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Abstract
For the first time, we introduce the beta log-normal distribution for

which the log-normal distribution is a special case. Various properties of
the new distribution are discussed. Expansions for the cumulative distri-
bution and density functions that do not involve complicated functions are
derived. We obtain expressions for its moments and for the moments of or-
der statistics. The estimation of parameters is approached by the method of
maximum likelihood and the expected information matrix is derived. The
new model is quite flexible in analyzing positive data as an important al-
ternative to the gamma, Weibull, generalized exponential, beta exponential
and Birnbaum-Saunders distributions. The flexibility of the new distribu-
tion is illustrated in an application to a real data set.

Keywords: Beta log-normal distribution; Bonferroni curve; Entropy; Log-
normal distribution; Lorentz curve; Maximum likelihood estimation; Mo-
ment; Observed information matrix; Order statistic.

1 Introduction

Skewed distributions are particulary common when mean values are low,
variances large, and values cannot be negative, as is the case, for example, with
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species abundance, lengths of latent periods of infectious diseases, and distribu-
tion of mineral resources in the Earth’s crust. Such skewed distributions often
closely fit the log-normal (LN) distribution (Aitchison and Brown 1957; Crow
and Shimizu, 1988; Lee, 1992; Johnson et al., 1994; Sachs, 1997). The LN dis-
tribution has interesting applications in many different fields such as agriculture,
entomology, atmospheric science, literature, business and reliability, among oth-
ers. The LN density function is always unimodal and it has the inverted bathtub
type hazard function. It is important as a distribution specially when the tail
probabilities are of interest in lifetime data analysis. The Weibull and LN dis-
tributions are assumed most often in analyzing lifetime data, and in many cases,
they are competing with each other. Kim and Yum (2008) used the maximized
likelihood and scale invariant procedures to compare and select between these
distributions. In addition, various extended Weibull and LN distributions have
recently appeared in the literature. See, for example, Flynn (2004), Al-Saleh and
Agarwal (2006), Chen (2006), Pham and Lai (2007) and Vera and Dı́az-Garćıa
(2008), among others. They generally fit the data better than two-parameter
distributions, although the difference in fits to the data could be insignificant
(Algam et al., 2002) or may depend on the selection criterion adopted (Lu et
al., 2002). Following this fact, we introduce a new distribution with four pa-
rameters, refereed to as the beta log-normal (BLN) distribution, with the hope
it will attract wider application in reliability, engineering and other areas of re-
search. This generalization contains as a special sub-model the LN distribution
and works as a competitive model to all generalized Weibull distributions.

We shall use the following notation. A random variable X has a LN distri-
bution with scale parameter µ ∈ R and shape parameter σ > 0, if its probability
density function (pdf) has the form

g(x) =
1

xσ
√

2π
exp

{
−1

2

(
log x− µ

σ

)2
}

, x > 0. (1)

The cumulative distribution function (cdf) of the LN distribution is easily ex-
pressed in terms of the standard normal cumulative function as

G(x) = Φ
(

log x− µ

σ

)
. (2)

The hazard rate function corresponding to (1) is

h(x) =
1

xσ
√

2π
{

1− Φ( log x−µ
σ )

} exp

{
−1

2

(
log x− µ

σ

)2
}

.
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In this article, we propose the BLN distribution which includes the log-
normal distribution as special case. This generalization due to its flexibility
seems be an important model that can be used in a variety of lifetime problems.
The calculations involve some special functions, including the well-known error
function defined by

erf(x) =
2√
π

∫ x

0
exp(−t2)dt,

the incomplete beta function ratio, i.e. the cdf of the beta distribution with
parameters a > 0 and b > 0 given by

Ix(a, b) =
1

B(a, b)

∫ x

0
ta−1(1− t)b−1dt,

the beta function defined by (Γ(·) is the gamma function)

B(a, b) =
∫ 1

0
wa−1(1− w)b−1dw =

Γ(a)Γ(b)
Γ(a + b)

,

the well-known hypergeometric function (Gradshteyn and Ryzhik, 2000) defined
by (for αk > 0, βk > 0, k = 1, 2, · · · )

pFq(α1, · · · , αp; β1, · · · , βq;x) =
∞∑

k=0

(α1)k · · · (αp)k

(β1)k · · · (βq)k

xk

k!
,

where (α)i = α(α + 1) . . . (α + i − 1) is the ascending factorial. An important
particular case corresponds to p = 2 and q = 1 and leads to 2F1(α, β; γ; x),
whereas p = q = 1 yields the confluent hypergeometric function 1F1(α; β;x).

The rest of the paper is organized as follows. In Section 2, we define the BLN
distribution. Probability weighted moments (PWMs) are expectations of certain
functions of a random variable defined when the ordinary moments of the random
variable exist. In Section 3, we derive the PWMs of the LN distribution. Section
4 provides a general expansion for the moments of the BLN distribution. Its
moment generating function (mgf) is derived in Section 5. Section 6 is devoted
to the characteristic function. Mean deviations are obtained in Section 7. In
Sections 8 and 9, we present the Bonferroni and Lorenz curves and the entropy,
respectively. Section 10 provides expansions for the BLN order statistics. We
derive, in Section 11, expansions for their moments and for the L-moments.
These quantities are defined by Hosking (1990) as expectations of certain linear
combinations of order statistics. In Section 12, we discuss maximum likelihood
estimation and calculate the elements of the observed information matrix. One
application to a real data set in Section 13 illustrates the importance of the BLN
distribution. Finally, concluding remarks are given in Section 14.
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2 The New Model

The generalization of the LN distribution is motivated by the work of Eugene
et al. (2002). One major benefit of the class of beta generalized distributions
is its ability of fitting skewed data that can not be properly fitted by existing
distributions. Consider starting from a parent cumulative function G(x), they
defined a class of generalized beta distributions by

F (x) =
1

B(a, b)

∫ G(x)

0
ωa−1(1− ω)b−1dω = IG(x)(a, b), (3)

where a > 0 and b > 0 are two additional parameters whose role is to intro-
duce skewness and to vary tail weight. The cdf G(x) could be quite arbitrary
and F (x) is refereed to the beta G distribution. If V has a beta distribution
with parameters a and b, application of X = G−1(V ) yields X with cumulative
distribution (3).

We can express (3) in terms of the hypergeometric function, since the pro-
perties of this function are well established in the literature. We have

F (x) =
G(x)a

aB(a, b) 2F1(a, 1− b, a + 1; G(x)).

Some generalized beta distributions were discussed in recent years. Eu-
gene et al. (2002), Nadarajah and Kotz (2004), Nadarajah and Gupta (2004)
and Nadarajah and Kotz (2005) proposed the beta normal, beta Gumbel, beta
Fréchet and beta exponential distributions, respectively.

