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Abstract

The three prisoner paradox (e.g.,Jeffrey, 1992) has been solved by assuming that the
receipt of relevant information is planned from the beginning. This assumption allows

the use of Bayesian conditioning. This paper presents alternative explanations for the



paradox based on other probability updating procedures such as superconditioning and
Jeffrey’s rule for updating. The situations of unpredictability of receipt of information
is then also considered. The formulation of the paradox in this temporal setting brings
new insight to the problem.

Key words: Unpredictability, Bayesian conditioning, superconditioning, Jeffrey’s rule,

Bayesian statistics.

1 Introduction

The three prisoners paradox (Jeffrey, 1992) is a good way to explain some different procedures
for the updating of probabilities and on the other hand these procedures provide new insight

in the paradox.

The three prisoners paradox is the following problem described by Jeffrey(1992), pp. 122:

The three prisoners (A, B, C). Two are to be shot and the other freed; none is to know his
fate until the morning. Prisoner A asks the warder to confide the name of one other than
himself who will be shot, explaining that as there must be at least one, the warder won’t be
giving away anything relevant to A’s own case. The warder agrees, and tells him that B will
be shot. This cheers A up a little, by making his judgement probability for being freed rise
from 1/3 to 1/2. But that’s silly: A knew already that one of the others would be shot, and
(as he told the warder) he is no wiser about his own fate for knowing the name of some other

victim. (Jeffrey (1992) - pp.122)

Notice that the ”"paradox” arises because, as prisoner A tells the warder, the information



given about the other two prisoners does not apprise prisoner A of his own condition. Thus,
the opinion of A about the event ” A will live” ought to be the same after the receipt of the

information provided by the warder, i. e., the posterior probability of this event should also

be 1/3.

Usually, it is assumed that prisoner A constructs his posterior distribution using the Bayesian
Conditioning (Jeffrey(1992), Howson and Urbach(1993), Howson(1996)) and that A calcu-
lates this distribution erroneously as he establishes an inadequate sample space to the ex-
periment he is conducting - that is, A considers the sample space Q) = {A, B,C}, where
X represents ”prisoner X will live”, X = A, B,C, and not the suitable space to the situa-
tion described in the paradox, say, Qs = {Ab, Ac, Bc,Cb}, where Xy represents the event
" prisoner X will live and the warder informs that prisoner Y will die” (see Jeffrey (1992) for

further details).

Other solutions for this problem can be find in Walley (1991) and Pereira (1995). Morgan et
al. (1991) presents a valuable discussion about possible solutions to a similar problem. From
Morgan et al.(1991)’s point-of-view, one concludes that the three prisoners paradox will only
be solved if the strategy adopted by the warder is known, or if the Bayesian conditioning

were used.

The Bayesian conditioning is a well known and widely used procedure for the updating of
probabilities. Even so, there are several practical situations that do not allows us to use the
Bayesian conditioning to obtain the posterior distribution. In next section we can see some

details about the fragility of this rule for revising probabilities. (Procedure for the updating



of probabilities is to be understood as the procedure which allows he/she to construct his/her

posterior distribution from his/her prior distribution).

In this paper we present alternative explanations to the three prisoners paradox using three
procedures for the updating of probabilities - the Bayesian conditioning, the supercondition-
ing (Diaconis and Zabell(1982)) and the Jeffrey’s rule(Jeffrey(1965,1992)). It will be argued
that the solution presented by A may be correct if we do not arbitrate, as it is usually done,
that: the receipt of information about B and C is planned from the beginning; the infor-
mation received always takes A to the certainty that B will die; and prisoner A judges that
the warder has the same chance to reveal the names of B and C, in case A is the one to be
freed. Therefore we will point out some limitations to the Bayesian conditioning as well as
highlight the influence of the way by which the information is received on the construction
of the posterior distribution. It will be assumed that the prior probabilities declared by

prisoner A for the events ”prisoner X will live”, X = A, B, C, are the same.

In Section 2, we will briefly present the Bayesian conditioning and responses to that paradox
using this procedure for the updating of probabilities. In Section 3, prisoner A will be allowed
to update his probabilities using the superconditioning defined by Diaconis and Zabell (1992).
Finally, in section 4, the three prisoners paradox will be discussed in the light of the Jeffrey’s

rule.

In this paper, we denote by P and P* two probability measures defined on the measurable
space (€2, A), where Q is a countable set, and interpret P and P* as the prior and posterior

opinions of prisoner A about events in A , respectively.



2 The Calculus of Prisoner A and the Bayesian Con-
ditioning

As is well known, the Bayesian conditioning is the procedure for the updating of probabilities

which connects prior and posterior distributions using the Bayes’ theorem.

