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ABSTRACT

We discuss and implement a new strategy for spatial cluster detection.  A test statistic based on the
likelihood ratio is used, as formulated by Kulldorff and Nagarwalla. Differently from these authors,
our test is not restricted to the detection of clusters with fixed shape, such as rectangular or circular
shape, but it looks for connected clusters with arbitrary geometry. This could be advantageous in
real  situations, where we frequently find spatial clusters along rivers or transport ways, for
example. A new technique of adaptive simulated annealing is developed, focused on the problem of
finding the local maxima of a certain likelihood function over the space of the connected subgraphs
of the graph associated to the map of populations and geo-referenced cases. This algorithm has
applications to the study of disease clusters and hot-spots of criminality. We present a study case for
homicides in the city of Belo Horizonte, Brazil.

KEYWORDS: Spatial cluster detection, simulated annealing, likelihood ratio test, disease clusters,
hot-spots detection.

1. INTRODUCTION

Epidemiologists and crime analysts have interest in the detection and monitoring of disease
clusters or hot-spots of criminality. A rather complete discussion about spatial cluster
detection and inference may be found in [1], [3], [4], [6] and [7].  We assume that we have
at our disposal a map of regions, each one with a defined risk population and a certain
number of observed cases. The cases corresponds to the individuals in each population that
have a special designation, such as an infected individual  or a crime victim. For simplicity,
we may represent the regions by polygons, and the common frontier between two regions
are either a single point or a (non-trivial) segment (see fig. 1.a). Two regions are said to be
neighbors when they are connected by a segment. This map of interconnected regions can
be further simplified and mathematically represented by a graph, where each region is
associated to a node, and when two regions are neighbors, there is an edge in the graph
linking the corresponding two nodes (fig. 1.b). Each node may have a number of attributes,
such as the population and the number of cases of the corresponding region.  A connected
subset of regions of the map is called a zone (see, e.g. figure 2). Corresponding to each
zone there is a connected subgraph of the map graph. From now on we will identify each
subgraph with the zone that it represents.

FIGURE 1A: The regions of a map                                           Figure 1B:  The associated graph
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We consider here the problem of  finding,  among all zones, which one is the most likely (if
any) to have a high incidence of cases relative to the population. We will call such zone a
cluster. The precise formulation of this problem will be addressed in the next sections.

The algorithm considered in [6] sweeps over the zones circumscribed by circles of varying
radii centered at each of the regions of the map. At each one of these zones, a test statistic
function is computed, and the algorithm selects the zone that maximizes this function, as
the most likely to be a cluster, if it exists. In this paper we will present a graph-based
algorithm that overcomes some of the limitations of that algorithm.

The choice of the regions in real maps deserves some attention. We would like to choose
regions that are small enough to circumscribe a relatively homogeneous area, in such a
manner that we could consider the population and the cases inside each region as roughly
similar. If this condition cannot be fulfilled, it may not be possible to consider the attributes
of the graph nodes as adequate descriptions of the regions. In this case, it would be
necessary to further refine the regions in the original map, in order to create a new set of
smaller and more uniform regions.  For example, if one single region is big enough to
contain aggregates of individuals with very dissimilar incomes, we cannot expect to find
homogeneous poverty-related disease rates within this region.

       We now proceed to define some terms that will be used in our discussion.
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FIGURE 2: A zone within a map
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2. THE SETTING OF THE PROBLEM

A non-oriented graph (or graph, for short) G  is an ordered pair ),( EV , where V  is a finite

set of vertices { nvv ,...,1 } and E  is a set of edges { mee ,...,1 }, such that },{
21 iii vve = ,  with

21 ii vv ≠  and Vvv ii ∈
21

, , mi ,...,1= . If },{ kj vv  is an edge, then  jv  and kv  are adjacent

vertices. The graph ),( 11 EVS =  is a subgraph of ),( EVG =  if VV ⊂1 , and EE ⊂1 . The

subgraph ),( 11 EVS =  of ),( EVG =  is an  inherited subgraph of G  if

11 },{},{,, EvvEvvVvv kjkjkj ∈⇒∈∈ ,  i.e., 1E  is a maximal set over all the subgraphs

),( 1 WV of  G .

Two vertices kj vv , of a graph ),( EVG =  are connected by a path if there is a  sequence of

vertices 
prrr vvv ...,,

21
 such that 

1rj vv = ,
prk vv = , and 1,...,1,},{

1
−=∈

+
piEvv

ii rr .

