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Abstract

This article focuses on the problem of estimating the shelf life of food
products by modeling the results coming from sensory evaluations. In such
studies, trainned panelists are asked to judge food attributes by reference to
a scale of numbers (scores varying often from 0 to 6). The usual statistical
approach for data analysis is to fit a regression line relating the scores and the
time of evaluation. The estimate of the shelf life is obtained by solving the
regression equation and replacing the score by a cut-off point (which indicates
product “failure”) previously chosen by the food company. The procedure
used in these sensory evaluations is such that one never knows the exact “time
to failure”. Consequently, data arising from these studies are either right or
left censored. We propose a model which incorporates these informations
and assumes a Weibull for the underlying distribution of the failure time.
Simulation studies were implemented. The approach was used in a real data
set coming from sensory evaluations of a dehidrated food product.

KEY WORDS: left censored; right censored; sensory evaluations; shelf life;
Weibull distribution.



1 Introduction

The quality of food products is a fragile thing, because of their own nature. They
are susceptible to spoilage, loss of nutrients, and changes of sensory properties such
as color, flavor and odor. Consequently stability studies are routinely conducted
in the food industry as a part of each product development program, whether it
includes new product, a product improvement, or a change in type or specification
of an ingredient. Some studies center on the rate of degradation, and others on
estimating the shelf life: the length of time required for the product to be unfit for
human consumption. By unfit for human consumption it is meant that the product
exhibits either physical, chemical, microbiological, or sensory characteristics that
are unaccepted for regular consumption. The manufacturer attempts to develop a
product with the longest shelf life practical, consistent with costs and the pattern
of handling and use by distributors, retailers, and consumers. Inadequate shelf
life determination will lead to consumer dissatisfaction or complaints. At best,
such dissatisfaction will eventually affect the acceptance and sales of brand name
products. At worst, it can lead to malnutrition and even illness. For these reasons,
food processors pay great attention to adequate storage stability or shelf life.

A very practical use of product shelf-life information is for open-dating purposes.
Open dates are placed on the labels of foods and beverage products to assist con-
sumers in the overall process of decision-making and purchase. A variety of dates are
currently used; with the exception of pack date, each is based on the shelf life stab-
lished for the product. Each country has its own regulation, but the most commum
open dates are the following:

e sell-by or pull date: the date after which the food can no longer be sold
as fresh; the last date a retail store should offer the food for sale provided it
has been stored and handled properly; but not the last day it can be eaten
without loss of quality. To allow for a reasonable period of home storage and
use, the pull date should be considerably earlier than the end of shelf life;

e use-by ou expiration date: the last day a food may be acceptable for its
intended use;

¢ freshness or quality assurance date: the date after which the product falls
below optimum quality level. After this date, the food will be edible but will
lose quality. Good manufacturing practice would set this date earlier than the
end of shelf life to allow for normal variations in home storage conditions;

e pack date: the date the product was packed or packaged in the immediate
container in which it will be sold. It does not provide any specific information
as to the quality of the product when purchased or how long it will retain its
quality after purchase.

When one talks about determining the shelf life, chemical, physical, microbiolog-
ical, and nutritional analyses are fundamental but equally important are the sensory
characteristics of the product. For this reason, sensory evaluations are conducted in



food experimentations to determine the shelf life. In such experiments, a sample of
product units is stored and periodically, at preespecified evaluation times, a sample
of units is collected from the ones stored and subjected to sensory evaluations by a
trained panel. Each panelist is asked to judge each product’s atribute separately by
reference to a rating scale, for instance, a seven point rating scale varying from 0 to
6. Because of the destructive nature of the evaluations, units that have already been
evaluated at a given time cannot be restored to be evaluated later on. The usual
statistical approach to analyse this kind of data and estimate the shelf life is to fit a
regression line relating the scores (y) and the preespecified times of evaluation (x).
An estimate of the shelf life is obtained by solving the fitted regression equation for
x and replacing the score (y) by a cut-off point (which indicates product “failure”)
previously chosen by the food company. Gacula and Singh (1989) present examples
in which regression models are implemented to estimate the shelf life. However, this
approach offers dificulties since in general, the assumption of normality and homo-
cedasticity - basic requirements of regression analysis (Draper and Smith, 1998) -
are not valid for sensory scores (Gacula and Singh, 1989). Gacula and Singh (1984)
suggest some transformations of the experimental data to a new scale where the
normality assumption may be approximately satisfied. Alternatives to overcome
the violation of the constancy of variance assumption include the use of variance-
stabilizing transformations and weighted least squares (Draper and Smith, 1998).
However, it seems that these two procedures are not very helpfull to overcome the
problem with this particular kind of data (Gacula and Singh, 1984).

An alternative approach is to fit a parametric lifetime model such as Weibull,
lognormal, to the failure data (Meeker and Escobar, 1998). But, in these experi-
ments, one does not have the “time to failure” of a given unit. For a unit evaluated
at a preestablished time, one of the two situations can happen: the score is either
less than or equal to the cut-off point or greater than the cut-off point chosen by
the food company. In the former case the “failure time” is somewhere between the
start of the experiment and the present time of evaluation. In the latter case, the
product is still good for consumption and its “failure” will take place sometime after
evaluation. Thus, data coming from these sensory evaluations are either left or right
censored (Lawless, 1982). Gacula (1975) and Gacula and Kubala (1975) suggest the
use of a “staggered design” to implement weekly sensory evaluations. The inter-
vals between evaluations are larger at the beginning of the experiment and smaller
towards the end. The number of units sampled increases towards the end of the
experiment. The idea is to get closer to the “real” failure time. Gacula and Kubala
(1975) present examples of data coming from these experiments. Evaluation times
are used as approximations to the real failure time. Shelf life is then estimated using
the Weibull distribution. Two problems can be pointed out: (1) the failure time
model (in this case, Weibull) is not used appropriately since the evaluation times
are fixed and (as a consequence) (2) there is a great risk of underestimating the shelf
life.

The present investigation was motivated by a real situation experienced by the
authors and, to overcome those difficulties, an alternative approach is proposed. In
this approach the right and left censored data are incorporated naturaly. In addition,



the model assumes a Weibull for the underlying distribution of the failure time. By
using this model, all the information available is incorporated.

The paper is organized as follows. In Section 2 we introduce the motivating (real)
situation along with some background information. In Section 3, the proposed model
is presented. The description of the simulation study and the results itself are in
Section 4. In Section 5 the proposed procedure is applied to analyse the sensory
data coming from the motivating situation. The paper concludes with a discussion.

2 Motivating situation

Sensory evaluations were conducted by a food company at the laboratory level in
order to determine the shelf life of a manufactured dehidrated product, stored at
different environmental conditions. Three attributes were evaluated by trained pan-
elists: odor, flavor, appearance. The main characteristics of this study are presented
next.

Experimental design. A lot of product units was sampled from the production
line and the units were randomly assigned to one of the following storage conditions:

e refrigeration: these units were kept under refrigeration at 4°C' (approximately).
Temperature and humidity levels were not controlled but average weekly val-
ues were recorded continuously. These units were used as reference (control)
during the trials;

e room temperature and humidity: average weekly levels were recorded contin-
uously;

e environmental chamber 1: temperature and humidity levels controlled at 30°C’
and 80% repectively;

e enviromental chamber 2: temperature controlled at 37°C. Humidity levels
were not controlled but average weekly values were recorded;

The last two conditions were used in order to simulate an aggressive storage
environment. Researchers expected to register a shorter shelf life under those con-
ditions when compared with storage under room temperature. In addition to the
variables mentioned (relative humidity, temperature), the water activity in each
environment (a,,) was also measured. This parameter is defined by the ratio of the
water vapor pressure of food substrate to the vapor pressure of pure water at the
same temperature a,, = p/py where p=vapor pressure of solution and py = vapor
pressure of solvent (usually water). It is now generally accepted that the water re-
quirements of microorganisms should be defined in terms of the water activity (a.,).
The a,, of most fresh foods is above 0.99. In general, bacteria require higher values
of a,, for growth than fungi, for example. Most spoilage bacteria do not grow below
a,,=0.91, while spoilage molds can grow as low as 0.80. Jay (1992) presents a table
with approximate minimum a, values for growth of important microorganisms in



foods. Some relationships have been shown to exist among a,, values, temperature
and nutrition. That is why those values where also recorded during the experiment.

