
1

Universidade Federal de Minas Gerais
Instituto de Ciências Exatas
Departamento de Estatística

An Algorithm for Insertion of Idle Time
in the Single-Machine Scheduling

Problem with Convex Cost Functions
Emerson C. Colin

Roberto C. Quinino

Relatório Técnico
RTP- 01/2003
Série Pesquisa

2

An Algorithm for Insertion of Idle Time in the Single-Machine

Scheduling Problem with Convex Cost Functions

Emerson C. Colin

Departamento de Engenharia de Produção, Universidade de São Paulo

Av. Prof. Almeida Prado, 531, 2o. andar, CEP 05508-900, São Paulo, SP, Brazil*

Roberto C. Quinino

Departamento de Estatística, Universidade Federal de Minas Gerais

Av. Antônio Carlos, s/n, ICEX, CEP 31270-901, Belo Horizonte, MG, Brazil

Abstract

This paper addresses the problem of optimally inserting idle time into a single-machine schedule

when the sequence is fixed and the cost of each job is a convex function of its completion time. We

propose a pseudo-polynomial time algorithm to find a solution within some tolerance of optimality in

the solution space. The proposed algorithm generalises several previous works related to the subject.

Keywords: Scheduling; Single-machine scheduling; Idle time; Convex cost; Fixed sequence.

1. Introduction

The greatest part of the models in scheduling considers linear objective

functions, hereafter objectives. On the other side, many times, a model considering

3

nonlinearities in the objective can improve the quality of the representation of the

real problem without increasing too much the complexity of its solution.

We can mention many industrial settings where nonlinearities can significantly

improve the representation of the problem. A first example can be cited in the

delivery of perishables such as fruits, bakery, or dairy products to the retailer where

earliness costs grow more than proportionally to the earliness. Another example

relates to the goodwill costs associated to the delivery of medicines to pharmacies

and wholesalers. Safety inventories generally absorb a certain level of tardiness, but

from a specific point on, the costs incurred to the patients may be huge.

In this paper we adapt an existing algorithm that treats linear objectives for the

nonlinear case, generalising previous results. In a recent survey [9] Davis and

Sridharan suggest the treatment given here as an open avenue for further

development of algorithms of insertion of idle time. The work is based on [8] that

proposes an Algorithm for Insertion of Idle Time (AIIT) in the earliness-tardiness

problem. The algorithm presented here follows the same structure of Garey et al.´s

paper and many definitions are given here for reference.

Let ,...}2,1{�J be a finite ordered set of indices that represent jobs. Every job

)(Jjj � has a specified processing time jp , a due date jd , and a convex function

)(jj Cg that defines the cost incurred in the completion time)(jC of the job.

The work accomplished considers that a sequence has been defined previously

by some other appropriate procedure to that end. The scheduling here defines the

assignment of the starting time je for each job in such way that two jobs cannot be

processed at the same time, unless (for the sake of simplicity) at the endpoints of the

processing intervals where an overlap can exist. For a particular job j, there is a

4

processing interval defined as],[jjj pee � where [���] represents a closed interval.

Let jW be the idle time before starting j. The schedule � of a set of jobs J is the

assignment of the starting times of all jobs, that is, },...,,{ ||21 Jeee�� , where

jjj WCe ��
�1 and 00 �C . A partial schedule j� is a schedule that contains the j

first jobs of J.

The schedule is accomplished by trying to finish the jobs at their due dates jd ,

taking into account that every job requires a certain amount of time for its

processing. Idle time jW can be used between the processing of two consecutive

jobs. The objective studied in this paper can be defined as min)(�g �
�

�
Jj jj Cg)(.

Although the major part of scheduling and sequencing research does not consider

nonlinear costs, there are a bunch of papers where nonlinear costs are a matter of

concern. Among them we can mention [1], [2], and [4].

