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Abstract

We present the asymptotic distribution for the estimator of the population size
for the case of s partially catchable populations. Our approach is useful for
capture-recapture studies with photo-identification data where part of the pop-
ulation does not have any distinctive characteristic which allows unique identi-
fication of the individuals. Estimation of bowhead whale (Balaena mysticetus)
abundance using photo-id data is an example of such a problem since it is not
possible /practical to attach an artificial mark to the captured individuals, but
the acquired natural marks throughout their lives are useful to allow the analyst
to distinguish individuals. This work represents an extension of Theorem 4 in

Sanathanan (1972).

Keywords: Capture-recapture; Closed uncatchable populations; Asymptotic

properties.

1 Introduction

Sanathanan (1972) derives asymptotic theory for estimating the number of trials of a multi-
nomial distribution from an incomplete observation of the total cells. The author also studies
the case of s populations. Estimation of a population size when a capture-recapture exper-
iment is undertaken is an example of such a problem since cell totals are observed only for
the cases where individuals are captured at least once over the sampling experiment.

This paper deals with the problem of estimating the size of s partially catchable populations.
Our approach is useful for capture-recapture studies where photo-identification data are col-
lected and part of the population does not have any distinctive characteristic which allows
unique identification of the individuals. Estimation of bowhead whale (Balaena mysticetus)
abundance using photo-id data is an example of such a problem. In the case of the bowhead

whale it is not possible/practical to attach an artificial mark to the captured individuals,



but the acquired natural marks throughout their lives are useful to allow the analyst to dis-
tinguish individuals. Contrary to the notion of a marked individual in the capture-recapture
studies, a marked bowhead means that it has acquired natural marks enough to make reiden-
tification possible.

Since part of the population never acquire any natural marks, classical capture-recapture
estimators are not able to estimate the size of the whole population composed of marked
and unmarked individuals.

Some previous work has been done on estimating population size when only part of the
population is catchable. Seber (1982), p. 72, gave an estimate N = 12—*"1, where N™ is the
estimated number of individuals in the catchable population and p* is the estimated pro-
portion of the population that is catchable. Using the delta method, he derived a variance
expression under the assumption that N™ and p* are statistically independent. Williams
et al. (1993), working with bottlenosed dolphin photo-identification data, used Seber’s ap-
proach with N™ as the estimated number of marked individuals in the population and p*
as the proportion of the photographs that were of marked individuals. They used photos
from the same studies to obtain N™ and p*, so the assumption of statistical independence
of these estimates on which the delta method variance is based does not hold. To address
this issue, da Silva (1999) and da Silva et al. (2000) developed alternative interval estimates
of population size from photo-identification data when the population includes unmarked
animals and compared their approach to the one developed by Williams et al. (1993) using
simulated bowhead data. The work of da Silva et al. (2000) showed that their results had
a good agreement with previous works (Raftery and Zeh (1998), Givens (1993) - personal
communication).

da Silva et al. (2000) used parametric bootstrap methods to draw inferences to the bow-
head whale population size. Their likelihood expresions do not belong to a regular family
of distributions preventing variances of estimators to be obtained via the large sample the-
ory of maximum likelihood estimators. Besides that, other kinds of approximations were

too complicated due to some covariance terms involved in the calculations. However, some



simplifications in the likelihood construction and the use of results obtained by Sanathanan
(1972) allows the evaluation of the asymptotic distribution of the estimator of the total
population size of the bowhead whale allowing for the presence of subpopulations. The sub-
populations may represent, for example, classes of maturity which are related to the size of
the animal. That may have an impact on the capture probabilities and in the population
size estimate.

We are considering a closed population approach since bowhead whale photo-id data that are
suitable for capture-recapture estimation is available only for four sampling occasions, spring
and summer of 1985 and 1986. It is known from literature that bowhead whales have high
survival (they live around 60 years) and low reproduction rates, which make us confident
that a closed population model is not an unrealist one for the bowhead population.

In section 2 we introduce some notation. In section 3 we define a conditional likelihood
based on good photos which incorporates information about the uncatchable part of the
population. In section 4 we present and prove a theorem whith the asymptotic distribution

of the estimator of the population size for the case of s partially catchable populations.

2 Notation

Quality of photos and extent of natural marks of a whale are important variables in our
model formulation. A capture essentially means that a good quality photo of a whale was
taken. In this case, if a natural mark is found then the whale is considered marked. We
now introduce some notation. Let s be the number of populations being considered, then

fort=1,...,s,

e N/ : the total number of unmarked whales in population ¢.

N{™ : the total number of marked whales in population ¢.

Ny = N* + N/ : the total number of whales in population ¢.