The density function corresponding to (3) can be expressed as

f(x) =
g(x)

B(a, b)
G(x)a−1{1−G(x)}b−1,

where g(x) = dG(x)/dx is the density of the parent distribution. The density
f(x) will be most tractable when both functions G(x) and g(x) have simple
analytic expressions. Except for some special choices of these functions, the
density f(x) will be difficult to deal with in generality.

The BLN density function, say BLN(µ, σ, a, b), with four parameters µ, σ, a
and b is given by

f(x) =
exp

{
−1

2

(
log x−µ

σ

)2
}

xσ
√

2πB(a, b)
Φ

(
log x− µ

σ

)a−1 {
1− Φ

(
log x− µ

σ

)}b−1

. (4)

Evidently, the density function (4) does not involve any complicated function
but generalizes a few known distributions. The BLN distribution has a few
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distributions as special cases. The LN distribution arises as the particular case
for a = b = 1. It is clear that the BLN distribution is much more flexible than
the LN distribution. If b = 1, it leads to a new distribution, refereed to as the
exponentiated log-normal (ELN) distribution. The BLN distribution is easily
simulated as follows: if V has a beta distribution with parameters a and b, then
X = exp(σΦ−1(V ) + µ) has the BLN(µ, σ, a, b) distribution.

The cdf and hazard rate function corresponding to (4) are given by

F (x) = I[
Φ( log x−µ

σ )
](a, b) (5)

and

h(x) =
exp

{
−1

2

(
log x−µ

σ

)2
}

Φ
(

log x−µ
σ

)a−1 {
1− Φ

(
log x−µ

σ

)}b−1

xσ
√

2πB(a, b)
{

1− I[
Φ( log x−µ

σ )
](a, b)

} , (6)

respectively.

Plots of the density (4), cumulative distribution (5) and hazard rate function
(6) for selected parameter values are displayed in Figures 1, 2 and 3, respectively.

3 Probability Weighted Moments

First proposed by Greenwood et al. (1979), PWMs are expectations of certain
functions of a random variable whose mean exists. A general theory for PWMs
covers the summarization and description of theoretical probability distributions
and observed data samples, nonparametric estimation of the underlying distri-
bution of an observed sample, estimation of parameters, quantiles of probability
distributions and hypothesis tests. The PWM method can generally be used for
estimating parameters of a distribution whose inverse form cannot be expressed
explicitly. We calculate the PWMs of the LN distribution since they are required
to obtain the ordinary moments of the BLN distribution.

The PWMs of the LN distribution are formally defined by

τs,r =
∫ ∞

0
xsG(x)rg(x)dx.

Equations (1) and (2) lead to

τs,r =
∫ ∞

0
xsΦ

(
log x− µ

σ

)r 1
xσ
√

2π
exp

{
−1

2

(
log x− µ

σ

)2
}

dx.
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Figure 1: Plots of the BLN density (4) for selected parameter values.
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Figure 2: Plots of the BLN cumulative function (5) for selected parameter values.
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Figure 3: Plots of the BLN hazard rate function (6) for selected parameter values.
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Setting y =
log x− µ

σ
, the last integral reduces to

τs,r =
esµ+ s2σ2

2√
2π

∫ ∞

−∞
Φ(y)r exp

{
−1

2
(y − sσ)2

}
dy. (7)

First, we obtain

Φ(y)r =
1
2r

{
1 + erf

(
y√
2

)}r

.

Thus, the binomial expansion implies

Φ(y)r =
1
2r

r∑

j=0

(
r

j

)
erf

(
y√
2

)j

.

From the series expansion for the error function erf(.)

erf(x) =
2√
π

∞∑

k=0

(−1)kx2k+1

(2k + 1)k!
, (8)

the last equation becomes

Φ(y)r =
1
2r

r∑

j=0

(
r

j

){ ∞∑

k=0

aky
2k+1

}j

,

where the coefficients ak are given by ak =
(−1)k2(1−2k)/2

√
π(2k + 1)k!

. Hence,

Φ(y)r =
1
2r

r∑

j=0

(
r

j

) ∞∑

k1,...,kj=0

A(k1, ..., kj)y2sj+j ,

with A(k1, . . . , kj) = ak1 . . . akj and sj = k1 + · · ·+ kj .
Inserting the preceding equation into (7) and interchanging terms, we obtain

τs,r =
esµ+ s2σ2

2√
2π 2r

r∑

j=0

∞∑

k1,...,kj=0

(
r

j

)
A(k1, ..., kj)K(2sj + j), (9)

where K(p) is the integral defined by

K(p) =
∫ ∞

−∞
yp exp

{
−1

2
(y − sσ)2

}
dy.
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Setting t = y − sσ, K(p) reduces to

K(p) =
∫ ∞

−∞
(t + sσ)p exp

(
− t2

2

)
dt.

Using the binomial expansion and interchanging terms, it becomes

K(p) =
p∑

l=0

(
p

l

)
(sσ)p−l(

√
2π)

∫ ∞

−∞
tl

1√
2π

exp
(
− t2

2

)
.

The preceding integral is the lth moment of the standard normal random va-
riable. Thus,

K(p) =
p∑

l=0

(
p

l

)
(sσ)p−l

√
2π l!

2l/2(l/2)!
δ{2,4,6,··· }(l),

where

δA(l) =
{

1 if l ∈ A
0 if l /∈ A

Inserting K(p) into (9), yields

τs,r =
esµ+ s2σ2

2

2r

r∑

j=0

∞∑

k1,...,kj=0

2sj+j∑

l=0

A(k1, ..., kj)
(

r

j

)(
2sj + j

l

)

×(sσ)2sj+j−l l!
2l/2(l/2)!

δ{2,4,6,··· }(l). (10)

We now give an alternative expression for the PWMs. From equation (7), we
can write

τs,r = esµ+s2σ2

∫ ∞

−∞
exp(sσy)Φ(y)rφ(y)dy

and then

τs,r =
esµ+s2σ2

2−r

√
2π

r∑

j=0

(
r

j

) ∫ ∞

−∞
exp(sσy)erf

(
y√
2

)j

exp
(
−y2

2

)
dy.

Using (8), we can calculate the preceding integral, say J(sσ, j), following the
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same steps described by Nadarajah (2008). We have

J(sσ, j) =
∫ ∞

−∞
exp(sσy)

{
2√
π

∞∑

m=0

(−1)my2m+1

2m+1/2(2m + 1)m!

}j

exp
(
−y2

2

)
dy

=
(

2√
π

)j ∞∑

m1=0

. . .

∞∑

mj=0

(−1)m·

2m·+j/2(2m1 + 1) . . . (2mj + 1)m1! . . . mj !

