Universidade Federal de Minas Gerais
Instituto de Ciéncias Exatas
Departamento de Estatistica

A Comparison Between Bayesian and
Frequentist analyses for estimating
bowhead whale population size using
photo-identification

C. Q. da-Silva, J. Rodrigues, J. G. Leite and
L. A. Milan

Relatério Técnico
RTP-03

Relatorio Técnico
Série Pesquisa



A Comparison Between Bayesian and Frequentist
analyses for estimating bowhead whale

population size using photo-identification

Cibele Q. da-Silva
UFMG-ICEz, 30123-970, Belo Horizonte, MG, Brazil
Josemar Rodrigues, José G. Leite e Luis A. Milan

Des-UFSCar, 13565-905, Sdo Carlos, SP, Brazil

Abstract

We develop a Bayesian statistical model for estimating bowhead whale
population size from photo-identification data. The proposed conditional
likelihood function is a product of Darroch’s model, formulated as a func-
tion of the number of good photos, and a binomial distribution of captured
whales given the total number of good photos at each occasion. The full
Bayesian model is implemented via adaptive rejection sampling for log
concave densities. We apply the model on data from 1985 and 1986 bow-
head whale photographic studies and the results compare favorably with
the ones obtained in the literature. Also, a comparison with the maxi-
mum likelihood procedure with bootstrap simulation is considered using

different noninformative priors for the capture probabilities.

1 Introduction

Most estimates of the size of the Bering-Chukchi-Beaufort Seas stock of bowhead
whales (Balaena mysticetus) have been based on the ice-based visual and acous-
tic counts of whales conducted at Point Barrow during the spring migration.
These population estimates have formed the basis of management advice by the
International Whaling Commission Scientific Committee (IWC SC). However,
at least since Rugh (1990) made the first attempt to compute a population esti-



mate from photo-identification data, researchers involved in aerial photography
of bowheads have been interested in obtaining an independent population size
estimate from such data.

In capture-recapture studies it is common practice to take samples of animals
from a given population and mark them for future recognition. There are several
possibilities to do that and a choice may depend heavily on the species that is
being studied. In capture-recapture studies involving birds it is common to mark
a captured individual using a numbered ring placed on its legs. In other studies
animals may be either painted or tattooed, or even get a radio transmitter. In
those contexts, marked individuals are animals that were captured, handled and
got a unique artificial mark.

In the case of the bowhead whale it is not possible to attach an artificial
mark to the captured individuals, but the natural marks acquired throughout
their lives are useful to allow the analyst to distinguish individuals. Contrary
to the notion of a marked individual in the capture-recapture studies described
above, a marked bowhead means that it has acquired natural marks enough to
make reidentification possible.

Since the majority of bowheads are unmarked and therefore uncatchable
using photo-identification techniques, it is essential to account for unmarked
whales in estimating population size. Some previous work has been done on
estimating population size when only part of the population is catchable. Seber
(1982), p. 72, gave an estimate N = ]Z—:", where N™ is the estimated number
of individuals in the catchable population and $* is the estimated proportion of
the population that is catchable. Using the delta method, he derived a variance
expression under the assumption that N™ and p* are statistically independent.
Williams et al. (1993), working with bottlenosed dolphin photo-identification
data, used Seber’s approach with N™ the estimated number of marked indi-
viduals in the population and $* the proportion of the photographs that were
of marked individuals. They used photos from the same studies to obtain Nm
and p*, so the assumption of statistical independence of these estimates on
which the delta method variance is based does not hold. To address this is-
sue, da Silva (1999) and da Silva et al. (2000) developed alternative interval
estimates of population size from photo-identification data when the population
includes unmarked animals and compared their approach to the one developed
by Williams et al. (1993) using simulated bowhead data. The work of da Silva
et al. (2000) showed that: (i) their results had a good agreement with previ-
ous works (Raftery and Zeh (1998), Givens (1993) - personal communication),
and the simulations indicated that their bootstrap intervals did not outperform
log-normal intervals ( Burnham et al., 1987); (ii) the large sample size theory
of maximum likelihood estimators is not applied since the likelihood function
does not belong to a regular family of distributions; (iii) the truncated bino-