S
N = Z N; : the total number of whales in population.
t=1



e N™ = (NJ",...,N) : the vector of population sizes of marked whales.
e O=(0y,...,0,): the vector of independent parameters.
o U= (1¢q,...,1): where ¢y = N/ /Ny, the vector of proportions of marked whales.

e X! : the number of good photos of whales in population ¢ at occasion a, a =1,..., A,

where good photos are those from which the identification of the whales are possible.

e 1! : the number of good photos of marked whales in population ¢ at occasion a,

a=1,... A
e (): The set with 24 elements where each element is a sequence of A binary components.

e ny : the total number of marked whales in population ¢ with capture history ¢, where

1 is a label for an element of Q, with i =1,...,[.

e p;; : the capture probability of whales in population ¢ with capture history ¢, where ¢

is a label for an element of €}, with ¢ =1,...,1[.

e 7 the number of different whales in population ¢ that were captured over the experi-
1
ment. Notice that n; = Z T
i=1

Let (n4, . .., ny) be distributed according to the multinomial law M (N/™; py, ..., pu), with
-1

pu=1-> py. Let
i1

p4(©) = fu(©), i=1,...,1

where f; are known functions. For example, f;;(©) may be a logistic function.

Sanathanan (1972) showed that expressing the capture histories in terms of f;; leads to
estimability of population size. In the next section we present a conditional likelihood for

the model which we are proposing and some definitions.



3 A conditional likelihood based on good photos

The model we are going to discuss involves a combination of s multinomial models factorized
in the same fashion described by Sanathanan (1972) and s binomial models. The multinomial
models account for the marked (catchable) part of the population while the binomial ones
incorporate, through the number of good photos of unmarked individuals, information about
the uncatchable part of the population. Next we present a conditional likelihood function

based on good photos. The conditional likelihood of (N™, ¥, ©), given {X}} is

L = L(N™¥,0)=P ({na,...,nu1},{at} | {X},N™,¥,0)

= P({ntl’ s ’ntl—l} | Nm’@)P ({:l?fl} | {XZ}’\II)
s Ntm'

A
= H : i ptl e H [ptz H (
= (Ntm - nt)! H Tt o=t
i=1

Xt t t_ .t
. )wf“(l'sbt)"“a (1)
Z

a

-1

where py;(0) = fu(©),i=1,...,1, ny = N® — ny, and n, = >_ny;. Thus, if A = 3, there
j=1

are [ = 2% = 8 possible capture histories: (1,1,1),(0,1,1),...,(0,0,0). Fort =1,...,s, N —

is the number of individuals in the population with capture history (0,0,0). For example,

f:(©) may be a logistic function.

Let £ = L(Nm @)L(\I/). According to Sanathanan (1972), L (N™,©) can be written
as L(N™ © H Ly (N, pu(0©)) Lip(©). Thus, let us write £ as

£ = (102 057 u(6))) (1T £(®)) (1 2av0)) = 21 5 12 Lo @)

where

La(N7",pa(@)) = (NPY/(rd(NF" = n)!)[1 = pu(@)]" [pa( @)1,
Lip(©) = (na!/(ned. .. nu11)lga(©)]" .. [ga-1(©)]", and

A [ Xt ¢ ¢ 4
Ly(y) = H( ta )¢f“(1¢t)X“%,
xa

a=1

3



with ¢4(©) = pu(©)/(1 —pu(0)),i=1,...,1 - 1.

For t = 1a s S 1&1‘/ - (2;4:1 xfz/ 2;4:1 Xttz)a with 1&1‘/ —a.s. ¢t-
Following the same lines of lemma 1 in Sanathanan (1972), for any p;,

N =mne/(1—pa), Ne=ne/(0e(1—pu)) = N*/h, and N =3 N,

t=1

An unconditional MLE of N is obtained when there exists N of N and ), of 1 for
t =1,...,s, which simultaneously maximize £ over all admissible values of (N™ ¥ ©). A
conditional MLE of N, N,, is obtained when we find N/ maximizing Ly (N, pr.) where

Dic = ptl(éc) and O, is the value of © maximizing Li(0).

In the following section we enunciate and prove a theorem which is an extension of theorem
4 in Sanathanan (1972). Such theorem incorporates the uncatchable part of the population,
making possible that asymptoptic properties of the MLE’s be evaluated for the whole pop-

ulation size estimator of N. Now we need to introduce some more notation.

