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ABSTRACT

We discuss and implement a new strategy for spatial cluster detection. A test statistic based on the
likelihood ratio is used, as formulated by Kulldorff and Nagarwalla. Differently from these authors,
our test is not restricted to the detection of clusters with fixed shape, such as rectangular or circular
shape, but it looks for connected clusters with arbitrary geometry. This could be advantageous in
real sSituations, where we frequently find spatial clusters along rivers or transport ways, for
example. A new technique of adaptive smulated annealing is devel oped, focused on the problem of
finding the local maxima of a certain likelihood function over the space of the connected subgraphs
of the graph associated to the map of populations and geo-referenced cases. This agorithm has
applications to the study of disease clusters and hot-spots of criminality. We present a study case for
homicidesin the city of Belo Horizonte, Brazil.

KEYWORDS: Spatia cluster detection, simulated annealing, likelihood ratio test, disease clusters,
hot-spots detection.

1. INTRODUCTION

Epidemiologists and crime analysts have interest in the detection and monitoring of disease
clusters or hot-spots of criminality. A rather complete discussion about spatial cluster
detection and inference may be found in [1], [3], [4], [6] and [7]. We assume that we have
at our disposal a map of regions, each one with a defined risk population and a certain
number of observed cases. The cases corresponds to the individuals in each population that
have a special designation, such as an infected individua or a crime victim. For simplicity,
we may represent the regions by polygons, and the common frontier between two regions
are either a single point or a (non-trivial) segment (see fig. 1.a). Two regions are said to be
neighbors when they are connected by a segment. This map of interconnected regions can
be further simplified and mathematically represented by a graph, where each region is
associated to a node, and when two regions are neighbors, there is an edge in the graph
linking the corresponding two nodes (fig. 1.b). Each node may have a number of attributes,
such as the population and the number of cases of the corresponding region. A connected
subset of regions of the map is called a zone (see, e.g. figure 2). Corresponding to each
zone there is a connected subgraph of the map graph. From now on we will identify each
subgraph with the zone that it represents.

‘FI GURE 1A: Theregions ofa map Figure 1B: The associated graph



We consider here the problem of finding, among all zones, which oneisthe most likely (if
any) to have a high incidence of cases relative to the population. We will call such zone a
cluster. The precise formulation of this problem will be addressed in the next sections.

The agorithm considered in [6] sweeps over the zones circumscribed by circles of varying
radii centered at each of the regions of the map. At each one of these zones, a test statistic
function is computed, and the algorithm selects the zone that maximizes this function, as
the most likely to be a cluster, if it exists. In this paper we will present a graph-based
algorithm that overcomes some of the limitations of that algorithm.

The choice of the regions in real maps deserves some attention. We would like to choose
regions that are small enough to circumscribe a relatively homogeneous area, in such a
manner that we could consider the population and the cases inside each region as roughly
similar. If this condition cannot be fulfilled, it may not be possible to consider the attributes
of the graph nodes as adequate descriptions of the regions. In this case, it would be
necessary to further refine the regions in the original map, in order to create a new set of
smaller and more uniform regions. For example, if one single region is big enough to
contain aggregates of individuals with very dissmilar incomes, we cannot expect to find
homogeneous poverty-related disease rates within this region.

We now proceed to define some terms that will be used in our discussion.



within a map

FIGURE 2: A zone



2. THE SETTING OF THE PROBLEM

A non-oriented graph (or graph, for short) G isan ordered pair (V,E), whereV isafinite
set of vertices{ v,,..,v,} and E isaset of edges{e,...,e,}, such that ¢ ={v;,v, }, with
v, #v, and v,v, OV, i=1..m.If {v;,v} isan edge then v, and v, are adjacent
vertices. The graph S=(V,,E;) isasubgraph of G=(V,E) if VOV, and E, JE. The
subgraph  S=(V,,E;)) of G=(,E) is an inherited subgraph of G if
vi,v, OV {v;,v,}OEO {v,,v, }UE,;, i.e, E, isamaxima set over al the subgraphs
V,,W)of G.

Two vertices v;,v, of agraph G =(V,E) are connected by a path if thereisa sequence of
vertices VsV ooV suchthat v, =v, ,v, = Vi, and {v,,v, }OE,i=1..,p-1
A graph G =(V,E) isconnected if any pair of distinct vertices v;,v, [JV are connected
by a path.

The inherited subgraphs S, = (V,,E,) and S, =(V,,E,) of G=(V,E) are neighbors if
theset (V, OV,) - (V, nV,) consists of exactly one element.

