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Scope and Purpose — The problem of change point identification is encoun-
tered in many subject areas, including disease mapping, medical diagnosis, in-
dustrial control, and finance. One appealing way to tackle the problem is by
means of the product partition model. The product partition model applied to
the change point identification has attracted researchers’ attention, particularly
nowadays because the spread use of the powerful personal computers that make
it possible to deal with its inherent computational complexity. To attack this dif-
ficult problem, a Gibbs sampling scheme is develop in this paper which is applied
to the analysis of two very important stock market data in Brazil. The computa-
tional results show that method is effective and efficient, making possible useful

inferences. In addition, the method is simple and easy to implement.

Abstract — This paper extends some previous results concerning the product
partition model (PPM) by proposing a new scheme to estimate the posterior
relevances of the model and by considering a prior distribution of the probability
that a change takes place in any time. The algorithm was coded and applied to
the identification of multiple change points in Brazilian stock market data. The
algorithm performed well and proved to be a useful tool for analyzing change

point problems.

Keywords: change points, product partition model, relevance, Student-¢ distri-

bution, Yao’s cohesions.



1 Introduction

The identification of change points is important in many data analysis problems, such as
disease mapping, medical diagnosis and industrial control. This problem also arises in stock
market analysis. Inferences on the instants when changes in the volatility occurred, for
example, allows the identification of events that could produce the changes, helping decision
makers in the future, under similar situations.

This paper considers the Bayesian analysis of the multiple change point problem consid-
ering the product partition model (PPM) introduced by Hartigan [1]. Bayesian approaches
for the change point problems has been presented by several authors. For example, Menze-
fricke [2] considers the problem of making inferences about a change point in the precision
of normal data with unknown mean. A single change point in the functional form of the
distribution is explored by Hsu [3], who considers the class of the exponential-power distribu-
tions [4] for treating the problem. Hsu [3] and Menzefricke [2] applied their methodologies to
stock market prices (see also Smith [5]). Stephens [6] discusses the discrete multiple change
point problem and the continuous single change point problems, which is illustrated consid-
ering some kidney transplant data. Stephens also focuses on the computational complexity
involved in the change point identification.

Later, Hartigan [1] proposes the product partition model (PPM), which generalizes most
of the situations described above. The PPM allows the identification of multiple change
points in the parameters as well as in the distribution function itself. The identification
of multiple change points in the mean of normal random variables with common variance
is considered in detail by Barry and Hartigan [7]. Recently, Crowley [8] provides a new
implementation of the Gibbs sampling scheme in order to solve the problem of estimating
normal means by using the PPM. The PPM is also used by Loschi et al. [9] to identify
multiple change points in the mean and variance of normal data. The results obtained by
Loschi et al. extend some results presented by Crowley [8] and Barry and Hartigan [7] and
are applied to the Chilean stock market data. In the PPM model presented by Loschi et
al. [9], it is assumed that the cohesion is that defined by Yao [10], which depends on the

probability of a change takes place at any time.



The aim of this paper is to apply the PPM to the identification of multiple change points
in both the mean p and also the variance ¢ of normal data, assuming a prior distribution
to the parameter involved in the Yao’s cohesions. We also provide a different procedure to
evaluate the posterior relevances necessary in some posterior estimates by using the PPM.

This paper is organized as follows. Section 2 briefly reviews the PPM introduced by
Hartigan [1] and presents inferential solutions to identify change points for random variables
which are normally distributed, given the means and variances, according to Loschi et al.
[9]. Section 2 also presents the exact posterior relevances and posterior distributions of the
random partition generated by the change points and of the number of change points in
the partition. We consider the cohesions proposed by Yao [10] and a prior distribution for
the parameter involved in these cohesions. In Section 3, we describe the Gibbs sampling
scheme proposed to compute (i) the posterior relevances, (ii) the posterior distributions of
the number of blocks in the partition generated by the change points and (iii) the posterior
distribution of this random partition. In Section 4, we apply the results to identify change
points in the mean returns as well as in the volatilities of two important Brazilian economic

indexes. Section 5 closes the paper with final remarks and future topics for investigation.