×
∫ ∞

−∞
y2m·+j exp

(
sσy − y2

2

)
dy

=
(

2√
π

)j ∞∑

m1=0

. . .
∞∑

mj=0

(−1)m·M(j)

2m·+j/2(2m1 + 1) . . . (2mj + 1)m1! . . . mj !
,

where m· = m1 + . . . + mj . Elementary integration using equation (2.3.15.10)
given by Prudnikov et al. (1986) yields

M(j) = (−1)m·ij2−(m·+j/2)
√

2π exp
(

s2σ2

2

)
H2m·+j

(
− isσ√

2

)
, (11)

where i =
√−1 is the complex unit and Hν(·) denotes the Hermite polynomial

of order ν. Using a result due to Withers (1999), we have

Hn(x) = E (x + iZ)n ,

where Z is a standard normal random variable. Hence, we can rewrite (11) as

M(j) = (−1)j2−(m·+j/2)
√

2π exp
(

s2σ2

2

)
E

(
Z − sσ√

2

)2m·+j

.

Further, following the same algebraic developments by Nadarajah (2008), we
obtain

J(sσ, j) = 2j
√

2π

(
− 1√

π

)j

exp
(

s2σ2

2

)

× E
[
T jF

(j)
A

(
;
1
2
, . . . ,

1
2
;
3
2
, . . . ,

3
2
;−T 2, . . . ,−T 2

]
, (12)

where T = Z
√

2− sσ
2
√

2
is a linear function of the standard normal random vari-

able. Equation (12), except for the expectation with respect to T , is a finite
sum of the Lauricella function of type A (Exton, 1976). The first argument in
this function is empty. The calculation of the expectation in (12) will require
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numerical integration and this can be performed easily because most packages
have routines for the standard normal distribution. Finally, we have

τs,r =
esµ+s2σ2

2−r

√
2π

r∑

j=0

(
r

j

)
J(sσ, j). (13)

Equations (10) and (12)-(13) for the PWMs of the LN distribution are the
main result of this section.

4 Moments

The cdf F (x) and pdf f(x) of the beta G distribution are usually straight-
forward to compute numerically from the baseline functions G(x) and g(x) and
equations (3) and (2) using statistical software with numerical facilities. Here,
we provide expansions for these functions in terms of infinite (or finite) weighted
sums of powers of G(x) which will prove useful in our case that G(x) does not
have a simple expression. In subsequent sections, we use these expansions to
obtain formal expressions for the moments of the BLN distribution and for the
density of the order statistics and their moments.

For b > 0 real non-integer and a > 0 integer, the cumulative distribution of
any beta G distribution can be written as (Cordeiro and Nadarajah, 2010)

F (x) =
1

B(a, b)

∞∑

r=0

wrG(x)a+r, (14)

where

wj =
(−1)j

(
b−1
j

)

(a + j)
.

Equation (14) gives the cdf of the beta G distribution as an infinite sum of
powers of G(x). Otherwise, if a is real non-integer, we can expand G(x)a+j from
equation (42) in the Appendix, and therefore the cumulative function F (x) can
be expressed as a power series expansion of the baseline G(x)

F (x) =
1

B(a, b)

∞∑

r=0

trG(x)r, (15)

where

tr =
∞∑

l=0

wlsr(a + l),
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where the quantities sr(a + l) are easily determined from equation (43) in the
Appendix. Expansions for the density function of the beta G distribution are
immediately derived by simple differentiation of equations (14) and (15) for a > 0
integer and a > 0 real non-integer, respectively. We have

f(x) =
g(x)

B(a, b)

∞∑

r=0

(a + r) wrG(x)a+r−1 (16)

and

f(x) =
g(x)

B(a, b)

∞∑

r=0

(r + 1) tr+1G(x)r. (17)

The sth moment of the beta G distribution can then be written as an infinite sum
of convenient PWMs of the baseline distribution G. These expansions are read-
ily computed numerically using standard statistical software. They (and other
expansions in the paper) can also be evaluated in symbolic computation soft-
ware such as Mathematica and Maple. These symbolic software have currently
the ability to deal with analytic expressions of formidable size and complexity.
In numerical applications, a large natural number N can be used in the sums
instead of infinity.

For a integer, equation (16) yields

E(Xs) =
∞∑

r=0

(a + r)wr

B(a, b)
τs,a+r−1, (18)

whereas for a real non-integer, equation (17) implies

E(Xs) =
∞∑

r=0

(r + 1)tr+1

B(a, b)
τs,r, (19)

where τs,r can be obtained from equations (10) and (13). Expansions (18) and
(19) are the main results of this section. From these expansions, the moments
of the BLN distribution follow as infinite sums of certain PWMs of the LN
distribution.

Let µ = 0 and σ = 1. Tables 1 and 2 give some numerical values for the
ordinary moments (µ′r, r = 1, . . . , 6) and variance, skewness and kurtosis, respec-
tively, of the BLN distribution computed using in-built functions in Mathemat-
ica. Plots of the skewness and kurtosis as functions of a and b by fixing the other
parameter (a = 2.5 and b = 3.5) are given in Figure 4. These plots indicate that
the skewness and kurtosis of the BLN distribution decrease with anyone shape
parameter, the other parameter fixed at the above values.
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Figure 4: Skewness and kurtosis of the BLN distribution for some values of
parameters a and b.

14



Table 1: The first six moments of BLN(a, b, 0, 1) for different values a and b.

BLN µ′1 µ′2 µ′3 µ′4 µ′5 µ′6
(0.3, 0.9, 0, 1) 0.81319 3.55409 56.24813 2.77×103 3.81×105 1.14×108

(1.0, 1.0, 0, 1) 1.64872 7.38905 90.01294 2.97×103 2.61×105 5.37×107

(1.0, 1.5, 0, 1) 1.04500 2.30679 10.43862 95.11412 1.73×103 6.20×104

(1.0, 3.5, 0, 1) 0.49715 0.38769 0.45208 0.76424 1.83445 6.16315
(1.5, 1.5, 0, 1) 1.36544 3.49437 16.98776 159.39160 2.92×103 1.05×105

(1.5, 2.5, 0, 1) 0.85360 1.13981 2.34578 7.38096 35.37214 257.78310
(2.5, 3.5, 0, 1) 0.90929 1.10097 1.76887 3.76700 10.64239 39.97635

Table 2: Variance, Skewness and kurtosis of BLN(a, b, 0, 1) for different values
a and b.

BLN Variance Skewness Kurtosis
(0.3, 0.9, 0, 1) 2.89281 9.88845 311.16571
(1.0, 1.0, 0, 1) 4.67077 6.18443 113.68915
(1.0, 1.5, 0, 1) 1.21477 4.09976 42.70447
(1.0, 3.5, 0, 1) 0.14053 2.27054 13.00738
(1.5, 1.5, 0, 1) 1.62994 3.73167 35.86031
(1.5, 2.5, 0, 1) 0.41117 2.54457 16.33615
(2.5, 3.5, 0, 1) 0.27416 1.87520 9.90132

5 Moment generating function

The moment generating function (mgf) of a random variable X with density
(4), say MX(t, µ, σ) = E[exp(tX)], ∀t ∈ R, corresponding to a > 0 real non-
integer, is obtained from (17) as

MX(t, µ, σ) =
∞∑

r=0

(r + 1)tr+1

B(a, b)

∫ ∞

0
exp (tx) G(x)rg(x)dx.

