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Abstract

One of the possible data structures that may occur in carcinogenicity experiments
with animals where the tumor is not palpable consists of the time of death of the
animal, the cause of death (the tumor or another independent cause, as sacrifice) and
whether the tumor was present at the time of death. These last two indicator variables
are evaluated after an autopsy. Defining the non-negative variables 7} (time of tumor
onset), Ty (time of death from the tumor) and C (time of death from an unrelated
cause), we observe (Y,A1,Az), where Y = min{T3,C}, A; = lyp<cy, and Ay =
Ly1y<cy, T1 and T3 have a joint distribution function F' such that P(Ty < Ty) = 1, and
are independent of C. This structure is a “survival-sacrifice model”. VAN DER LAAN,
JEWELL, AND PETERSON (1997) proposed a Weighted Least Squares estimator for F)
(the marginal distribution of 77) using the Kaplan-Meier estimator of F5 (the marginal
distribution of T5). Strong uniform consistency of their estimator is established.

1 Introduction

In experiments for the study of onset and mortality from undetectable irreversible diseases
(occult tumors, e.g.) a possible data structure consists of the time of death, whether the
disease of interest was present at death, and if present, whether the disease was a probable
cause of death. This data structure is related to moderately lethal incurable diseases when
the cause of death is known. Defining the non-negative variables T; (time of disease onset),
T, (time of death from the disease) and C (time of death from an unrelated cause), we
observe, for the ith individual, (Y;, Ay, Ag;), where ¥; = C; ATy ; = min{C;, 15}, Ay,; =
Ly ,<ciy, Doy = Lyny <oy, Tii and Ty; have a joint distribution function F' such that
P(Ty; <T,;) = 1, C; has distribution function G and is independent of (T}, T;). Some



authors call this model a “survival-sacrifice model” (see GROENEBoOM (1998)). Current
status data can be seen as a particular case of this data structure when the disease is non-
lethal, i.e., Ay; = 0,4 = 1,...,n (in this case, ¥; = C;, and E, = 0 for any estimator
of Fy). The right censoring problem can also be considered as a special case of data with
the structure above when a lethal disease is always present at the moment of death, i.e.,
Ay, =1,i=1,... n (in this case, Fy =1 for any estimator of F).

An example of data with the structure considered here is given in HOLLAND, MITCHELL, AND
WALBURG (1977) and is shown in Talbe 1. These data were studied by DINSE AND LAGAKOS
(1982) and TURNBULL AND MITCHELL (1984) and represent the ages at death (in days)
of 109 female RFM mice. The disease of interest is reticulum cell sarcoma (RCS). These
mice formed the control group in a survival experiment to study the effects of prepubertal
ovariectomy in mice given 300 R of X-rays.

Table 1: Ages at death (in days) in unezposed female RFM mice.

A, =1,A, = 1] 406,461,482,508,553,555,562,564,570,574,585,588,593, 624,626,
629,647,658,666,675,679,688,690,691,692,698,699,701,702,703,
707,717,724,736,748,754,759,770,772,776,776,785,793,800,809,
811,823,829,849,853,866,883,884,888,889

A, =1,A, =0 | 356,381,545,615,708,750,789,338,841 875

A, =0,A, =0 | 192,234,243,300,303,330,339,345,351,361,368,419,430,430,464,
488,494,496,517,552,554,555,563,583,629,638,642,656,668,669,
671,694,714,730,731,732,756,756,782,793,805,821,828 853

The parameter space for the survival-sacrifice model can be taken to be
0= {(Fl,Fz) . F1 and F5 are d.f.’s with F} <4 Fg} s

where Fy <, F» means that Fi(z) > Fy(x) for every z € R and Fi(z) > Fy(z) for some
x € R. The log-likelihood function for this data structure is

Z {(1—=Ap:)(1 = Agy)log (1 — F1(Y7))

+ Agi(1 = Agy) log (Fi(Y;) — Fy(Y3))
+ (A1;A9;)log fo(Yi)} + K(g,G)

where K (g, G) is a term involving only the distribution G of C. KODELL, SHAW, AND JOHNSON
(1982) also studied nonparametric estimation of S; = 1— Fj and S; = 1 — F5, but their work
is restricted to the case where R(t) = S1(t)/S2(t) is non-increasing, an assumption that may
not be reasonable, for example, for progressive diseases whose incidence is concentrated in
the early or middle part of the life span.