Definition 2.1 (Bayesian Conditioning)
The posterior distribution P* is obtained from the prior distribution P using the Bayesian
Conditioning if

Pr() = P(|E) (1)

where E is an A- measurable event such that P(E) > 0.

The following result provide conditions under which the Bayesian Conditioning can be an

acceptable procedure to obtain the posterior distribution.

Theorem 2.1 (Jeffrey, 1992)

Let E € A be an event such that P(E) > 0. Then, for every A € A

(i) P*(E) = 1 and (2)
(i) P'(AIE) = P(A|E) (3)

iof, and only if,
P*(A) = P(A|E). (4)



The proof follows from the properties of probability measures.

Notice that the Bayesian conditioning is a procedure that allows he/she to update his/her
initial opinions using the Bayes’ theorem. When he/she decides to use it though the condi-
tions (i) and (ii) in the previous theorem must be satisfied. This result is called by Howson
and Urbach(1993) The Principle of Bayesian Conditionalisation and the conditions (i)
and (ii) are also known as certainty and sufficiency respectively. Using this terminology
it can be stated that the Bayesian Conditioning is an acceptable procedure for the updat-
ing of probabilities if the information received makes him/her move from an initial state of
uncertainty about the conditioning event E to the posterior certainty of its occurrence and
if, beyond this, the partition { E, E'}, generated by the information received, contains all the
relevant information to the construction of his/her posterior distribution - i.e., {E, E} is a

sufficient partition to the family of probability distributions { P, P*}.

If, from the beginning, prisoner A plans to ask the warder about the situation of the other
two prisoners, the sample space which appropriately describes the experiment performed by
A is the space €, defined in section 1. Thus, a priori we have that P(Ab) = p =1/3— P(Ac)

and P(Bc) = P(Cb) = 1/3, where p € (0,1).

At the very moment A declares his prior distribution, he also reveals his probabilities, sup-
posing that the event "the warder informs that B will die” occurs. Denote this event by E
and notice that £ = AbU Cb. Supposing that E occurs, the prior probability of the event
” A will live” is given by:

P(Ab)  3p
P(E)  3p+1°

P(AbU Ac|E) =



If prisoner A judges that the conditional probabilities in E declared before are kept after
consulting the warder and if his new opinion about the event E is P*(E) = 1, the Bayesian
conditioning allows A to explicit his posterior opinion for the event ” A will live” as the
probability obtained in the expression (5), i.e., P*(A4) = P(AbU Ac|E) = %. Notice that
this posterior probability is in accordance with the initial expectation about the posterior
distribution that should be declared by prisoner A only if p = 1/6. This choice of p shows
that, for A, the warder has equal chances to tell the names of either B or C , in case A is the
prisoner who will live. On the other hand, if A thinks the warder would never tell the name
of C, in case A were the survivor, that is, if he declares p = 1/3, the posterior distribution
provided in (5) would agree with the posterior distribution divulged by prisoner A. Other

approach to a similar problem can be found in Morgan et al.(1991).

Conversely, suppose that prisoner A has not planned to ask the warder about the condition
of prisoners B and C. In this case, the suitable sample space to describe the experiment

performed by A is the space ; defined in section 1.

As it has already been assumed, consider that each prisoner has a 1/3 chance of being the
survivor . Consequently, the prior probability for the event ” A will live”, supposing that B

will die, is given by:

where E=AUC.



After A states his opinion about his being the one who will survive, the warder tells him
that B will die. When he hears it, A decides to re-assess his initial probabilities using the
unexpected information given by the warder. If in possession of the information given by
the warder, A judges that event F is certain and that all the conditional probabilities in this
event are not modified, the posterior probability for the event ” A will live” is given by the

expression (6), confirming prisoner A’s initial statement.

In both situations we assume that the information received is the same and the Bayesian
conditioning is the procedure adopted to update probabilities. Yet only in some situations
the posterior distribution for the event ” A will live” coincides with what seemed intuitive
and logical at first. Besides, if the information is received unexpectedly, prisoner A will

always be right.

Notice that the way by which the information is received influences the posterior probability
calculus for the event ” A will live” as it interferes directly with the construction of the sample
space appropriate for the problem. In case the receipt of information is not previously
anticipated, the change in the value of the posterior probability declared by A is plainly
justifiable (in this case there is a change in the expectation), and the assessment made by

prisoner A is not contradictory.

3 Explaining the Paradox via Superconditioning

It should be remarked, than Bayesian conditioning is not completely general, but rather it

is valid under some specific assumptions as shown in section 2 (see also Diaconis and Zabell,



1982). Another example illustrating the reduced flexibility of this procedure for the updating

of probabilities is presented in the following approach to the three prisoners paradox.

Suppose that prisoner A has not planned to ask the warder for information - i.e., A considers
the space Q1 = {A, B,C} defined in section 1. Admit that prisoner A’s prior probabilities

for the survival of each prisoner is 1/3.