A graph ),( EVG =  is connected if  any pair of distinct vertices Vvv kj ∈,  are connected

by a path.
  The inherited subgraphs ),( 111 EVS =  and  ),( 222 EVS =  of ),( EVG =  are neighbors if

the set )()( 2121 VVVV ∩−∪  consists of exactly one element.
  For each connected inherited subgraph S  of G , the connected neighborhood (or simply
the neighborhood)  )(SN  of  S  is the set of all connected inherited neighboring subgraphs
of  S .
Consider, for example, the map in figure 2. The zone with the vertices set {1,2,3,4} has 11
connected inherited neighbors, namely the ones with the vertices sets {1,2,3,4,5},
{1,2,3,4,6}, {1,2,3,4,7}, {1,2,3,4,8}, {1,2,3,4,9}, {1,2,3,4,10}, {1,2,3,4,11},  {1,2,3,4,12},
{1,2,3}, {1,2,4} and {1,3,4}.  Observe that the neighbor with vertices set {2,3,4} is not
connected.

We follow [6] to establish the statistical notation. Let z be a cluster candidate among the set
Z of all connected inherited subgraphs associated to the regions of the map. That is, z is a
connected subset of regions in the map. Define p as the probability that an individual is a
case in z, and q as the probability that an individual is a case in the complement of  z. We
would like to test if z is a cluster. The alternative hypothesis is qpZzH >∈ ,:1 , and the

null hypothesis is qpH =:0  (i.e., there is no cluster in Z). Knowing the population and

cases in each region allows us to define  zn  as the population of the region z, zc  as the
number of cases of the region z,  N  as the total population in the map and  C  as the total
number of cases. For this fixed cluster candidate z  adopting a binomial model produces the
following likelihood function:

The likelihood ratio is
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The objective here is to  find the zone z   that maximizes the function L . For a map with n
regions, we would need to analyze all the connected inherited subgraphs among the n2
possible subsets of n  vertices, and this is a formidable task for a map with hundreds of
regions. So we need to try to analyze only the most promising subgraphs of the collection
of all connected inherited subgraphs, and discard the less interesting ones.

3. THE ADAPTIVE SIMULATED ANNEALING TECHNIQUE

We will show here an algorithm that makes a sweeping over a subset of the collection of all
the connected inherited subgraphs, moving at each step from a subgraph to one of its
neighbors, until we find the cluster (or give up the search). We need to establish a set of
rules telling us how to choose the best neighbor at each step, in order to try to minimize the
number of examined subgraphs. We will also need to make a test to show the significance
of the possibly found cluster.

Perhaps the first idea that comes to mind would be to choose always the neighbor subgraph
with the highest value of the function L  at each step, thus conducting us finally to the
cluster some steps ahead. As tempting as it seems, this strategy does not work in general,
because it frequently leads us to subgraphs that are only local maxima of the function L ,
but do not maximize L  over all the possible subgraphs.  A great improvement could be
made to this idea, however, if we allow the algorithm, at judicious  times, to randomly
choose a neighbor subgraph, instead of  picking up the highest L -valued one. Thus, most
of the times the algorithm decides for the highest L -valued neighbor, but on some
occasions it adopts a less deterministic decision. The effect of this rule changing  would be
to give the algorithm more freedom to survey adjacent neighborhoods that are potentially
more interesting, and that almost never would be visited otherwise. We associate with the
degree of determinism of the neighbor choice the physical notion of temperature; the higher
the temperature, the increased randomness involved in the selection of the next neighbor.
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Instead of using a continuum of temperatures, our algorithm uses only three levels of
temperature, high, medium and low, corresponding to three different criteria of choosing
the next neighbor of the subgraph:
• High temperature: Uniform random choice of neighbors.
• Medium Temperature: Random choice with chances proportional to the logarithm of

the likelihood ratio of the neighbors.
• Low Temperature: Always choose the neighbor with the highest likelihood ratio.

The effects of this strategy in the sweeping of the collection of subgraphs are described
below:
• High temperature: Higher mobili ty, do not have a strong preferential direction.
• Medium Temperature: Has a higher probabili ty of choosing a direction with high

likelihood ratio, but without discarding another directions.
• Low Temperature: Deterministic, always choosing the neighbor with the highest

likelihood ratio.
In order to unify these three strategies, we create a function F(G, temp) that receives the
current subgraph G and returns a neighbor of G chosen accordingly to the choice strategy at
the high, medium or low temperature value set to the variable temp.

