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Abstract

In carcinogenicity experiments with animals where the tumor is not palpable it

is common to observe only the time of death of the animal, the cause of death (the
tumor or another independent cause, as sacrifice) and whether the tumor was present
at the time of death. These last two indicator variables are evaluated after an autopsy.
Defining the non-negative variables T} (time of tumor onset), T» (time of death from
the tumor) and C (time of death from an unrelated cause), we observe (Y, A1, As),
where ¥ = min{Tz,C}, Al = 1{T1§C}’ and A2 = 1{T2§C}’ T1 and T2 have a joint
distribution function F' such that P(T; < Ty) = 1, and are independent of C. Some
authors call this structure a “survival/sacrifice model”.
The interest here is to estimate the marginal distribution functions F; and Fs of T
and T, respectively (since F' is not identifiable). One possible way of doing that is by
using a consistent estimator Fy for By (Kaplan-Meier, for example) and then pluging
it in the loglikelihood to obtain F,, the nonparametric maximum pseudo-likelihood
estimator (NPMPLE) of Fy. A characterization theorem of Fj is stablished here and
an algorithm for its calculation is presented.

Key Words: survival/sacrifice; nonparametric estimation; maximum likelihood estima-
tion.

1 Introduction

In experiments for the study of onset and mortality from undetectable irreversible diseases
(occult tumors, e.g.) a possible data structure consists of the time of death, whether or not
the disease of interest was present at death, and if present, whether the disease was a probable
cause of death or not. This data structure is related to moderately lethal incurable diseases



when the cause of death is known. Defining the non-negative variables 77 (time of disease
onset), Ty (time of death from the disease) and C (time of death from an unrelated cause),
we observe, for the ith individual, (Y, A1, Ag;), where A1y = 1i7y <oy, A2i = Limyi<cis
Y; = Ci AN Ty; = min{C;,T5;}, T1; and T5; have a joint distribution function F' such that
P(Ti; < T»;) = 1, C; has distribution function G and is independent of (7} ;,T5,). Some
authors call that structure a survival sacrifice model.

We will suppose, without loss of generality, that ¥; < Yy < ... < Y,. In case of ties it is
assumed that the observations with (Aj;, As;) = (1,1) occurs first, followed by the ones
with (A1, As;) = (1,0) and finally by the ones with (A;;, As;) = (0,0). The case 1 of
interval censoring model, also called ”current status” (see, e.g., Groeneboom and Wellner
(1992)), can be seen as a particular case of this data structure when the disease is nonlethal,
ie, Ay; =0,i=1,...,n. The right censoring problem can also be considered as a special
case of data with the structure above when a lethal disease is always present at the moment
of death, ie, Ay; =1,i=1,... n

For this survival/sacrifice model, the parameter space can be defined as
0= {(Fl,FQ) . Fl and F2 are d.f.’s with Fl <s F2} R

where F; <, F, means that Fy(z) > Fy(x) for every z € IR and Fi(z) > Fy(z) for some
z € IR, a consequence of P(T} < Ty) = 1. The loglikelihood function for this data structure
is

= > {(1—=A)(1— Ayy)log(1 — Fi(Y;))

=1

+ Ari(1 = Agy) log (F1(Y;) — Fa(Y3))
+ (A1;A5;)1log fo(Yi)} + K(9,G)

where K(g,G) is a term involving only the distribution G of C.

Kodell, Shaw and Johnson (1982) also studied nonparametric estimation of S; = 1 — F;
and Sy = 1 — Fy, but their work is restricted to the case where R(t) = S1(t)/S2(t) is non-
increasing, an assumption that may not be reasonable, for example, for progressive diseases
whose incidence is concentrated in the early or middle part of the life span.

Turnbull and Mitchell (1984) proposed an EM algorithm for the joint estimation of F; and F,
which converges very slowly to the nonparametric maximum likelihood estimator (NPMLE)
of (F1, F») (provided the support of the initial estimator contains the support of the NPMLE).
It should be noticed that the two-dimensional nature of their method enables us to avoid
the use of Lagrange multipliers.

Van der Laan, Jewell, and Peterson (1997) proposed a weighted least squares estimator of
F; making Fy = [} & (its Kaplan-Meier estimate).