2 Statistical Models

In this section, we give a brief of the product partition model (PPM), introduced by Hartigan
[1], and its implementation in identifying multiple change points in the mean and variance
of normal data [9]. The exact posterior relevances are presented. The exact posterior distri-
butions of the random partition generated by the change points and of the number of change
points in the partition are also presented. We consider Yao’s cohesions [10] and a beta prior
distribution for the parameter involved in these cohesions.

We shall now present the definition of PPM and some preliminary results concerning this

model, as given by Barry and Hartigan [11, 7].



2.1 The PPM

Let Xi,..., X, be a observed time series. Consider a random partition p = {ig, 41, ..., %} of
theset I = {1,...,n}U{0},0 =14y < i; < ... <14, =mn, and a random variable B to represent
the number of blocks in p. Consider that each partition divides the sequence X;,..., X, into
B = b contiguous subsequences, which will be denoted here by Xy; _,;;) = (Xi,_,11,.--, X3, ),
r = 1,...,b. Let cj; be the prior cohesion associated to the block [ij] = {i +1,...,j},
i,j € 1U{0}, j > 4, which represents the degree of similarity among the observations in X
[1].

Hence, we say that the random quantity (X7,...,X,;p) follows a PPM, denoted by
(X1,...,Xn;p) ~ PPM, if:

i) the prior distribution of p is the following product distribution:

b
Hj:lc[ij—lij] (1)
e T ci; i)

where C is the set of all possible partitions of the set I into b contiguous blocks

P(p = {’io, - ,’ib}) =

with end points 4, ..., 1, satisfying the condition 0 = 7y < 41 < ... < 1 = n,

bel;

ii) conditionally on p = {ig,...,%}, the sequence X, ..., X, has the joint density

given by:

f(Xh e 7Xn|p = {i07 e 7ib}) = H_I;:If[ij_lij](X[ij_lij])7 (2)
where f;;1(Xy;;1) is the density of the random vector, called data factor, Xj;;) =
(Xit1y .-, X5).

Notice that the PPM described above describes the uncertainty about the random ob-
ject (Xi,...,Xy;p), if the prior opinion about this object discloses the existence of blocks
of observations produced by some judgment of similarities (in some sense) among these
observations, as well as independence among the different blocks.

Also note that the number of blocks B in p has a prior distribution given by:
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bel, (3)

P(B=1b) = K'XC: T _, i aij);
where C is defined as in (1) and K' is an appropriate constant.

As shown in Barry and Hartigan [11], the posterior distributions of p and B have the
same form of the prior distribution, where the posterior cohesion for the block [ij] is given
by ¢ = ciig) fiig) (Xjiz))- That is, the PPM induces some kind of conjugacy.

In the parametric approach to PPM, a sequence of unknown parameters 6,,...,6,, such
that, conditionally in 64, ..., 8, the sequence of random variables X1, ..., X,, has conditional
marginal densities fi(X1]01),..., fn(Xa|0n), respectively, is considered. In this case, we
consider that two observations X; and Xj;, i # j, are in the same block, if we believe that

they are identically distributed. Thus, in this approach to PPM, the predictive distribution
fii51(Xjiz1), which appeared in (2), can be obtained as follows:

S (Xpg) = /9 i) (X i 0) iz (6) O, (4)

li7]
where Oy, is the parameter space corresponding to the common parameter, say, 0};;; =
0i+1 = ... =6;, which indexes the conditional density of X;; = (Xiy1,...,Xj)".