TURNBULL AND MITCHELL (1984) proposed an EM algorithm for the joint estimation of Fj
and F» which converges very slowly to the NPMLE of (Fi, Fy) (provided the support of the
initial estimator contains the support of the NPMLE). It should be noticed that the two-
dimensional nature of their method enables us to avoid the use of Lagrange multipliers.
Another possible way of estimating Fj is by plugging in the Kaplan-Meier estimator of Fj
and calculating the Nonparametric Maximum Pseudo Likelihood Estimator (NPMPLE) of
Fi. The part of the log-likelihood involving Fj is

Z (1 — Ag’(z)) [Al IOg( F2,KM(YV(1))) + (1 - AI,(z)) IOg(l - Zl?z):| (11)

=1

where x; = F1(Y(;)), Yy is the 4th order statistic of (Y1,...,Ys), Ay ), and Ay ;) are the
values of A;; and A,; observed at Y{; respectively. Since (1.1) can be written as

Z {@(f(Yy) + [9(Ye) — fF(Ya)] o(f(Yie)) } w(Yie))

with f Fl, == dq)/df, g = 1-— (1 - F2,KM)(1 - Al); w = (1 - A2)/(1 - Fg’KM) and
®(y) = (y — F2)log(y — F») + (1 — y) log(1 — y), DINSE AND LacAKoOs (1982) concluded that
the values of Fy(Y(;),@ = 1,...,n, maximizing the log-likelihood (1.1) could be obtained
applying Theorem 1.10 in BARLOW, BARTHOLOMEW, BREMNER, AND BRUNK (1972), i

the NPMPLE of F; would be given by the isotonic regression g* of g(Y{;) with Weights
w(Y)),i = 1,...,n. However, Theorem 1.10 in BARLOW, BARTHOLOMEW, BREMNER, AND
BRUNK (1972) is applicable to a real convex function ® defined on R while in the application
above the function ® is in fact defined on R? since the value of F, is not supposed to be
constant. It should be mentioned here that, although the Kaplan-Meier estimator By is
uniquely defined, except possibly at times exceeding the largest observation, the pseudo
NPMLE F; is uniquely defined only over certain data-determined intervals. Specifically, £
is always uniquely defined at the observed Cj’s, i.e., the observations for which A,; = 0.
VAN DER LAAN, JEWELL, AND PETERSON (1997) proposed a weighted least squares estimator
for F} using Fy = FZ,KM- Simulations studies performed by GomEs (1999) showed evidence
that their estimator tend to be more efficient than the NPMLE of F; when the distribution
functions F; and F, are far apart. On the other hand, the opposite seems to be true when
F} and F5 are close. In their paper, VAN DER LAAN, JEWELL, AND PETERSON (1997) did not
establish consistency or the asymptotic distribution of their estimator. This study is a first
effort to obtain such properties. Their estimator is described in Section 2 and its consistency
is proved in Section 3.

2 The Weighted Least Squares Estimator of F}

Another possibility for estimation of Fj is to calculate a weighted least squares estimator
as suggested by VAN DER LAAN, JEWELL, AND PETERSON (1997). Making S; = 1 — F} and
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Sy =1 — Fy, in terms of populations, R(c) = S;1(c)/S2(c) is the proportion of subjects alive
at time ¢ who are disease free (i.e., 1 — R(c) is the prevalence function at time c). It can be
written as

Sic) 1-F(c) P
Re) = 50" 1T"Ro P

P(T1>C,T2>C)
= = P(T: C|C=¢T C
P (T, > o) (i >CC=eT>0)

(Ty > ¢)
(T > ¢)

= E[l{Tl>C}|C:C,T2>C:| :]E[].—A1|C:C,T2>C]

So, it is possible to rewrite

Sl(C) = R(C)Sz(C) = Sz(C)]E[l — Al | C = C, T > C]
E[S2(C) (1 — Al) | C = C,Tg > C] .

The estimation of S; can be viewed, then, as a regression of S3(C) (1 — A;) on the observed
C;’s under the constraint of monotonicity. If we substitute S5 by its Kaplan-Meier estimator
So.n = So,xkm We automatically have an estimator for S; minimizing

—Z[I—A1 S2KM( i) — S1(Y( )r(l_A?(i))

under the constraint that S; is nonincreasing. This minimization problem can be solved by
using results from the theory of isotonic regression (see BARLOW, BARTHOLOMEW, BREMNER,
AND BRUNK (1972)) and its solution is given by

A St Saucm(Y) (1= Aggy) (11— D)

S1(Y(m)) = minmax

I<m k>m Z_I;:l (1 - A2(]))

)

m=1,...,n.
However, Var [S3(C) (1 — Ay) | C =¢, Ty > C] is not constant. In fact,

Var [S2(C) (1 = Ay) | C =¢, T3 > C]
= 52( )WVar[(1—Ay) |C =¢, Ty > C]
S2)P(Ty,>C|C=¢,Ty>C){1-P(Ty, >C|C=¢T,>C)}
= SE[1-A[C=¢T,>C]{1-E[1-A;|C=¢T,>C]}
= S3(c)R(e) (1= R(c)).