For each connected inherited subgraph S of G, the connected neighborhood (or simply
the neighborhood) N(S) of S isthe set of all connected inherited neighboring subgraphs

of S.

Consider, for example, the map in figure 2. The zone with the vertices set {1,2,3,4} has 11
connected inherited neighbors, namely the ones with the vertices sets {1,2,3,4,5},
{1,2,34,6},{1,234,7},{1,234,8}, {1,234,9}, {1,2,34,10}, {1,2,3,4,11}, {1,2,3,4,12},
{1,2,3}, {1,2,4} and {1,3,4}. Observe that the neighbor with vertices set {2,3,4} is not
connected.

We follow [6] to establish the statistical notation. Let z be a cluster candidate among the set
Z of al connected inherited subgraphs associated to the regions of the map. That is, zis a
connected subset of regions in the map. Define p as the probability that an individual is a
case in z, and q as the probability that an individual is a case in the complement of z We
would like to test if z is a cluster. The alternative hypothesis is H, : zOZ, p>q, and the

null hypothesisis H,: p=q (i.e, there is no cluster in Z). Knowing the population and
cases in each region allows us to define n, as the population of the region z, ¢, as the

number of cases of the region z, N as the total population in the map and C as the tota
number of cases. For this fixed cluster candidate z adopting a binomial model produces the
following likelihood function:

Thelikdlihood ratiois
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The objective hereisto find the zone z that maximizes the functionL . For a map with n

regions, we would need to analyze al the connected inherited subgraphs among the 2"
possible subsets of n vertices, and this is a formidable task for a map with hundreds of
regions. So we need to try to analyze only the most promising subgraphs of the collection
of al connected inherited subgraphs, and discard the less interesting ones.

3. THE ADAPTIVE SIMULATED ANNEALING TECHNIQUE

We will show here an algorithm that makes a sweeping over a subset of the collection of all
the connected inherited subgraphs, moving at each step from a subgraph to one of its
neighbors, until we find the cluster (or give up the search). We need to establish a set of
rules telling us how to choose the best neighbor at each step, in order to try to minimize the
number of examined subgraphs. We will aso need to make a test to show the significance
of the possibly found cluster.

Perhaps the first idea that comes to mind would be to choose always the neighbor subgraph
with the highest value of the function L at each step, thus conducting us finaly to the
cluster some steps ahead. As tempting as it seems, this strategy does not work in general,
because it frequently leads us to subgraphs that are only local maxima of the function L,
but do not maximize L over all the possible subgraphs. A great improvement could be
made to this idea, however, if we alow the algorithm, at judicious times, to randomly
choose a neighbor subgraph, instead of picking up the highest L -valued one. Thus, most
of the times the algorithm decides for the highest L -valued neighbor, but on some
occasions it adopts a less deterministic decision. The effect of this rule changing would be
to give the algorithm more freedom to survey adjacent neighborhoods that are potentially
more interesting, and that amost never would be visited otherwise. We associate with the
degree of determinism of the neighbor choice the physical notion of temperature; the higher
the temperature, the increased randomness involved in the selection of the next neighbor.



Instead of using a cntinuum of temperatures, our algorithm uses only three levels of

temperature, high, medium and low, correspondng to three different criteria of choosing

the next neighba of the subgraph:

e High temperature: Uniform randam choiceof neighbars.

¢« Medium Temperature: Randam choice with chances propational to the logarithm of
the likelihoodratio of the neighbars.

» Low Temperature: Always chocse the neighba with the highest likelihoodratio.

The dfeds of this drategy in the sweeuing of the lledion d subgraphs are described

below:

e High temperature: Higher mohili ty, do nd have astrong preferential direction.

« Medium Temperature: Has a higher probability of chocsing a diredion with high
likelihoodratio, bu withou discarding ancther directions.

* Low Temperature: Deterministic, always choasing the neighbor with the highest
likelihoodratio.

In order to unfy these three strategies, we crege afunction F(G, temp) that receves the

current subgraph G and returns aneighba of G chasen acordingly to the dhoice strategy at

the high, medium or low temperature value set to the variable temp.

In addition to these threelevels of randomnessin the processof neighbar seledion, we will
go further and crede one more strategy. Let us define the function H(G) as foll ows:
If avertex v, was added to G in the previous dep, the function H(G) returns a neighbar of

G that includes v, and also a randamly chosen extra vertex v,, adjacent to v,. If
otherwise avertex v, was excluded onthe previous gep, then returns the neighbar given

by F(G, low). For example, referring again to figure 2, if the previous subgaph hes the set
of vertices{1,2,4} and the aurrent subgraph hes the set of vertices{1,2,3,4}, then the result
of H(G) is chosen randamly among the subgraphs with the set of vertices {1,2,3,4,5}, a
{1,2,3,4,6}, a {1,2,3,4,7}, a {1,2,3,4,8}. The objective of successve gplicaionsof H is
to try to forcethe gpearance of patentially interesting subgraphs that are normally beyond
the range of the sweeping gven by the function F alone. As we shall see, the function H
will be used exclusively when there ae indications that the arrent subgaphis apromising
one.