Laboratory Panel. Forty five (45) subjects were trained for the sensory character-
istics of the product before the main trial started. Sensory evaluations were made
initially and then every week thereafter. Fach week, near eight trained subjects
were selected to form the test panel.

Test Procedure. Evaluations were performed weekly. Each week, one unit was
sampled from each one of the four storage conditions. Each panelist was offered
simultaneously a set of three units: one labeled as reference (control) and other
two test units labeled with a three digits number. One of the two test units was
always a “blind” reference. Therefore, at a given week, each panelist was offered
in random order, three sets of units to be evaluated, namely [RE, BRE, R]; [RE,
BRE, CHI1| and [RE, BRE, CH2|, where RE, BRE and R stand respectively for
“reference”, “blind reference” and “room temperature and humidity”; CHi stands
for “chamber i” i=1,2. Within a given group, the reference unit (RE) was always
evaluated first. For the other two (BRE, R, CH1 or CH2), the order was randomized.
All units were descarded after evaluation.

Measurement Scale. Panelists were asked to compare each test unit (including the
“blind” reference) with the reference and assign a score on a seven-point scale (0 to 6)
individually to each attribute: 6 = “no difference”; 5 = “very slight difference”; 4 =
“slight difference”; 3 = “different”; 2= large difference” 1= “very large difference”;
0="total difference”.

Criterion of Failure. The manufacturer adopted the following failure criterion:
for each attribute, product units scored 0,1,2 or 3 were considered unfit for human
consumption.

Follow up time: units stored at room temperature; chambers 1 and 2 were followed
for 51, 36 and 18 weeks respectively. Table 1 shows panel scores for units stored in
chamber 1 (30°C; 80%), evaluated at the 13" week.



Table 1: Panel scores for units stored in environmental chamber 1 (30°C;80%)

13™ week panelist (code number)
attribute | storage condition | 28 | 21 | 26 | 25| 1| 13| 2
odor refrigerated™ 6| 6 |6 |6 |6] 6|6
CHAMBER 1 6166|3356
flavor refrigerated 6 | 5] 6|6 |[6|6]|6
CHAMBER 1 6 |56 |3 [3]4]2
appearance refrigerated 6 |6 6|6 |6|6]|6
CHAMBER 1 6166|5564

(*) Scale: from 0 (“total difference”)to 6 (“no difference”); (**) “blind” reference.

It should be noticed that the blind references were used only to check the con-
sistency of painelists’ judgement. In other words, there was no interest in studying
that storage condition.

Since attributes were scored separately, it is possible to have a product unit
classified as unfit regarding one particular attribute and fit regarding another one.

According to the failure criterion adopted by the manufacturer, at a given
preestablished evaluation week one of the following situations (for each atribute)might
happen: if the attribute’s score is less than or equal 3 (three) then one knows that
the particular unit has become wunfit for human consumption in a moment some-
where between the beginning of the trial and the evaluation week. On the other
hand, if the attribute’s score is greater than 3 then, that unit is still fit for consump-
tion (regarding that attribute). Unfortunately, because of the trial’s destructive
characteristic, the follow up of that unit is interrupted.

To estimate appropriately the shelf life of that food product it is desirable to
incorporate both the information contained in the right and left censored data. We
will address this problem in the following sections.

3 A Statistical Model for Sensory Data

Suppose a sample of N = >°¥ | n; food product units is taken from the production
line and stored under a given environmental condition. These units will be evaluated
by a trained panel at prestablished evaluation times in order to determine its shelf
life.

Let 7; (i = 1, ..., k) be the evaluation times (fixed). Then, at the evaluation time
71, np units are sampled from the total N and subjected to a sensory evaluation
by n; panelists who score each attribute (odor, flavor, appearance) using a 7 point
rating scale (for instance, 0 to 6).

The evaluation is destructive, consequently these n; units can no longer be fol-
lowed in time. Next at 75, ny units are sampled from the N — n; units left and
evaluated by ny painelists. This process is repeated through the last evaluation
time 7, when the remaining nj units are finally evaluated.



Let Z;; be the score assigned to the j product unit (j = 1,...,n;) evaluated at
the time 7; (i = 1,..., k).

Each of the n; units evaluated at a given time will be considered as unfit for
consumption (regarding a particular attribute) depending on the score assigned by
the panelist. Let us refer for a moment to the real situation described in Section 2. In
that case, the j"* unit evaluated at time 7; will be considered unfit for consumption
(regarding the attribute being evaluated) if Z;;=0,1,2 or 3. If, on the other hand,
Zi; > 3 then the attribute “failure” will occur sometime in the future but we will not
be able to know when at the present time. It should be enfasized that it is possible
to have a unit being considered “unfit” regarding its flavor but “fit for consumption”
regarding its appearance.

We can define a new random variable Y;;, given by

v _ 1 if Z;; < 4 (i.e., if score < 4)
Y1 0 if Z; >4 (ie., if score > 4).

Therefore, at each fixed time 7; we have a random sample of size n; from a
random variable Y;; where Y;; is Bernoulli distributed with probabiity p; given by

pi=PY;=1)=P0<T;<m)

9
where T;; is the failure time of the 5" unit evaluated at ;.

Thus, in a equivalent way, Y;; can be defined as

v 0 lfﬂj>7'z

P(}/;jzsij) = P(O<T;]§TZ>:1—R(TZ), if Sijzl
= P(E] > Tz') = R(Ti), lf Sz'j = 0, (].)

where R(.) in (1) is the reliability function (Nelson, 1990).

The main purpose here is to estimate the shelf life of a food product, taking into
account some sensory quality characteristics. If we take a better look at this problem,
we see that in fact the shelf life itself is a random variable whose behavior for each
attribute follows some underlying distribution. One way to tackle this problema
is to estimate percentiles of each shelf life distribution (considering each attribute
separately) and then pick one for each attribute to represent the “attributes’ shelf
life”. If the manufacturer decides to have only one value reported as a shelf life for
the product, the minium value could be chosen.

What is really important is to estimate characteristics of the shelf life distribu-
tion, such as percentiles, fraction “defective ou unfit” at a given time ¢y (given by
F(to) =1 — R(ty)), to list a few. That can be done by postulating an underlying
distribution for the failure time T and writing down a likelihood function taking
into account the distribution of the random variable Y;;. This approach is presented
in Section 3.1.



3.1 Weibull failure time distribution

It is assumed that the failure time Tj; of the j unit evaluated at time 7; (fixed)
has a Weibull distribution, with parameters aje6>1,and

e the parameters o; and 6 are defined by

a; = exp{X;B} =exp{X) By + X B+ ... +X!85,}, (2)
(7 = 1,2,...n;) and 6 =exp(y) v>0

o X; = (X0, X!, ...,X])is a (q+1) vector of covariates related to the ;" unit
evaluated at 7;

o 3= (0o, 01,...,0,) is a (q+1) vector of parameters associated to the covariates.