We may, then, use a weighted least squares estimator with weights w;,7 =1, ..., n, inversely
proportional to the variance S3(c)R(c)[1 — R(c)]. This expression for the variance involves
the unknown value S;(C;) that we want to estimate, suggesting the use of an iterative pro-
cedure. In each step, the estimate would be given by

kA 1-Ayy
; Y. 1— Ay _ (7)
A . Z]:l Saxcu (V) [ 1(])] <5§,KM(Y(J'))R(Y(J'))[1R(Y(j))]>
S1(Y(m)) = minmax : (2.2)
I<m k>m Zk 1-Ay(j)
I=EN 8 ke (V) RO [1-R(YGy) )]
form =1,...,n. If we use w; = (1 — Ay )/S2 xm(Y(j)) instead, we have an estimator with

a closed form, as suggested by VAN DER LAAN, JEWELL, AND PETERSON (1997).

The estimators expressed as the solution for an isotonic regression problem have a nice
geometric interpretation. Consider the least concave majorant determined by the points
(0,0), (W1, V1), ..., (Wy, V,), where W; =37, w; and

j j
. (1= Ayu)(1 = Aggy) (1= Ay)
Vi = wi(l—Ayi)Saxm (V) = Y 2 Z - :
i=1 i=1 S2,KM(Y( i=1 527K )

Sy(t) is the slope of the Least Concave Majorant at W; if ¢t € (Yj-1),Y(;)]. See Bar-
LOW, BARTHOLOMEW, BREMNER, AND BRUNK (1972) or ROBERTSON, WRIGHT, AND DYKSTRA
(1988) for a more detailed description of these equivalent representations.

So, we can write

X _ ST = Ag) (1= Do) /B2 (Vi)
tsm kzm Z (1= Ay )/SzKM(Y(J))

: (2.3)

form =1,...,n. Figure 1 shows Fl and F2,KM for the data in Table 1, and Figure 2 shows Fl
and the real distribution function F; for increasing sample sizes of simulated data generated
with T} ~ exp(0.5), Ty — T} ~ exp(1), and C ~ exp(0.4).

It is easy to see that (2.3) reduces to the expression of the NPMLE of F' = F; for current
status data (see GROENEBOOM AND WELLNER (1992)) when A,; = 0,7 = 1,...,n (in this
case, Soxm = 1).

3 Consistency

Theorem 3.1 Suppose C, Ty and Ty have continuous distribution functions G, Fy and F5,
respectively, satisfying Pr, < Pg. Then

I Ern = Fr lloo = sup | Fy(t) = F1(t) | —as. 0.
te



WLS and KM

1.0

0.8

Dist. Functions
0.6

0.4

0.2

0.0

0 200 400 600 800

Time
Figure 1. Weighted Least Square estimate of F; and Kaplan-Meier estimate of F;.

Proof: Let (T11,7%1,C1),. .., (Tin, Topn, Cn) be a sample of random variables in Rﬁ’r, where
C; is independent of (T3 ;, T;) and C;, Ty ;, T ; have continuous distribution functions G, F}
and F,, respectively, satisfying Pr, < P (the probability measure Pp,, induced by Fj, is
absolutely continuous w.r.t. the probability measure Pg, induced by G).

The estimator Fl’n minimizes the function ¢ under the constraint of monotonicity, where

vE) = [ [1{t1>c}<1ﬁ2,n<c>>(1F1<c>)}2[11{;>62)rdm<t1,tz,c)

1 n R 2 (]_ — A2z)
= — (1 — Al,i) (1 — F27n(01)) —(1-— FI(C’L) 7 2
n z:zl [ ( )] [1 — Fz,n(ci)]

Here P, = % 2?:1 O(Ty,; T».,c;) 18 the empirical probability measure.
The fact that F}, minimizes ¢ (F}) implies that for any 0 < e <1,

(0 ((1 — €)F1,n +€F1) - (Fln) >0
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Figure 2: Weighted Least Squares estimate of [} and the real d.f. Fj.