We identified four factors that are relevant to the cmnvenient seledion d the strategy at
ead step, when the dgorithm computes the L -function for each ore of the neighbars of the
current subgraph, and prepares to choase the next neighbaring subgraph:

» Therewasfound (hL =1) or not (hL =0) aneighba with higher L -value & the airrent

step;
e The number cs of conseautive steps such that weren't found new subgraphs with L -
value >1.

* Thenumber vb of timesthat the aurrent subgraph hes been visited before in the survey;
e The number cv of common ertices between the aurrent subgraph and the highest yet
L -valued orein the survey.



The four parameters hL, cs, vb and cv are used to modify dynamically the process of

selection of the successor of the current subgraph or possibly give up the survey at each
step asfollows:

select randomly an initial connected inherited subgraph G;
dof
find the set N(G) of al the connected inherited subgraphs neighbors of G;
compute L for all new subgraphsin N(G);
compute hL, cs, vb, cv, cs_threshold and cs_threshold 2;
if (cs>cs threshold 2) G:= F(G, high) ;
el se{
if (hL=0) and (vb>vb_threshold 2)) G:= F(G, medium);
elseif ((hL=0) or (vb>vb_threshold_2)) G:=F(G, low);
else G:=H(G);
}
}while ((cs<=cs_threshold) and (vb<=vb_threshold));

In the basic survey algorithm above, the thresholds variables are defined as follows:

cs _threshold=cv

cs_threshold 2=cv/2

vb_threshold isfixed and was empirically determined, and is around 10 for most situations.
vb_threshold_2=vb_threshold /2

The idea of the basic survey routine above is to adopt at each step one of four types of
choices strategies for the successor of the current subgraph, with different levels of
randomness. In order of the most random to the most deterministic, there are the F(G,
high), F(G, medium) and F(G, low) strategies and at last the H(G) function strategy. The
choice of which strategy is to be used is based on the values of the parameters hL, vb and
cs, that are indicating if the current subgraph G is becoming more or less promising as the
survey goes on.

Thus F(G, high) is adopted if the current subgraph has arelatively low L-value, was visited
many times, and for severa steps of the survey the L-values for the subgraphs have not
increased.
F(G, medium) is used if the current subgraph has arelatively low L-value, has been visited
many times, but there have been an increase of the L-values for some recently surveyed
subgraph.

F(G, low) isused if there have been an increase of the L-values for some recently surveyed
subgraph, but at least one of the following conditions are true: the current subgraph has a
relatively low L-value, or it has been visited many times.



Finally, H(G) is applied when the current subgraph has a relatively high L-value, has not
been visited many times, and there have been an increase of the L-values for some recently
surveyed subgraph.

The basic survey routine is finaly abandoned when one of the parameters vb and cs
exceeds the thresholds defined within the a gorithm.

The basic survey routine is repeated several times with different initial subgraphs, until the
maximum L-value found does not increase for a conveniently long sequence of visited
subgraphs, or the storage space for the list of visited subgraphs is exhausted.

After the candidate cluster is found, we make a test to evaluate its statistical significance.
Under the null hypothesis, we simply distribute randomly the cases over each region z of

Cn
the cluster, i.e., we use a Poisson random variable with mean TZ , and compute L(2).

We make this thousands of times and count how many times L(z) is greater than the
candidate cluster L -value, and thisis used to compute an experimental p-value.

4. EXPERIMENTAL RESULTS

We will present some experimental results on the performance of the algorithm described
in section 3. For the purpose of simplicity and uniformity in our exposition, we establish a
standard map corresponding to the graph realization depicted in figure 3a. It consists of 625
vertices disposed in a 25x 25 square. Each internal vertex has 6 adjacent vertices, as
shown in the figure. We aso define another square nxn maps with different sizes and
with vertices and edges defined in a similar fashion, and will call them standard nxn
maps. A standard mx m cluster within a standard map would be a mx m sguare centered
subgraph. Figure 3a aso shows a standard 5x5 cluster within the standard 25x 25 map.
To each vertex in the standard map we associate a population of 100 individuals.  The
number of cases is 10+w for vertices within the standard cluster, and 1+w outside it,
where w is an uniform random variable, an integer random number wL] [0, u], and u isa