We define
J(t, r; µ, σ) =

∫ ∞

0
exp (tx) G(x)rg(x)dx. (20)

We can verify that J(t, r; µ, σ) diverges for t real positive and converges for
t ∈ (−∞, 0]. From this fact, setting t = −s, where s > 0, yields

MX(−s, µ, σ) =
∞∑

r=0

(r + 1)tr+1

B(a, b)
J(−s, r;µ, σ), s > 0. (21)
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Similarly, for a > 0 integer, the mgf is obtained from equation (16) as

MX(−s, µ, σ) =
∞∑

r=0

(a + r)wr

B(a, b)
J(−s, r + a− 1;µ, σ), s > 0. (22)

From equation (20), we have

J(−s, r; µ, σ) =
∫ ∞

0
exp (−sx)Φ

(
log x− µ

σ

)r

× 1
xσ
√

2π
exp

{
−1

2

(
log x− µ

σ

)2
}

dx.

Setting y =
log x− µ

σ
, the preceding integral can be rewritten as

J(−s, r; µ, σ) =
1√
2π

∫ ∞

−∞
exp{−seµ exp(σy)}Φ(y)r exp

(
−y2

2

)
dy.

By combining equations (2) and (9), we have

J(−s, r;µ, σ) =
1√

2π 2r

r∑

j=0

∞∑

k1,...,kj=0

(
r

j

)
A(k1, ..., kj)I(−s, 2sj + j; µ, σ), (23)

where sj and A(k1, . . . , kj) were defined in Section 3 and I(−s, p; µ, σ) is

I(−s, p;µ, σ) =
∫ ∞

−∞
yp exp(−s exp(µ) exp(σy)) exp

(
−y2

2

)
dy, s > 0.

Using

exp{−s exp(µ + σy)} = exp{− exp(σy + µ + log s)}, ∀s > 0.

and setting z = σy + µ + log s, the last integral can be expressed as

I(−s, p; µ, σ) =
1

σp+1

∫ ∞

−∞

1
exp(exp(z))

(z − µ− log s)p

× exp

{
−1

2

{
z − µ− log s

σ

)2
}

dz.

Using the Maclaurin series for the exponential function twice, we have

exp(ez) = e
∞∑

n=0

Bn

n!
zn, (24)
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where

Bn = e−1
∞∑

s=0

sn

s!

are the Bell numbers. This formula is sometimes called Dobiński formula (Harris
et al., 2008). The first Bell numbers are {1, 1, 2, 5, 15, 52, · · · } and the expansion
has the form

exp(ez) = e(1 + z + z2 +
5
6
z3 +

15
24

z4 +
52
120

z5 + · · · ).

In order to compute the integral I(−s, p;µ, σ), it is sufficient to compute the
inverse of the series (24). We now use equation (0.313) from Gradstheyn and
Ryszhik (2000) given by

∑∞
k=0 akx

k

∑∞
k=0 bkxk

= b−1
0

∞∑

k=0

ckx
k,

where the coefficients ck are easily obtained from the recurrence relation

ck = ak − b−1
0

k∑

i=1

ck−ibi.

Here, a0 = 1 and ak = 0,∀k ≥ 1 and bn =
Bn

n!
,∀n ≥ 0. Note that b0 = 1. Hence,

1
exp(ez)

= e−1
∞∑

n=0

Cnzn, (25)

so that Cn is defined recursively by

C0 = 1 and Cn = −
n∑

k=1

Cn−k
Bk

k!
, n ≥ 1.

The first terms of this series are given by

1
exp(ez)

= e−1(1− z +
1
6
z3 +

1
24

z4 − 2
120

z5 + · · · ).

Inserting (25) in the integral I(−s, r; µ, σ), it follows that

I(−s, p; µ, σ) =
1

σp+1

∫ ∞

−∞
e−1

∞∑

n=0

Cnzn (z − µ− log s)p

× exp

{
−1

2

{
z − µ− log s

σ

)2
}

dz.
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Using the binomial expansion and interchange terms, it becomes

I(−s, p; µ, σ) =
1

σp+1

∞∑

n=0

p∑

k=0

e−1Cn

(
p

k

)
(−1)p−k(µ + log s)p−k T (−s, k + n; µ, σ),

where T (−s, p;µ, σ) is defined by

T (−s, p; µ, σ) =
∫ ∞

−∞
zp exp

{
−1

2

(
z − µ− log s

σ

)2
}

dz.

Setting x =
z − µ− log s

σ
, T (−s, p; µ, σ) reduces to

T (−s, p; µ, σ) =
∫ ∞

−∞
(σx + µ + log s)p exp

(
−x2

2

)
σdx,

and using the binomial expansion

T (−s, p; µ, σ) =
√

2π

p∑

l=0

(
p

l

)
σl+1(µ + log s)p−l

∫ ∞

−∞
xl 1√

2π
exp

(
−x2

2

)
dx.

The last integral is the lth moment of the normal random variable. So,

T (−s, p; µ, σ) =
p∑

l=0

(
p

l

)
σl+1(µ + log s)p−l

√
2π l!

2l/2(l/2)!
δ{2,4,6,··· }(l).

Inserting the integral I(−s, p;µ, σ) into (23), we obtain

J(−s, r; µ, σ) =
e−1

√
2π 2r

r∑

j=0

∞∑

k1,...,kj=0

∞∑

n=0

2sj+j∑

k=0

(−1)2sj+j−k Cn

σ2sj+j+1

(
r

j

)

×
(

2sj + j

k

)
A(k1, ..., kj)(µ + log s)2sj+j−k T (−s, k + n;µ, σ). (26)

Hence, the mgf follows from equations (21), (22) and (26), which are the main
results of this section.

6 Characteristic Function

The characteristic function (chr) of X, say φ(t, µ, σ) = E[exp(itX)], corres-
ponding to (21) is obtained for t < 0 from (17) as

φX(t, µ, σ) =
∞∑

r=0

(r + 1)tr+1

B(a, b)
J(it, r; µ, σ),
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where i =
√−1 and J(t, r, ; µ, σ) is given by (26). For a > 0 integer, the chr of

X comes from (16) as

φX(t, µ, σ) =
∞∑

r=0

(a + r)wr

B(a, b)
J(it, r + a− 1;µ, σ).