mial model in the likelihood function implied a sophisticated algorithm with
restrictions to obtain the maximum likelihood estimator. These points moti-
vated approaching the present problem with a simpler likelihood function under
a Bayesian perspective via adaptive rejection sampling allowing a very natural
derivation of inferences for the parameters of interest. Also, a comparison with
the maximum likelihood procedure with bootstrap simulation ( da Silva et al.,
2000) is considered using three different ways to express vague prior information.
We start the next section by introducing notation.

2 Notation

Quality of photos and extent of natural marks of a whale are important variables
in our model formulation. Some variables which are functions of quality and
extent also play an important role in our analyses, and they represent basically
all the information we have available for estimating the population size of the
bowheads. A capture essentially means that a good quality photo of a whale
was taken. In this case, if a natural mark is found then the whale is considered

marked. We now introduce some notation.

e N*: the total number of unmarked whales in the population.
e N™ : the total number of marked whales in the population.
e N=N™+ N*: the total number of whales.

e X : the number of good photos of marked whales at occasion j, j =

1,...,t, where good photos are those from which the identification of the
whales are possible.

e X : the number of good photos of the ith marked whale at occasion j,
j=1,...,tandi=1,...,N™.

e X7 : the number of good photos of unmarked whales at occasion j.

e I : the number of bad photos of marked whales, a latent variable.

e I : the number of bad photos of unmarked whales, a latent variable.
o I; = I + I} : the total number of bad photos taken at time j.

o T7" = XT"+I7" : the total number of photos taken from marked individuals
at time 7, a latent variable.

o T} = X} + I} : the total number of photos taken from unmarked individ-
uals at time j, a latent variable.



¢ The total number of good photos at occasion j: X; = X" + X .
e S, : the total number of photos at time j.
e n; : the total number of marked whales captured at time j.

e 7 : the number of different whales marked over the experiment.

We can organize the information related to the quality of photos taken from
the whales and extent of the natural marks of an individual at time j into a
two-way contingency table. We are restricting our analysis to the case of whales
clagsified either as marked or as unmarked.

Table 1: Two-way table relating quality of photos and extent of natural marks

at time j
Photo extent of natural marks
Quality | Marked-M  Unmarked-U
Good-G X]m X;.‘ X;
Bad-B I]T” I]?‘ I;
T R

N
Nm o
it allows us to estimate N through the estimation of § and N™. We prove next

In our approach the parameter §, defined as § = is important because
that ¢ has to do with the ratio of conditional probabilities involving quality of
photos and extent of the marks of a whale. We first define some quantities of
interest.

Let us assume that the probability of getting a good photo is the same for
marked and unmarked individuals. That is a reasonable assumption since it is
in agreement with the analyst’s procedure protocol to attach rank quality to a
photo. The analyst gives a grade to each photo based only on photo quality,
not on a whale’s extent of marks. Thus the probability of taking a good photo
in a given occasion equals the probabilities above. Therefore given that a good
photo is taken at time j, the probability of it being from a marked individual is

m

N .

and
(X]m,Xu e r ) ~ Mult (Sj,PMG]-,PUGj,PMB]-,PUB]-) .

3?73 0730

Thus, according to Lehmann (1959), we have the following results:

1. X7 | X;,N,N™ ~ Binomial(X;, %").



2. I | I; and X" | X; are independent.

The above results suggest the development of a Bayesian analysis based only

on the total number of good photos, X, at the occasion j, for j = 1,...,¢,
assuming that
m
X | Xj,N,N™, ~ Binomial (X, T)

The relevant term in the log odds ratio for Table 1 is

P(U | G)) NY

A =1 B i e — ] = .

oc (Frray) =os () =1os0

We now introduce more notation in order to define the likelihood function for our

model based only on good photos. Let Z;; be the indicator informing whether
marked whale ¢ had good photos at time 7,

1 if X7 >0,
Zij = .
0 if X{;‘ =0.

