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ON TWO OCCASIONS CAPTURE AND RECAPTURE DESIGNS:
        COMPARING AND DISCUSSING SOME ESTIMATORS

                                                         SUMMARY

Capture and recapture designs with only two occasions are still being used in a variety

of situations especially in Epidemiological studies. Usually, the well-known Lincoln-

Petersen (1896,1930) estimator is used to estimate the population size. Because only

two occasions are being used some concern is devoted to the reliability of the final

estimate. In this paper we will address the problem by comparing the Lincoln-Petersen

estimator with three others proposed in the literature: Chapman (1951), Bailey (1951)

and the stepwise Bayesian estimators (Mingoti,2000). By using a mathematical

relationship it will be shown that the Bayes estimator has an expected value smaller than

Lincoln-Petersen's and  higher variability unless the sample sizes are large in which case

the variability is almost the same.  The simulation study shows that for small sample

fractions, in both capture and recapture stages, the Bayes estimator has a better

performance, but for larger sample fractions the Bayes estimator had a similar or worse

performance than the other three. Chapman and Bailey are good alternatives in several

cases.

______________________________________________________________________
Key-words: Capture-Recapture; Stepwise Bayesian, Lincoln-Petersen, Chapman and
                    Bailey Estimators, Small Sample Sizes.
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1 Introduction

The estimation of population size using capture and recapture methods has been an

issue of many papers along the years. Good reviews in this subject are Seber and

Schwartz (2002) and Tsay and Chao (2001). Although these models are frequently used

to estimate the size of animals population, more recently they have become popular in

other areas such as Epidemiology, Social Sciences and Industry for example. Some

interesting papers in this field are McKeganey et. al. (1992), Abeni et. al. (1994) and

Mastro et. al (1994). In these papers capture and recapture methods were used to

estimate the size of the HIV infected drug users in Bangkok and Lazio in Italy, and the

size the female streetworking prostitution population and HIV infection in Glasgow.

Capture and recapture methods have also been used to estimate the prevalence and the

underreporting of certain diseases such as Aids and Diabetes for example (Ismail, et. al,

2000; Bernillon et. al, 2000; Hartnoll et. al., 1985), to perform an adjustment for the

undercount of census (Bell, 1993) or to estimate the total number of different defects

types in a software inspection (Briand, et. al.1997; Miller, 1998; Eick et. al. 1993).

Although nowdays the modern practical interest is to focus in models that allow for

heterogeneity and trap response which require more than just one recapture, it is

important to point out that the Lincoln-Petersen, Chapman and Bailey estimators have

still being very used in situations where the high cost, time consumed and the difficulty

to collect the data, make more than one recapture prohibited. A good example of this

situation is related with surveys of difficult to access populations. In Caiaffa, Mingoti et.

al. (2000, 2001) a study was conducted with the injection drug users in many cities of

Brazil. The main objective was to obtain a profile of the drug users and to estimate the

size of the population attended by a Drug Reduction Program supported by the Brazilian

government. The city of Porto Alegre located at the south of Brazil, was used as a test
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for the capture-recapture methodology. The population involved in this study was very

difficult to interview and the interviewers needed a special training. The cost of the

whole survey was high. The time involved in collecting the data would be very

considerable if we would make an option for many recaptures stages. The interesting

part is that the results obtained with just one recapture was very reasonable indicating

that probably there was no need for more recaptures to fulfill the main objective of the

survey. Some other applications in Epidemiology are good examples of similar

situations.

      Probabilistic (Otis et. al. 1978; Seber, 1992) and log-linear methods (Bishop,1988)

have been used to construct sensible estimators for the population size. In both

methodologies the estimators are derived considering the presence of some variation

factors in the capture occasions such as: time, environment, particular behavior of the

element, as well as the three sources together.

      A very well known estimator for a closed population and a capture and recapture

design with only two capture occasions is the Lincoln-Petersen model (1896,1930)

which was first used by Laplace in 1786 to estimate the population size of France.

Lincoln-Petersen estimator has an infinite expectation. To correct this problem

Chapman (1951) and Bailey (1951) proposed two other estimators which are

modifications of the Lincoln-Petersen and which have finite expectation and variance.