The prior distribution of 6,,...,60, is constructed as follows. Given a partition p =
{io, ... i}, b € I, we have that 6; = 6 _,;, for every i,_; < i <4, 7 =1,...,b, and that
Oligir]s - - - » Oiy_ri,) are independent, with );; having (block) prior density 7j;;1(6), 6 € O

Hence, the goal is to obtain the marginal posterior distributions of the parameters p, B,
and 6y, k =1,...,n. Barry and Hartigan [11] have shown that the posterior distributions of
0y is given by:

k=1 n
(0| X1,. .., Xp) = ggrﬁj]w[m(ﬁﬂx[m), k=1,...,n, (5)

and the posterior expectation of 6 is given by:

E(0k|X1, fes ,Xn) = Z ZTE;]]E(QHX[Z]])? k= 1, NE——T (6)

where r7;, denotes the posterior relevance for the block [ij], that is:



i = Pis] € p1X0, ., Xa)

ij
2.2 The Normal PPM

To specify the PPM for the normal case, Loschi et al. [9] assume that there is a sequence
of unknown parameters 6; = (u1,0%),...,0, = (in,02), such that Xy|pg, 02 ~ N(ug,03),
k=1,...,n, and that are independent.

It is also assumed that each common parameter 6;; = (,u[ij],o[%j]), related to the block

[i7], has the conjugate normal-inverted-gamma prior distribution denoted by:

(1iig)y 9figp) ~ NIG (myiz), vagp; agigy /2, diiy/2),

that is,

Wil oy ~ N(myig), vigofsy) and o ~ IG (a)/2, djij) /2), (7)
where IG(a, d) denotes the inverted-gamma, distribution with parameters a and d, my;;; € R,
and aj;), dpi;) and vp;) are positive values. Hence, the conditional distribution of f;; =

(g0 0[2“]), given the observations in Xj;), is the normal-inverted-gamma distribution given

by:

(ki i) [ Xy ~ NIG(mfyyy, viigys afin /25 djin/2), (8)
where iy %
* _ J— YY1 [44] M[ij]
M) = (J'—i)v[]ij]-i-l] (j_i)v[ij]'i'l ’
ot = U
[é] (G—Dvpiz+1 \ (9)
df;j] = d[ij] -+ ] —1,
afy; = g+ 9 (X)), )
with
_ 1 J
Xz = - . Xr7
[é] j—i r:zz';ﬂ
: > (U = ) (Xpig) = myig)
i X)) = (X, Xi')2+ s
] (X 1221 g G o +1



Consequently, it follows from (8) that, given X[;;, the conditional marginal densities of
pigi) and of are, respectively:
M[z‘j]|X[z‘j] ~ t(mf}j], Ylig)» af}j]y df}j]) and 0[2ij]|X[z'j] ~ IG(“E’]’]/?, df}j]/2)7 (10)
for which it is observed that
E(pig) | Xpig) = mfy;y (if dfyyy > 1) (11)
and

2 — aﬁ]] if d*
ij
The interested reader may find details in O’Hagan [12].
From (6), (11) and (12), it follows that the posterior estimates for the parameters p and

o2 are given by:

E(u) X1, Xn) = D3 rliymiy (f dfi;; > 1) (13)
i=0 j=k
and
2 e * ari]'] s g%
E(oi|X1,.. ., Xn) =), Zr[ij]m (ifds; > 2), (14)
i=0 j=k i
respectively, k = 1,...,n, where mf;, af;;) and dj; are defined as in (9).

Now, we shall present the exact posterior distributions of the random partition p and
the number of blocks B in the partition. This cohesions considered are those defined by Yao

[10]. The exact calculation of the posterior relevances are also shown.

2.3 Exact Posterior Distributions of p and B and Posterior rele-

vances rf; i

As we are focusing on the PPM assuming only the existence of contiguous blocks, the prior
cohesions can be interpreted as the transition probabilities in the Markov chain defined by
the endpoints of the blocks in the partition p. We assume the prior cohesions suggested by

Yao [10] as presented below.