Let w; represent the capture history of a marked whale i. Thus w; is a subset
of {1,...,t} defined by

Let I;, be the indicator informing whether or not marked whale i has capture

history w,
1 ifw,=w
L, = .
0 otherwise,
where w is any subset of {1,...,t} and let u,, be the number of marked whales

with history w.
Therefore,

po =Pl =1[{X]"}) = [[ P(Zy =11 {X]"}) [ P(Zi =0 | {X]"})
JjEw Jjgw

The expression above represents the conditional probability of a whale having
capture history w considering the sampling effort needed to catch them along
the sampling seasons. Such effort is accounted into the model by the {X*}
good photos gotten along the capture experiment. Therefore, the resulting
probabilities p,, are similar to those described by Darroch (1958).

Consider p;; as the capture probability of whale 7 given that X good photos
of marked individuals have been taken at time j,

pij = P[Zi; = 1| X]"] = pj,

we have that

nj:E u, and r:E Uy -

jEw w



Finally, Darroch’s model based on {X["} is used to estimate population size for
the marked part of the population and it is given by

P[{uw} |p7Nm7{X]m}] =

(v ‘H U, 'Hp o M

In the next section we present the conditional likelihood function for the model
we are proposing and develop a Bayesian procedure for estimating N via Gilks/Wild
sampling algorithm.

3 The conditional likelihood function based on
good photos
The conditional likelihood of 6 = (A, p, N™), given {X;}, is
L(A,p,N™) = P ({us}, {X]"} | {X;}, A,p,N™)

t t
S L Y
™ —n; Jj=1 J=1 2
H (=py)” |:1+6A:| |:1+6A:| @

This likelihood function is simpler than that formulated by da Silva et al.

(2000) and suggests drawing the observations of the conditional posterior of A
independently of the parameters N™ and p.

As in Liao (1999) we consider the following noninformative prior distribu-
tions:

A | (/J’a 02) ~ N(/J'a 02)
p~N(©0,02) with o =10°

_ W . 40 _3
o Gamma( 59 ) wit 5 0

1
Nm’
for the following specifications of a and b to express vague prior information:
(0,0), (1/2,1/2) and (1,1) ( see Smith, (1991)).

The full conditional posterior distributions for the Gibbs sampling are pre-

p;j ~ Beta(a,b), j=1,...,t and #(N™)x

sented in two independent stages as follows:

Stage 1:
1
o 2| A, u,vy ~ Gamma, (5 + EO, (A — pw)? + Vo) (3)
Ao? o?a?
A,0%,00 ~N “ 4
plaooy (U2+U%,U2+0’%) ()



xS
j=1 j=1

2 m m i L et l A_ll‘ ?
Al wa® N XPH X o g R exp [—2( = )] )
Stage 2:
¢
N™ —r | p,{X]"},{X;} ~ Neg-Bin | r,1 - [[(1 - p)) (6)
j=1
pj | N™ {X;"},{X;} ~ Beta(n; +a,N™ —n; +b) (7)

Each iteration of the Gibbs sampler cycles through the vector of parameters
f, which is divided into some subvector components (like p). Each subvector is
drawn conditioned on the value of all the others. Since N is expressed as a func-
tion of A and N™, its estimated conditional posterior distribution is obtained
through the drawn values of these two parameters. Except for A, the other con-
ditional posterior distributions described above are standard ones, representing
no difficulty in the simulation process. However, drawing A requires more so-
phisticated simulation tools. We used the adaptive rejection sampling method
(ARS) by Gilks and Wild (1992) for drawing A. The ARS is only valid for
log-concave densities which is true for (5). Such class of densities is composed
of functions that are bounded above by their tangents, and bounded below by
their cords. Tangents and cords are used to perform rejection sampling
with squeezing. The ARS public domain Fortran routine developed by Gilks
and Wild (1992) was used in the A drawing process.