Recently, Mingoti (2000) suggested an estimator for population size which is a

particular case of the stepwise Bayesian estimator derived in her paper to estimate the

total number of distinct species in the population when sampling by elements is used to

collect the data. An example was presented in Mingoti's paper in which the stepwise

Bayesian estimator resulted in a better estimate than the Lincoln-Petersen. However, no

study was performed comparing these two estimators. The purpose of this paper is to
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compare Mingoti, Lincoln-Petersen, Chapman and Bailey estimators presenting the

main relationship among them. More than that we will discuss the reliability of these

estimators by means of simulation.

2 The Estimators to be Compared

In this section we present the four estimators that are the subject of this paper. More

attention will be given to the stepwise Bayesian estimator since the other three

estimators are very well known in the field (Pollock, 1991; Seber 1986,1992).

We will suppose that the studied population is closed and that capture and recapture

design with two stages of capture is used to collect the sample data. The first sample

(capture) has m distinct elements of the population which were captured, tagged and

returned to the population. The second sample has n elements from which s were

already observed in the first sample (recaptured elements). Both samples were collected

according to a simple random sampling. We will also assume that the marks of the

elements captured in the first sample cannot be lost in the period of time between the

collection of the two samples, so that the elements captured in the first sample can be

recognized without error in the second sample. The true population size is denoted by N.

2.1  Lincoln-Petersen, Chapman and Bailey  Estimators

The Lincoln-Petersen estimator of N is very simple. It is based on the fact that the

proportion of marked elements of the second sample is an estimator of the marked

elements of the population, before the second sample is collected. By making this two

proportions equal, the Lincoln-Petersen estimator ( PN̂ ) is obtained  as follows:

                                  
s
mnN̂

N
m

n
s

P =⇒=                         (2.1)



8

The smaller the number of recaptured elements the larger is the value of PN̂  and if

s = 0  then PN̂  is infinite. Because s can take a zero value with probability different

than zero, the expectation of PN̂  is infinite. To overcome this problem Chapman (1951)

and Bailey (1951) proposed some estimators that have finite expectation and that are

basically the Lincoln-Petersen estimator modified. They are respectively defined as:

                             1
)1s(

)1n()1m(N̂C −
+

++
=           (2.2)

                             
1s

)1n()m(N̂ B +
+

=                       (2.3)

     Chapman estimator ( CN̂ ) is based on the assumption that the second sample is taken

without replacement and that the number of recaptured elements (s) has a

Hypergeometric distribution. Bailey estimator )N̂( B  assumes that the second sample is

taken with replacement and that s has a Binomial distribution. In practical problems

there is no much difference between the Chapman and Bailey estimators (Seber, 1982).

2.2 Mingoti’s  Estimator

The stepwise Bayes estimator for N  proposed by Mingoti (2000) is defined as:

                          
s

)1sn()sm(nN̂M
+−−

+=                  (2.4)

It is basically derived as a special case of a stepwise Bayesian estimator constructed for

the true number of distinct species in a population when sampling by elements is used.
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Originally, the construction of the estimator (2.4) assumes that the “species” of the

population are independent and are divided in two groups:  group 1 which contains a list

of the “species” the researcher believes are present in the population, and group 2 which

contains the “species” that are present in the population but does not belong to the

researcher previous list. Every “species” has its own abundance value and a probability

θ  to belong to group 1 and (1-θ ) to belong to group  2, 10 ≤≤ θ .  Considering a

model that gives a prior distribution for θ , for the abundance value of each species, and

for the unknown true number of “species” S  in the population, a stepwise Bayesian

estimator is constructed for S.

      To understand how this model can be applied in the estimation of the population

size, each element of the population has to be considered as a distinct “species”. When

the capture and recapture procedure is used to collect the data we have the following

situation: after the first sample is observed the researcher has the information about

some elements (“species”) that are present in the population of study. Before the second

sample is taken the researcher does not know exactly if all the elements of the first

sample are still present in the population of study or not. Therefore, a list containing the

m elements of the first sample is available before the second sample is chosen. These m

elements would then constitute the members of group 1. The group of new species

(group 2) would be constituted by those elements that are present in the population but

did not appear in the first sample. The estimator given in (2.4) is derived under a

negative binomial distribution (Taylor et. al., 1979) for the true number of elements in

the population  N.