Let p, 0 < p <1, be the probability that a change occurs at any instant in the sequence.
Therefore, the prior cohesion for block [ij] corresponds to the probability that a new change

takes place after 7 — 4 instants, given that a change has taken place at instant ¢, that is:

R p(l _p)j_i_17 lf] <mn,

foralle, jel,i<y.

Consequently, from (1) we obtain that the prior distribution of p takes the form:

P(p: {i()?il? s 7ib}) :pb_l(l _p)n_b,b c I,

and from (2), it follows that the prior distribution of the random variable B is given by:
P(B=b)=Cpop"'(1-p)"", Vbel,

where CJ"' is the number of distinct partitions of I into b contiguous blocks.

Assume that p has the beta prior distribution with > 0 and 8 > 0 parameters and
denoted by p ~ B(a, ). Let C be the set of all partitions of the set I into b contiguous
blocks with endpoint i, ..., %, satisfying the condition 0 = 4g,...,%, = n, b € I and consider
C; C C the subset of all partitions that contain the block [ij] = {i +1,...,5}.

Thus, since > 1 and § > 1, the posterior distribution of the random partition p is

given by:

{H_I;':lf[ij_lij](X[ij_lij])} %
ZC {H_I;':lf[ij_lij] (X[ij_lij])}

P(p:{i07i17"'7ib}|X17'"7Xn) =

IF'b+a—-1I'(n+5—0)
F'b+a—-1)I(n+3-0b)

(16)

The posterior probability of the event B = b, b € I, is given by multiplying the posterior
probability in (16) by C*'. Notice that the posterior distributions of p and B do not have a
product distribution as presented in Section 2.1 and obtained by Loschi et al. [9], concerning
the normal case.

The exact posterior relevance Tf;j] to the block [ij], ¢ < j, can be calculate as follows:



. _ Za 10 =il -0i) (K 0) fi) (X))
[¢3] e Ty frimim1i) (Xi;_1451)

b
Hj:k+2,ik+1=jf[ij—1ij] (X[ij—lij]) X

F'b+a—-1I'(n+5-0)
IF'b+a—-1)I(n+3-10b)

(17)

Denote by 1, the n-dimensional vector of ones and let I, be the n X n-dimensional
identity matrix. If we consider the PPM presented in Section 2.2 which consider conditionally
normally distributed data, it follows that each block of observations Xp;; has the (j — i)-
dimensional Student-¢ distribution denoted by Xy;; ~ ¢;_;(my;j;, Viij); agij), djij)) with density

function given by:

F[(d[ij] +Jj- 7’)/2] ad.[z:j]/2
T[dpigp/2)ak/2 1]

fin(Xg) = Vi~ %

{agig) + (Xpig) — myg) Vi (Xpig) — mygp)}~Gntd =072, (18)

where my;;; = my;;1;_; and Vi =1 + v[ij]lj_ilg_i.

Notice that the exact calculation of the posterior distributions of p and B as well as
the posterior relevances demands great computational efforts. In Section 3, we propose a
computational approach to find these posterior distributions, which is based on the sample

generated by using the Gibbs sampling approach [13].

3 A Gibbs Sampling Scheme Applied to PPM

Gibbs Sampling is a Monte Carlo Markov Chain (MCMC) scheme proposed by Geman and
Geman [14] and adapted to Bayesian statistics by Gelfand and Smith [13]. In particular,
Gibbs sampling provides a posterior distribution generation scheme.

To estimate the posterior distributions of p and B and also the posterior relevances of each

block [i7], we consider the transformation suggested by Barry and Hartigan [7]. Let assume
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the auxiliary random quantity U; which reflects whether or not a change point occurred at
the time i, that is:

U, = 17 ifeizei-l—h
L 07 if ez 7é 0i+17

1=1,...,n—1. Thus, the random quantity p is perfectly identified by considering a vector
of these random quantities. Consequently, we can estimate the posterior probability for each
particular partition in b contiguous blocks, p = {4y, ?1,...,%}. It is also possible to use the
above procedure to estimate the posterior distribution of B (or the posterior distribution of
the number of change points B — 1) noticing that:
n—1
B=1+)> (1-U).
i=1
The vector (UF,... U ) at step k is generated by using the Gibbs sampling as follows.