The remaining paper is organised as follows: Section 2 describes the literature

related to this work. In Section 3 we describe the proposed algorithm and the

rationale underlying it. Section 4 gives some details of the computational questions

related to the algorithm. Some interesting remarks about the object of this work are

discussed in Section 5.

2. Literature Review

The insertion of idle time makes sense only when an earlier completion of the

job can decrease the total cost of the schedule. The literature related to the insertion

of idle time is always associated with problems containing earliness and tardiness.

5

The tardiness of a job j is defined as },0max{ jjj dCT �� and the earliness as

},0max{ jjj CdE �� . For the linear case, jw)(jh is the tardiness (earliness) cost.

Probably the first widely published work that considers an AIIT is due to [7].

In a quite clear way, the authors model the problem of insertion of idle time in the

asymmetric earliness-tardiness problem �
�

�
Jj jjjj TwEh)(as a linear programming

problem. The authors propose a solution procedure that runs in)|(| 2JO time. Some

years later several papers where published on the same subject offering different

algorithms and different views of the problem [9].

In a distinct paper, [8] propose an AIIT for the symmetric earliness-tardiness

problem })({�
�

�
Jj jjj TEw with running time |)|log|(| JJO . In the same paper

the sequencing problem associated has been proved to be NP-hard. Colin and

Shimizu [5] adapt the Garey-Tarjan-Wilfong’s algorithm for the asymmetric case

maintaining the running time in |)|log|(| JJO .

Although it had not been clearly evident to us, [9] mention that the timetabler

procedure [6] solves the problem)(�g �
�

�
Jj jj Cg)(in)|(| HJO , where H is the

number of units of time in the planning horizon. Here we propose an algorithm for

the same problem with a slightly improved running time

)})/log(|,max{||(| max zdJJO where z is a tolerance of optimality in the solution

space.

It is important to note that idle time insertion algorithms are used along

sequencing procedures and computational efficiency is important because it allows

the use of the algorithm in every sequence created/tested. All papers mentioned in

6

this section suppose that the algorithms are used after a fixed sequence has been

defined. For a more comprehensive review of the related literature see [9].

3. Algorithm for Insertion of Idle Time

In this section we suggest an AIIT considering a broad class of objective

functions. This class can be synthesised as anyone whose costs are represented by a

sum of independent convex functions of completion times of the jobs. In fact, the

problem about considering a more generic class of function such as pseudoconvex or

quasi-convex is the lack of the quasi-convexity property of the sum of these

functions. Functions that are not guaranteed to have quasi-convexity properties claim

global optimisation procedures that generally are very difficult to solve.

Although idleness is highlighted in the name of the algorithm, its use does not

define idle time directly. The algorithm defines starting times; idleness, as previously

mentioned, can be found by the following equation:)(11 ��

��� jjjj peeW .

Let)(minarg*
jjj CgC � be the target completion time, i.e. the completion

time that minimise the costs related to j. *
jC will depend on the function that defines

the costs associated to j.

Let },...,2,1{ lB � be the set of indices of the blocks. A block of the schedule

Bb � is defined as a partial sequence that is scheduled consecutively without any

idle time between jobs belonging to it.

The jobs of every block b are partitioned into two subsets:)(bDec and)(bInc .

If)(bDecj� and the block is shifted earlier, the value of jg either decreases or

7

does not change; on the other hand, if)(bIncj� and the block is shifted earlier, the

value of jg either increases or does not change.

A complete schedule � has l blocks {1,2,…,l} |)|;1(Jllb ��� . In the

processing of the algorithm we need to know just the extreme indices of the block,

first(b) (the first job of b) and last(b) (the last job of b). The remaining jobs are easily

found since they are directly related to the first and the last (See Fig. 1).

In the development of the algorithm we have to consider that the sum of

convex functions in a convex set is convex, as can be seen in [10, p. 178] for

instance. The result is that a sum of convex functions in a convex set has only a

minimum point. In our case, as each job uses a convex function to define its

contribution to the objective function, the block positions and, consequently, the

schedule, are also convex functions of the completion times. Thus unconstrained

minimisation techniques can handle properly the problem.