      Generally speaking, the stepwise Bayesian is an estimation procedure which uses a

partition of the main parameter set Θ  in c mutually exclusive sets iΘ , i=1,2,…,c. For
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every set iΘ  a Bayesian estimator is constructed according to some prior distribution

iπ , considering the samples that have positive probability under iπ . If  a sequence of

mutually orthogonal prior densities iπ  is chosen than the final estimator, which

combines the results obtained for every iΘ , is admissible (Hsuan, 1979).  In Mingoti

(2000) all the steps and prior distributions involved in the construction of the stepwise

Bayesian estimator discussed in this technical report are presented.

3   An Example of Application

To ilustrate the use of the four estimators presented in section 2.0 we will report to the

data presented in Caiaffa, Mingoti et.al. (2000,2001) mentioned in section 1 of this

paper. In that study conducted in 1999, 55 injected drug users were interviewed in the

first occasion and  99 in the second. A total of 17 individuals were capture in both

occasions. The period of time for each occasion was about two months. Considering

these results we would obtain the following estimates for N :

Lincoln-Petersen

                                    320
17

)99()55(N̂P ≈=

Chapman

                                    3101
18

)100()56(N̂C ≈−=

Bailey

                                    305
18

)100()55(N̂B ≈=
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Mingoti

                                  285
17

)11799()1755(99N̂M ≈
+−−

+=

     As we can see there is no much difference among Lincoln-Petersen, Chapman and

Bailey estimates. However, the Bayesian estimator resulted in a smaller value than the

other three.

4   The Relationship between Mingoti  and Lincoln-Petersen Estimators

Using some simple mathematics it is very easy to show that the following equations are
true:

             

)s,m(cN̂

]
s

1s)sm([N̂]
s

1s)sm([
s
mnN̂

P

PM

−=







 −

−−=





 −

−−=

           (4.1)

             







+
+

++−−







+
+

=
s)1m(
)1s(m)1sm(N̂

s)1m(
)1s(mN̂ CM                                  (4.2)

             1ˆ1ˆ ++−





 +

= smN
s

sN BM                                                                       (4.3)

     Although Chapman and Bailey estimators are very important in the literature, in this

section we will focus the attention in the mathematical relationship between the

Bayesian and the Lincoln-Petersen. The equation (4.1) shows that the Bayesian

estimator is equal to the Lincoln-Petersen when s=1 or s=m. In any other situation the

Bayesian estimator will take a smaller value than the Lincoln-Petersen. Let ms 1α= ,
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and Ns α= , 10,10 1 <<<< αα . Then the following result holds for the correction

term ),( smc in equation (4.1):

                                 ]1N[)1()s,m(c
1

1 −
−

= α
α

α
                (4. 4)

and therefore, the numerical difference between the Bayesian and the Lincoln-Petersen

estimator depends upon the true value N, and the proportions of recaptured elements,

according to the size of the first sample m and to the true population size N.   For some

values of ),( 1 αα  the Bayesian estimator can take a value much smaller than the

Lincoln-Petersen estimator. If the number of recaptured elements s is small then the

Lincoln-Petersen estimator tends to result in a very large number. Therefore, in that case

the correction term )s,m(c  might do some improvement in the quality of the estimation

of N  because it will decrease the bias of the Lincoln-Petersen. In this case the Bayesian

estimator is expected to give better results than the Lincoln-Petersen. On the other hand,

if the number of recaptured elements s is large, then the correction term )s,m(c will

affect negatively the quality of the Bayes estimator because its value might be much

smaller than the true N  in some cases. The simulation study in section  5.0  will show

this fact.

     Because the probability of  s  being  zero is not zero then the Mingoti’s estimator has

an infinite expectation. If however, we suppose that the true population size N is large

enough so that the probability of s being zero is approximately zero, and we use the

Hypergeometric probability model for the variable s, it can be easily proved that the

expectation and variance of PN̂ and MN̂  are approximated  by:

                  
mn

mNNNNE P
)(]ˆ[ −

+≈                                                             (4.5)
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                 





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≈

mn
mNN]N̂[Var 2

P                                                              (4.6)

          
]

mn
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mn
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mn
N

N
mn1mN

)mn(
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mn
N

N
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−
−
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=
−
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            (4.7)

    
]2

N
mn[)mN(

]
nm
2

nm
1[)mN(N]N̂[Var]N̂[Var

2

23
2

PM

−−+

++−+≈

                  (4.8)

      As we can see from equations (4.5) to (4.8) the MN̂  expectation is always smaller

than the Lincoln-Petersen estimator and the variance is always larger. For large values

of ( m,n,) the variance of both estimators are about the same.