Starting with an initial values (U?,...,U? ) of the random vector (Uy,...,U, 1), at step

k, the r-th element UF is generated from the conditional distribution:

k k k-1 k-1,
UT|U17"'7UT—17UT+17"'7U—17'X17"'7'Xn7

n

r=1,...,n— 1. To generate the vectors above, it is sufficient to consider the ratios given

by the following expressions [15]:

P(U, = 1|Ax; X1, ..., X0)

R, = ,
PU, = 0|4k, X1,..., X,)
r=1,...,n—1, where AF = {UF = wuy,...,UF | = w, 1, U} = tpyr,..., Ul = upy )
Hence, considering a beta prior distribution for p, we have that:
Fian (Xper) frn) (X)) T (b + @ = DI (n + 5 = )’
where:
{
max i
s.t.:
T =4 0<i<r,
UF = , if there is a UF = 0, for some ¢ € {1,...,7 — 1},
L 0, otherwise,
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and

UF'=0 | ifthereisaUf™' =0, forsome i€ {r+1,...,n—1}

n, otherwise.

\

Notice that, in the normal case, fii;(X[i;) is the Student-¢ distribution given in (18).
Consequently, the criterion for choosing the values (UF, ..., U ;) becomes:

U — { 1, ifR, Z.I—Tu
r 0, otherwise,

r=1,...,n—1, where u ~ U(0,1). This completes the procedure to estimate the posterior
distributions of the random partition p and of the number of blocks B.

The posterior relevance of the block [ij], i < j, used in (6) to estimate 6 can be obtained
by considering how many samples present U; =0, Uj11 = ...,U;_1 =1 and U; = 0.

In spite of using the transformation suggested by Barry and Hartigan [7], the procedure
we propose here to estimate 8, is entirely new and simpler, because it does not use the Gibbs
sampling to generate samples from the 6 distribution. Another general Markov sampling

technique to obtain product estimates is also described by Crowley [8].

4 Application to the Two Most Important Brazilian
Indexes

In this section, we focus on the identification of multiple change points in the mean (expected
or mean return) and variance (volatility) of the two most important Brazilian indexes, "Indice
Geral da Bolsa de Sao Paulo (IBOVESPA) and "Indice da Bolsa de Valores de Minas Gerais,
Espirito Santo e Brasilia (IBOVMESB). Both are expressed in terms of the returns calculated
on closing prices, recorded monthly. We apply the methodology developed in the previous
sections to analyze the behavior of these indexes from January, 1991 to August, 1999. These
time series are available from the authors upon request or dire ctly through the anonymous

ftp site at address ftp://ftp.est.ufmg.br/pub/loschi/pub/gibbs.
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As usual in finance, a return series is defined by using the transformation R; = (P; —
P,_1)/P;_1, where P; is the price in the month ¢. IBOVESPA and IBOVMESB return series
are plotted together in Figure 1.

Figure 1 goes around here

From Figure 1, it is noticeable that that IBOVESPA and IBOVMESB series present a
similar behavior, suggesting the existence of some changes in the mean and variance of the
returns in both series. Our purpose is to show that within the period considered, the two
return series present several change points in their volatility and expected return. That is, we
show that IBOVESPA and IBOVMESB series possess volatility and expected return clusters.
The posterior distributions of the number of change points which occur in IBOVESPA and
IBOVMESB return series within this period are presented. A comparative analysis points
out that the number of changes in both indexes has similar behavior and that changes in
IBOVESPA and IBOVMESB series occur in general at the same time and in the same
direction. Some political and economical events are identified and pointed out as possible

causes of the change points we have found.