7 Mean Deviations

The amount of scatter in a population is evidently measured to some extent
by the totality of deviations from the mean and median. If X has the BLN
distribution with cdf F (x), we can derive the mean deviations about the mean
ν = E(X) and about the median m from the relations

δ1 =
∫ ∞

0
|x− ν| f(x)dx and δ2 =

∫ ∞

0
|x−m| f(x)dx.

respectively. The median is the solution of the non-linear equation

I[Φ(α− β
m)

Φ(α)

](a, b) = 1/2.

Defining the integral

I(s) =
∫ s

0
xf(x)dx =

∫ s

0

xg(x)
B(a, b)

G(x)a−1{1−G(x)}b−1,

these measures can be calculated from

δ1 = 2νF (ν)− 2I(ν) and δ2 = E(X)− 2I(m), (27)

where F (ν) is easily obtained from equation (5). We now derive formulas to
obtain the integral I(s). Setting

ρ(s, r;µ, σ) =
∫ s

0
xg(x)G(x)rdx,

we can obtain from equation (16) for a > 0 integer

I(ν) =
∞∑

r=0

(a + r)wr

B(a, b)
ρ(ν, a + r − 1;µ, σ) (28)

and from equation (17) for a > 0 real non-integer

I(ν) =
∞∑

r=0

(r + 1) tr+1

B(a, b)
ρ(ν, r; µ, σ), (29)
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where

ρ(s, r; µ, σ) =
∫ s

0

x

xσ
√

2π
Φ

(
log x− µ

σ

)r

exp

{
−1

2

{
log x− µ

σ

)2
}

dx.

Setting y =
log x− µ

σ
, ρ(s, r; µ, σ) can be rewritten as

ρ(s, r; µ, σ) =
eµ+σ2

2√
2π

∫ log s− µ

σ

−∞
Φ(y)r exp

{
−(y − σ)2

2

}
dy.

By combining equations (2) and (9), we have

ρ(s, r;µ, σ) =
eµ+σ2

2√
2π 2r

r∑

j=0

∞∑

k1,...,kj=0

(
r

j

)
A(k1, ..., kj) χ

(
log s− µ

σ
, 2sj + j; µ, σ

)
,

where sj and A(k1, . . . , kj) were defined in Section 3 and χ(u, p; µ, σ) is given by

χ(u, p; µ, σ) =
∫ u

−∞
yp exp

{
−1

2
(y − σ)2

}
dy.

Setting t = y − σ, the last integral reduces to

χ(u, p; µ, σ) =
∫ u−σ

−∞
(t + σ)p exp

(
− t2

2

)
dt.

Using the binomial expansion and interchanging terms, it becomes

χ(u, p; µ, σ) =
p∑

l=0

(
p

l

)
σp−l

∫ u−σ

−∞
tl exp

(
− t2

2

)
dt.

We now define

G(l) =
∫ ∞

0
xle−x2/2dx = 2(l−1)/2 Γ((l + 1)/2).

In order to evaluate the integral in χ(u, p; µ, σ), it is necessary to consider two
cases. If u− σ < 0, we have

∫ u−σ

−∞
tl exp

(
− t2

2

)
dt = (−1)lG(l) + (−1)l+1

∫ σ−u

0
tl exp

(
− t2

2

)
dt.
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If u− σ > 0, we have
∫ u−σ

−∞
tl exp

(
− t2

2

)
dt = (−1)lG(l) +

∫ u−σ

0
tl exp

(
− t2

2

)
dt.

Further, the integrals of the type H(l, q) =
∫ q
0 xle−x2/2dx can be determined

easily as (Whittaker and Watson, 1990)

H(l, q) =
2l/4+1/4ql/2+1/2e−q2/4

(l/2 + 1/2)(l + 3)
Ml/4+1/4,l/4+3/4(q

2/2)

+
2l/4+1/4ql/2−3/2e−q2/4

l/2 + 1/2
Ml/4+5/4,l/4+3/4(q

2/2),

where Mk,m(x) is the Whittaker function. This function can be expressed in
terms of the confluent hypergeometric function 1F 1 (see Section 1) as Mk,m(x) =
e−x/2xm+1/2

1F 1(1
2 +m−k; 1+2m; x). Hence, χ(u, p; µ, σ) can be determined as

χ(u, p;µ, σ) =
p∑

l=0

(
p

l

)
σp−l

[
(−1)lG(l) + H(l, u− σ)δA(s)

]

+
p∑

l=0

(
p

l

)
σp−l

[
(−1)l+1H(l, σ − u)(1− δA(s))

]
,

where

δA(s) = δ{u−σ>0}(s) =
{

1 if s ∈ A
0 if s /∈ A.

Hence, we have all quantities to calculate ρ(s, r; µ, σ), I(ν) and then the mean
deviations (27).

8 Bonferroni and Lorenz Measures

Bonferroni and Lorenz curves have applications not only in economics to
study income and poverty, but also in other fields like reliability, demography,
insurance and medicine. For a random variable X with quantile function F−1(·),
the Bonferroni and Lorenz curves are defined (for 0 ≤ p ≤ 1) by

B(p) =
1
pν

∫ F−1(p)

0
tf(t)dt and L(p) =

1
ν

∫ F−1(p)

0
tf(t)dt,

respectively, where ν = E(X). Using the same integral I(s) =
∫ s
0 xf(x)dx

defined in Section 6, these measures can be calculated from

B(p) =
1
pν

I(q) and L(p) =
1
ν

I(q),
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where q = F−1(p) and I(q) can be obtained from equations (28) and (29) de-
pending if a is integer and real non-integer, respectively.

We now give an expansion for q = F−1(p). First, from

G(q) = Φ
(

log q − µ

σ

)

we have
q = exp

(
σΦ−1(G(q)) + µ

)
. (30)

Further,
p = F (q) = IG(q)(a, b).

The following expansion for the inverse of the beta incomplete function
I−1
p (a, b) can be found in wolfram website1

G(q) = I−1
p (a, b) = w +

b− 1
a + 1

w2 +
(b− 1)(a2 + 3ba− a + 5b− 4)

2(a + 1)2(a + 2)
w3

+
(b− 1)[a4 + (6b− 1)a3 + (b + 2)(8b− 5)a2]

3(a + 1)3(a + 2)(a + 3)
w4

+
(b− 1)[(33b2 − 30b + 4)a + b(31b− 47) + 18]

3(a + 1)3(a + 2)(a + 3)
w4

+O(p5/a),

where w = [apB(a, b)]1/a for a > 0. Inserting the last expansion in equation (30)
we can obtain q in terms of p.

9 Entropy

An entropy of a random variable X is a measure of variation of the uncer-
tainty. One of the popular entropy measure is the Rényi entropy defined by

=(γ) =
1

1− γ
log

{∫
fγ(x)dx

}
,

where γ > 0 and γ 6= 1 (Rényi, 1961). For the density (4), we have

fγ(x) =





exp
{
−1

2

(
log x−µ

σ

)2
}

xσ
√

2πB(a, b)
Φ

(
log x− µ

σ

)a−1 {
1− Φ

(
log x− µ

σ

)}b−1





γ

,

1http://functions.wolfram.com/06.23.06.0004.01
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and then

fγ(x) =
exp

{
−γ

2

(
log x−µ

σ

)2
}

(xσ
√

2π)γB(a, b)γ
Φ

(
log x− µ

σ

)(a−1)γ {
1− Φ

(
log x− µ

σ

)}(b−1)γ

.