In addition to these three levels of randomness in the process of neighbor selection, we will
go further and create one more strategy. Let us define the function H(G) as follows:
If a vertex 0v  was added to G in the previous step, the function H(G) returns a neighbor of

G that includes 0v  and also a randomly chosen extra vertex 1v , adjacent to 0v .   If

otherwise a vertex 0v  was excluded on the previous step, then returns the neighbor given

by F(G, low).  For example, referring again to figure 2, if the previous subgraph has the set
of vertices {1,2,4} and the current subgraph has the set of vertices {1,2,3,4}, then the result
of H(G) is chosen randomly among the subgraphs  with the set of vertices {1,2,3,4,5}, or
{1,2,3,4,6}, or {1,2,3,4,7}, or {1,2,3,4,8}.  The objective of successive applications of H is
to try to force the appearance of potentially interesting subgraphs that are normally beyond
the range of the sweeping given by the function F  alone. As we shall see, the function H
will be used exclusively when there are indications that the current subgraph is a promising
one.

We identified four factors that are relevant to the convenient selection of the strategy at
each step, when the algorithm computes theL -function for each one of the neighbors of the
current subgraph, and prepares to choose the next neighboring subgraph:

• There was found )1( =hL  or not )0( =hL  a neighbor with higher L -value at the current
step;

• The number cs  of consecutive steps such that weren’ t found new subgraphs with L -
value > 1.

• The number vb  of times that the current subgraph has been visited before in the survey;
• The number cv  of common vertices between the current subgraph and the highest yet

L -valued one in the survey.
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The four parameters vbcshL ,,  and cv  are used to modify dynamically the process of
selection of the successor of the current subgraph or possibly give up the survey at each
step as follows:

select randomly an initial connected inherited subgraph G;
do{
     find the set  N(G) of all the connected inherited subgraphs neighbors of G;
     compute L for all new subgraphs in N(G);
     compute hL, cs, vb, cv, cs_threshold  and  cs_threshold_2;
     if (cs>cs_threshold_2) G:= F(G, high) ;
     else{
           if ((hL=0) and (vb>vb_threshold_2)) G:= F(G, medium);
           else if ((hL=0) or (vb>vb_threshold_2)) G:=F(G, low);
                   else G:=H(G);
     }
 }while ((cs<=cs_threshold) and (vb<=vb_threshold));

In the basic survey algorithm above, the thresholds variables are defined as follows:
cs_threshold=cv
cs_threshold_2=cv/2
vb_threshold is fixed and was empirically determined, and is around 10 for most situations.
vb_threshold_2= vb_threshold /2

The idea of the basic survey routine above is to adopt at each step one of four types of
choices strategies for  the successor of  the current subgraph, with different levels of
randomness. In order of the most random to the most deterministic, there are the F(G,
high), F(G, medium) and F(G, low) strategies and at last the H(G) function strategy. The
choice of  which strategy is to be used is based on  the values of the parameters hL, vb and
cs, that are indicating if the current subgraph G is becoming more or less promising as the
survey goes on.

Thus F(G, high) is adopted if the current subgraph has a relatively low L-value, was visited
many times, and for several steps of the survey the L-values for the subgraphs have not
increased.
F(G, medium) is used if the current subgraph has a relatively low L-value, has been visited
many times, but  there have been an increase of the L-values for some recently surveyed
subgraph.

F(G, low) is used if there have been an increase of the L-values for some recently surveyed
subgraph, but at least one of the following conditions are true: the current subgraph has a
relatively low L-value, or it has been visited many times.
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Finally, H(G) is applied when the current subgraph has a relatively high L-value, has not
been visited many times, and there have been an increase of the L-values for some recently
surveyed subgraph.

The basic survey routine is finally abandoned when one of the parameters vb and cs
exceeds the thresholds defined within the algorithm.

The basic survey routine is repeated several times with different initial subgraphs, until the
maximum L-value found does not increase for a conveniently long sequence of visited
subgraphs, or the storage space for the list of visited subgraphs is exhausted.

After the candidate cluster is found, we make a test to evaluate its statistical significance.
Under the null hypothesis, we simply distribute randomly the cases over each  region iz  of

the cluster, i.e., we use a Poisson random variable with mean 
N

Cn
iz

, and compute )(zL .

We make this thousands of times and count how many times )(zL  is greater than the
candidate cluster L -value, and this is used to compute an experimental p-value.