Observe that we are not violating any discrete property of scheduling problems,

since we will just shift blocks trying to find the minimum cost position.

Let z be an indecision interval related to the optimum completion time of a job

or set of jobs belonging to a block. For jC a certain completion time with an

indecision interval z, we can say that the optimal completion time *
jC belongs to the

interval])1(,[jj CzCz �� � where 10 ��� .

8

1 2 ... b ... l

first(b) first(b)+1 last(b)...
j+1 j+2 j+k...

Block with
k jobs

Schedule
with l

blocks

Fig. 1: Example of a schedule (partial or complete)

Lemma. If g(x) is a convex function and z[1] is an initial indecision interval in which

the minimum must lie, the golden section method, after m iterations, defines a

smaller interval z[m] where the minimum point can be found.

Proof: The proof is a direct consequence of the method. The algorithmic definition

of the method can be found in [3, pp. 270-272] for instance. �

We define �
�

�

bj
jj CgbG)()(as the objective function of the block for every

block b�B. Further we define)(�bG as the value of G(b) if b were shifted earlier in

a small value and)(�bG accordingly, for a small deferral of the block. If we

consider that our indecision interval is defined by z, we can say that

�
�

�

��

bj
jj zCgbG)()(� and �

�

�

���

bj
jj zCgbG))1(()(� , where 10 ��� . In a

practical point of view � is simply a factor that allows the right and left shifts of the

block to be different while keeping the sum of both equal to z.

9

In the development of the algorithm we consider five possible regions in a

convex function: type 1, 2, 3, 4, and 5, according to Fig. 2.

The algorithm takes into consideration the five possible regions of convex

functions, and analyses the last two shifts. Let us suppose that the algorithm has

performed shifts [n�1] and [n]. The algorithm performs the actions using the

conclusions presented in table 1. The algorithm is described more formally below.

Let us suppose that the planning horizon starts at t0. Without loss of generality,

suppose that t0=0. The algorithm starts scheduling the first job with minimum)(11 Cg

If 1
*
1 pC � , then, 11 pC AIIT

� . Otherwise, we can define *
11 CC AIIT

� . Consider that a

partial schedule has already been done until job j, AIIT
j� , the j+1-th job can be

scheduled according to one of the two possibilities: the first where the job can be

scheduled with minimum cost and the other where it cannot.

Case 1 (guaranteed minimum cost): *
11 ��

�� jj
AIIT
j CpC . We schedule j+1 such

that *
11 ��

� j
AIIT
j CC . A new block is created with job j+1.

Case 2 (no guaranteed minimum cost): *
11 ��

�� jj
AIIT
j CpC . We schedule j+1

such that 11 ��
�� j

AIIT
j

AIIT
j pCC . j+1 is scheduled to start at the end of block l.

The algorithm will maintain the following key property:)()(�

� lGlG , that is,

an additional shift either maintains or increases the value of the objective function. If

after the inclusion of j+1 in the scheduling AIIT
j� the key property is maintained, we

do not take any action. On the other hand, if the key property is not maintained,

block l is moved earlier while at least one of the following conditions do not hold:

10

Condition A: 0)(�lfirste . It can happen only if 1�l . In this case, block l

cannot be moved earlier because it is starting at the earliest starting time;

G(b+)
G(b)
G(b–)

b+ b b–

Type 1 Type 2 Type 3 Type 4 Type 5

Fig. 2: Possible regions of a convex function

[n �1] [n]
type 1 type 1 Shift earlier once again
type 1 type 2 The point of minimum cost is between [n �1] and [n]
type 1 type 3 The point of minimum cost is b of [n]
type 1 type 4 The point of minimum cost is b of [n]
type 1 type 5 The point of minimum cost is b of [n]