In the next section, we presented a study that aims to compare the per-
formances of the ML and Bayesian methods developed in the previous sections
using simulated bowhead whale datasets. Sensitivity analysis to noninformative

prior distributions are presented.

4 Comparison of the performances of the ML

and Bayesian methods

Our intention here is to examine some summary statistics, interval width and

coverage as in Tables 2 and 3 of da Silva et al. (2000) in order to help the readers



to decide whether the Bayesian approach is an improvement over the log-normal
(Burnham al., 1987), symmetric (Williams at al., 1993) and bootstrap intervals
( da Silva et al., 2000). da Silva at al. (2000), conducted an experiment in which
500 four occasion capture-recapture bowhead whale samples were simulated un-
der each of 5 cases. The occasions were spring and summer of 1985 and 1986.
For all the cases were considered a fixed marked population of 1,186 individu-
als whereas the unmarked population varied from moderate to high. Capture
probabilities varied from small to high, and one of the cases allowed for an open
population. More specifically, case 0 stands for a closed population whose cap-
ture probabilities are small and not too many unmarked individuals are present.
Case 1 is analogous to case 0 except that it allows for an open population. Case
2 is also analogous to case 0 except that capture probabilities are high. This
case represents the most optimistic one of the five. Cases 3 and 4 are charac-
terized by a population composed primarily of unmarked individuals with high
and low capture probabilities respectively. The cases are summarized in Table 1
in da Silva et al. (2000) where a detailed description of the simulated data sets
can also be found. In order to study the sensitivity of the Bayesian approach
to choices of noninformative prior distributions for the capture probabilities,
three noninformative beta priors were considered: beta(0,0), beta(1/2,1/2) and
beta(1,1).

Table 2 presents summary statistics for the estimated values of N resulting
from each of 500 simulated samples. Column 3 of Table 2 gives the mean of the
estimates of N. For the likelihood-based estimates, the mean value represents
the average over the 500 estimated values of N. For the Bayesian based ones
that column gives the average of the posterior medians over the 500 estimated
values of N. Since we know the value of the true N in each case, for descriptive
purposes only, column 4 of Table 2 presents the corresponding bias. Column 5
of Table 2 evaluates the dispersion of the estimated values in each case. For the
MLE, column 5 gives the standard error of the 500 estimated values of N while
for the Bayesian method it represents the standard deviation of the 500 posterior
medians. From Table 2 we can observe that inferences obtained using different
reference priors can differ considerably and | Bayes bias |>| MLE bias |. How-

ever, the results obtained using prior (0,0) are reasonably in close agree with the



Table 2: Summary statistics for the estimated values of N based on 500 simu-

lated samples

case method mean bias s.e.
0 MLE 6,770 36 767
Bayes (0.0,0.0) 6,814 80 762
Bayes (0.5,0.5) 6,671 -63 710
Bayes (1.0,1.0) 6,530 -204 690

1 MLE 6,812 78 858
Bayes (0.0,0.0) 6,866 132 904
Bayes (0.5,0.5) 6,715 -20 898
Bayes (1.0,1.0) 6,570 -165 758

2 MLE 6,724 -10 360
Bayes (0.0,0.0) 6,747 13 359
Bayes (0.5,0.5) 6,728 -13 360
Bayes (1.0,1.0) 6,698 -38 350

3 MLE 13,350 62 1,699
Bayes (0.0,0.0) 13,557 90 1,724

Bayes (0.5,0.5) 13257  -211 1,607
Bayes (1.0,1.0) 12,986  -482 1,533
4 MLE 14,410 942 4,597
Bayes (0.0,0.0) 14,734 1,266 4,244
Bayes (0.5,0.5) 13,268  -200 3,654
Bayes (1.0,1.0) 12,040 -1,428 2,883