non-negative integer. We say that w is an additive noise of level u. Of course, dueto the
random choice of the cases in each vertice, the final cluster found by the algorithm may be
somewhat different from the 5x5 square, as shown in the typical example of figure 3b.
Generally speaking, more additive noise generates more obliterated clusters. Another types
of clusters will aso be discussed (See e.g. figures 3c-f). The results shown here may be
extended with few modifications to another types of maps. The standard map is sufficiently
complex to exhibit severa interesting features, that we will describe now.
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FIGURE 4: Performance of the algorithm when the size of the map increases, for the 5X5 standard cluster.

The solid circles in figure 4 denotes the number of surveyed subgraphs for each standard

nxn map with k = n® vertices with astandard 5x5 cluster. The additive noiseis of level
5. Each experimental point (solid circle) here is obtained as the median of the averaged
number of surveyed subgraphsin 10 runs of the algorithm for each of five different random
standard maps. The triangles denotes the values ckIn(k), with ¢=1.63, for comparison.

We will return to this later on section 5.
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When the aditive naise is zero, the mean number of visited surveyed subgraphs (circlesin
the figure 5) increases appredably. But the mean number of analyzed surveyed subgraphs
for the standard maps (crosses), increases only slightly. This occurs becaise the basic
survey routine gives up more eaily when the noise level is zero, thus reducing the number
of analyzed subgraphs.
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FIGURE 5: The influence of noise FIGURE 6: The influenceof cluster size

Figure 6 shows the mean number of surveyed subgraphs for the standard map with 625
vertices, for some standard clusters of different sizes. Aswe can seein thisfigure, the mean
number of surveyed subgraphs seams to increase with the size of the duster, for clusters
with 25 \ertices or more.

size of surveyed subgraphs
# surveys

R T T T T T T T T T R T T T T T T T T T
0 100 200 300 400 500 600 700 800 900 0 100 200 300 400 500 600 700 800 900

# vertices # vertices

FIGURE 7A: The average size of surveyed subgraphs FIGURE 7B: The average number of basic surveys

We can seein figure 7a that the mean size of the surveyed subgraphs decreases with the
number of vertices of the standard map and standard 5x5 clusters with ndse level 5. This
happens because the dgorithm gives up more easily when it seaches through larger
“empty” regions outside the duster within the map. The basic survey routine is cdled more
times for bigger maps, as we can seein figure 7b.
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The presence of additive noise has influence on the mean number of surveyed subgraphs,
but in arather complex manner, aswe can see in figure 8. We observe that there is a sudden
increase in the mean number of surveyed subgraphs, when the noise level increases above
1. At this paint, large zones with more or lessthe same value gpear in the map, and the
algorithm takes ome time searching them until they are discarded. This effect is less
pronourced in maps with nase level 3 and 4. Beyond this point, as the noise level
increases, thereis astealy increase in the mean number of surveyed subgraphs.

In order to evaluate experimentally the best value for the parameter vb_threshold, we
conducted a test with the 625 \ertices gandard map with the standard 5x 5cluster with
noise level 5. As we can see in figure 9, the choice for the parameter vb_threshold is not
very critical. We usually adopted the value 8 in our tests, because it is aso apparently better
for other more compli cated maps.

The duster of figure 3c, with ndse level 5, was foundafter analyzing 2,275subgraphs, and
the one of figure 3d, in the same @ndtions, was found after 6,173 subgraphs. The
performance of the dgorithm for these two cases are comparable with the performance for
the standard clusters of equivalent size. Note that these two cases could nd have been
foundby the original circle centered zones algorithm in [6].

Consider now the cae where we have two separated 5x5 blocks, the “doulde duster”
examples. Figures 3e and 3f depict the dusters foundwhen the dgorithm tries to analyze
them. In figure 3e, the two blocks are isolated by one region, and in figure 3f they are three
regions apart. In bah cases the dgorithm finds first one of the isolated blocks (after 741
and 842seaches, respectively), and then, after alonger seach, it finds the dusters formed
by joining them (after 5,736and 11,226seaches, resp.).