      By replacing the true value of N  by its respective estimate ( MN̂ , PN̂ ) in equations

(4.5) to (4.8) one can obtain an estimate for the respective expectation and variance of

these estimators.

5   Simulation Results

In this section we present the results obtained for a simulation study conducted with the

purpose of comparing the four estimators presented in section 2.0. Three different

population sizes were considered, N=250, N=500 and N=1000. The capture and

recapture method was used for each population considering different sample sizes  m

and n. The four estimators  were  evaluated  for samples that presented at least one

element recaptured (s > 0). For each N a total of 800 random samples were selected with
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s > 0. The mean error (ME) and the square root of the mean square error (SRSME) were

also evaluated. To perform the simulation the “Resampling Stats” software (Simon et.

al,1995) was used. The obtained results are presented in Tables 1, 2 and 3 (see

Appendix).

     For N=250 Table 1 shows that for samples of same size and small sample fraction (6

up to 10 %) the Bayes estimator performs better than the Lincoln-Petersen, Chapman

and Bailey. For a sample fraction of 20% Bayes is better than Lincoln-Petersen but it is

worse than Chapman and Bailey. For higher sample fractions (over 20%) the best

estimators were Chapman and Bailey, and Bayes was the worst.  For samples of

different sizes Table 2 shows that the Bayes estimator had a good performance

compared to Lincoln-Petersen, being worse than Chapman and Bailey in some cases.

The same general conclusions are obtained when N=500 and N=1000 are considered

(Tables 3 to 6). However, it is interesting to notice that for N=1000 the best estimators

in all the sample fractions considered were Chapman and Bailey. In all cases the values

of SRMES were very large for small sample fractions which is expected. The analysis of

samples of different sizes is important because in many situations the capture and

recapture design is applied considering the period of time to collect information as a

marking point to stop the experiment. This fact makes the samples sizes to be random

and, in the majority of cases, they would be different. That is the case of the example

presented in section 3.0 of this paper.

      It is natural to understand the results of the Bayes estimator in this simulation study.

When the sample fraction is high in both samples, it is expected to see a higher number

of recaptured elements which affects negatively the performance of the Bayes estimator.

On the other hand, for small sample sizes the expected number of recaptured elements is

small and therefore the Bayes estimator tends to give better results. If we observe the
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original Mingoti’s paper (2000) we will see that the stepwise Bayes estimator is derived

aiming to create an estimator that is sensitive to the “rare” species present in the

population. In the capture-recapture methodology the information about a “rare”

species, i.e the elements that are present in the population but were not caught in the

samples, would be represented by the value of s. Small values of s would indicate that

the population size N  is large, and high values of s would indicate that the N  is small.

     From Tables 1 to 6 it can be seen that for a similar situation as the Andreawartha’s

example (1961) mentioned by Mingoti (2000), the Bayes estimator had a better

performance for all the studied populations. In that example the first sample and the

second samples corresponded respectively to  4 % and 1% of the true population size.

The sample fractions were  24.9% (first sample) and 5.6% (second sample). Therefore,

the samples were unbalanced and the fractions of recaptured elements were very small.

6    Final Remarks

 The purpose of this paper was to compare the four estimators used to estimate the

population size when capture-recapture experiments with two occasions is used. As we

could see the Bayes estimator can be a better alternative for situations where the sample

fractions are small and the proportion of recaptured elements is small compared to the

first sample and the true population size N.  For larger sample fractions Chapman,

Bailey and Lincoln-Petersen estimators were better. For samples of same size the

sample fraction cutting point is  20%  being the Bayesian estimator recommended for

situations with sample fraction smaller than that. For samples with different sizes the

Bayes estimator could be considered as an alternative in the cases were both of the

sample fractions are not higher than 20%.  In order to decide which estimator is more

appropriate in a practical situation, the estimated sample fractions can be used as a