ones obtained by MLE. In case 4 the likelihood is concentrated around small
capture probabilities and the beta prior (0,0) reinforces this information. As
observed by Smith (1991), the beta prior (0,0) gives strong weight to extreme
values of capture probabilities. On the other hand the beta prior (1,1) causes
the largest negative biases. Using the latter prior, we expect to generate a large
proportion of capture probability values that are larger than we would observe
in practice, producing underestimates of N. Beta prior (1/2,1/2) seems to be
the best choice among the noninformative priors in study since it induces to the
smaller values of | bias | allied with not too high variances. Dispersion of the
MLE’s are are very comparable with the ones obtained when using beta prior
(0,0).

Overall the huge observed differences in the estimated biases and variances in
cases 3 and 4 provides evidence that, like the ML, the Bayesian method is also
highly affected by the presence of too many unmarked individuals combined
with low capture probabilities. The results observed for cases 0 and 1 using
both ML and Bayesian methods are in reasonable agreement, and they reveal
that relaxation of the closed population assumption for the extent of openness
allowed in the simulations does not have too much impact in the estimates of
N. Both methods have best performance in the ideal case 2.

It is also useful to study coverage probability of confidence and credible
intervals. Columns 3 and 4 of Table 3 give the percentage of samples that
missed the true value N either on the left or on the right hand side. Column 5
of Table 3 gives mean interval width.

Log-normal intervals ( Burnham et al., 1977) use the delta method variance
estimate. The parametric bootstrap intervals ( da Silva et al., 2000) are based
on 3000 bootstrap replications. The last remarks we have made about Table
2 seem to be also true when the aim is to compare confidence and credible
intervals over the cases.

Table 3 suggests that the Bayesian intervals of N are asymmetric with a
firmer lower than upper bound. This effect is also observed in other works like
Raftery (1998a,b) and Raftery et al. (1990) using empirical Bayes procedures
with visual and acoustic data. It is important to mention that the lower bound

is of interest for bowhead whales, since it represents the most pessimistic view
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Table 3: Percentage of 500 samples in which the 95 %-confidence or credible

interval (CI) missed the true value N. Average CI widths are also given.

Case  Type of CI % miss Mean
left  right CI width

0 Log-normal 1.2 3.8 2,988
Percentile bootstrap 0.6 3.0 3,169
Bayesian (0.0,0.0) 1.2 2.8 3,025
Bayesian (0.5,0.5) 0.6 4.6 2,911
Bayesian (1.0,1.0) 04 6.0 2,811

1 Log-normal 2.4 3.8 3,102
Percentile bootstrap 1.6 3.4 3,256
Bayesian (0.0,0.0) 2.2 2.8 3,090
Bayesian (0.5,0.5) 1.4 4.2 2,984
Bayesian (1.0,1.0) 1.4 6.6 2,873

2 Log-normal 2.6 3.2 1,351
Percentile bootstrap 2.6 3.0 1,392
Bayesian (0.0,0.0) 2.8 5.2 1,307
Bayesian (0.5,0.5) 22 5.8 1,293
Bayesian (1.0,1.0) 1.6 6.8 1,284

3 Log-normal 1.8 4.6 5,863
Percentile bootstrap 2.6 3.4 6,361
Bayesian (0.0,0.0) 2.2 3.2 6,159
Bayesian (0.5,0.5) 1.8 6.6 5,906
Bayesian (1.0,1.0) 1.0 7.8 5,702

4 Log-normal 2.2 3.4 13,740
Percentile bootstrap 5.6 1.4 18,490
Bayesian (0.0,0.0) 7.0 3.6 13,243
Bayesian (0.5,0.5) 2.4 8.0 13,268
Bayesian (1.0,1.0) 0.4 15.6 9,569

11



in the light of data (Raftery et al., 1990).