As alast example, we analyzed in figure 10 a map of the 2 milli on inhabitants city of Belo
Horizonte, Brazil, with 240regions, with hamicide caes during the year of 1995.North is
up in this map. The most significant cluster is marked in the map. The light-gray regions
have exadly zero cases, bu they are included in the duster by the dgorithm because they
link "smaller clusters® with high incidence rates. We can see that the light-gray region in
the bottom of the map is gedally large in comparison with the others. Thisisanuisancein
the origina planning of the map, because this large region limits with zones that are far
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away from the high incidence regions near the center of the map. The best solution here, as
commented in the introduction, would be to split it in several smaller regions. Anyway, we
can see very clearly a north-south almost straight cluster following a large express way in
Belo Horizonte, that is known to be a degraded urban area with high incidence of
homicides.

This agorithm was implemented in C language, on a Linux environment, on a K6-11 500
MHz processor microcomputer.

-14 -






5. SOME COMMENTS ON THE CONVERGENCE OF THE ALGORITHM

It is awell-know fad that combinatorial algorithms that use simulated anneding converge
to the optimal solutionin exporential time in the worst case, bu usualy find guesi-optimal
solutions in much lesstime (see[9]).

The processof seaion 3 d finding the duster (if it exists) can be described as a stochastic
processas follows. Suppacse that to ead vertex v.,i =1,...,k of the map graphis assgned a

binary variable b, such that b =1 if v. isin the set of vertices of the airrent subgraph,
and b =0 otherwise. Define dso the binary constants ¢, suchthat ¢ =1 if v, isin the
set of vertices of the duster, and ¢ =0 otherwise. Thus, starting at an initial variable
string (b,,....b,), we dtempt to reech at the string (c,,...,c,) , modifying randamly at most
one vaue b a eah step, and poducing a sequence of strings

(b,...b),., ,...00),, ... , (b,...0), =(c,...c,) dafter r steps. Suppcse, for
simplicity, that the variable b onceset to the value ¢, maintain thisvalue during the rest

of the sequence of strings. Suppase dso that when, at each step, an index i israndamly
chosen thereis afixed probability s that b asuumesthe value c.. So the expeded mean

value of r is approximately s'kIn(k), for large k. Seethe gpendix for a proof. Of

course, the ssaumptions above ae somewhat artificial. The parameter s may be very
difficult to establish. It may be not constant over the map, and aso may vary greatly from
one problem to ancther. But this crude model can explain, in certain simple situations, the
behavior of the dgorithm, as iown in the graph o figure 4. In this particular case the
cluster is very well defined in the map, and the dgorithm does not need to worry with small
scatered “clusters’. This is certainly not the case & with the duster of the dty of Belo
Horizonte, or in the “"doulde duster” example.

The eperiments in sedion 4 suggests that the worst scenario for the dgorithm is the
presence of several disconneded “small clusters’ scdtered aong the map. The dgorithm
finds easily eat one of these “small clusters’, but only after a lengthy survey it finds the
increasing bigger “clusters’” made by joining these “small clusters’ together. So, the
“clumpyness’ of the map, loosely defined here & the presence of these scatered
disconreded “small clusters’, is a fador of importance in the performance of the
algorithm. It could also leals us to a discusson d the original concept of cluster. Perhaps
it would be useful to consider not only the duster, bu aso the possble mmbinations of
“small clusters’ found duing the course of the survey.

If we dlow that the parameter s discussed above has adifferent value for each region of
the map, we can understand ketter some aspeds of the behavior of the dgorithm in the
"doule duster" examples of figures 3e and J. Infigure 3e, for example, we alopt very
small values for the parameter s for the five vertices between the two 5x5 blocks. It
means that it is much more difficult for the dgorithm to recognize that one of these five
vertices are part of the duster. A similar reasoning appli es to the fifteen vertices between
thetwo 5x5 blocksin figure 3f.
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6. APPENDIX

Theorem: The stochastic process described by the graph below

S(k-1)/k s(k-2)/k 29k gk
L

1-s 1-s(k-1)/k 1-s(k-2)/k 1-g/k

Is such that the average number of transitions from state 0 to state k is asymptotically
given by s™kiIn(k).
Proof: Let A bethe corresponding stochastic k +1x k +1 matrix with entries

Osi-1/k 0=
a, =H-s(i-1)/k, i+1= ]
H 0, otherwise.

Consider now the kxk matrix B obtained from A suppressing the last line and the last
column. Each entry w;; of the matrix W = (I - B) ™ is the average number of times that the

state j appears in a random path from the state i to the state j (see, eg. [8]). A
computation shows that

5k/(k—=j+1), i<]
<KD, 15
0 0, 1> ].

It isnow easily seen that the average number of transitionsto reach the state k from the
state 0 isgiven by

i

the sum of the entries of the first line of W .
Now, using the fact that

1 1 1
—=Ink)+y+—+0O
25 Ty %72@

IE

where y =0.577... isthe Euler constant, the result follows.
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