4. EXPERIMENTAL RESULTS

We will present some experimental results on the performance of the algorithm described
in section 3. For the purpose of  simplicity and uniformity in our exposition, we establish a
standard map corresponding to the graph realization depicted in figure 3a. It consists of 625
vertices disposed in a 2525 ×  square. Each internal vertex has 6 adjacent vertices, as
shown in the figure. We also define another square nn ×  maps with different sizes and
with vertices and edges defined in a similar fashion, and will call them standard nn ×
maps. A standard mm ×  cluster within a standard map would be a mm ×  square centered
subgraph. Figure 3a also shows a standard  55 ×  cluster within the standard 2525 ×  map.
To each vertex in the standard map we associate a population of 100 individuals.    The
number of cases is w+10  for vertices within the standard cluster, and w+1  outside it,
where w  is an uniform random variable, an integer random number ∈w  [ ]u,0 ,  and u  is a
non-negative integer.  We say that w  is an additive noise of  level u . Of course, due to the
random choice of the cases in each vertice, the final cluster found by the algorithm may be
somewhat different from the 55 ×  square, as shown in the typical example of figure 3b.
Generally speaking, more additive noise generates more obliterated clusters. Another types
of clusters will also be discussed (See e.g. figures 3c-f). The results shown here may be
extended with few modifications to another types of maps. The standard map is sufficiently
complex to exhibit several interesting features, that we will describe now.
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                          FIGURE 3A                                                                        FIGURE  3B

                            FIGURE 3C                                                                           FIGURE  3D

                         FIGURE 3E                                                                           FIGURE  3F
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FIGURE 4: Performance of the algorithm when the size of the map increases, for the 5X5 standard cluster.

The solid circles in figure 4 denotes the number of surveyed subgraphs for each standard
nn ×  map with 2nk =  vertices with a standard 55 ×  cluster.  The additive noise is of level

5. Each experimental point (solid circle) here is obtained as the median of the averaged
number of surveyed subgraphs in 10 runs of the algorithm for each of five different random
standard maps.  The triangles denotes the values )ln(kkc , with 63.1=c , for comparison.
We will return to this later on section 5.
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When the additive noise is zero, the mean number of visited surveyed subgraphs (circles in
the figure 5) increases appreciably. But the mean number of analyzed surveyed subgraphs
for the standard maps (crosses), increases only slightly. This occurs because the basic
survey routine gives up more easily when the noise level is zero, thus reducing the number
of analyzed subgraphs.

               FIGURE 5: The influence of noise                                  FIGURE 6: The influence of cluster size

Figure 6 shows the mean number of surveyed subgraphs for the standard map with 625
vertices, for some standard clusters of different sizes. As we can see in this figure, the mean
number of surveyed subgraphs seems to increase with the size of the cluster,  for clusters
with 25 vertices or more.

FIGURE 7A: The average size of surveyed subgraphs                    FIGURE 7B: The average number of basic surveys

We can see in figure 7a that the mean size of the surveyed subgraphs decreases with the
number of vertices of the standard map and standard 55×  clusters with noise level 5. This
happens because the algorithm gives up more easily when it searches through larger
“empty” regions outside the cluster within the map. The basic survey routine is called more
times for bigger maps, as we can see in figure 7b.



- 13 -

FIGURE 8: Noise affects the performance                                         FIGURE 9: Finding the optimal value of vb_threshold

The presence of additive noise has influence on the mean number of surveyed subgraphs,
but in a rather complex manner, as we can see in figure 8. We observe that there is a sudden
increase in the mean number of surveyed subgraphs, when the noise level increases above
1. At this point, large zones with more or less the same value appear in the map, and the
algorithm takes some time searching them until they are discarded. This effect is less
pronounced in maps with noise level 3 and 4. Beyond this point, as the noise level
increases, there is a steady increase in the mean number of surveyed subgraphs.

In order to evaluate experimentally the best value for the parameter vb_threshold, we
conducted a test with the 625 vertices standard map with the standard 55× cluster with
noise level 5. As we can see in figure 9, the choice for the parameter vb_threshold is not
very criti cal. We usually adopted the value 8 in our tests, because it is also apparently better
for other more complicated maps.

The cluster of f igure 3c, with noise level 5, was found after analyzing 2,275 subgraphs, and
the one of f igure 3d, in the same conditions, was found after 6,173 subgraphs. The
performance of the algorithm for these two cases are comparable with the performance for
the standard clusters of equivalent size. Note that these two cases could not have been
found by the original circle centered zones algorithm in [6].