Another possible way of estimating Fj is by plugging in the Kaplan-Meier estimator ﬁ’z, KM
of F5 and calculating the nonparametric maximum pseudo likelihood estimator (NPMPLE)
of F;. The part of the loglikelihood involving Fj is

ﬁ: 1= Agy) [Arilog(ai — Foxear(Yi) + (1 — Agy)log (1 — z;)] (1.1)
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where z; = F1(Y;). Since (1.1) can be written as
é{@(fm)) + [9(¥) — £ S(F (V) } w(¥s)

with f = Fl, ¢ = d(I)/df, g = 1-— (1 - F2,KM)(1 - Al), w = (1 - A2)/(1 - F2,KM)
and ®(y) = (y — F)log(y — F2) + (1 — y)log(1 — y),0 < y < 1, Dinse and Lagakos
(1982) concluded that the values of F1(Y;),i = 1,...,n, maximizing the pseudo loglikelihood
(1.1) could be obtained applying theorem 1.10 in Barlow et al. (1972) (see the appendix),
i.e., the NPMPLE of F; would be given by the isotonic regression ¢g* of g(¥;) with weights
w(Y;),i =1,...,n. However, that theorem is applicable to a real convex function ® defined
on IR while in the application above the function & is in fact defined on IR? since the value
of F, is not supposed to be constant.

It should be mentioned here that, although the Kaplan-Meier estimator F, is uniquely de-
fined, except possibly at times exceeding the largest observation, the NPMPLE FY is uniquely
defined only over certain data-determined intervals. Specifically, Fr is always uniquely de-
fined at the observed C;’s, i.e., the observations for which A,; = 0.

In section 2, we review the characterization of the NPMLE of the distribution function of
the time of disease onset for the case 1 of interval censoring model and present the char-
acterization of the NPMPLE of F} for the survival/sacrifice model under study. In section
3, we present an example of a data set with the structure studied here and calculate the
estimators ﬁ’l and ﬁ’z,KM.

2 Characterization of the NPMPLE of F;

We first present a characterization theorem for the NPMLE of the distribution function of
the time of disease onset for the case 1 of interval censoring. Defining independent positive
variables X and T, we observe (T',0) where 0 = 1;x<r}. Here X is the (completely censored)

time of disease onset and 7 is the time of occurance of an examination (possibly an autopsy).
The loglikelihood for F' (the d.f. of X) is

£(F) = 3 {5 1og(F(T3)) + (1 — &) log(1 ~ F(T)}. 22)

We will assume, without loss of generality, that ; = 1 and §,, = 0 since we could maximize
(2.2) for the first observations with §; = 0 by making F(T;) = 0 at those points. Similarly,
we could maximize (2.2) for the last observations with §; = 1 by making F(7;) = 1 at those
points.

Theorem 2.1 characterizes the NPMLE of F in terms of the Fenchel conditions (see Groene-
boom and Wellner (1992) or a general form in the appendix).



Theorem 2.1 Let §; =1 and 6, =0, and z; = F(T;), i =1,...,n. Vector x* mazimizes
(2.2) if and only if

(2.3)

g
——
* |N°q
|
p—t
|
* Noq
——
IN
=
-
Il
\.H
E

and

4 14
Z{a—*— 6*}902‘ = 0. (2.4)
Moreover, x* is uniquely determined by (2.3) and (2.4).

We will present and demonstrate an equivalent result for the survival/sacrifice model under
study. Consider the problem of minimizing

p(x) = = (1- Do) {Asgylog (zi — ki) + (1 = Ayy) log (1 —z:)}  (2.5)
=1
over K where
K={xeR":0<z;<...<z,<1}

subject to z; > k;,i = 1,...,n, where z; = Fi(Y3), ki = ﬁ’z,KM(Y;) and the vector
kz(kl,,kn)GK

In other words we want to minimize ¢(z) over K N L where
L={xeR":z;>ky,i=1,...,n}.