Let N7, ¥, ©,, and N, respectively be the true values of N, ¥, ©, and N. Fort =1,...,s,
and 7 = 1,...,1, let p;(©) be denoted by p when ® = O,, and denoted by p;; when
© = O. Similarly let the partial derivatives of P:i(©) with respect to 6; be denoted by Phij
when © = O, and denoted by p;; when © = ©. Let Ly = %J_L—l, Ly; = 9log Ly and

99;
Lj - Llj + sz.

4 Case of s partially catchable populations

Let the py;(©)’s admit first order partial derivatives which are continuous at every ad-

A

missible value ©. Let N™ = (N{”,...,N{"), U = (\i/l,...,\i/t), 6 = (él,...,ﬁr), and
N = (Nl, e ,Nt) be the estimates of NI, ¥, ©,, and N, respectively such that

(i) © —as O,



(Ngp) 472 (Ntm —ne/(1— ﬁtl)>> —a.s. 0
(Ng2) 2 (N = me/ (1 = ) ) ) s 0

NI V2L ., 0, j=1,...,r

(v)

~~

where (e;) denotes the vector (ey,...,e,), and N = Y NJ'. Let ©7' = (6"7) be the
=1
(r 4+ 2s) x (r + 2s) matrix given by

s l
ih o01-1 0 ,o0 s . _
o’ - ZCtZ[pti] Py, P no J=L...,r ;h=1..7
t=1 i—1

gl = _(Ct)l/zlbot[pgl]ilpgl,ja J=1...r;t=1...,s
O'j’r+s+t - _(Ct)1/2Not[pgl]_1pgl,ja ] - 1,...,’/‘ 3 = 1)""8
UT—H’H—u - 5tu¢§t[P?z]_1(1—P?z), = 1)""8 y U= 1""’8

O'T—H’T—l_s—'_w - 5twwotNot[p?l]il(1 _p?l)a t= 1’ oS W= 1’ EERL

0_r+s+t,r+s+v = 5tvN3t[p?l]71(1 - pf‘,)l)a = 1; sy 8 U= 1’ RREE
where 0y, = 1—.y. Then,

Ut = ((N)2(0 = ©), (N) ™2 (bt = ), -, (NEE) 20 = ),

(N$)71/2(N1 - Nol)a R (N£)71/2(N5 - Nos))

is asymptotically N (0, ).



Proof: Since the proof for s populations was not presented in details by Sanathanan (1972),
we are going to fill some of the gaps in order to make our proof more comprehensible. The
general organization of this proof follows largelly the same steps developed by Sanathanan
(1972): (I) prove that a built random vector Z* follows a multivariate N(0,X!) distribu-
tion, and a random vector U, representing the difference between the vector of parameters’
estimators and their true population values multiplied by the square root of an adequate
constant are such that U —X.Z* converges in probability to 0; (II) build random vectors Vk(t),
witht=1,...,sand £k =1,..., N; such that Z* may be expressed as a function of the sum
of V( ). Then, by (i), U follows a multivariate normal distribution N (0, X).

Step I:

m

. N, . - .
Consider Nt = E o, and  lim —o — ¢, with E ¢ = 1. Then, since ny = N/™ — ny,
Np—oo N ]
t=1 -

and by adding and subtracting adequate quantities involving Ntm we have

1 dlogL B Z nu 6pm-(®)
Np* 06 le-0 x/Nmt 1o pa(©) 095

Z g 8ptl(®)+l_zl ng  Opgi(O)
\/N?t 1 |pu(©) 90, = pu(©) 90;

™) [pu(©)] apg;f)

N
_ tm_nt Ipu(©)
Y, |1 —pu(® ptz(@) 90,
1[ =

ng aptl —1 9p4(©)
. + Z 27 [ptz 89]’

\/Nz“”
Ngrn -
NF &

\/_

Since
Olog Lo - ng aptl N _1 Op4i(0©)
Lyi=———= = + n i and
2 6, ; 1—pu(O©) ; Zl o [Pi(© 90,
dlog Ly - ng aptl(@ > —1 Opu(©)
1j an Z 1—pu(© an + t:Z1( t nt) [pu(©)] an )
for

NthN(g?, ﬁ2j=L2j , and fflj:Llj

0=06

N N 7
©=06,N"=Nm



we have

1 810g[’ _ 1 ° vm o arm -1 8ptl(®)
VT 9, lo_s~ VAT 2N N (@O T g e (L Lyy) . @)
: Foo_ 7 7 : Ip.(©) _
Then, from (3) and (4), and denoting L; = Ly; + Ls;, and since ZGT = 0 for
i J
t=1,...,s, we have
— aptz(G))
“om i (ne — Noy vty
NT ; 121 [p4(© t ¢ D) 9, lo—o