Now using the fact that for a Weibull distribution with parameters o and 0,
R(t) = exp{—(a t)°} and Y;; has a Bernoulli distribution with probability p; given
by (1), the likelihood function is given by

3

i
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7,:
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where 8" = (3 0).

Maximum likelihood estimates are obtained by direct maximization of the loga-
ritmum of expression (3). The expressions of the first derivatives are:
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The elements of the Fisher Information matrix 1(0) ((¢ + 2) x (¢ +2)) are given
by
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with I1, I15 and Iy with dimensions (¢41) x (¢+1), (¢+1) x 1 and 1 x 1 respectively.
Maximum likelihood estimator is obtained by implementing numeric optimiza-
tion methods such as the well known Newton-Raphson algorithm. In this work we
have used a minor adjustment to the Newton-Raphson procedure, sometimes used
in statistical problems, called Fisher’s Score (McCullagh and Nelder, 1989).

If0 = (5o, B, ..., Bq, 4) is the maximum likelihood estimator of @ = (5, 1, ..., G4, 7)’
then

o for a given set of covariates X, = (X?,le, - X;-J), the maximum likelihood
estimate of the percentile #,(;) is given by

R 1 1
toj) = & [—In(1—p) |5

)

where, d; = exp{X;8} and 6 = exp{5}

e using maximum likelihood large sample theory (asymptotic normality) and
the delta method(Cox and Hinkley, 1974), it is possible to find the expression
of the asymptotic variance estimator

Var(tyg) =2 1746) Z [para 6= ) ° (6)

where Z is a vector of dimension (q+2) x 1 given by

[ <g1ng1 22%) X "
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Therefore, 95% confidence interval (asymptotic) for t,;y is

- . 1/2

UB = ity +(1,9) {Var(ip)} " (8)
R — 1/2

LB =ty — (1,96){Var(fy) | (9)

e cquivalently, for a given set of covariates X; = (X]Q, -, X7), the maximum
likelihood estimator of the fraction defective in to, Fj(to), is given by

~ R X ~ e:Y

(10)
e making use of the asymptotic normality property of the maximum likelihood

estimator and the delta method (Cox e Hinkley, 1974) we get the expression
of the 95% confidence interval for the fraction defective Fj(ty) =1 — R;(to):

UB:1{&WP*W@W%, (11)
lB:l—@MW%AW@Wﬂ, (12)

where ¢ and Var(¢) in (11) and (12) are given by

A

¢ = In(—In R;(t) ), (13)

T . r 7—1 N
VCL?”(¢) = Z'1 (0) Z {para 0 — 0} s (14)
and Z is a vector of dimension (q+2) x 1 given by
e’ X!
J
J=| ——————— . (15)

e? In(to eXiB )

We point out that expressions (11) and (12) were calculated applying the asymp-
totic normal distribution to the tranformation ¢ (expression [15])for which the range
is unrestricted. Then, the confidence interval for the fraction defective is found ap-
plying the inverse transformation. This procedure suggested by Kalbfleisch and
Prentice (1980; page 15) prevents the occurence of limits outside the range [0,1].
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4 Simulation Study

This section presents simulation results for the Weibull model with no covariates:

X; = (X),...X))=(X))=(1) (fixed) and,
B (Bos Brs -+ By)" = (Bo)-

Therefore,

a; = exp(XJQﬂo) = exp(fo) = a,
and 6 = exp(y) forall j=1,2,...,n; and i =1,2,... k.

Consequently, @ = (y,7)" is the vector of parameters to be estimated by maxi-
mum likelihood.

4.1 Description of the Simulation Study

Some basic questions had to be answered in order to implement the study:

1) Which values of « and ¢ (and consequently of 3, and 7) should be used
in the simulations?

Our main purpuse was to study the “quality” or “performance” of the estimates
obtained by the model proposed in situations which imitate the real data available
as close as possible. Our emphasis was in getting good estimates of percentiles and
fraction of defectives. As measures of “quality” or “performance”, we used:

e the absolute bias B= {(X~, 4;)/N} — (real value of u) where ; are the esti-
mated parameter values for each of the N samples generated;

e the relative bias RB={(absolute value of B)/( real value of u)}x100%;
e the standard deviation (SD) and the mean square error (MSE).

To get a first guess of the range of values to be used in the simulation, the model
proposed was fitted to the real data set. The parameters estimates are summarized
in Table 2.

Table 2: Parameters estimates for the Weibull model applied to the real data

attribute
odor flavor appearance
storage condition a 0 a 0 a o

room temp.and humidity | 0.0191 1.3 0.0181 1.2 0.0193 1.9
environmental chamber 1 | 0.0302 1.6 0.0358 1.4 0.0233 2
environmental chamber 2 | 0.0596 1.6 0.0659 1.4 0.0602 2
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For each storage condition, the average value of the estimates obtained for «
( &) where 0.019, 0.0298 and 0.0619 for storage conditions room temperature and
humidity, chamber 1 and 2 respectively. Simulations were implemented using o =
0.020, @ = 0.035 and o = 0.065. ¢ values ranged from 1.2 to 2, with incremets of
size A =0.2. Note that the values presented in Table 2 are included in this range.

2) Which sample plans should be implemented in the simulation study?

By “sample plan” we mean: the number of weeks of follow-up (nw), the number
of panelists allocated to each week (np) and the total number of product units under
test (N = nw X np).

Once again the idea was also to mimic the scenarios found in the real data set.
Tables 3, 4 and 5 summarize the sample plans used.

Table 3: Scenarios considered in the simulation study: a =0.02 and 6 = 1.2 to 2,
increments of 0.2

characteristics of each sample plan
sample plan N nw®  np®)
I 357 o1 7
IT 714 51 14
I11 280 40 7
v 560 40 14
\Y 504 36 14
VI 224 32 7
VII 448 32 14
VIII 168 24 7
IX 336 24 14

(1): number of units; (2): number of follow-up weeks;
(3): number of panelists assigned to each week.

Table 4: Scenarios considered in the simulation study: a =0.035 and 6 = 1.2 to 2,
incremetns of size 0.2

characteristics of each sample plan
sample plan number N nw®  np®)
I 252 36 7
IT 504 36 14
III 448 32 14
v 392 28 14

(1): number of units; (2): number of follow-up weeks ;
(3): number of panelists assigned to each week.

Sample plans labelled “I” in Tables 3, 4 and 5 are exactly the ones implemented
in the sensory evaluations of the dehidrated product mentioned in the previous
sections.
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Table 5: Scenarios considered in the simulation study: a =0.065 and 6 = 1.2 to 2,
increments of size 0.2

characteristics of each sample plan
sample plan number N nw®  np®)
| 126 18 7
IT 252 18 14
11 168 12 14

(1): number of units; (2): number of follow-up weeks;
(3): number of panelists assigned to each week.

3) Which steps will be followed in the simulation study?

In the proposed model, the underlying distribution of the failure time is a

Weibull but in a real test situation, in fact what is observed is the score assigned
by the panelist to a given product unit. In the model proposed in Section 3, the
results are dichotomized according to the cut-off point stablished by the company.
In other words, the result is either zero or one depending on the “failure” time (T)
be located before ou after the evaluation time (7).

In the simulation study we assumed that the evaluations were implemented
weekly. In addition, the total follow-up time is nw weeks and np panelists are
requested weekly to compose the laboratory panel.