Point Conclusion

R
eg

io
n

Table 1: Possible region relationships of two consecutive iterations of the

algorithm

Condition B: The inequality)()(�

� lGlG becomes true; the algorithm

assumes that the block is in a region of type 2, 3, 4, or 5. In this case, if the block is

in a region of type 2, it means that a smaller shift might decrease the value of the

objective function. In other words, two consecutive iterations, [n�1] and [n], have

evaluated region as being of type 1 and 2 respectively. If it occurs, we know the

block has to be delayed. Since every job in the block is related to the others, if we

find the optimal position of first(l), we will find the optimal position of the entire

11

block. The search will start in the interval],[]1[
)(

][
)(

�n
lfirst

n
lfirst CC and will find a new

interval that is either smaller or equal to z (the previously defined precision).

Observe that for shifts, blocks l and l�1 can be merged)1(��� lll several

times. The merge does not claim changes in the described algorithm, since the

merged block has the same treatment as the initial block l.

Let)(min *

)(

][
jjbDecj

n CC ���
�

 be the shift size, after n shifts, that made the second

condition become true, positioning the block in a region of type 2. The indecision

interval],[]1[
)(

][
)(

�n
lfirst

n
lfirst CC , with][

)(
]1[

)(
]1[n

lfirst
n

lfirst CCz ��
� , contains the point of minimum

cost of l. The utilisation of the one-dimensional search procedure over the interval

z[1] determines a smaller interval where the minimum value of G(l) lies. The step

came up with an optimal shift �* that replaces shift �[n].

We use a one-dimensional procedure known as golden section method [10, pp.

199-200] to find the minimum of the function within some tolerance in the solution

space. In the golden section method, after m iterations, the indecision interval is

reduced to]1[1][))51/(2(zz mm �

�� . Suppose the final indecision interval is][mzz � .

It will be necessary

))51/(2ln(
)/ln(1

]1[

�

��
zzm

interactions to the procedure be concluded.

12

After the definition of �* for j+1, if it is the case, the resulting schedule is

AIIT
j 1�� . The algorithm carries out successive applications of the described procedure

to form schedules AIIT
J

AIITAIIT
||32 ,...,, ��� .

We can consider that for the partial schedule AIIT
j� , the minimum values of the

objective functions of the blocks belong to indecision intervals z. These indecision

intervals represent an acceptable precision for the optimum position of the blocks. In

a practical point of view, z is easily justified since completion times generally are not

penalised in a continuous basis. In fact, completion times are penalised according to

time windows. This means that whichever the completion time is, the penalisation is

the same, since it belongs to the same time window (e.g. a day can be considered a

time window since a delivery delay of either 7.5 or 7.7 days is virtually the same).

Taking these observations into account, the following theorem can be stated:

Theorem. AIIT
j� is a schedule with minimum value of �

�

�

j

i iij Cgg
1

)()(� within a

tolerance z in the solution space, among all possible partial scheduling for the first

j jobs.

Proof: As the induction hypothesis, we consider that in j the theorem is true, that is,

)(min)(j
AIIT
j gg

jj

��

� ��
� , where j� is the set of all possible schedules for the first j

jobs. For the empty schedule AIIT
0� , the theorem is true. Thus, we have to prove that

the theorem is also true for j+1. Let kC and AIIT
kC be completion times of the job k in

j� and AIIT
j� , respectively. We can consider two cases: In the first, the job is

13

completed in its target time, and in the second, it is not:

Case 1. *
11 ��

�� jj
AIIT
j CpC . This case yields the algorithm schedules j+1 such

that *
11 ��

� j
AIIT
j CC , and thus, for AIIT

j 1�� the objective function is

)()()(*
111 ���

�� jj
AIIT
j

AIIT
j Cggg �� . Taking into consideration that

)(minarg 11
*

1 ���
� jjj CgC by definition and)(min)(j

AIIT
j gg

jj

��

� ��
� by the induction

hypothesis, we can say surely that)()(11 ��
� j

AIIT
j gg �� . Therefore the theorem is true

for this case.