Since ¢ is a convex function on K (a convex set of a linear vector space) and G(x) = —(x—k)
is a convex mapping from K into a normed space, by theorem 1, page 217 in Luenberger
(1969) (restated in the appendix) there exists a vector A with A\; > 0,4 =1,...,n, such that

inf {¢(x) - En: Xi(zi — k,—)} = inf ¢(x).

xeEX . xeKNL
=1

So, in order to characterize the solution of the minimization problem above we introduce
a vector of Lagrange multipliers A € IR", and define

PY(x, \) = (x) — i Xi (z; — k).

i=1

Note that we can take \; = 0 if A1) = 1 since then the log (z; — k;) term in ¢ forces
z; > k;. We may also reduce the problem to involving just those z;’s with Ay; = 0, since
those with Ay; = 1 do not contribute to the function ¢. Thus we may take the \;’s to be

Ai = (1—Ag)(1 — Ay)v
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where we want ; > 0 in the cases when A;; = A,; = 0 and the solution x has z; = k;.

The vector of gradients of 1/ with respect to x is given by

- Al,i 1- Al,i
(V) = = (=B {2 = oM - (1= Aa) (L= A,
1-Ay Ay

= (1= b (1= 80 (1= A0

1—.’I7i .’I?i—ki

and the vector of second partial derivatives of ¥ has ith coordinate

02 AN 1_A1i}
T = (1— Ay, iy il
e 2”{m—mf A=z

Thus the Fenchel conditions for minimizing ¢ over K are given by

0 = (%, Vo9(x, )

- JASY 1- Ay S
= =) (1—-DAgy)&i{—5 — 0~ iAi
1221( 2’):17{ i_ki 1—.’17,' } zzzlw)\

= Z(1-A2,,.)@-{1_ L A._’.k.}—Z@-j\i (2.6)

and, with 1; defined to be the vector with 0 in the first ¢ — 1 coordinates and 1 in the
coordinates ¢ through n,

n

= Y. (1-4y) {(1—A1(j)) <1 : — —%') - ﬁ} (2.7)

J=i

fori =1,...,n. We take the Lagrange multipliers to be of the form

A~

Ai = (1= A2)(1 — Avi)vilizi=ki) (2.8)
for some 7v; > 0. Then we have
Zi=k, if AN>0 and A;=0, i=1,...,m (2.9)

and A
A =0, otherwise. (2.10)



Theorem 2.2 Suppose that (2.6) to (2.10) hold. Then %X minimizes ¢ over KN L.

Proof: By theorem 1, page 40, in Luenberger (1969) (restated in the appendix), there exists
X minimizing ¢(x) over KN L since ¢ is lower-semicontinuous and K N £ is compact. By
theorem 1, page 217 in Luenberger (1969), there exists a vector A with A; > 0 such that

inf {¢(x) - En: Ai(z; — k,-)} = inf ¢(x)

xeX xeX

subject to x; > k;,i=1,...,n.

Moreover, from Luenberger (1969), X minimizes 9(x, A) on KNL and X7, (& —k;) = 0.
Since A; > 0 if and only if &; = k;, we have

B(x) = Y(%,A) < 9P(x,\) < $(x).

But (2.6) and (2.7) are the Fenchel conditions to minimize ¢ over K. So, X obtained from
those conditions will minimize 1(x, A) over K, and hence minimize ¢ over X N L. O

3 The Iterative Convex Minorant algorithm

An algorithm can be developed based on theorem 2.2. The iterative convex minorant al-
gorithm is an adaptation of the ICM algorithm for the calculation of the NPMLE of the
distribution function of the time of disease onset for the case 2 of interval censoring (see
Groeneboom and Wellner (1992)).

(0) Take 2\ = k; +.02,\; =0,i=1,...,n. Set k = 0.

(i) Form
(k) A i -
Vit = > W7,b(x( ))—Z(V,c;b)j(x( )), i=1,...,n
j=1 Z; j=1
(k) Lo (k) .
Gi = ;W;b(x ), z=1,...,n
J= J
(ii) Form the cumulative sum diagram {(G,(k), V,-(k)) i=1,... ,n}, compute the greatest

convex minorant GCM®) and z{¥™") = left-derivative of GCM® at G*¥).

i

(iii) If ) < k;, set 25 = ky; set AP =0 if g5 > .



(iv) Compute the Fenchel conditions (2.6) and (2.7) using the current values x*), \(¥). If
the conditions are satisfied, stop; otherwise replace x*) by %*t1) and continue.