16

helpful tool to take the final decision. In all cases, the square root of the mean error

square  (SRMES) are very large unless the samples sizes are closer to the true population

size. Therefore, the price of using only two occasions is paid by using estimators with

large variability in the majority of practical situations. However, in many cases is

almost impossible to collect data of human populations in more than two occasions due

mainly to the limitations of time and budget. Even for studies of certain diseases such as

Aids, Diabetics, Meningococis, where the population size is estimated by matching lists

of records obtained by  some governmental source, the use of more than two lists could

be complex due to the time consuming in collecting and preparing the data to be

analysed by capture and recapture procedures. It is important to consider that in many

countries the mecanism of keeping records about the people who has certain diseases or

who died from them is not as well organized and reliable as it should be. Therefore, the

first step in any study that would use these sources as a data base for a capture and

recapture experiment, would be to analyse very carefully the quality of the data,

correcting  typing errors, wrong or missing information, and so on (Seber, et. al., 2000).

     Considering the time, the difficulty and the cost involved in collecting data in some

difficult to access populations, in particular human populations, the existence of a good

estimator that  would require small samples sizes to estimate the population size is very

important.

The Andreawartha's example presented in Mingoti's paper (2000) and which had

motivated the use of the stepwise Bayesian estimator in capture and recapture designs

had some special characteristics that affected the Bayes estimator positively in the sense

that it resulted in a value closer to the true population size. In that example the second

sample size was much smaller than the first and consequently the proportion of

recaptured elements was very small. In all the cases considered in the simulation study
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which were similar to the situation of Andreawartha's example, the Bayes estimator had

a better performance than  Lincoln-Petersen's, Chapman's and Bailey's.

      The stepwise Bayesian estimator treated in this paper is a particular case of the more

general estimator derived in Mingoti's paper (2000). The negative binomial distribution

was used as a prior for the true population size N. However, other prior distributions can

be chosen and other alternative estimators for capture-recapture designs can be

constructed by using the equation (2.4, pp. 655) of Mingoti's original paper. This fact

would give more flexibility to the researcher who could use some previous knowledge

that he or she had about the population and which could result in a different prior from

the negative binomial distribution.
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8    Appendix

       The Tables 1 to 6  mentioned in section 5 are presented in this Appendix.

 Table 1: Simulation results for population size N=250 and equal sample sizes
    (m,n; 21 f,f ) ( s’; αα ˆ,ˆ 1 )    Estimator     N̂      ME   SRMES

    (15, 15; 6; 6) (1.31; 8.7,0.5)

   Bayes
   Petersen
   Chapman
   Bailey

  181.37
  183.69
  110.66
  104.68

  - 68.632
  - 66.312

- 139.34
- 145.32

    92.604
    88.692
  141.350
  147.010

    (20, 20; 8,8) (1.96; 9.8,0.78)

   Bayes
   Petersen
   Chapman
   Bailey

  253.22
  259.30
  163.71
  156.87

   3.2198
   9.2967
 - 86.286
 - 93.130

  123.650
  118.950
    99.152
  104.870

    (25, 25; 10,10)  (2.75; 11, 0.11)

   Bayes
   Petersen
   Chapman
   Bailey

  281.09
  298.41
  203.96
  197.08

   37.094
   48.408
- 46.037
- 52.920

  178.870
  176.140
    87.524
    89.015

   (50, 50; 20,20)     (10; 20, 4)

   Bayes
   Petersen
   Chapman
   Bailey

  235.07
  270.65
  250.73
  246.80

- 14.932
  20.653
    0.730
  - 3.200

    92.582
    94.076
    71.259
    69.932

   (100, 100; 40,40)  (39.94; 39, 16)

   Bayes
   Petersen
   Chapman
   Bailey

  194.17
  252.70
  250.37
  248.88

- 55.829
    2.702
    0.371
 -  1.118

   59.697
   24.820
   23.919
   23.705

 (150, 150;  60,60)  ( 90.03; 60, 36)

   Bayes
   Petersen
   Chapman
   Bailey

  191.06
  250.36
  249.91
  249.25

- 58.939
    0.359
  - 0.088
  - 0.750

    59.345
    10.658
    10.557
    10.514

 (200, 200; 80,80) (150.96; 75, 60)