If (b− 1)γ > 0, an expansion for fγ(x) is immediately obtained as (Cordeiro
and Nadarajah, 2010)

fγ(x) = C(x)
∞∑

r=0

(−1)r

(
(b− 1)γ

r

)
Φ

(
log x− µ

σ

)(a−1)γ+r

,

where

C(x) =
1

(xσ
√

2π)γB(a, b)γ
exp

{
−γ

2

(
log x− µ

σ

)2
}

.

If (a− 1)γ > 0, we can expand Φ(·)(a−1)γ+r using equation (42) given in the
Appendix. Then, the function fγ(x) can be expressed as a power series of the
normal cdf Φ(.)

fγ(x) = C(x)
∞∑

r=0

tr(γ)Φ
(

log x− µ

σ

)r

,

where tr(γ) from now on is given by

tr(γ) =
∞∑

k=0

(−1)k

(
(b− 1)γ

k

)
sr((a− 1)γ + k),

and the quantities sr((a−1)γ +k) are easily determined from equation (43) (see
Appendix).

Defining the integral

IR(γ) =
∫ ∞

0

1
(xσ

√
2π)γ

exp

{
−γ

2

(
log x− µ

σ

)2
}

Φ
(

log x− µ

σ

)r

dx,

the entropy measure can be calculated from

=(γ) =
1

1− γ
log

{ ∞∑

r=0

tr(γ)
B(a, b)γ

IR(γ)

}
. (31)

Setting y =
log x− µ

σ
, IR(γ) reduces to

IR(γ) =
eµ(1−γ)

σ(γ−1)(
√

2π)γ

∫ ∞

−∞
Φ(y)r exp

{
−γ

2
y2 + σ(1− γ)y

}
dy.
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By combining equations (2) and (9), IR(γ) can be written as

IR(γ) =
eµ(1−γ)

σγ−1(
√

2π)γ 2r

r∑

j=0

∞∑

k1,...,kj=0

(
r

j

)
A(k1, ..., kj)Jγ(2sj + j, σ), (32)

where sj and A(k1, . . . , kj) were defined in Section 3 and Jγ(p, σ) is given by

Jγ(p, σ) =
∫ ∞

−∞
yp exp

{
−γ

2
y2 + σ(1− γ)y

}
dx.

We can transform this integral to

Jγ(p, σ) = e
(σ(1−γ))2

2γ

∫ ∞

−∞
yp exp

{
−1

2

(√
γy − σ(1− γ)√

γ

)2
}

dx.

Setting t =
√

γy − σ(1− γ)√
γ

, Jγ(p, σ) reduces to

Jγ(p, σ) =
√

2π e
(σ(1−γ))2

2γ

(
√

γ)p

∫ ∞

−∞

(
t +

σ(1− γ)√
γ

)p 1√
2π

exp
(
− t2

2

)
dt.

From the binomial expansion, interchanging terms and using the moments of the
normal random variable, it becomes

Jγ(p, σ) =
√

2π e
(σ(1−γ))2

2γ

(
√

γ)p

p∑

l=0

(
p

l

) (
σ(1− γ)√

γ

)p−l l!
2l/2(l/2)!

δ{2,4,6,··· }(l).

Inserting (9) and (32) into (31), we obtain

=(γ)=
1

1− γ
log





e
µ(1−γ)+

(σ(1−γ))2

2γ

σγ−1(
√

2π)γ−1(
√

γ)p





+
1

1− γ
log





∞∑

r=0

r∑

j=0

∞∑

k1,...,kj=0

2sj+j∑

l=0

tr(γ)
2rB(a, b)γ

A(k1, ..., kj)

× (
r
j

) (2sj+j
l

)(
σ(1− γ)√

γ

)2sj+j−l l!
2l/2(l/2)!

δ{2,4,6,··· }

}
.
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10 Order Statistics

Order statistics make their appearance in many areas of statistical theory
and practice. The density fi:n(x) of the ith order statistic for i = 1, . . . , n from
data values X1, . . . , Xn having the beta G distribution is

fi:n(x) =
1

B(i, n− i + 1)
f(x)F (x)i−1{1− F (x)}n−i

and then

fi:n(x) =
1

B(i, n− i + 1)
f(x)

n−i∑

j=0

(−1)j

(
n− i

j

)
F (x)i+j−1. (33)

By combining (2) and (33), fi:n(x) becomes

fi:n(x) =
g(x)G(x)a−1{1−G(x)}b−1

B(a, b)B(i, n− i + 1)

n−i∑

j=0

(−1)j

(
n− i

j

)
F (x)i+j−1. (34)

We now use an equation of Gradshteyn and Ryzhik (2000, Section 0.314) for
power series raised to powers. For any j positive integer, we have

( ∞∑

i=0

wiu
i

)j

=
∞∑

i=0

ci,ju
i,

where the coefficients ci,j for i = 1, 2, . . . can be easily obtained from the recur-
rence relation

ci,j = (iw0)−1
i∑

m=1

(jm− i + m)wmci−m,j , (35)

with c0,j = wj
0. The coefficient ci,j comes from c0,j , . . . , ci−1,j and therefore

are obtained from w0, . . . , wi. Clearly, ci,j can be given explicitly in terms of
the quantities wi, although it is not necessary for programming numerically our
expansions in any algebraic or numerical software.

For a > 0 integer, equation (14) implies that

F (x)i+j−1 =
(

G(x)a

B(a, b)

)i+j−1
( ∞∑

r=0

wrG(x)r

)i+j−1

.
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For b > 0 real non-integer, setting u = G(x), using equation (34) and then the
power series for (1− u)b−1, yields

fi:n(x) =
n−i∑

j=0

∞∑

r,l=0

(−1)j+lcr,i+j−1

(
n− i

j

)
g(x)G(x)r+l+a(i+j)−1

B(a, b)i+jB(i, n− i + 1)
, (36)

where the coefficients are obtained from equation (35). If b is a integer, the index
l in the sum (36) stops at b− 1.

For a > 0 real non-integer, equation (15) leads to

F (x)i+j−1 =
1

B(a, b)i+j−1

( ∞∑

r=0

trG(x)r

)i+j−1

.