4.1 Data Analysis

The algorithm presented in the previous sections was coded in C' + + and it is avail-
able from the authors upon request or directly through the anonymous ftp site at address
ftp:/ /ftp.est.ufmg.br/pub/loschi/pub/gibbs.

We consider the same prior cohesions and distributions to describe the initial uncertain
for both IBOVESPA and IBOVMESB series, although the former seems to present lower
variances, as one could see from Figure 1. These choice were done as reported by Loschi et
al. [9], for the Chilean market. These specifications can be supported by the fact that the
Brazilian market is also an emerging market and, like Chilean market, more susceptible to
the political scenario than developed markets [16]. As for the Chilean market, we also assume
that changes in the behavior of Brazilian stock return series are a consequence of the receipt
of not previously anticipated information, so that past change points are non-informative
concerning future change points (see Mandelbrot [17]). Hence, the prior cohesions presented

in (15), which imply that the sequence of change points establishes a discrete renewal process,
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with occurrence times geometric and identically distributed, are also an adequate choice for
the Brazilian stock market.

We suppose that returns are conditionally independent and distributed according to the
normal distribution A (u), 0[2“]), and adopt the natural conjugate prior distribution for the
parameters p;; and 0[2“] which, in this case, is a normal-inverted-gamma distribution.

In accordance to Loschi et al., [9], specifications for the Chilean stock market, the fol-
lowing normal-inverted-gamma prior distribution is adopted to describe the uncertainty on

the parameter (5], 07;;7) for both indexes:

,u[ij]|o[2ij] ~ N(O,a[%j]), and 0'[2Z~j] ~ IG (%, g)
Since a small number of changes is expected to both IBOVESPA and IBOVMESB series,
a beta distribution which concentrates most of its mass in small values needs to be considered
as prior distribution of p. We consider the following distribution:
p~B(33)
To estimate the posterior relevances Tlid] and the posterior distribution of B (or the
number of change points B — 1), we generate 50,000 samples of 0-1 values with dimension
103, starting from a sequence of zeros. We discarded the initial 5,000 iterations and, to avoid
correlation, we selected a lag of ten, that means that we worked with a net sample size of
4,500. Discussion about the number of iterations to be discharged, as well as the lag to be
taken, can be easily found in the literature (e.g. Gamerman [18]). All tests were performed
in PC, 166 MHz, 32 MB RAM, taking less than 10 minutes of CPU time.
Figures 2 and 3 present the posterior estimates (solid lines) of the monthly mean returns
and volatilities for IBOVESPA and IBOVMESB series, respectively. These estimates are
contrasted with the arithmetic moving averages (dotted lines) of order 10 for the means

and variances. We can notice that the estimates obtained using the PPM are similar to the

respective naive estimates.

Figures 2 and 3 go around here‘

Figure 4 presents the posterior estimates of the expected returns (solid line) and volatil-

ities (dotted line) of IBOVESPA series. A similar comparison is presented in Figure 5 for
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the estimates obtained for IBOVMESB series.

Figures 4 and 5 go around here

Figures 4 and 5 show that more changes occurred in the expected returns rather than
in the volatility in both IBOVESPA series and IBOVMESB series. Typically, changes in
the volatility are followed by changes in the expected return for both indexes. (See also the

dispersion diagrams in Figures 6 and 7).

‘Figures 6 and 7 go around here

In Figure 8, the expected return posterior estimates for IBOVESPA series are contrasted
with the correspondent estimates for IBOVMESB series. A similar analysis for the volatility

posterior estimates is presented in Figure 9.