   Bayes
   Petersen
   Chapman
   Bailey

  210.34
  250.12
  250.06
  249.81

- 39.663
    0.124
    0.061
 -  0.187

    39.690
      4.013
      4.002
      3.986

Note:  N/nfandN/mf 21 ==  ;  N/'sˆandm/'sˆ1 == αα  (all in percentages)
           ME: mean error; SRMES: square root of the mean error square
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 Table 2: Simulation results for population size N=250 and different sample sizes
    (m,n; 21 f,f ) ( s’; αα ˆ,ˆ 1 )    Estimator     N̂      ME   SRMES

  (20, 25; 8,10)  (2.32; 11.6,0.9)

   Bayes
   Petersen
   Chapman
   Bailey

  274.41
  281.82
  184.32
  176.50

   24.406
   31.818

  -  65.679
  -  73.504

   152.960
   149.620
     90.330
     94.290

(25, 20; 10, 8) (2.25; 9, 0.9)

   Bayes
   Petersen
   Chapman
   Bailey

  279.33
  288.64
  187.39
  181.14

   29.327
   38.638

  -  62.610
  -  68.856

   155.990
   151.890
     88.100
     91.060

  (25, 50; 10,20)  (5.48; 22, 2.2)

   Bayes
   Petersen
   Chapman
   Bailey

  284.82
  299.77
  244.46
  236.02

   34.816
   49.773

- 5.538
  - 13.979

   186.680
   187.930
     96.560
     93.730

 (50, 100; 20,40) (19.92; 39, 7.9)

   Bayes
   Petersen
   Chapman
   Bailey

  228.91
  257.42
  250.89
  246.48

- 21.090
    7.417
    0.886
 -  3.053

     45.410
     43.390
     39.530
     38.870

 (50, 25; 20, 10) (4.94; 9.8, 1.97)

   Bayes
   Petersen
   Chapman
   Bailey

  272.42
  306.23
  249.16
  245.25

  22.421
  56.230
 -  0.844
 -  4.749

   184.110
   185.850
     96.630
     94.850

  (50, 10; 20, 4) (2.23; 4.5, 0.89)

   Bayes
   Petersen
   Chapman
   Bailey

  271.69
  291.32
  193.45
  190.63

  21.688
  41.317
- 56.553
- 59.365

   164.800
   155.050
     85.740
     86.690

 (60, 14; 24, 5.6) (3.40; 5.6, 1.36)

   Bayes
   Petersen
   Chapman
   Bailey

  284.69
  319.47
  235.84
  232.95

  34.689
  69.966
- 14.163
- 17.046

   210.580
   207.040
     93.260
     92.250

 Note:  N/nfandN/mf 21 ==  ;  N/'sˆandm/'sˆ1 == αα  (all in percentages)
           ME: mean error; SRMES: square root of the mean error square
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 Table 3: Simulation results for population size N=500 and equal sample sizes
    (m,n; 21 f,f ) ( s’; αα ˆ,ˆ 1 )    Estimator     N̂      ME   SRMES

     (30, 30; 6, 6)   (2.14; 7.1, 0.4)

   Bayes
   Petersen
   Chapman
   Bailey

  539.06
  549.60
  342.78
  332.69

  39.063
  49.603
- 157.22
- 167.31

   281.980
   275.730
   192.350
   198.730

      (40, 40; 8, 8)   (3.31; 8.3, 0.7)

   Bayes
   Petersen
   Chapman
   Bailey

  609.60
  631.50
  445.33
  435.44

  109.60
  131.50
  - 54.67
  - 64.56

   406.760
   405.330
   182.040
   181.290

    (50, 50; 10, 10)   (4.84; 9.7, 0.9)

   Bayes
   Petersen
   Chapman
   Bailey

  633.83
  666.65
  512.51
  503.45

  133.83
  166.65
    12.52
      3.45

    498.550
    500.880
    232.790
    227.920

 (100, 100; 20, 20)  (20.27; 20.27,4)

   Bayes
   Petersen
   Chapman
   Bailey

  432.57
  508.22
  491.65
  487.95

- 67.427
    8.221

- 8.348
   - 12.226

    110.740
      90.649
      83.278
      82.944

 (200, 200; 40, 40)   (80.00; 40,16)