In the same way, using equation (35), it follows for b > 0 real non-integer

fi:n(x) =
n−i∑

j=0

∞∑

r,l=0

(−1)j+l dr,i+j−1

(
n− i

j

)
g(x)G(x)r+l+a−1

B(a, b)i+jB(i, n− i + 1)
, (37)

where the coefficients are given by

dr,i+j−1 = (rt0)−1
r∑

m=1

{(i + j)m− r}tmdr−m,i+j−1, (38)

with d0,i+j−1 = ti+j−1
0 . If b is a integer, the index l in the sum (37) stops at b−1.

Equations (36) and (37) are the main results of this section for a > 0 integer and
a > 0 real non-integer, respectively.

11 Moments of order statistics

The sth ordinary moment of the ith order statistic, say Xi:n, for a > 0 integer,
follows from equation (36)

E(Xs
i:n) =

n−i∑

j=0

∞∑

r,l=0

(−1)j+lcr,i+j−1

(
n−i

j

)

B(a, b)i+jB(i, n− i + 1)
τs,r+a(i+j)+l−1, (39)

where the coefficient cr,i+j−1 is defined by (35). If b is an integer, the index l in
the above sum stops at b− 1. For a > 0 real non-integer, equation (37) gives

E(Xs
i:n) =

n−i∑

j=0

∞∑

r,l=0

(−1)j+ldr,i+j−1

(
n−i

j

)

B(a, b)i+jB(i, n− i + 1)
τs,r+a+l−1, (40)
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where dr,i+j−1 is defined by (38). If b is an integer, the index l in the above sum
stops at b− 1.

Expansions (39) and (40) are the main results of this section. The L-moments
(Hosking, 1990) are analogous to the ordinary moments but can be estimated by
linear functions of order statistics defined by

λr+1 = r(r + 1)−1
r∑

k=0

(−1)k

k
E(Xr+1−k:r+1), r = 0, 1, . . .

The first four L-moments are λ1 = E(X1:1), λ2 = 1
2E(X2:2 − X1:2), λ3 =

1
3E(X3:3 − 2X2:3 + X1:3) and λ4 = 1

4E(X4:4 − 3X3:4 + 3X2:4 − X1:4). The L-
moments have the advantage that they exist whenever the mean of the distribu-
tion exists, even though some higher moments may not exist, and are relatively
robust to the effects of outliers. The L-moments can be calculated from the
means of the order statistics for a > 0 integer and a > 0 real non-integer by
setting s = 1 in equations (39) and (40), respectively,

12 Estimation and Inference

Consider that X follows the BLN distribution and let θ = (µ, σ, a, b)T be
the parameter vector. The log-likelihood ` = `(µ, σ, a, b) for a single observation
x of X is

` = log{φ(t)} − log(x)− log(σ)− log{B(a, b)}
+ (a− 1) log {Φ(t)}+ (b− 1) log {1− Φ(t)} , x > 0,

where t =
log x− µ

σ
. The unit score vector U = ( ∂`

∂µ , ∂`
∂σ , ∂`

∂a , ∂`
∂b)

T has components

∂`

∂µ
=

1
σ

[
t− (a− 1)

{
φ(t)
Φ(t)

}
+ (b− 1)

{
φ(t)

1− Φ(t)

}]
,

∂`

∂σ
=

1
σ

[
t2 − 1− (a− 1)

{
tφ(t)
Φ(t)

}
+ (b− 1)

{
tφ(t)

1− Φ(t)

}]
,

∂`

∂a
= log(Φ(t)) + ψ(a + b)− ψ(a),

∂`

∂b
= log(1− Φ(t)) + ψ(a + b)− ψ(b).
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The expected value of the score vector vanishes. Defining T =
log X − µ

σ
, we

obtain

E

{
φ(T )
Φ(T )

}
= E

{
φ(T )

1− Φ(T )

}
= E

{
Tφ(T )

1− Φ(T )

}
= E

{
Tφ(T )
Φ(T )

}
= 0

E

(
log X − µ

σ

)
= (a− 1)E

{
φ(T )
Φ(T )

}
− (b− 1)E

{
φ(T )

1− Φ(T )

}
= 0.

For a random sample x = (x1, . . . , xn) of size n from X, the total log-likelihood
is `n = `n(µ, σ, a, b) =

∑n
i=1 `(i), where `(i) is the log-likelihood for the ith

observation (i = 1, . . . , n). The total score function is Un =
∑n

i=1 U (i), where
U (i) has the form given before for i = 1, . . . , n. The maximum likelihood estimate
(MLE) θ̂ of θ is obtained numerically from the nonlinear equations Un = 0. For
interval estimation and hypothesis tests on the parameters in θ we require the
4× 4 unit information matrix

K = K(θ) =




κµ,µ κµ,σ κµ,a κµ,b

κσ,µ κσ,σ κσ,a κσ,b

κa,µ κa,σ κa,a κa,b

κb,µ κb,σ κb,a κb,b


 .

The total information matrix is Kn(θ) = nK(θ). We define the following expec-
tations for r = 0, 1, 2, 3 and s = 1, 2

mr,s = E

[
T r

{
φ(T )
Φ(T )

}s]
and nr,s = E

[
T r

{
φ(T )

1− Φ(T )

}s]
,

which can be obtained by numerical integration. The elements of the information
matrix K are given by

κµ,µ = − 1
σ2

[1 + (a− 1)m0,2 + (b− 1)n0,2]

κµ,σ = − 1
σ2

[(a− 1)(m2,1 + m1,2)− (b− 1)(n2,1 − n1,2)] ,

κµ,a = 0, κµ,b = 0,

κσ,σ =
1
σ2

[2− (a− 1)(m3,1 + m2,2) + (b− 1)(n3,1 − n2,2)] ,

κσ,a = 0, κσ,b = 0, κa,a = ψ′(a)− ψ′(a + b), κb,b = ψ′(b)− ψ′(a + b),
κa,b = −ψ′(a + b).
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Under conditions that are fulfilled for parameters in the interior of the pa-
rameter space but not on the boundary, the asymptotic distribution of

√
n(θ̂ − θ) is N4(0,K(θ)−1).

The asymptotic multivariate normal N4(0, Kn(θ̂)−1) distribution of θ̂ can be
used to construct approximate confidence intervals and confidence regions for the
parameters and for the hazard and survival functions. An asymptotic confidence
interval with significance level γ for each parameter θr is

ACI(θr, 100(1− γ)%) = (θ̂r − zγ/2

√
κθr,θr , θ̂r + zγ/2

√
κθr,θr),

where κθr,θr is the rth diagonal element of Kn(θ)−1 for r = 1, . . . , 4 and zγ/2 is
the quantile 1− γ/2 of the standard normal distribution.

The likelihood ratio (LR) statistic is useful for testing goodness of fit of the
BLN distribution and for comparing this distribution with some of its special
sub-models. If we consider the partition θ = (θT

1 , θT
2 )T , tests of hypotheses of

the type H0 : θ1 = θ
(0)
1 versus HA : θ1 6= θ

(0)
1 can be performed via LR tests.