After eliciting his prior distribution for the events of 2; (and before declaring his posterior
distribution), prisoner A decides to ask the warder which of the other two prisoners will be
sentenced, alleging that this information does not tell anything about his own condition. By
doing so, prisoner A performs an experiment whose possible results are in the sample space
Qy = {Ab, Ac, Bc, Cb}, where Xy is as in section 2. Suppose that, before asking the warder,

prisoner A specify the following probability measure () about events of {2:

QAb) = q1; Q(Ac) = q2; Q(Bc)=g¢s e Q(Cb) = qu,

where ¢; € [0,1], Vi and >, ¢; = 1.

How can the posterior distribution for the events of €2; be determined? Notice that this
situation has a little difference from that one described in section 2, where prisoner A has
planned to ask for information before declaring his prior distribution. Here the Bayesian

conditioning is not applicable.

Diaconis and Zabell (1982) present an answer to similar problems. The update procedure
suggested by these authors (the superconditioning) is more general than the Bayesian con-

ditioning and offers us an alternative way to explain the three prisoners paradox.



Definition 3.1 (Superconditioning)
The posterior distribution P* can be obtained from the prior distribution P by Supercondition-
ing if there exist a probability space (Q, A, Q) and a class of events D = {E, € A,w € Q},

such that:
(i) Ey, occurs if, and only if {w} occurs, ¥V w € Q;
(i) Q(E,) = P({w}), Yw € Q and

(iii) P*({w}) = Q(E,|E) for every w € Q and for an event E € A such that Q(E) > 0.

Notice that, as for the Bayesian conditioning, the updating of probabilities via supercondi-

tioning is obtained multiplying the prior distribution by an appropiate likelihood function.

Define E4 = AbU Ac, Eg = Be, E. = Cb and E = AbU Cb. Then we have that Q(E4) =
@ +g =1/3, Q(Ep) = ¢s = 1/3 = ¢ = Q(E¢) and Q(E) = ¢ +1/3. Thus, using the

Superconditioning, the posterior probability for the event ” A will live” is

P*(A) = Q(E4|E) (7)
Q(Ab) q1

QE)  q+1/3

At first, suppose that prisoner A thinks the warder has an equal preference for both prisoners
B and C, in such a way that Q(Ab) = Q(Ac) = 1/6 and Q(Bc) = Q(Cb) = 1/3. From (8)
we have that P*(A) = 8 = 1/3, what coincides with prisoner A’s prior opinion about this

1/2

event and corresponds to what was expected initially.

On the other hand, if A suspects that the warder will never tell that prisoner C will die, in case

10



he is the survivor - what makes A declare Q(Ac) = 0 and Q(Ab) = Q(Bc) = Q(Cb) =1/3 -
the posterior probability of A being the survivor is P*(A4) = 1/2 , what confirms the reason

for prisoner A’s excitement after talking with the warder.

If prisoner A adopts the superconditioning and has not uniform prior distribution on singleton
events of 2, A will only change his initial opinion to 1/2 if there is any reason to judge that
Q(Ab) = Q(Cb). In case A considers Q(Cb) = 2Q(Ab) we will have that P(A) = P*(4) =

1/3 and in other circumstances none of the initial statements will be correct.

However, we must notice that the posterior distribution P* is not always obtained from the
prior distribution P by superconditionig. In the three prisoners paradox we can always use
this updating procedure because the sample space is finite, as we can see in next theorem

from Diaconis and Zabell (1982).

Theorem 3.1 (Diaconis and Zabell, 1982)
Let P and P* be probability measures defined on (Q,.A), where Q is a countable set. P* is

obtained from P by superconditioning if, and only if, there is a constant B > 1 such that

P*(w) < BP(w), VY w €. (8)

In next section, another way to explain the calculus done by prisoner A will be show by

indruducing the Jeffrey’s rule for the updating of probabilities.
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4 The Jeffrey’s Rule and the Three Prisoners Paradox

Other possible scenario we can use to explain the three prisoner paradox is described in the
following. Suppose it is not prisoner A’s intention to ask the warder for information about
prisoners B and C, i.e., admit the sample space Q; = {A, B,C}. As before, admit that the

prior probability distribution stated by A for the singleton events of ; are all 1/3.

If, after having declared his prior distribution about the events of €y, prisoner A is unex-
pectedly informed that B will die, and if this information makes A change his opinion about
the event £ = A U C arbitrarily, establishing that P*(E) = p* < 1, how can A construct
his posterior distribution about the events of {2;7 In these circumstances, the Bayesian

conditioning and also the superconditioning do not offer a response to the problem.

As for the Bayesian conditioning, the events E and E define a partition of the sample space,
but here it is not assumed that the information provided by the warder takes A to the

certainty about the event E.