Case 2. *
11 ��

�� jj
AIIT
j CpC . As it is not possible *

11 ��
� j

AIIT
j CC to occur anymore,

the algorithm schedules initially j+1 in a such way that 11 ��
�� j

AIIT
j

AIIT
j pCC , and

evaluate AIIT
lfirste)(and the relationship between G(l) and)(�lG . j+1 is inserted into the

block l. Considering the induction hypothesis and the convexity of)(11 �� jj Cg , we

can say that)()(1111 ���
����

AIIT
jj

AIIT
jj CgCg where ����

���

AIIT
j

AIIT
jj CCC 11

*
1 . With this

consideration, we know that)(1�jg � can be decreased only if block l is shifted

earlier � units. Without loss of generality, let us suppose that shifts do not merge

blocks l and l�1.

If in any moment 0)1(�
AIIT
firste , the algorithm does not make any further shift

because there is no shift � that can improve the objective function. Therefore the

theorem proves the optimality of the algorithm. On the other hand, if in the shifts

0)1(�
AIIT
firste , the algorithm shift block l earlier until at least one of the two following

subcases happen:

14

Subcase 2a. The inequality)()(�

� lGlG becomes true, and an analysis of the

objective function (in shift [n]) indicates the block is in a region of type 3, 4, or 5.

Due to the convexity of �
�

�
lj jj CglG)()(, the inequality suffices to guarantee that

the minimum point belongs to an interval z since the sum of right and left shift

widths is at most z. This completes the proof for this subcase.

Subcase 2b. The inequality)()(�

� lGlG becomes true, and an analysis of the

objective function (in shift [n]) indicates that the block is in a region of type 2.

Considering the algorithm’s progression, in the shift [n�1] the region was of type 1,

and thus, we can say that the objective function’s derivative inverted the signal

between the shifts [n�1] and [n]. This case demands a search (that will be carried out

with the golden section method) in the region belonging to the interval

],[]1[
)(

][
)(

�nAIIT
lfirst

nAIIT
lfirst CC . Taking the lemma into account we can say that a number m of

iterations will happen until zz m
�

][. The proof is now completed. �

4. Computational implementation and related questions

Some operations of the algorithm is implemented using heaps, that according

to [12, p. 33], can be defined as “an abstract data structure consisting of a collection

of items, each with an associated real-valued key”.

For every block b a heap P(b) is maintained. It defines how much each one can

be shifted. Every heap must maintain two values for each job: the first is the index of

the job belonging to Dec(b); the second is a value equivalent to *
jj CC � (the

maximum amount of time that j can be shifted while its tardiness decreases) for

every job)(bDecj� , hereafter denoted as the key of the heap.

15

The algorithm is implemented considering eight operations. For n the number

of items in the heap and considering that heaps are represented by binary trees, the

eight operations with their worst computation times - the first 6 found in [12, chap. 3]

- are described below:

Operation 1. MakeHeap(P).)1(O . Create a new empty heap denoted P;

Operation 2. FindMin(P).)1(O . Find an item of minimum key in heap P

returning its key without removing the item from P;

Operation 3. DeleteMin(P).)(lognO . Find an item of minimum key in heap

P. Presents itself being deleted from P;

Operation 4. Insert(j,x,P).)(log)(log)1(nOnOO �� . Insert an item j with key

x in heap P;

Operation 5. Merge(P1,P2).)(log))(log(21 nOnnO �� . Merge heaps P1 and

P2 (with n1 and n2 items) of disjointed items into a new heap that becomes

P1. P2 becomes empty;

Operation 6. AddToAllKeys(x,P).)1(O . Add x to all keys of the items

belonging to P;

Operation 7: DefineRegionType(��).)(nO . Computes G(l) and G(l+) for a

shift of � and evaluates the type of the region;

Operation 8: GoldenSection(a,b,f,z).))/(log(max zdO . The golden section

method needs at most))51/(2log(/)/log(1 ���� zm))/(log(zO ��

(where � is a shift) iterations until the indecision value be smaller or equal

to z. The largest possible shift is maxd ; farthest point where the algorithm

16

would place a job. It uses the golden section method to define an interval

where the position of minimum cost of the block lies. Given a function f,

and an interval [a,b] where the search must be performed, the operation

finds, with a precision of z, the position that keeps the block at minimum

cost.

