering the schemes from the less to the most sensitive with respect to 
the inertial effect, the MEWMA.7 chart performs better, followed by the USW2, ESW and 



(a)  
Figure 5: Mean value (a) and standard deviation (b) of the 

the out

4. Conclusion 

 In this work we propose a new manner of monitoring Gaussian mean vectors by the 
use of an upper bound on the confidence that the process is in
of the noncentrality parameter, we suggest the use of the Bhattacharyya distance and its 
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traditional distance has no maximum values, the proposed confidence control chart based on 
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the out-of-control process with various d’s  
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ARL comparison between MEWMA and SW control charts
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Figure 6: ARL and ln(ARL) comparison 

 
Additionally, we show that the probability control chart for individual observation 

vectors can be extended to the more general case, the monitoring of small shifts by the use of 
MEWMA based control charts and control charts with sliding window schemes. In
manner of the MEWMA method, instead of using individual observation vectors, the sliding 
window approaches are commonly used to estimate the actual mean vector for different 
purposes, including the on-
measured by the ARL among the MEWMA based control charts and sliding window schemes 
for specific parameters.  

While this equivalence holds for the small shifts in the mean vector, the sliding 
window approach shows to be more suitable to
the MEWMA based scheme. Indeed, in the same manner that a decrease in the weighting 
factor λ of the MEWMA chart provides an identification of smaller shifts, the increasing in 
the sliding window size corre
of smaller shifts, but at the cost of more inertial effect for big shifts than the MEWMA based 
chart. 

 

(a) 
Figure 7: ln(ARL) comparison: (a) SW1, MEWMA.7 and SW2 control charts (b)

SW1, MEWMA.4 and SW4 control charts
 

Future work on this topic includes the monitoring of the covariance matrix of a 
Gaussian process by the use of probability based control charts, as well the global process 
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Gaussian process by the use of probability based control charts, as well the global process 



monitoring, i.e., the jointly monitoring of the mean vector and covariance matrix of a 
multivariate Gaussian process. 
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