   Bayes
   Petersen
   Chapman
   Bailey

  381.72
  502.20
  499.92
  498.43

 - 116.280
        2.006

-  0.082
-  1.574

    119.810
      34.073
      33.484
      33.355

 (300, 300; 60, 60)   (180.26; 60, 36)

   Bayes
   Petersen
   Chapman
   Bailey

 380.64
 499.72
 499.28
 498.62

 - 119.360
  - 0.278
  - 0.721
  - 1.384

    119.730
      14.690
      14.641
      14.640

 (400, 400; 80, 80)  (320.16; 80, 64)

   Bayes
   Petersen
   Chapman
   Bailey

 420.22
 499.81
 499.75
 499.50

- 79.782
-   0.191
-   0.253
-   0.501

     79.806
       5.419
       5.415
       5.419

 Note:  N/nfandN/mf 21 ==  ;  N/'sˆandm/'sˆ1 == αα (all in percentages)
           ME: mean error; SRMES: square root of the mean error square
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 Table 4: Simulations results for population size N=500 and different sample sizes
    (m,n; 21 f,f ) ( s’; αα ˆ,ˆ 1 )    Estimator     N̂      ME   SRMES

 (40, 50; 8, 10)    (3.96; 9.9, 0.8)

   Bayes
   Petersen
   Chapman
   Bailey

  628.74
  652.73
  483.54
  472.73

128.740
152.730
- 16.456
- 27.274

    435.960
    437.290
    198.020
    194.640

(50, 40; 10, 8)    (3.99; 7.9, 0.8)

   Bayes
   Petersen
   Chapman
   Bailey

  629.10
  659.62
  484.15
  475.64

129.100
159.620
- 15.847
- 24.360

    464.640
    465.120
    207.620
    204.410

(50, 100; 10, 20)    (10.07; 20.14, 2)

   Bayes
   Petersen
   Chapman
   Bailey

  504.89
  540.42
  496.77
  488.01

    4.886
  40.416
-   3.229
- 11.989

    180.190
    185.210
    143.220
    140.890

 (100, 200; 20,40)  (39.83; 39.83, 7,9)
   Bayes
   Petersen
   Chapman
   Bailey

  410.72
  500.30
  500.02
  499.35

- 89.280
    0.305
    0.018
 -  0.646

      89.537
      11.630
      11.587
      11.567

(100, 50; 20, 10)     (10.02; 10, 2)
   Bayes
   Petersen
   Chapman
   Bailey

  463.69
  543.80
  499.65
  495.69

- 36.313
  43.795
-  0.352
-  4.308

    184.150
    184.700
    142.920
    141.590

(100, 20; 20, 4)     (4.03; 4, 0.8)
   Bayes
   Petersen
   Chapman
   Bailey

   574.39
   639.39
   483.08
   479.28

  74.387
 139.390
- 16.924
- 20.716

    428.370
    426.550
    198.930
    197.340

(120, 28; 24, 5.6)     (6.73; 5.6, 1.3)
   Bayes
   Petersen
   Chapman
   Bailey

   481.79
   575.51
   499.42
   496.28

 - 18.206
   75.509
 -  0.582
 -  3.718

    291.220
    292.300
    180.410
    178.960

 Note:  N/nfandN/mf 21 ==  ;  N/'sˆandm/'sˆ1 == αα (all in percentages)
           ME: mean error; SRMES: square root of the mean error square
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Table 5: Simulation results for population of size N=1000 and equal sample sizes
    (m,n; 21 f,f ) ( s’; αα ˆ,ˆ 1 )    Estimator     N̂      ME   SRMES

    (60, 60; 6, 6)    (3.66; 6.1, 0.4)
   Bayes
   Petersen
   Chapman
   Bailey

  1270.30
  1305.90
    924.92
    910.74

  270.290
  305.860
  - 75.082
  - 89.261

   893.090
   892.670
   391.000
   387.840

    (80, 80; 8, 8)      (6.27; 7.8, 0.62)
   Bayes
   Petersen
   Chapman
   Bailey

  1160.40
  1219.90
  1013.60
  1002.10

  160.390
  219.870
    13.602
      2.076

   712.440
   721.680
   404.340
   399.130

 (100, 100; 10, 10)    ( 9.69; 9.7, 0.96)
   Bayes
   Petersen
   Chapman
   Bailey