The main steps followed are given below:

step 1: choose a set of parameters values o and ¢, and one of the sample
plans listed in Tables 3, 4 and 5;

step 2: generate a random sample of size N=nwx np of failute times t, from
a Weibull (o, §) were a = e and § = ¢€7; values of a and § were choosen in
step 1;

step 3: dichotomize the results and store them in a vector (Y). The di-
chotomization is done by comparing each of the N failure times t with the N
evaluation times 7 (7 assumes values from 1 to nw weeks). If t> 7 then Y=0,
otherwise Y=1 (failure has already occured );

step 4: calculate the maximum likelihood estimator of 3 and 7 (or, a and ¢)
using the dichotomized data and epression (3);

step 5: using the parameters estimates calculated in step 4, find the estimates
of percentiles and fraction of defectives;

step 6: store the values calculated in 5;
step 7: generate another random sample as in step 2 and repeat steps 3 to 6;

step 8: steps 2 to 7 should be repeated until 1000 samples have been gener-
ated. Then, based on the 1000 random samples, calculate for each percentile
and fraction of defective of interest:
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— the average of the 1000 values estimated;
— the standard deviation (SD) based on the 1000 values;

— the absolute bias (B); the relative bias (RB) and the MSE (mean square
erTor).

These steps were implemented for each one of the sample plans listed in Tables
3, 4 and 5.

4.2 Simulation Results

Tables 6 and e 7 present the simulation results for percentiles of a Weibull («;6),
with o = 0.02 and 6 = 1.2 and 1.6 respectively.

All the comparisons were done taking sample plan “I” as the reference, since
that was the sample plan used in the real data set.

For the Weibull (0.02; 1.2) plans II, V e IV presented better results than plan I,
considering all the performance measures(SD; RB and MSE).

The results obtained with plan IT where expected since the sample size for this
case was doubled. On the other hand, plans IV and V generated results much more
precise and with smaller bias. In other words, the test could have been implemented
with a shorter follow-up time (40 ou 36 weekes). But the price one would have to
pay is to alocate 14 instead of 7 panelists each week.

For the Weibull(0.02; 1.6) the results are practically the same. Here, plans IV
and V invert positions. Plans II, IV and V have better measures of performance
(once compared to plan I) when we estimate percentiles.

Similar results where found for other values of ¢, for instance 6 = 1.4, 1.8 and 2.

Table 8 shows the results of the simulation study considerig a Weibull with o =
0.02 and 6 = 1.2. The quantities estimated were fractions of defectives calculated
at different points in time.

Here, it is not possible to identify sample plans with better peformance than
plan I for all measures calculated. For instance, for a Weibull (0.02; 1.2) plans II,
IV and V are better than plan I when we take into account the SD and MSE (one
exception is plan V for ¢ty = 32 weeks).

For the Weibull (0.02; 1.6) plan IT has better performance than plan IV and V.
But, plans IV and V are not better than plan I when all measures of performance
are compared. For instance, for plan IV, the bias associated with the estimate of
to = 4 and 32 weeks and the relative bias for 32 weeks are both larger than the ones
obtained for plan I.

Therefore, when the quantity to be estimated is the fraction of defectives, the
results have shown that for the Weibull (0.02; 6) plan II has the best performance
regarding all performance measures. Plans IV and V have also good performance
but it depends also on the indicator choosen for the comparison.

The results for other values of ¢ (1.4;1.8 and 2) are very similar to the ones just

described.
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Table 6: Simulation results (1000 samples)- percentiles ¢, of a Weibull with a = 0.02

and 6 = 1.2
plan p true value estimate SDW bias(?) RB®) (%) MSE
N=357 107 ° 0.0005  0.0015 0.0038 0.0010 201 1.5x 1077
nw=51 10~° 0.0034  0.0072 0.0128 0.0039 114 0.0002
np=7 1074 0.0232  0.0372 0.0459 0.0140 60 0.0023
I 1073 0.1582  0.2029 0.1698 0.0447 28 0.0308
1072 1.0817 1.1866 0.6110 0.1049 10 0.3843
N=714 1076 0.0009  0.0012 (-68)™)  0.0004 (-60) 86 (-57) 1.5 x 10°°
nw=51 10~° 0.0052 0.0054 (-58)  0.0018 (-54) 54 (-52) 3x107°
np=14 10~* 0.0305 0.0240 (-48)  0.0073 (-48) 32 (-47) 0.0006
m 103 0.1840 0.1033 (-39)  0.0258 (-94) 16 (-43) 0.0110
1072 1.1531 0.4094 (-33)  0.0713 (-32) 7 (-30) 0.1738
N=280 107° 0.0020 0.0045 0.0015 295 2.2x 1077
nw=40 1073 0.0089 0.0154 0.0055 161 2.7 x 1074
np=7 1074 0.0425 0.0545 0.0193 83 0.0033
mur 10-3 0.2176 0.1958 0.0594 38 0.0419
1072 1.2142 0.6810 0.1324 12 0.4814
N=560 107° 0.0013 0.0022 (-42)  0.0008 (-20) 155 (-23) 5.2x 10~°
nw=40 10~° 0.0066 0.0085 (-34)  0.0031 (-21) 92 (-19) 83 x107°
np=14 10~* 0.0351 0.0343 (-25)  0.0119 (-15) 51 (-15) 0.0013
v 1073 0.1978 0.1372 (-19)  0.0397 (-11) 25 (-11) 0.0204
1072 1.1806 0.5125 (-16)  0.0989 (-6) 9 (-10) 0.2724
N=504 10°° 0.0012 0.0020 (-47)  0.0007 (-30) 142 (-29) 4.3 x10°°
nw=36 10~° 0.0062 0.0080 (-38)  0.0028 (-28) 83 (:27) 7.2x107°
np=14 10~* 0.0336 0.0331 (-28)  0.0104 (-26) 45 (-25) 0.0012
vV 1078 0.1903 0.1346 (-21)  0.0321 (-28) 20 (-29) 0.0191
1072 1.1489 0.5064 (-17)  0.0672 (-36) 6 (-40) 0.2610
N=224 107° 0.0034 0.0081 0.0029 574 7.4 x107°
nw=32 107° 0.0133 0.0253 0.0099 290 7.4 x107*
np=7 1074 0.0560 0.0809 0.0328 141 0.0076
VI 1073 0.2560 0.2619 0.0978 62 0.0781
1072 1.3003 0.8265 0.2185 20 0.7308
N=448 107° 0.0018 0.0034 0.0013 255 1.3 x 1077
nw=32 10°° 0.0082 0.0125 0.0048 142 0.0002
np=14 10~* 0.0405 0.0466 0.0173 74 0.0025
VIiL 1073 0.2122 0.1726 0.0541 34 0.0327
1072 1.2057 0.5993 0.1240 11 0.3745
N=168 107° 0.0082 0.0260 0.0077 1537 7.4 x 1071
nw=24 10~° 0.0252 0.0627 0.0218 640 0.0044
np=7 10~* 0.0846 0.1563 0.0614 264 0.0282
VIII 1073 0.3170 0.4049 0.1588 100 0.1892
1072 1.3835 1.0676 0.3018 28 1.2308
N=336 10°° 0.0034 0.0087 0.0029 583 8,5 x 107°
nw=24 107° 0.0132 0.0259 0.0098 287 7.6 x 107*
np=14 10~* 0.0546 0.0794 0.0314 135 0.0073
IX 1073 0.2480 0.2497 0.0898 57 0.0704
1072 1.2677 0.7566 0.1860 17 0.6071

(1) standard deviation; (2) estimate - real value; (3) relative bias =(abs.value(bias)/real)x 100%