The Jeffrey’s rule, presented in Jeffrey (1965, 1992), permits the construction of the posterior

distribution in situations similar to the one we have just described.

Definition 4.1 (Jeffrey’s Rule)
The posterior distribution P* is obtained from the prior distribution P by Jeffrey’s Rule if
P*()=>_P(|B)P*(E;), Ei€& (9)

where € = {E;,i € I} is a partition of Q, P*(E;) > 0 for every i € I, Y ;c; P*(E;) =1 and
I is a index set.

12



The Jeffrey’s rule also permits the arbitrary updating of the prior probabilities attributed
to the elements of the partition. Its difference from the Bayesian Conditioning is that those

arbitrary reassessments P*(F;) may assume values smaller than 1 for every i € I.

An inconvenience of the Jeffrey’s rule is that it does not provide the procedures to obtain
the posterior probabilities for the elements of the partition. To elicit those new probabilities

can be such a psychologically complex task as stating the prior distribution.

Another inconvenience of the Jeffrey’s rule is that in the way it is defined it does not provide
a coherent posterior opinion in the sense defined by de Finetti(1931,1937) and Loschi(1992).
A posterior probability measure will be obtained in this situations, if the conditions of the

following theorem are satisfied.
Theorem 4.1 Let (Q,.A) be a probability space where ) is a countable set. Consider an
A-measurable event A and suppose that for every E; € £, P*(E;) > 0. Then

P'(4) = Y P(A|E) P*(E) (10)

if, and only if, for every A € A and for every E; € £
P(A|E;) = P*(A|E)). (11)
The proof of this theorem and a valuable discussion on Jeffrey’s rule can be found in Jeffrey

(1992). Some of its mathematical properties can be found in Diaconis and Zabell (1982) and

Loschi, Iglesias and Arellano-Valle (2000) provide an application of this rule.

Let us admit that the condition (11) above is verified for prisoner A’s prior and posterior

13



opinions - i.e., for A the partition £ = {E, E'}, generated from the information provided by

the warder, is sufficient to the family of probability measures { P, P*}.

Since P*(E) = p* < 1, the posterior probability obtained by Jeffrey’s Rule for the event ”A

will live” is:

P*(A) = P(AE)p" + P(AE)(1 - p")

= p*/2. (12)

The only reason to prisoner A’s excitement about having his chance of survival increased to
1/2 is when p* = 1 - what would be the same as using the Bayesian Conditioning. The prior
distribution of prisoner A remains unchanged afterwards if the information provided by the
warder makes A less uncertain about the event E, but not totally convinced of its occurrence.
In fact, A would have to declare p* = 2/3 to have his prior distribution unchanged. In any
other circumstances the posterior probability for the event ” A will live” will be different from
the prior probability and also different from the posterior probability established by prisoner

A.

If, before stating his prior distribution, prisoner A intends to inquire the warder about his
companions, the information that B will die causes the occurrence of the event AbU Cb of
the sample space 25. In this case, updating probabilities via Jeffrey’s rule is equivalent to an
updating by the Bayesian conditioning; thus the posterior probability of A being the survivor
is given in (5). Notice that the Jeffrey’s rule also does not apply to the problem considered
by Morgan et al. (1991). In that problem, to use the Jeffrey’s rule always corresponds to
consider the Bayesian conditioning.
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5 Conclusion

In this paper we present several scenarios to explain the three prisoner paradox and different
approachs are considered to explain it. However, the problem is more general and often
occurs in practical situations. Suppose, for example, we are predicting a time series with a
truly dynamic model. Then, before, seeing more data, news broke that Irak invaded Kuwait.
How are we going to make use of this relevant piece of information? In order to improve our
predictions, this unpredictable information must be incorporated in the model. Notice that

this real problem is very similar to the problem lived by prisoner A.

The three prisoners paradox, as well as any other problem which involves the updating of
probabilities, does not have an unique solution (for the Three Prisoners Paradox we have
seen that the number of solutions can be very large, and not only 1/2 and 1/3 as it is
usually considered). One of the reasons is the lack of a normative rule for the choice of the
procedure to be used for the updating of probabilities. In the absence of such a rule we
may choose the procedure we judge the most adequate to the construction of our posterior
distribution. We may even construct the posterior distribution by means of a completely

arbitrary reassessment, that is, without using any mathematical formula.

Besides, the way by which the information is received influences our judgement. For all
the situations discussed, the information was the same. How it was obtained as well as its
influence on prisoner A’s way of thinking generated distinct posterior distributions though.
We do not know how prisoner A conducted his experiment, nor do we know which procedure

he used to construct his posterior distribution. Therefore we cannot affirm that A made a

15



mistake declaring 1/2 as the posterior probability of his being the survivor, because even

arbitrary probability reassessments are permitted.
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