1 < 1

° ot o0\ ~ ~
= i i — Dgi) Ptij — —F7— —(L;).
tz; /—Nr}" ; [Pt pt 2 )pt Jj /—N;I‘ ;( ) [Ptl] Puj + /—Nr}"( ])

From the mean value theorem,

T

pti(é) - pti(®o) = Z(éh - eoh)pti,h(@i)a 92 € (éh, eoh)-

h=1
Thus,
s N l R
Z ot [pu ptzg Z — Bon ptz h(® + Z [ptl ﬁtl,j(Ntm - N:Z)
t1\/N1’~"z1 \/NTtl
s l
1 -
Z ptz ptz, ntz No pz) - L;.
/—T L £ J t Pt /—N{p" J
Therefore,

s Nm r s [ Nm 1/2
Z 2> bugny/ NF(Oh — Oon) + lN‘;Z] bjit (N VAN — NI) = Zj =, 0,
T h=1 t=1 T

where

bijn = Zpti,h [bei) ™" P
Jr—i—t [Ptl] ptlju and

Z; —Zc1/2 N} 1/2Z[p;’i]_1p§i7jnti, j=1,...,r



This result is similar to the one given by Sanathanan (1972) in page 150. The term

(NM)=1/2(N™ — N™) in expression (5) can be written as
(N$)71/2(¢t]vt - wotNot) = (N$)71/2(Nt(¢t - wot) + wot(Nt - Not))-

Then (5) implies

S m T

By = 3 NS b (V) (G — )
t=1 T h=1
s [Nm™ 1/2 .
+ Z[W] Ribyo s )20y — )
t=1 T

S Nm 1/2 _ R .
b3 ] vl V) A~ Na) - 2 0

t=1

m

Let Z* = Z: and b*., = b;.5, and consider lim -2 = ¢, t = 1....,s. Thus, for
J J t.J,h t,J,h> NI oo N%’? t ) ) )

j=1...,r, h=1,...,r, wuwu=1,...,s, and t=1,...,s,

s
* j,h
Z Ctbt’jvh _>a.s. 0-]7 )

t=1
1/21 4 1 Jrtt
Cy bjﬂ»_}.t - Cy ¢otbj,r+t —7a.s. woto- ’ ) and
1/2 * _ 1/2 \; j,T‘-I—t
Ct bj,r—i—s—i—t = Ct Ntbj,r—l—t —>a.s. NtO' .

Now, considering the s population extension of condition (ii) of theorem 1 by Sanathanan

(1972) (see p. 150), and applying similar arguments to the ones used to describe B*;, let
Nt

. 1/2
C = > [Nm] bystn (NI 2 (6 — 6on)
h=1 T

+ br—}-t,r—}-tNt(N(:?)_l/z ('J)t - wot)
+ br+t,r+t¢ot(N:Z)_1/2(Nt — Not) = Zryt =5 0,

where

Pun L —py
) r+t,r+t —
bu ¥4/

br—l—t,h = -
and
Zyyo = 100) F (NG ((e/NGE) = (1= pR)), t=1,...,5.

10



Let C*t = wotct, then Z:—H = wtOZT+ta t= 1, ey, S and

V2. 12 rith
Ct br+t,h = ¢/ Votbrith —as. YotO )
* — 2 2 _r+t,r+t
br+t,r+t - 77/)m:br+t,r+t —a.s. 7,/)0750 ) and
* — \ r+t,r+t
br+t,r+s+t - wotNtbr—f—t,r—f—t —a.s. wotNtO- .

Now, from condition (iv), let

D, = (Né?)_l/z(iﬁtm(l - ﬁtl) - nt)
= Ny(1 = pa) (NI Y2 (s — thor) + (1 — Pu) ot (N) V2 (N; — Ny

_wotNot(N;?)_l/2(ﬁtl - p?l) - (Ngtl)_l/2(nt + p?lwotNot - wotNot)

Thus, using the mean value theorem,

D; = N(1—pa) (NI V24 — or) + (1 — Pu)bor( NI T2 (N; — Nyt

_¢otNot(N:Z)71/2 Z(éh — Oon)Dup — (N:Z)il/z(nt — Yot Not(1 — ).
h=1

Let D*; = (Nyt/pu)D; and since N7 = 1), Ny,

r Nm™ 1/2 . 1—19p ~
D; = — 3|2 N [PER | (NZ)Y2(Bh — Oo) + Notthor | —2| (N2) Y2(N, — Nog)
-1 NT D Du

ot

Not(Nm)_1/2

+ Nt Ny [1 — ﬁtl] (N2 (Y — o) — (n¢ — Yot Not(1 — pfy)) —p 0.