We can observe from Table 3 that credible intervals are in general narrower
than percentile bootstrap confidence intervals. This may be due to the impact
of a few very large bootstrap-generated values. Some of the credible intervals
have coverage probabilities far from the 95% nominal level, ranging from 84.0%
t0 96.0%, while in the frequentist cases they range from 92.2 to 96.4%. In terms
of coverage probabilities, the worst performance was achieved by the credible
intervals in case 4: when using beta prior (0,0), around 7% of the left endpoints
were larger than N, i.e., the population size was overestimated, when using beta,
prior (1/2,1/2), around 8% of the right endpoints were smaller than N, i.e. the
population size was underestimated. In the case of beta prior (1,1) the coverage
probability was 84% with left and right endpoints of 0.4 and 15.6%, respectively,
meaning that too many estimated values underestimated N. The small mean
CI width associated to this case means that the distribution of the estimated
values is highly concentrated around a value much smaller than N.

Compared to the other options, log-normal confidence interval (Burnham,
1987) seems to be best, it produces not only narrow Cls but also coverage
probabilities close to the 95% nominal level. In the next section we present an
application using actual bowhead whale photo-identification data and compare
the results obtained via G/W sampling with the one obtained with the simplest
ML model developed by da Silva et al. (2000).

5 An application to bowhead whale photo-identi
fication data

We begin this section by describing the data in da Silva (2000). Four sampling
occasions (spring 1985, summer 1985, spring 1986, and summer 1986) were con-
sidered. The variables in the data base were used to create a data set containing

records with the following information:

¢ Each marked whale has a unique number, but the same unmarked whale

could occur in the data set more than once with different numbers.

e Four columns indicate the capture histories of the bowheads, with 1 indi-
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cating that the whale was, and 0 that it was not, captured in the sample

represented by the column.

¢ Four columns indicating the number of good photos obtained for each of

the captured individuals by sampling occasion.

There were 1,677 records in the data set, 229 belonging to marked individuals,
with 16 of the 229 captured on more than one occasion. The data set was
analysed using the model proposed in section 3. The results are described in

the next section.

5.1 Numerical results using MLE and Bayesian approachs

In this section our aim is to compare the results obtained using the meth-
ods discussed in the previous sections with the ones presented by da Silva
et al.(2000) who estimated N using real bowhead data and their version of
ML based-model via bootstrap. Sensitivity analysis is performed using priors
beta(0,0), beta(1/2,1/2) and beta(1,1) for the capture probabilities. As in the
last section, the Adaptive Rejection Sampling (ARS) was used to draw samples

from density (5). For the Bayesian method, Table 4 gives posterior median (N),

and 95% credible intervals for N. The confidence interval is a log-normal one.

Table 4: Comparing Bayesian and MLE based estimation for N

method N Intervals (95%)
MLE 7,022 (4,701;12,561)
Bayes(G/W):

a=0.0,b=0.0 7,109 (4,746; 11,138)
a=05b=05 6389  (4,466; 9,704)
a=10,=1.0 5935  (3,978; 8,311)

As noted in the simulated data, the results are sensitive to the choice of
the noninformative beta prior for the capture probabilities and, based on the
simulated data, we speculate that the estimated value using beta prior (0,0) is
positively biased while the one got using beta(1,1) is negatively biased. In this

fashion, the most reliable Bayesian estimated value of N should be the one got
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using beta prior (1/2,1/2) since it likely provides a conservative lower bound on
population size if the multinomial model holds.