The LR statistic for testing the null hypothesis H0 is w = 2{`(θ̂)− `(θ̃)}, where
θ̂ and θ̃ are the MLEs of θ under HA and H0, respectively. Under the null
hypothesis, w

d→ χ2
q , where q is the dimension of the vector θ1 of interest. The

LR test rejects H0 if w > ξγ , where ξγ denotes the upper 100γ% point of the χ2
q

distribution. For example, we can check if the fit using the BLN distribution is
statistically “superior” to a fit using the LN distribution for a given data set by
testing H0 : a = b = 1 versus HA : H0 is not true.

13 Application

In this section, we consider a real data set for illustrative purpose to verify
how our methods work in practice. The data is obtained from McCool (1974).
It represent the fatigue life in hours of 10 bearings of a certain type. These data
were used as an illustrative example for the three-parameter Weibull distribution
by Cohen et al. (1984) and for the two-parameter Birnbaum-Saunders (BS)
distribution by Ng et al. (2003).

We computed the maximum values of the log-likelihoods to obtain LR statis-
tics for testing nested models and generalized LR statistics for comparing non-
nested models. The LR statistic for comparing the nested models H0 : LN×HA :
BLN is w = 2{−53.44073 − (−56.5434)} = 6.20534 (p-value= 0.044). So, it
follows that the BLN model fits the data significantly better that the LN dis-
tribution.
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A generalized LR statistic can be used for discriminating among non-nested
models as discussed in Cameron and Trived (1998, p.184). We now compare
the non-nested models: Birnbaum-Saunders (BS(β, η)) and Weibull (W (β, η))
models. Then, the chi-square distribution is no longer appropriate. Consider
choosing between two non-nested models Fθ and Gγ with corresponding densities
functions f(yi|xi, θ) and g(yi|xi, γ), respectively. Vuong (1989) proposed the
statistic

TLR,NN =

{
1√
n

n∑

i=1

log
f(yi|xi, θ̂)
g(yi|xi, γ̂)

}
(41)

×




1
n

n∑

i=1

(
log

f(yi|xi, θ̂)
g(yi|xi, γ̂)

)2

−
(

1
n

n∑

i=1

log
f(yi|xi, θ̂)
g(yi|xi, γ̂)

)2




−1

.

For strictly non-nested models, the statistic (41) converges, under the null hy-
pothesis of equivalence of the models, to the standard normal distribution. Thus,
the null hypothesis is not rejected (at significance level α) if TLR,NN ≤ zα/2. On
the other hand, we reject the null hypothesis or the equivalence of the models
in favor of the model Fθ being better (or worse) than model Gγ if TLR,NN > zα

(or TLR,NN < −zα).
We now compare via (41) the non-nested models fitted to these data: Weibull

model versus BLN model and BS model versus BLN model. For example,
let f(yi|xi, θ) and g(yi|xi, γ) be the density functions of the BLN and Weibull
distributions, respectively. Thus, the corresponding generalized LR statistics
(TLR,NN ) for testing the null Weibull and BS models are equal to 1.9800 (p −
value < 0.0238) and 2.8578 (p − value < 0.0021). Thus, the BLN model is
significantly better than the Weibull and BS models according to the generalized
LR statistics.

The MLEs of the model parameters, the maximized log-likelihoods and the
values of the Akaike information criterion (AIC) and Bayesian information crite-
rion (BIC) for the fitted models are given in Table 3. These results indicate that
the BLN model has the lowest values for the AIC and BIC statistics among
the fitted models, and therefore it could be chosen as the best model.

The conclusion of the LR test can be supported by means of probability plots
and density plots. The probability plot consists of plots of the observed probabi-
lities against the probabilities predict by the fitted model (see Chambers et al.,
1983). For example, for each model, F (x(j)) was plotted versus (j− 0.375)/(n +
0.25), j = 1, . . . , n, where x(j) are the sorted observations. The probability plots
for the fitted LN and BLN models are shown in Figure 5. It is clear that the
BLN model yields points closer to the diagonal line.
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A density plot compares the fitted densities of the models with the histogram
of the observed data. This plot (given in Figure 6) shows again that the BLN
model fits better to the data than the other three models.
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Figure 5: Probability plots of the fits of the LN distribution (a) and the BLN
distribution (b) for the fatigue lifetime data.

Table 3: MLEs of the parameters for some fitted models to the fatigue life-
time data, their maximized log-likelihoods and the values of the AIC and BIC
statistics.

Estimated Parameters
Parameter BLN LN W BS

a 8.6426 - - -
b 0.2847 - - -
µ 4.7295 5.3519 - -
σ 0.2315 0.2788 - -
β - - 2.9359 0.2825
η - - 246.4086 212.0501

log-likelihood -53.4407 -56.5434 -57.3013 -54.9718
AIC 110.8815 117.0868 118.6026 113.9435
BIC 111.4866 117.6920 119.2078 114.5487
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Figure 6: Histogram and estimated densities of some fitted models to the fatigue lifetime
data.

14 Conclusions

In this article, we introduce the four-parameter beta log-normal (BLN) dis-
tribution that extends the log-normal distribution. This is achieved by (the well
known technique) following the idea of the cumulative distribution function of
the class of beta generalized distributions proposed by Eugene et al. (2002).
The BLN distribution is quite flexible in analyzing positive data in place of the
gamma, Weibull, Birnbaum-Saunders, generalized exponential and beta expo-
nential distributions. It is useful to model asymmetric data to the right and
unimodal distributions. We provide a mathematical treatment of the new distri-
bution including expansions for the density and cumulative functions, moment
generating function, ordinary moments, mean deviations, Bonferroni and Lorenz
curves, order statistics and their moments and L-moments. The estimation of
parameters is approached by the method of maximum likelihood and the ex-
pected information matrix is derived. One application of the BLN distribution
shows that the new distribution could provide a better fit than other statistical
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models widely used in lifetime data analysis.

Appendix

We derive an expansion for G(x)ρ which holds for ρ > 0 real non-integer. We
can write

G(x)ρ = [1− {1−G(x)}]ρ =
∞∑

j=0

(
ρ

j

)
(−1)j{1−G(x)}j

and then

G(x)ρ =
∞∑

j=0

j∑

r=0

(−1)j+r

(
ρ

j

)(
j

r

)
G(x)r.

We can substitute
∑∞

j=0

∑j
r=0 for

∑∞
r=0

∑∞
j=r to obtain

G(x)ρ =
∞∑

r=0

∞∑

j=r

(−1)j+r

(
ρ

j

)(
j

r

)
G(x)r.

and then

G(x)ρ =
∞∑

r=0

sr(ρ)G(x)r, (42)

where

sr(ρ) =
∞∑

j=r

(−1)r+j

(
ρ

j

)(
j

r

)
. (43)

Equations (42) and (43) are used in Section 4.
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