Subsequently we present the pseudocode of the AIIT described previously. The

procedure is called InsertIdleness, according to Fig. 3 and has an auxiliary procedure

denoted ShiftEarlier, according to Fig. 4.

The computational code of the golden section method is quite common and can

be found in many sources such as [11, pp. 390-395] for example.

In the pseudocode we did not introduce a definition for � because it depends

on the characteristics of the problem being analysed. Furthermore, the computation

of � does not bring additional troubles neither has it a significant impact in the

computational time of the algorithm.

17

procedure InsertIdleness (�0,z)
begin
for j:�1 to n do

)(minarg:*
jjj CgC � ; l:�1; first(1):�1� last(1):�1;

if 1
*
1 pC � then

C1:�p1;
else

*
11 : CC � ;

);(:)1(11 CgG f � MakeHeap(P(1));
for j:�1 to n�1 do

if *
11 ��

�� jjj CpC then
begin
l:�l+1; *

11 :
��

� jj CC ; first(l):�j+1; last(l):�j+1;)(:)(11 ��
� jjf CglG ; MakeHeap(P(l));

end;
else

begin
last(l):�j+1; Cj+1:�Cj+pj+1; Insert))(,,1(*

11 lPCCj jj ��
�� ;)()(:)(11 ��

�� jjff CglGlG ;

while)()(�

� lGlG vv and 0)()(�� lfirstlfirst pC do
ShiftEarlier;

endwhile;
end;

end.

Fig. 3: Pseudocode for insertion of idle time in a fixed sequence - job costs

represented as convex functions of the completion times

18

procedure ShiftEarlier
begin
�1:�FindMin(P(l))�
if l�1 then

11:2 pC ��� ;
else

)1()()(:2
�

���� llastlfirstlfirst CpC ;
�:�min{�1,�2};
NewRegion:�DefineRegionType(��);
if NewRegion=Type2 then

�:�GoldenSection)),(,,()()(zlGCC flfirstlfirst �� ;
AddToAllKeys))(,(lP�� �� ���)()(: lfirstlfirst CC ; ���)()(: llastllast CC ;
while FindMin(P(l))�0 do

k:�DeleteMin(P(l));
end de while;
if l>1 and)()()1(llastllastllast pCC ��

�

 then
begin
Merge(P(l�1),P(l)); last(l�1):�last(l);)()1(:)1(lGlGlG fff ���� ; l:�l�1;
end;

end;

Fig. 4: Pseudocode of the procedure ShiftEarlier

19

The reader can verify that G(l) either is used as)(lG f or as)(lGv . The

difference between them lies in the fact that the first represents the function G(l) and

the second the numerical value of G(l). Although there is no elucidation,)(jj Cg

follows the same standard in the assignment operations. If)()(: jjf CglGx �� we

want to mean that the function)(jj Cg is being added to)(lG f , while if

)()(: jjv CglGx �� we want to mean that the value of)(jj Cg is being added to

)(lGv .

Proposition. The computational time of the algorithm is

)})/log(|,max{||(| max zdJJO , where dmax is the largest due date, || J is the

number of jobs and z is the precision which the search defines the optimal region.