Consider now the case where we have two separated 55×  blocks, the “double cluster”
examples. Figures 3e and 3f depict the clusters found when the algorithm tries to analyze
them. In figure 3e, the two blocks are isolated by one region, and in figure 3f they are three
regions apart. In both cases the algorithm finds first one of the isolated blocks (after 741
and 842 searches, respectively), and then, after a longer search, it finds the clusters formed
by joining them (after 5,736 and 11,226 searches, resp.).

As a last example, we analyzed in figure 10 a map of the 2 milli on inhabitants city of Belo
Horizonte, Brazil , with 240 regions, with homicide cases during the year of 1995. North is
up in this map. The most significant cluster is marked in the map. The light-gray regions
have exactly zero cases, but they are included in the cluster by the algorithm because they
link "smaller clusters" with high incidence rates. We can see that the light-gray region in
the bottom of the map is specially large in comparison with the others. This is a nuisance in
the original planning of the map, because this large region limits with zones that are far
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away from the high incidence regions near the center of the map. The best solution here, as
commented in the introduction, would be to split it in several smaller regions. Anyway, we
can see very clearly a north-south almost straight cluster following a large express way in
Belo Horizonte, that is known to be a degraded urban area with high incidence of
homicides.

This algorithm was implemented in C language, on a Linux environment, on a K6-II 500
MHz processor microcomputer.
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                                  FIGURE 10: The homicide cluster in the city of Belo Horizonte
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5. SOME COMMENTS ON THE CONVERGENCE OF THE ALGORITHM

It is a well -know fact that combinatorial algorithms that use simulated annealing converge
to the optimal solution in exponential time in the worst case, but usually find quasi-optimal
solutions in much less time (see [9]).
The process of section 3 of f inding the cluster (if it exists) can be described as a stochastic
process as follows. Suppose that to each vertex kivi ,...,1, =  of the map graph is assigned a

binary variable ib , such that 1=ib   if iv  is in the set of vertices of the current subgraph,

and  0=ib  otherwise.  Define also the binary constants ic , such that 1=ic   if iv  is in the

set of vertices of the cluster, and  0=ic  otherwise. Thus, starting at an initial variable

string okbb ),...,( 1   we attempt to reach at the  string ),...,( 1 kcc , modifying randomly at most

one value  ib  at each step, and producing a sequence of strings

),...,(),...,(,...,),...,(,),...,( 111101 krkkk ccbbbbbb =  after r  steps. Suppose, for

simplicity, that the variable ib  once set to the  value   ic ,  maintain this value during the rest

of the sequence of strings. Suppose also that when, at each step, an index  i  is randomly
chosen there is a fixed probabili ty  s  that ib  assumes the value ic .  So the expected mean

value of  r  is approximately )ln(1 kks − , for large k . See the appendix for a proof. Of
course, the assumptions above are somewhat artificial. The parameter s  may be very
diff icult to establish. It may be not  constant over the map, and  also may vary greatly from
one problem to another. But this crude model can explain, in certain simple situations, the
behavior of the algorithm, as shown in the graph of figure 4. In this particular case the
cluster is very well defined in the map, and the algorithm does not need to worry with small
scattered “clusters” . This is certainly not the case as with the cluster of the city of Belo
Horizonte, or in the “double cluster” example.

The experiments in section 4 suggests that the worst scenario for the algorithm is the
presence of several disconnected “small clusters”  scattered along the map. The algorithm
finds easily each one of these “small clusters” , but only after a lengthy survey it finds the
increasing bigger “clusters” made by joining  these “small clusters” together. So, the
“clumpyness” of the map, loosely defined here as the presence of these scattered
disconnected “small clusters” , is a factor of importance in the performance of the
algorithm. It could also leads us to a discussion of the original concept  of cluster. Perhaps
it would be useful to consider not only the cluster, but also the possible combinations  of
“small clusters” found during the course of the survey.

If we allow that the parameter s  discussed above has a different value for each region of
the map, we can understand better some aspects of the behavior  of the algorithm in the
"double cluster" examples of f igures 3e and 3f.  In figure 3e, for example, we adopt very
small values for the parameter s  for the five vertices between the two 55×  blocks. It
means that it is much more diff icult for the algorithm to recognize that one of these five
vertices are part of the cluster. A similar reasoning applies to the fifteen vertices between
the two 55×  blocks in figure 3f.
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6. APPENDIX

Theorem: The stochastic process described by the graph below

is such that the average number of transitions from state 0  to state k  is asymptotically
given by )ln(1 kks − .
Proof: Let A  be the corresponding stochastic 11 +×+ kk  matrix with entries
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