Figures 8 and 9 go around here

We notice that, typically, change points observed in IBOVESPA and IBOVMESB series

occur at the same time and that the changes are in the same direction. However, some differ-
ences in the behavior of these series are observed. The two changes observed in IBOVMESB
series, in August and October, 1991, do not occur in IBOVESPA series. These change points
could be related to the sale of USIMINAS, a very important state steel company, located
in Minas Gerais state. In October, 1991, USIMINAS was sold for a private group. The
beginning of the crisis in the Fernando Collor’s government in March, 1992, which culminate
with his impeachment, in December of the same year, could be the events that produced the
change points in IBOVMESB series, around these two months. Unlikewise the initial expec-
tations, these important historical facts do not seem to produce changes in the behavior of
IBOVESPA series.

In July, 1999, Russia’s crisis could have produced the change in the IBOVMESB series.
However, we do not observe changes in the IBOVESPA series within that period. This
different behavior could be explained by the policy adopted by Brazilian government during
Asias’s crisis, in August, 1997, and because IBOVESPA is the main indicator of Brazilian
economy, incorporating the benefits of the government policies more immediately.

A new currency, the Real, was introduced in July, 1994. The Real period has presented
lower expected returns and volatilities than the previous period. Mexico, and Asia’s crises

might be responsible for the market warm-up observed, in January, 1995 and August, 1997,
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respectively. We notice that the periods when higher volatility was observed during the
Real period have been smaller than in the preceding period. Some political actions of the
Minas Gerais State Governor, in January, 1999, could be associated with the decrease of the
expected returns and volatilities of both indexes, from this period on.

Figure 10 shows the posterior distribution of the number of change points that occurs
in each index. We notice that the posterior distributions of the number of change points
for both indexes concentrate most of their mass on small values as expected. However,
the posterior distribution of the number of change points for IBOVESPA series are more
concentrated and typically concentrate their mass on smaller values than the IBOVMSB

series, which means that the former series comes from a more stable market.

‘Figure 10 goes around here‘

5 Final Remarks and Future Directions

We have proposed a new scheme to implement the PPM that avoid its computational diffi-
culties. We have described the PPM and stressed the importance of change point problems,
particularly to analyze time series. The algorithm was coded and proved to be efficient and
useful for the finance area. In the application considered, the results obtained seems to
explain the behavior of BOVESPA and BOVMESB indexes satisfactorily, if a change point
analysis is required.

We conclude that IBOVESPA and IBOVMESB series have a very similar behavior and
could probably suffer the influences of the same non-local events. We notice that both indexes
present expected return clusters and volatility clusters, and also a small number of change
points. These same conclusions were also driven for the Chilean stock market [9], disclosing
the similarities that exist in the behavior of Brazilian and Chilean markets. Sao Paulo and
Minas Gerais states are two of the most important economies in Brazil, thus having a great
political influence. Hence, as Minas Gerais is the strongest economy involved in BOVMESB
index, the similarities observed in the behavior of BOVESPA and BOVMESB indexes are
justified.

Some open questions remains. Would it be possible to find even simpler implementations
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for the product partition model? How sensitive to the prior statement the results are? How
big would the treatable series be? How well does the methodology fit for other subject areas?
These and other similar questions are interesting and relevant topics for future research in

this area.
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Figure Captions

Figure 1: IBOVESPA and IBOVMESB Return Series

Figure 2: Posterior Estimates to the Expected Returns and Volatilities - IBOVESPA
Figure 3: Posterior Estimates to the Expected Returns and Volatilities - IBOVMESB
Figure 4: Joint Behavior of Expected Returns and Volatilities - IBOVESPA

Figure 5: Joint Behavior of Expected Returns and Volatilities - IBOVMESB

Figure 6: Dispersion Diagrams - Expected Returns x Volatilities (IBOVESPA)

Figure 7: Dispersion Diagrams - Expected Returns x Volatilities (IBOVMESB)
Figure 8: Posterior estimates for the Expected Returns of IBOVESPA and IBOVMESB
Figure 9: Posterior estimates for the Volatilities of IBOVESPA and IBOVMESB

Figure 10: Posterior Distribution of the Number of Change Points in IBOVESPA and
IBOVMESB Series
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