Proof: The time for the golden section method, as previously seen, is

))/(log(max zdO and the time for the operation DefineRegionType(x) is)(jO

considering that the block contains j jobs. In the worst case, these operations will be

used as many times as the ShiftEarlier procedure does. The DeleteMin procedure

runs in)(log jO for j items in the heap. In the worst case the ShiftEarlier procedure

will be used 1|| �J times. Thus, the total time can be defined as

)})./log(|,max{||(|
2

||)1|(|)/log()1|(|})/{log(

max

max

1||

1
max

zdJJO

JJzdJjzd
J

j

�

�
�����

�

�

20

If the ShiftEarlier procedure is used 1|| �J times, the Insert operation also

does. Thus, the combined running time for the entire procedure can be defined as

)})/log(|,max{||(|)})/log(|,max{||(||)|log|(| maxmax zdJJOzdJJOJJO �� ,

which means the proposition is true. �

The proposition shows that the algorithm has running time bounded by a

pseudo-polynomial function in the instance size.

5. Concluding Remarks

This paper considers an algorithm that can be used in a broad class of objective

functions for scheduling with nonlinear earliness and tardiness costs. The relevance

of the work could be greater if there were more studies about scheduling with

nonlinear cost functions. The very importance of nonlinear costs in scheduling is not

properly highlighted yet; besides the large number of sequencing and scheduling

studies, there is a lack of research considering nonlinearities. We can mention an

example considering that costs of perishable items (earliness costs) are far better

modelled by nonlinear functions. This is also true for the tardiness case; the greater

the tardiness the less sustainable the situation between producer and client, showing

clearly the importance of nonlinear models. Of course this additional complexity

transforms a hard problem into one even harder, however, nonlinear functions such

as exponential or quadratic perhaps could bring substantial improvements in the

21

modelling of real problems. We think this paper is a small effort towards this

direction.

The subject approached here seems to have interesting deployments in the

development of procedures that use it. A piece of research considering sequencing

and scheduling at the same time can be interesting, specially if we take into account

that idle time insertion algorithms can give valuable insights into sequencing

algorithms.

References

[1] B. Alidaee, Single machine scheduling with nonlinear cost functions, Computers

and Operations Research 18 (1991) 317-322.

[2] K.R. Baker, G.D. Scudder, Sequencing with earliness and tardiness penalties: a

review, Operations Research 38 (1990) 22-36.

[3] M.S. Bazaraa, H.D. Sherali, C.M. Shetty, Nonlinear programming: theory and

algorithms, 2nd. ed., Wiley, New York, 1993.

[4] R.L. Carraway, R.J. Chambers, T.L. Morin, H. Moskowitz, Single machine

sequencing with nonlinear multicriteria cost functions: an application of

generalized Dynamic Programming, Computers and Operations Research 19

(1992) 69-77.

[5] E.C. Colin, T. Shimizu, Algoritmo de programação de máquinas individuais com

penalidades distintas de adiantamento e atraso, Pesquisa Operacional 20 (2000)

15-26.

22

[6] J.S. Davis, J.J. Kanet, Single-machine scheduling with early and tardy

completions costs, Naval Research Logistics 40 (1993) 85-101.

[7] T.D. Fry, R.D. Armstrong, J.H. Blackstone, Minimizing weighted absolute

deviation in single machine scheduling, IIE Transactions 19 (1987) 445-450.

[8] M.R. Garey, R.E. Tarjan, G.T. Wilfong, One-processor scheduling with

symmetric earliness and tardiness penalties, Mathematics of Operations

Research 13 (1988) 330-348.

[9] J.J. Kanet, V. Sridharan, Scheduling with inserted idle time: problem taxonomy

and literature review, Operations Research 48 (2000) 99-110.

[10] D.G. Luenberger, Linear and nonlinear programming, 2nd. ed., Addison-

Wesley, Reading, 1984

[11] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical recipes

in FORTRAN: the art of science computing, 2nd. ed., Cambridge University

Press, Cambridge, 1992.

[12] R.E. Tarjan, Data structures and network algorithms, Society for Industrial and

Applied Mathematics, Philadelphia, 1983.