(v) Find the remaining A*"’s from points {i,,} where equality between GCM® and the
cusum diagram holds:

tm41 1 (k—l—].) Al,j
0=> (A-D)(1=Ay) | — 5~ YA
1- ( — k)

j=1 i}
Go to (i).

A more appropriate algorithm for the calculation of F1, however, is the primal-dual inte-
rior point algorithm (see Groeneboom (1998) or Wright (1997)), which was used for the
calculation of Fj for the example in the next section.

4 Example

An example of data with the structure considered here is given in Holland, Mitchell and,
Walburg (1977) and is shown in table 1. These data were studied by Dinse and Lagakos
(1982) and Turnbull and Mitchell (1984) and represent the ages at death (in days) of 109
female RFM mice. The disease of interest is reticulum cell sarcoma (RCS). These mice formed
the control group in a survival experiment to study the effects of prepubertal ovariectomy
in mice given 300 R of X-rays.

Figure 1 shows The Kaplan-Meier estimate of F; and the NPMPLE of F; (the upper
curve). We can notice that the estimate of Fy is smoother than that of Fj, a fact related
to the different convergence rates of the estimators of those functions. As mentioned before,
variable T} is completely censored what yields a convergence rate of n~'/3 instead of the n=/2
observed for the estimation of F5 (see Groeneboom (1996) for a calculation of a minimax

Table 1: Ages at death (in days) in unezxposed female RFM mice.
A1 =1,Ar =1 | 406,461,482,508,553,555,562,564,570,574,585,588,593, 624,
626,629,647,658,666,675,679,688,690,691,692,698,699,701,
702,703,707,717,724,736,748,754,759,770,772,776,776,785,
793,800,809,811,823,829,849,853,866,883,884,888,889
A;=1,A, =0 | 356,381,545,615,708,750,789,838,841,875
A; =0,A, =0 | 192,234,243,300,303,330,339,345,351,361,368,419,
430,430,464,488,494,496,517,552,554 555,563,583,
629,638,642,656,668,669,671,694,714,730,731,732,
756,756,782,793,805,821,828,853
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Figure 1: NPMPLE of F; and Kaplan-Meier estimator of F5.

lower bound for the estimation of the time of disease onset distribution for the case 1 of
interval censoring).

Discussion

Contrary to the current status data, the NPMPLE of F; cannot be calculated using isotonic
regression results. Similarly to the interval censoring case, a characterization theorem of the
NPMPLE of F; can be stablished in terms of the Fenchel conditions. That theorem yields
an iterative algorithm for its calculation, although other algorithms can be used for that
purpose.
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Appendix

Definition: Let A be a normed linear vector space. The space of all bounded linear func-
tionals on A is called the "normed dual” of A and is denoted A*.

Definition: A cone is a subset of a linear space closed under multiplication by positive
scalars.

(Lemma 2.1, page 8, Jongbloed (1995)) Let ¢ : IR® — (—o00,00] be a continuous
convex function such that ¢ is continuously differentiable on the set {x € R" : ¢(z) < co}.
Let K C IR" be a convex cone. Then

& = arg min o(z)

if and only if # € K satisfying (the Fenchel conditions)
Ve € K: (z,V§(z)) >0,

(£, Vo(2)) = 0.

(Theorem 1, page 40, Luenberger (1969)) (Weierstrass) An upper semicontinuous func-
tional on a compact subset M of a normed linear space X achieves a maximum on M.

(Theorem 1, page 217, Luenberger (1969)) Let X be a linear vector space, A a normed
space, K a convex subset of X, and C the positive cone in A. Assume that C' contains an
interior point.
Let ¢ be a real-valued convex functional on K and G a convex mapping from K into A.
Assume the existence of a point z; € K for which G(z1) < 0 (i.e., G(z1) is an interior point
of N=-0C).
Let

o = inf f(z) (4.11)

subject to z € IC, G(z) < 0, and assume py is finite. Then there is an element A\§> 0 in A*
such that
o = inf {£(z) + (G(z), N} (4.12)

e

Furthermore, if the infimum is achieved in (4.11) by an zo € K, G(z¢) < 0, it is achieved by
Zo in (4.12) and
(G(ao), 33) = 0. (4.13)
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