  1071.10
  1150.90
  1034.00
  1024.70

    71.083
  150.880
    33.986
    24.739

    572.050
    583.870
    365.380
    361.040

 (200, 200; 20, 20)   (40.32; 20.16, 4)

   Bayes
   Petersen
   Chapman
   Bailey

    852.34
  1008.00
    991.65
    987.71

- 147.660
      7.980

  - 8.353
    -  12.292

    196.120
    133.460
    127.810
    127.490

 (400, 400; 40, 40)  (160.04; 40, 16)

   Bayes
   Petersen
   Chapman
   Bailey

    763.73
  1002.20
    999.92
    998.42

     236.270
         2.183

 -  0.084
 -  1.500

    239.920
      49.397
      48.976
      48.880

 (600, 600; 60, 60)   (360.00; 60, 36)

   Bayes
   Petersen
   Chapman
   Bailey

    761.13
  1000.50
  1000.00
    999.34

    - 238.870
      0.455
      0.001
    - 0.656

    239.270
      21.570
      21.517
      21.491

 (800, 800; 80, 80)  (640.18; 80, 64)

   Bayes
   Petersen
   Chapman
   Bailey

    840.21
    999.78
    999.72
    999.47

    - 159.790
    - 0.219
    - 0.282
    - 0.531

    159.810
        8.027
        8.024
        8.027

Note:  N/nfandN/mf 21 ==  ;  N/'sˆandm/'sˆ1 == αα (all in percentages)
           ME: mean error; SRMES: square root of the mean error square
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 Table 6: Simulation results for population of size N=1000 and different sample sizes
    (m,n; 21 f,f ) ( s’; αα ˆ,ˆ 1 )    Estimator     N̂      ME   SRMES

 (80, 100; 8, 10)  (7.99; 9.9, 0.79)

   Bayes
   Petersen
   Chapman
   Bailey

  1066.80
  1128.50
    994.03
    982.74

  66.766
 128.480
 -  5.974
 -17.258

    462.320
    472.960
    329.000
    325.350

 (80, 100; 8, 10)  (7.99; 9.9, 0.79)

   Bayes
   Petersen
   Chapman
   Bailey

  1035.40
  1114.20
    977.76
    969.07

  35.406
 114.230
 - 22.241
 - 30.931

    548.660
    554.800
    365.080
    362.120

 (100, 200; 10, 20)  (19.77; 19.77; 1.97)

   Bayes
   Petersen
   Chapman
   Bailey

    972.51
  1048.50
  1008.50
    999.48

- 27.486
  48.504
    8.471
  - 0.524

    203.200
    209.560
    185.760
    183.730

  (200, 400; 20, 40)   (80.17; 40, 8 )

   Bayes
   Petersen
   Chapman
   Bailey

    885.62
   1003.90
     997.87
     993.90

 - 114.380
       3.935
    -  2.349
    -  6.104

    135.750
      79.158
      77.685
      77.510

  (200, 100; 20, 10)   (20.12; 10.06, 2 )

   Bayes
   Petersen
   Chapman
   Bailey

    859.72
   1030.30
     991.65
     987.71

 - 140.280
     30.293
    -  8.351
 -   12.289

    252.390
    213.340
    190.970
    190.230

   (200, 40; 20, 4)     (4.03; 2, 0.4)

   Bayes
   Petersen
   Chapman
   Bailey

     954.00
   1119.00
     989.27
     985.34

- 45.996
118.960
- 10.734
- 14.661

    571.480
    570.070
    351.830
    350.220

  (240, 56; 24, 5.6)    (6.73; 2.8, 0.67)

   Bayes
   Petersen
   Chapman
   Bailey

     856.31
   1064.90
   1002.90
     999.70

  - 143.690
      64.892
        2.861
     -  0.305

    317.220
    288.150
    240.690
    239.670

 Note:  N/nfandN/mf 21 ==  ;  N/'sˆandm/'sˆ1 == αα (all in percentages)
           ME: mean error; SRMES: square root of the mean error square
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