(4) % improvement to plan I= ((plan Y -

plan I)/(plan I)) x 100%



Table 7: Simulation results (1000 samples) - percentiles t,, of a Weibull with ov = 0.02

and 6 = 1.6
plan P true value estimate Sp bias(?) RB® (%) MSE
N=357 10°° 0.0089 0.0170 0.0211 0.0081 91  0.0005
nw=51 1073 0.0375 0.0590 0.0590 0.0215 57 0.0039
up=7 1074 0.1581  0.02116 0.1640 0.0535 34 0.0298
I 1073 0.6670 0.7848 0.4417 0.1178 18 0.2090
1072 2.8205 3.0236 1,0872 0.2030 7 1.2232
N—714 10 © 0.0120 0.0105 (:50)™ 0.0032 (-60) 35 (-62) 0.0001
nw=51  10-5 0.0461  0.0324 (-45) 0.0086 (-60) 23 (-60) 0.0011
np=14 10~ 0.1795  0.0984 (-40) 0.0213 (-60) 13 (-62) 0.0101
m o10°° 07122 0.2854 (-35)  0.0452 (-62) 7(-61)  0.0835
102 2.8%96  0.7425 (-46) 0.0691 (-66) 9 (-71)  0.5560
N=280 10~° 0.0221 0.0343 0.0132 149 0.0014
nw=40 107° 0.0706 0.0879 0.0331 88 0.0088
up=7 1074 0.2348 0.2258 0.0767 48 0.0057
ur 10-3 0.8205 0.5691 0.1536 23 0.3474
1072 3.0446 1.3190 0.2241 & 1.7899
N=560 10" 0.0143  0.0165 (22) 0.0054 (-33) 1 (-33) 0.0003
nw—40 1077 0.0518  0.0470 (-20) 0.0143 (-33) 38 (-33) 0.0024
up—14 10 0.1925  0.1328 (-19) 0.0343 (-36) 22 (-35) 0.0188
v 103 0.7367  0.3622 (-18) 0.0698 (-41) 10 (-44) 0.1360
10-2 929184 0.8875 (-18) 0.0979 (-52) 3 (-57) 0.7972
N—504 10 © 0.0162 0.0230 (9) _0.0073 (-10) 82 (-10) _0.0000
nw=36 107 0.0562 0.0600 (2) 0.0187 (-13) 50 (-12)  0.0040
np=14 10~ 0.2019  0.1589 (-3) 0.0438 (-18) 28 (-18) 0.0272
vV 1073 0.7538  0.4139 (-6) 0.0869 (-26) 13 (-28) 0.1788
1072 2.9397 0.9784 (-10)  0.1191 (-41) 4 (-43) 0.9714
N=224 107° 0.0329 0.0697 0.0240 270 0.0054
nw=32 107° 0.0936 0.1475 0.0561 150  0.0025
np=7 1074 0.2818 0.3245 0.1237 78 0.1206
vl 1073 0.9063 0.7268 0.2393 36 0.5855
1072 3.1596 1.5415 0.3391 12 2.4911
N=448 10~° 0.0188 0.0269 0.0099 112 0.0008
nw=32 1077 0.0624 0.0703 0.0249 66  0.0056
np=14 10~* 0.2150 0.1843 0.0569 36 0.0372
ViL 1073 0.7749 0.4721 0.1078 16 0.2345
1072 2.9485 1.0886 0.1280 5 1.2015
N=168 10~° 0.0629 0.1627 0.0540 607  0.0294
nw=24 1073 0.1463 0.2943 0.1088 290  0.0984
up=7 10714 0.3668 0.4493 0.2087 132 0.3453
VI 1073 1.0125 1.0530 0.3455 52 1.2282
1072 3.1924 1.9606 0.3718 13 3.9820
N=336 10° 0.0288 0.0546 0.0200 224 0.0034
nw=24 107° 0.0839 0.1205 0.0464 124 0.0167
np=14 10~* 0.2583 0.2737 0.1002 63 0.0849
IX 1073 0.8499 0.6225 0.1830 27 0.4210
1072 3.0402 1.2932 0.2196 & 1.7206

(1) standard deviation; (2) estimated - real; (3) relative bias =(abs.value(bias)/real value)x100%
plan I)/(plan I)) x 100%

(4) % improvement to plan I= ((plan Y -
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Table 8: Simulation Results (1000 samples)- fraction of defectives at t, for a Weibull
witha=0.02and 6 =1.2

plan  tg true value estimate SD bias®) RB®) (%) MSE
N=357 1 0.0019  0.0105 0.0064 0.0013 15 4.2x1077?
nw=51 2 0.0208  0.0225 0.0109 0.0017 8 1.2x10*
up=7 4 0.0471 0.0489  0.0176 0.0018 4 3.1x10*
I 8 0.1050  0.1059  0.0254 0.0009 0.9 6.5x10*

12 0.1651 0.1651 0.0286 7.2 x 10~° 0.004 8,2x1074

16 0.2249  0.2243  0.0291 -0.0006 0.3 85x10~*

20 0.2832  0.2824 0.0284 -0.0008 0.3 81x10*

24 0.3393  0.3386 0.0277 -0.0007 02 7.8x10*

32 0.4431 0.4431 0.0300 4.6 x 107? 0.01 9.0x10°*

N=714 1 0.0096 0.0043 0.0005 5 1.8x107°
nw=51 2 0.0213  0.0075 0.0005 2 57x107°
np=14 4 0.0473  0.0124 0.0002 04 20x10*
8 0.1043  0.0180 -0.0007 0.7 0.0003

I 12 0.1637  0.0201 -0.0014 0.9 0.0004

16 0.2231  0.0203 -0.0019 0.8 0.0004

20 0.2812  0.0196 -0.0020 0.7 0.0004

24 0.3374  0.0190 -0.0019 0.6 0.0004

32 0.4417  0.0207 -0.0014 0.3 0.0004

N=280 1 0.0109 0.0077 0.0018 19 62x1077
nw=40 2 0.0229  0.0126 0.0021 10 1.6 x 1074
up=7 4 0.0491  0.0196 0.0019 4 4.0x107*
8 0.1055  0.0270 0.0005 0.5 7.0x10*

I 12 0.1644  0.0292 -0.0006 04 9.0x10*

16 0.2237  0.0291 -0.0012 0.5 8.0x10~*

20 0.2821  0.0290 -0.0011 04 80x10*

24 0.3387  0.0309 -0.0006 0.2 0.0010

32 0.4442  0.0420 0.0011 0.3 0.0018

N=560 1 0.0099  0.0055 0.0008 9 31x107°
nw=40 2 0.0217  0.0093 0.0009 4 88x107°
np=14 4 0.0477  0.0149 0.0005 1 22x1074
8 0.1044  0.0207 -0.0005 0.5 4.3x10*

IV 12 0.1639  0.0223 -0.0012 0.7 5.0x10~*

16 0.2236  0.0218 -0.0014 0.6 5.0x10-4

20 0.2822  0.0211 -0.0011 04 4.0x10*

24 0.3388  0.0218 -0.0005 0.1 50x10*

32 0.4443  0.0294 0.0012 0.3 5.0x10*

N=504 1 0.0103  0.0058 0.0012 13 34x1077
nw=36 2 0.0222  0.0096 0.0014 7 94x107°
up=14 4 0.0484  0.0149 0.0013 3 22x107*
vV 8 0.1053  0.0202 0.0003 0.3 41x10*

12 0.1645 0.0214 -0.0006 0.4 4.6x1074

16 0.2237  0.0213 -0.0012 0.5 4.5x107*

20 0.2818  0.0220 -0.0014 0.5 4.9x10*

24 0.3379  0.0250 -0.0014 04 6.3x10*

32 0.4422  0.0364 -0.0009 0.2 0.0013

(1)standard deviation; (2) estimate - real value; (3) relative bias =(abs.value(bias)/real

value) x 100%
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5 Motivating Example Revisited
The analysis of the data consisted of two parts:

1. for each storage condition and atribute separately, the model proposed in
Section 3 was fitted and its adequacy was checked. Percentiles and fraction of
defectives where then estimated;

2. the results are then compared whenever possible with the ones obtained by the
usual approach of fitting a regression line relating the scores and the evaluation
weeks. In this case, the shelf life is obtained by inverse regression.