Pu Pu
Let
1/27 % 1/2 Db j r+t,j
Ct br+5+t7j = ¢ Not— —a.s. Nota J)
Pu
b* = N — Pu N r4t,r+t d
r+s+tr+t T otwot —a.s. otwoto' , all
Pu
& 1—pu
* _ 2 _r+t,r+t
br+s+t,r+s+t = NotNt —a.s. NOtO' y and
Dbu
N (Nm)—1/2
* o ot ot 0
Zyysyt = Pu (nt — Yot Not(1 — p3))-
1

11



Summarizing, let

l
* 1/2 m o1—1 o i
Zj Z Gt / N 12 Z [ptz] Py My, J = 1, Lo,

Z:—I—t = ¢ot [pal™ (Nc:?)lm((nt/N;?) —(1=pp), t=1,...,s,

X Ny (Nm)~1/2 o
ZT-I-S-H — t( t) (nt_wotNOt(l_ptl))a t = 1’__.’3‘
Y47/
where Ny = N% + N2, o = (N2 /Not), an, py=1— me, and N = Z

Let
Ut = ((NF)2(8 - ©,), (V) 2 — ), (N2) (0 = ),
(N V2(Ry = Nop), .., (N V(I — Nos)), and
AES (Zf, s By By ls o Prgss Brpsdls Z’:—Fzs)
From expressions B*;, C*;, and D*; we have
U-%7Z* —,0. (6)

Step II:
We will show next that Z —4 N(0,£°1).
Following Sanathanan (1972) p. 147, fort =1,..., s, let Vk(t) be a random vector

t t t t t t t
Vk( ) = (Vk(,l)a cee Vk(,ga ‘/k(,r)—i—la sy Vk(,g—l—sv Vk(,r)—l—s—l—la sy Vk(,g—l—%)

such that:
(i) when the k®th trial from population ¢ (t =1,...,s) and k) =1,... N/, results in
the ¢th category, « = 1,...,1 — 1, then, with probability py;

V—k(,t]) = ( )1/2 [ptz] 1p§i,j, jzl,...,’r'
¢ot ifUZt,Uzl,...,s

Vk tu
. 0 otherwise
"0 _ Ny ifv=t,o=1,... s
k,r+s+v

0 otherwise

12



(ii) when the k®th trial from population ¢ (t =1,...,

lth category, then, with probability py

t
Vi)

‘/k,r—i—u

%,T‘-}—S-}—U

Notice that

-1

(c )1/2 [pa] 117?1,]',

—tot [p2) 7 (1
0

_Not - wot [p?l]il

Z*t — i(N

t=1

i=1,...

s)and k) = 1,... N/ results in the

, T

—p9) fu=t,u=1,...,s

otherwise

(1—py) fv=t,v=1,...,s

otherwise.

Not
RN
k=1

!
Since » py = (1 —py) and > pu; =0, j=1,...,

i=1
¥, ! given by

Cov(Vku, AY

Cov (Vk g0 Vk THu
Cov (Vk g0 Vk +stu
Coo(Vi VL.,

Cov (Vk r+os Vk rstu

t t
Cov (Vlc(,r)+s+va ‘/;c(,v")+s+u

For a givent, t=1,...,

i=1
l

i=1

Yau(1
0

0
Na(1
0

)
)
) -,
)|
)
)

_(Ct)1/2

¢otNot(1

- P‘t)z) [pgl]

T,

Yot [p?l]il

—(ce)Y2 Ny [pg)

—1
- pfl) [Pfl]

-1

then E(Vk(t)> = 0, and we also have

(c)'? Z[p?i]_lpgi,upgi,m I<wu,v<r

pp; fu=t,u=1..s
if u#t

pp,; foru=t,u=1...s
if u#t

fu=t=v,1<v,u<s

otherwise

_p?l)[p‘t)z]_l ifu=t=v,1<v,u<s

otherwise

fu=t=v,1<u,v<s

otherwise

s, by the Central Limit Theorem,

NJY
(Nm=25 v 5, N0, T

k=1

13



Thus, since Vk(t) is independent from Vk(u) for u # t,

Nt
77t =Y (W) VY a N5
k=1

t=1

where £71 =Y ¥, '. Thus, by (5) and (6),

t=1

U —y4 N(O, 2)

This completes the proof of the Theorem.

~ S~ N™
N i N = Ny and i ot —
ow, since 15:21 , an N:,”%I—I}oo N ct,
12/ % NG\ V2 12/ %
(NP) VAN =) = () VA - Na)
=1 MV
—d Z(ct)l/zN(O,atz) =4 N(O,thof)
t=1 t=1
where ¥y = (0}7), and 02 = o" St =1 s,
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