Dividing by ¢ > 0 and taking the limit as ¢ | 0 this yields

lim = {¢ ((1 — )b+ 6F1) ) (Fln)} >0

el0 €
But
) ((1 — 5)]3’1’” + €F1>
_ / [1{t1>c} (1 — Fz,n(C)) — <1A— (1 —2€)F1,n(0) — »31?*](6))}2 Lo B (b1, 10, 0).
RS 1= Bon(0)]
So,
d - . .
%lb ((1 - 5)F1,n + 5F1) . = /R3 2 [1{t1>c} (1 - Fz,n(c)) - (1 - Fl,n(c)):| 1{t2>c}

[Fl(c) _ Fl,n(c)}

LdP, (t1,ts,¢) > 0. (3.4)
[1—133,“((:)}

X
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Let © be the space of all sequences {(T1;,7%;,C;),i=1,2,...} endowed with the Borel
o-algebra generated by the product topology on [[°; R®. Introducing ‘w € Q7 in the
notation to indicate the dependence on the sequence {(7};,T2;,C;),i =1,2,...}, P,(-, -, w)
converges weakly to P, the joint probability distribution of 7}, 75 and C, by Varadarajan’s
theorem (see DUDLEY (1989)) for all w in a set B C 2 such that P(B) = 1, where P = P*°.

There exists By C B with P(Bz) = 1 such that sup ;) | Fyn(t;w) — Fy(t) |— 0 as
n — 00, for every w € By, where T =sup{t: H(t) < 1} and H =1— (1 — F3)(1 — G) (see
WANG (1987)).

For a fixed w € B,, the sequence Fl,n(-,w) has a subsequence Flm(-,w) converging
vaguely to a nondecreasing right continuous function Fy, taking values in [0, 1], by the Helly
compactness theorem.

Fix ¢ € (0,1) and choose b such that Fy(b) = 1 —e. Since Fy,(-;w) — Fy(-) for w € By,
we have R
F2’nk(';(,U) — Fg() for we B2

. 2
Thus, we may assume 1/ |1 — F5 ,(t, w)} bounded for ¢ € [0, 4] and n sufficiently large.

By the convergence in distribution of Fy,,(-,w) we may also assume that 1/[1 — Fy(t)]?
is bounded for ¢t € [0,b]. Hence we assume

1 1
<M and

g o <M (3.5)
[1— Fy(b) 1 F(b0)

2_

for a constant M > 0 and all n sufficiently large.

By monotone convergence and (3.8) from lemma 3.1 (stated and proved in the appendix)
we obtain:

[ 210 (1= Pale) ~ (1= Fi (@)

] Lita>e}
x [Fi(c) — Fy(c)] md]? (t1, 12, )

= lim 2 [Liysep (1 = F3(c)) — (1 = Ff(c))] (3.6)

b—=00 Jr2y10,5]

* 1{t2>c}
x [Fi(c) — Fy(c)] md]? (t1,ta,c) > 0.

This, however, can only happen if F}* = Fj, since we have

[, 210 (1= Fo0) - (1= ()]



* 1{t2>c}
x [Fi(c) — Fy(c)] md]? (t1,12,¢)

i o B0~ F(e)
= 2 e (1= B TP (1,0

_ _ F*(¢ o) — F*(c 1{152>C} c
2 [ Q= ) IR ~ ) i .0

) ey RO - EE]
- 2(/R[1 Fy(e)] “aco

1-— 2(0

e B - F@)
- [0 s i)

[Fi(e) = Fr (o))
= =2 dG <0,
| PGt <
and the latter expression is strictly negative, unless F} = Fj, since by the monotonicity of
F}, the monotonicity and continuity of F3, and the absolute continuity of Pr, w.r.t. Pg, we
have F}* # Fy = F(t) # Fi(t) on an interval of increase of G, which implies

_QA[Flgcl_Filz§C)] dG(C)<0

if F* # Fy, which contradicts (3.6).

Thus we have proved that for each w outside a set of probability zero, each subsequence
of the sequence FLn(-; w) has a vaguely convergent sequence, and that all these convergent
subsequences have the same limit 7. This proves that the sequence ﬁ’l’n converges weakly
to Fj, with probability one. Since Fj is continuous, this is the same as saying that ﬁ’l’n
converges with probability one to F; in the supremum distance on the set of distribution
functions, i.e.,

IP’{ lim sup |Fyq(t) — Fl(t)‘ - 0} —1
or R
H Fl,n - Fl Hoo—>a.s. 0.
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Appendix

Lemma 3.1 Let b be chosen such that F5(b) =1 —¢. Then

lim | 2 [1{t1>c} (1 — Fan (C)) — (1 - Fl,nk (C))]

k=0 Jr2y(0p
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- / o, 2lesa 0= B(@) = (0= F©)] (3.7)

Moreover,
Lo, 2 g (L= B~ A= (0] (39

. Lits>c)
><[Fl(c)—Fl(c)]mdP(tl,tg,c) > 0.