5.1 Results obtained with the proposed model with the
Weibull as the underlying distribution

“Room temperature and humidity” storage condition.

Table 9 presents the parameter estimates obtained with the proposed model fitted
to the data coming from the “room temperature and humidity” storage condition.

Table 9: Parameter estimates for the condition “room temperature and humidity”.

atribute estimates
Bo A a=¢er §=¢
odor -3.96 0.28 0.0191 1.3
(p=0.04)*
flavor -4.01 0.19 0.0181 1.2
(p=0.04)*
appearance -3.95 0.62 0.0193 1.9

(p=0.00003)*
(*) p value from Hg: v =0 vs. Hy: ~ # 0(all significant at 5%).

Figure 1 presents the plot of the hazard function for each atribute, for products
stored at this condition. Note that the atribute “appearance” is the one which
deteriorates slower than the others until the 20" week. The other two atributes
have similar behaviors.

Model adequacy was checked by using the test statistic C (Lee, 1992). No evi-
dence of lack of fit was found (p values were 0.88, 0.69 and 0.63 with models fitted
to “odor”, “flavor” and “appearance” respectively).

Tables 10 and 11 present estimates of percentiles and fraction defectives calcu-
lated at specific time points respectively. The confidence intervals are wide, implying
a low precision associated with the estimates.

If the food company decides to stablish as the shelf life the percentile 1% for this
storage condition then, for each one of the atributes we have:

e odor: estimated shelf life is 1.6 weeks (95% confidence interval:[0.6; 4.2]);
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Table 10: Percentiles estimates for each atribute (“room temperature and humid-

ity” )

atribute estimates
p tp (weeks) LI* LS*

odor 107 0.0015  0.00006 0.0355
107 0.0085 0.0006  0.1167

10~4 0.0485 0.0061  0.3835

103 0.2780  0.0612  1.2624

10—2 1.5986 0.6123  4.1739

0.05 5.5004 3.0975  9.7675

0.50 39.5969 33,3582 47.0024

0.63 52.0520 41,5958 65.1368

flavor 10- 0.0006  0.00002 0.0216
107 0.0039 0.0002  0.0774

1074 0.0262 0.0025  0.2773

1073 0.1778 0.0318  0.9950

10—2 1.2079 0.4066  3.5879

0.05 4.6770 2.4495  8.9304

0.50 40.6592  33.5142 49.3274

0.63 54.8639  42.3966 70.9974
appearance 107 0.0308 0.0036  0.2634
107 0.1061 0.0181 0.6231

10~4 0.3661 0.0909 14744

1073 1.2635 0.4572  3.4920

102 4.3703 2.3004  8.3025

0.05 10.5017  7.1677 15.3863

0.50 42.6050 37.1621 48.8452

0.63 54.8639  42.3966 70.9974

(*) 95% confidence limits.
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Figure 1: Estimated hazard function for each atribute (“room temperature and
humidity”).

e flavor: shelf life is 1.2 weeks ([0.4;3.6]);
e appearance: shelf life is 4.4 weeks ([2.3; 8.3]).

If we take into account the three atributes together, the shelf life should be 1.2
weeks (the smallest one).

The food company estipulates a “sell by”’date of 48 weeks. since this date is
supposed to allow a reasonable period of home storage and use, it is fair to say that
the shelf life is greater than this “sell by” date.

One should keep in mind that the data that has been analysed is related only to
the “sensory quality characteristics” of the product.

Taking into account the results presented in Table 11, at after 48 weeks of storage,
we expect to have:

e odor: fraction defective estimate of 59% ([49;69]). In other words, it is ex-
pected that 59% of the products will experience a decrease in the quality level
regarding this atribute;

e flavor: 57% ([48;67));
e appearance: 58% ([48;69]).
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Table 11: Fraction of defective estimates at t; weeks (“room temperature and hu-
midity” storage condition)

atribute estimates
to (weeks) fraction defectives LI* LS*

odor 1 0.0054 0.0013 0.0231
2 0.0134 0.0042  0.0427

4 0.0331 0.0138 0.0786

8 0.0806 0.0448  0.1430

12 0.1337 0.0875  0.2015

16 0.1892 0.1379  0.2566

20 0.2439 0.1924  0.3099

24 0.3010 0.2475  0.3630

32 0.4075 0.3477  0.4733

36 0.4574 0.3903  0.5301

40 0.5046 0.4283  0.5862

44 0.5491 0.4626  0.6401

48 0.5908 0.4937  0.6905

52 0.6295 0.5224  0.7367
flavor 1 0.0080 0.0020  0.0315
2 0.0183 0.0061  0.0545

4 0.0416 0.0182  0.0937

8 0.0933 0.0537  0.1595

12 0.1474 0.0990  0.2165

16 0.2019 0.1499  0.2688

20 0.2555 0.2028 0.3188

24 0.3075 0.2546 0.3684

32 0.4052 0.3456  0.4708

36 0.4505 0.3837  0.5232

40 0.4932 0.4174  0.5747

44 0.5334 0.4477  0.6242

48 0.5711 0.4753  0.6708

52 0.6063 0.5006  0.7138
appearance 1 0.0006 0.00009  0.005
2 0.0023 0.0005 0.0119

4 0.0085 0.0025 0.0291

8 0.0305 0.0130 0.0704

12 0.0636 0.0341  0.1170

16 0.1061 0.0665 0.1672

20 0.1563 0.1096  0.2201

24 0.2122 0.1615  0.2759

32 0.3344 0.2770  0.4000

36 0.3976 0.3329  0.4698

40 0.4601 0.3845  0.5429

44 0.5209 0.4320 0.6162

48 0.5790 0.4757  0.6763

52 0.6336 0.5163 0.7504

(*)95% confidence limits.
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Chamber 1 (30 °C; 80% relative humidity)and Chamber 2(temperature
controlled at 37 °C).

In this situation, it was assumed that Tj;, the time to failure of the j unit
evaluated at 7; (fixed evaluation time) has a Weibull (a;; 6) distribution (6 > 1)
where:

ij = eXp(Xfﬂo+X;ﬁl>
and 6 = exp(y) forall j=1,2,...n; and i=1,2 ..k

with: k£ = 18 4+ 36 (chambers 1 and 2) and

Yl _ { 0 if the 5% unit was stored in chamber 2

771 1 if the j unit was stored in chamber 1

Here, 8 = (0o, #1,7)". Tables 12 and 13 present the results of the model fitting.

Table 12: Parameter estimates for the model with a “dummy” variable for chamber
1 and 2

estimates
atribute o By A (4)
odor -3.50 0.68 0.48 (1.6)
(p=0)™ (p=0)
sabor -3.33 0.61 0.31 (1.4)
(p=0.000006)*)  (p=0.02)*)
aspecto -3.76 0.95 0.68 (2.0)
(p=0)™) (p=0.00002)™*)

*) p-value for Hy : v = 0 (significant at 5% level).
Y

Table 13: Parameter estimates of the Weibull distribution (for each condition)

atribute
odor flavor appearance
condicao a* 0 a 0 at

6
chamber 1 | 0.0302 1.6 0.0358 14 0.0233 2
chamber 2 | 0.0596 1.6 0.0659 1.4 0.0602 2

(*) a = exp(/% + A x) where x=0 ou 1.