The inferences obtained using the ML and Bayesian methods when prior
(0,0) is considered are in remarkable agreement. As we observed in the simulated
cases the estimated values obtained by the ML may present a positive bias. It
is true though that such bias may be negligible in some favorable situations
such as in case 2. As described by da Silva et al., (2000, section 5), this real
data set may present some problems since for some of the sampling occasions
it was not possible to get a random sample. In the same article the authors
show that nonrandom sampling causes estimated values of N to be positively
biased and present another model to correct for that. Using bootstrap methods
they estimated that such bias should be around 413 (see table 12 from the cited
reference). Despite the positive bias in the MLE of N, both estimated values
obtained using the ML and using Bayesian with beta prior(1/2,1/2) compare
favorably with the ones obtained by Raftery and Zeh (1998) (6,039 (s.e.=1,915)
and 7,734 (s.e.=1,450) for 1985 and 1986 respectively), and with the 1985 and
1986 estimates of 6,649 and 6,820 (excluding calves) from the Bayesian synthesis
analysis of Givens (personal communication).

It seems that Bayesian estimates got using beta prior (1/2,1/2) are not as
affected by the nonrandom sampling as are ML-based ones. In order to ad-
dress this issue we performed additional studies based on nonrandom sample
simulated data whose description can be found in da Silva et al. (2000). The
population size considered in those simulations was N = 6,734 and capture
probabilities were low. The simulations were meant to describe a very dra-
matic nonrandom sampling scenario. Table 5 summarizes the results. When
a simple ML model was fit to the simulated data, da Silva et al. (2000) got
ﬁ:8,254, bias=1,520 and s.e.=1,211. From Table 5 we can observe that the ML
and Bayesian (1/2,1/2) estimated N are in close agreement, with the Bayesian
(1/2,1/2) being only slighty superior to the ML, but both do equally badly on
estimating N due to the large positive biases. We then speculate that the data
is not as badly affected by nonrandom sampling as we have thought before,
otherwise estimated values of N from the ML and Bayes (1/2,1/2) should be

closer as suggested by the simulations.
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Table 5: Comparing Bayesian estimates obtained from nonrandom sample sim-

ulated data

Prior N bias s.e.
a=0.0,=0.0 8,497 1,763 1,279
a=0.5,b=0.5 8,235 1,501 1,188
a=1.0,b=1.0 7,946 1,212 1,090

The convergence of the MCMC procedure was verified by Gelman and Rubin
(1992)’s convergence diagnostics available in the software CODA. In order to
do the diagnostic, two sequences with 21000 elements were generated using the

procedures described above.

6 Discussion

In this paper we compared two approachs, ML and Bayesian methods, to esti-
mate the size of a population when photo-identification data are collected using
a capture-recapture sampling. Simulated bowhead whale datasets under several
cases have been used to help us evaluate the methods’s performance. Such simu-
lated datasets were the same used by da Silva et al. (2000). Sensitivity analysis
has been performed using noninformative beta priors: beta(0,0), beta(1/2,1/2)
and beta(1,1) for the capture probabilities. The Bayesian method is sensitive
to the choice of such priors: the use of beta prior (0,0) causes positive bias
while beta prior (1,1) causes negative bias. Vague beta prior (1/2,1/2) seems
to be the best choice for this kind of data. The ML estimates agree remarkably
well with Bayesian estimates obtained using beta prior (0,0). However, both
estimates may be positively biased in the case of small capture probabilities.
The estimates of N in Table 4 agree with results from simulations discussed
in the previous sections. If samples are nonrandom both methods give posi-
tively biased estimates of N. For the actual data it seems that the nonrandom
sampling does not have a strong effect on the results. Both ML and Bayesian
estimates (with the ML-based one corrected for positive bias) should be equally
good. Log-normal confidence intervals (see Burnham, 1987) are the best choice

for the ML inferences.
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When nothing is known about the distribution of the capture probabilities,
the use of vague beta priors like the ones considered in this paper is a reasonable
option. However, we realize that for the bowhead data it would be nice to have
less vague prior information on the capture probabilities. In order to attack this
problem, following Smith (1991), we intend to use either an empirical Bayes or

Bayes empirical Bayes approaches.
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