Proof: Fix 0 < 0 < 1 and take a grid of points 0 = ug < u; < ... < u,, = b on [0, b] such
that m =1+ [1/6%] and

G
G(u;) — G(u;1) = —=, =1,...,m.
(w) = Glu ) = =, 4 m
Let K be the set of indices 7,7 = 1,...,m such that
! L > 5

- Fw)? [1- Flu)]

The first inequality in (3.5) implies that the number of indices of this type is not bigger than
1+ [M/6]. Let L be the remaining set of indices i,i =1,...,m.

Denoting the intervals [ug, u;] by J; and the intervals (u;_1,u;] by J;, ¢ = 2,...,m, we
have

R2x[0,b]

. Lroe
X [Fl(c) — Fip, (c;w)} A{t2> ! sdPy, (1,12, c;w)
[1 — By, (c w)}

m

=2 /RJ 2 [t (1 Bany(65) = (1= Fi(c))

i=1

. Lrpoc
X [Fl(c) — Fip, (c;w)} A{t2> ! 5dP,, (t1,t2, ¢ w).
[1 — Fyp, (c; w)}

11



Since F2,nk (us; w) converges to Fy(u;) for each 4,0 < ¢ < m, we get, for sufficiently large £,

1 1
- 5 — - 5 <20, 1€ L. (3.9)
[1 — By, (g w)} [1 — Fy o, (ui—1; W)}
Hence,
/ 2 [1{t1>c} (1 — ]3’2’,% (c;w)) — (1 — Flvnk(c; w))]
R2 x[0,b]

. Troe
X [Fl(c) — Fin, (c;w)} A{t2> ! 5dPy, (t1,t2, c;w)
[1 — Fyp, (c; w)}

=D /RJ 2 [1sg (1 Ban(e5)) = (1= Fini(c0))|

€K

. Trpoc
X [Fl(c) — Fip, (c;w)} A{t2> ! sdPy, (t1, 12, ¢;w)
[1 — Fyp, (c; w)}

_’_Z/RZXJ. 9 [1{t1>c} (1 — ﬁ’2’nk(c;w)) — (1 — ﬁ’l,nk(c;W))]

€L

) Lroe
X [Fl(c) — Fip,(c w)] A{t2> ! 5dPp, (11,12, c;w)
[1 — Fyp, (6 w)]

= / 2 [1{t1>c} (1 - ﬁ’lnk(c;w)) - (1 - ﬁ’lvnk(c;w)ﬂ (3.10)
R2x[0,5]

R Lisoe
% |Fi(e) = P (60)| 2D dP (t,12,) + Ti(w) + 0,(1),
[1 — By, (c w)}

where |r}(w)| < ¢, for a constant ¢ > 0. This can be seen by replacing Fj, (t;w) on each

interval J; by its value Fgm(ui; w) at the right endpoint of the interval, and by noting that
for large k

1 1
. 2 .
1 — Fyp, (t; w)] [1 — By, (ug;w)

5| <20, i€l

On the intervals J; with ¢ € K we use the second inequality in (3.5).

Note that Y, . P(R? x J;) — 0, if § | 0, since P(R* x J;) is of order O(0?), while the
number of intervals J; such that i € K is of order O(1/6).

12



Dominated convergence implies

lim

[1{t1>c} (1 — ]3’2’,% (c;w)) — (1 — ﬁ’l,nk(c; w))]
k=00 JRr2x[0,5]

R Lipoe
% |File) = By (ci0)| 0P (11,15, ¢)
[1 — Fyp, (65 w)}

— /sz[o ) [Litssep (1 = F3(c)) — (1 = Ff(c))] (3.11)

] Lta>c}
x [Fi(c) — Fy(c)] mdp (t1,12,€)

Combining (3.10) and (3.11) we obtain

R2x[0,b]

. Lroe
X [Fl(c) — Fip, (c;w)} A{t2> ! sdPy, (1,12, ¢ w)
[1 — Fyp, (65 w)}

- /R2 [0,6] 2 [1{t1>c} (1 - F2(C)) - (1 - Fl*(c))] (3'12)

<R = Ol dP (,,6) + 1) + op(0).

where |r},(w)] < 6.

Since § can be made arbitrarily small, (3.7) now follows, and relation (3.8) follows from
(3.7) and (3.4). O
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