Figure 2 presents the estimated hazard functions for the atribute “flavor”, for
each storage condition. Model adequacy was checked for each condition/atribute by
using the test statistic C (Lee, 1992). Is all cases there is no evidence to conclude
that the models are inadequate (smallest p value = 0.19).

Tables 14 and 15 present the percentiles and fraction defectives estimates for
each condition.
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Figure 2: Hazard function plot (“flavor”) for products stored in chambers 1 and 2
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Table 14: Percentiles estimates (f, weeks) (storage conditions: chambers 1 and 2)

atributes
P odor flavor appearance

chamber 1 10~ 0.0064 0.0010 0.0381
(0.0006; 0.0669)*  (0.00006; 0.0157) (0.0048; 0.3045)

107 0.0265 0.0054 0.1229
(0.0038; 0.1847) (0.0005; 0.0542) (0.0224; 0.6754)

104 0.1100 0.0301 0.3966
(0.0237; 0.5103) (0.0049; 0.1865) (0.1050; 1.4994)

103 0.4568 0.1663 1.2810
(0.1478; 1.4115) (0.0430; 0.6428) (0.4921; 3.3345)

1072 1.9017 0.9214 4.1444
(0.9220; 3,9228) (0.3813; 2.2263) (2.3022; 7.4610)

0.05 5.2093 3.0889 9.4999
(3,3393; 8.1265) (1.7724; 5.3834) (6.7711; 13.3286)

0.50 26.3335 21.4991 35.7320
(22.0239; 33.9882)  (18.0625; 25.2091)  (28.5776; 51.4514)

0.63 32.5615 27.8813 42.9463
(27.1043; 39,1175)  (23.3141; 33.3431)  (33.7206; 54.6962)

chamber 2 10~ 0.0032 0.0005 0.0147
(0.0003; 0.0349) (0.00003; 0.0086) (0.0017; 0.1305)

103 0.0135 0.0030 0.0474
(0.0019; 0.0964) (0.0003; 0.0297) (0.0078; 0.2894)

10~ 0.0559 0.0163 0.1530
(0.0117; 0.2666) (0.0026; 0.1023) (0.0364; 0.6426)

1073 0.2320 0.0901 0.4941
(0.0728; 0.7388) (0.0230; 0.3534) (0.1708; 1.4291)

1072 0.9657 0.4991 1.5986
(0.4524; 2.0613) (0.2026; 1.2298) (0.7997; 3.1955)

0.05 2.6452 1.6733 3.6644
(1.6284; 4.2972) (0.9343; 2.9968) (2.3611; 5.6872)

0.50 13.3435 11.6793 13.8298
(11.6882; 14.7259)  (9.3733; 14.2473)  (11.8921; 15.7077)

0.63 16.5344 15.1035 16.5656

(13.2943; 20.5642)

(11.9220; 19.1341)

(13.7009; 20.0293)

(*) 95% confidence interval.
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Table 15: Fraction of defectives (at t; weeks) estimates (storage conditions: cham-

bers 1 and 2)

atributo

to odor sabor aspecto

chamber 1 1 0.0035 0.0112 0.0006
(0.0008; 0.0153)*  (0.0035; 0.0351)  (0,00008; 0.0047)

2 0.0184 0.0282 0.0024
(0,0035; 0.0338)  (0,0115; 0.0682)  (0,0005; 0.0119)

4 0.0329 0.0701 0.0093
(0.0144; 0.0743)  (0.0370; 0.1307)  (0.0029; 0.0300)

8 0.0976 0.1688 0.0359
(0.0583; 0.1609)  (0.1143; 0.2454)  (0,0169; 0.0755)

12 0.1795 0.2733 0.0780
(0.1269; 0.2505)  (0.2105; 0.3504)  (0.0463; 0.1299)

16 0.2702 0.3753 0.1331
(0.2106; 0.3428)  (0.3096; 0.4498)  (0.0910; 0.1925)

20 0.3636 0.4703 0.1987
(0.2977; 0.4391)  (0.4004; 0.5460)  (0.1472; 0.2652)

24 0.4550 0.5562 0.2716
(0.3789; 0.5387)  (0.4783; 0.6374)  (0.2078; 0.3519)

32 0.6197 0.6979 0.4275
(0.5141; 0.7260)  (0.5998; 0.7908)  (0.3237; 0.5485)

chamber 2 1 0.0106 0.0253 0.0040
(0.0032; 0.0351)*  (0.0097; 0.0651)  (0.0008; 0.0206)

2 0.0321 0.0631 0.0155
(0.0131; 0.0775)  (0.0311; 0.1259)  (0.0046; 0.0517)

4 0.0953 0.1529 0.0591
(0.0527; 0.1691)  (0.0957; 0.2395)  (0.0267; 0.1284)

8 0.2645 0.3447 0.2117
(0.1892; 0.3624)  (0.2610; 0.4454)  (0.1403; 0.2123)

12 0.4468 0.5177 0.4110
(0.3480; 0.5593)  (0.4163; 0.6276)  (0.2128; 0.5240)

16 0.6105 0.6586 0.6049
(0.4864; 0.7366)  (0.5396; 0.7743)  (0.4754; 0.7373)

20 0.7414 0.7658 0.7630
(0.5977; 0.8659)  (0.6349; 0.8764)  (0.6055; 0.8923)

24 0.8374 0.8436 0.8725
(0.6862; 0.9420)  (0.7092; 0.9384)  (0.7071; 0.9684)

32 0.9446 0.9351 0.9734

(0.8115; 0.9934)

(0.8141; 0.9882)

(0.8449; 0.9991)

(*) 95% confidence interval.



26

Here, the results seem to indicate that units stored in chamber 2 (37°C') had the
atributes deteriorated faster than those products stored in chamber 1.
So, as we have done in the case of the storage condition “room temperature and

humidity”, if the food company decides to use as a shelf life the percentile 1% then
(see Table 14):

e for units stored in chamber 1 (30°C' and 80%):

— “odor”: 1.9 weeks (13 days) ([0.9 weeks; 3.9 weeks]);
— “fHavor”: 0.9 weeks (6 days) ([0.4 weeks; 2.2 weeks]) and
— “appearance”: 4.1 weeks (29 days) ([2.3 weeks; 7.5 weeks]);

e for units stored in chamber 2(37°C):

— “odor”: 1 week (7 days) (0.5 weeks; 2.1 weeks]);
— “flavor”: 0.5 weeks (3.5 days) ([0.2 weeks; 1.2 weeks]) and
— “appearance”: 1.6 weeks (11 days) ([0.8 weeks; 3.2 weeks]);

5.2 The Usual Approach

“Room Temperature and Humidity” condition.

We have already mentioned that the usual approach to estimate the shelf life is
to fit a linear regression model. For the real data set under study we have:

Yij = Bo + Prweek; + ;5 i=1,...,51 (week) j=1,2,.,n, (16)

where:
e y;; is the score of the j unit evaluated at the i"* week;

e week; is the independent variable representing the evaluation weeks. There-
fore, week; =1st.week, ..., weeks; = 51" week;

e n; is the number of replicates (ou judges) at the i week.

The results of the fitted model are in Table 16.

There is no indication of lack of fit (5th column of Table 16). So, we conclude
that, in fact, the scores decrease linearly in magnitude with the weeks.

The third column of Table 16 presents the estimates (using inverse regression)
of the shelf life. In fact, those are the weeks in which the mean score reaches the
value three (3).

Therefore, the estimated shelf life is 49, 51 e 52 weeks respectively for the
atributes “odor”, “flavor” and “appearance” respectively. 95% confidence intervals
were also constructed (Draper and Smith, 1981 - page 49).
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Table 16: Simple linear regression model fitted to the data comming from the storage
condition “room and temperature humidity”

atribute estimates other measures
A((]l) Bl week when score=3(2) R%  lack of fit test(®)

odor 5.66  -0.0544 49 24% 0.65
(p=0) (p=0) (44:56) (p=0.95)

sabor 5.46  -0.0485 51 22% 0.66
(p=0) (p=0) (46:59) (p=0.95)

aspecto  6.00 -0.0582 52 38% 1.25
(p=0) (p=0) (48:56) (p=0.15)

(1) parameter estimate and p-value for Hy:3, = 0; (2) obtained by using inverse
regression; (3) lack of fit test: Hp: no lack of fit

Results for Chamber 1 (30°C' and 80%)and Chamber 2 (37°C).

A linear regression model was also fitted to the data coming from units stored
in chambers 1 and 2. The results are presented in Table 17.

Table 17: Simple linear regression model fitted to chambers 1 and 2.

storage atribute estimates other measures
/981) ,31 semana R?  adequacio do modelo®)
quando
nota=3(%)
chamber 1 odor 554  -0.0761 33 24% 0.65
(p=0)  (»=0)  (30;38) (p=0.93)
flavor 547  -0.0944 26 31% 0.69
(p=0) (p=0)  (23;29) (p=0.89)
appearance  5.98  -0.0632 47 23% 1.02
(p=0) (p=0)  (41:57) (p=0.44)
chamber 2 odor 6.21  -0.1970 16 43% 1.34
(p=0) (p=0)  (15:18) (p=0.19)
flavor 5.60 -0.171 15 36% 0.70
(p=0) (p=0)  (14:17) (p=0.78)
appearance  5.77  -0.166 17 34% 2.38
(p=0) (p=0)  (15;19) (p=0.005)*

(1) parameter estimate and p-value for Ho:/3, = 0; (2) obtained by using inverse regression; (3)
lack of fit test: Ho: no lack of fit; (4) significant at 5%

Note that for Chamber 1, there is no indication of lack of fit.

The point estimates for the shelf life are 33, 26 e 47 weeks for “odor”, “flavor”
and “appearance” respectively.

On the other hand, for Chamber 2 there is an indication of lack of fit for the
atribute “appearance” (p=0.005). The usual residual plots were constructed to
identify possible violations on the model assumptions. They all indicated problems
with the homocedasticity assumption. The shelf life point estimates are 16 and 15
weeks for the atributes “odor” and “flavor” respectively. These values are smaller
than the ones obtained for Chamber 1.
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5.3 Results Comparison

Table 18 presents the shelf life estimates for “room temperature and humidity”
condition, according to each of the two approaches: simple linear regression and the
proposed model.

Table 18: Shelf life estimates obtained according to each approach (“room temper-
ature and humidity” condition).

approach
linear regression proposed model
atribute shelf life (zg) shelf life (week) (V) fraction
xo = week when mean defectives at 20?) (%)
score(or median) =3
odor 49 to.50=40 60
(44; 56) (33; 47) (50; 70)
flavor 51 to50=41 60
(46; 59) (34; 49) (49; 70)
appearance 52 to.50=43 63
(48; 56) (37; 49) (52; 75)

(1) values in Table 10; (2) calculated with a and é estimates in Table 9.

The values shown in column 1 of Table 18 were calculated by inverse regression.
In other words, they were obtained by making “Score=3" in the fitted regression
line (Score=a+b * Week) and then solve to find the week value.

Let us assume for a moment that the usual model assumptions (normality and
homocedasticity) are valid. Then, since the mean and median are the same in the
Normal distribution it is fair to say that, the estimated fraction of defectives at
weeks 49 (odor), 51 (flavor) and 52 (appearance) are all 50%.

The third column of Table 18 shows the fraction of defective estimates at weeks
49, 51 and 52, calculated with the proposed model. In other words, using the
proposed approach, the fraction of defectives at weeks 49, 51 and 52 are 60%, 60%
and 63% respectively.

Now, in order to have comparable results, the second column presents the shelf
life estimates, calculated with the proposed approach. There, it was assumed that
the company has chosen the percentiles 50% as the shelf life values.

As Tables 19 and 20 present similar results calculated for chambers 1 and 2
respectively.
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Table 19: Shelf life estimates obtained according to each approach (Chamber 1:
[30°C"; 80%]).

approach
linear regression proposed model
atribute shelf life (zo) shelf life (week) (V) fraction
zo = week when mean defectives at 29 (%)
score (or median) =3
odor 33 to.50=26 03
(305 38) (22; 34) (53; 75)
flavor 26 to.50=21 61
(23; 29) (18; 25) (51; 68)
appearaice 47 to.50=360 65
(41; 57) (29; 51) (51; 86)

(1) values in Table 14; (2) calculated with a and é estimates in Table 13.

Table 20: Shelf life estimates obtained according to each approach (Chamber 2:
[37°C1).

approach
linear regression proposed model
atribute shelf life(zo) shelf life (week) (V) fraction
zy = week when mean defectives at 29 (%)
score (or median) =3
odor 16 t0‘50:13 62
(15; 18) (125 15) (49; 74)
flavor 15 t0‘50:12 63
(14; 17) (9; 14) (51; 74)
appearance 17 to.s50=14 064
(15; 19) (12; 16) (51; 78)

(1) values in Table 14; (2) calculated with a and é estimates in Table 13.

6 Discussion

The two approaches discussed in this article have both strong and weak points.

The shelf life estimation via linear regression models relating the scores and the
(fixed) evaluation times has the advantage of been very easy to implement and the
results are easy to interpret. In addition, there is a great number of comercial
softwares available which deal with regression analysis and model checking.

One of the drawbacks associated with this approach is the model assumptions.
The data analysis and the analysis of similar kind of data indicate that, at least, the
homocedasticity assumption is not valid for data arising from these situations. In
other words, the panelists all seam to “agree” at the begining of the study. As the
time goes on and the products’ atributes start to show some kind of deterioration,
the variability on the scores increases. But we believe that the main disadvantage
of this approach is the difficulty to estimate percentiles and fraction defectives at
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choosen time points. This information is crucial to support managers decisions, in
particular, the ones associated with determining the shelf life. Moreover, since the
shelf life estimate is obtained in this case by inverse regression, it is very difficult to
incorporate covariates in the model and then construct confidence intervals for such
quantity.

On the other hand, the approach proposed in this article incorporates both the
information contained in the “failed” and “unfailed” units. Moreover, it provides
estimates of percentiles and fraction of defectives. Covariates are easily incorporated
in the model if necessary.

Some limitations we can recognize in our approach. First, as in most of the para-
metric statistical methods, if one chooses an inapropriate underlying distribution,
the results (as with the regression approach) could be totally unreliable. Another
limitation has to do with the dichotomization implemented. We are not using all
the “score information” available.

In both approaches, the shelf life estimate will be highly affected by the the
cut-off point chosen by the food company.

We also see some issues for further researches:

e one possibility is to try to model two atributes together, in other words, to
work with the joint distribution of their time to failure;

e in our approach we did not question the “scores” given by the panelists (we as-
sumed that they “never fail”). One possibility is to incorporate “classification
errors”.

To summarize, we believe that our approach will provide a much needed prac-
tical approach to setting realistic and economic “open dates” useful for producing
manufactured products subject to sensory evaluations.
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