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Abstract

In this paper we present the optimum sampling size in zero-defect acceptance sampling with
rectification under diagnosis errors. Its development is based on an econamicd model. The
procedures are implemented in a program using the software Matlab and illustrated by an
example.
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1. Introduction

Let us consider that items are manufactured and evaluated by attributes using a well-known
tod: the acceptance sampling. In T lots each one with N products, a sample of mis extracted
from ead lot. If all sampled items are conforming in the inspection, the lot is accepted.
Otherwise dl items (sampled and nonsampled) are inspected, rectified the non-conforming
ones and then the lot is acepted. Such procedure is known as zero-defed sampling with
rectification. Rectification, i.e. replacing or discarding al non-conforming units after 100%
inspection of rejeded lots, is frequently used when manufacturing costs are high. The most
common application of such acceptance sampling scheme is in the semiconductor
manufaduring. Figure 1 illustrates such procedure.

Some papers abou zero-defed sampling with rectification can be foundin the literature. We
may mention the cntributions from Hahn (1986), Brush et al. (1990), Greenberg & Stokes
(1992) and Anderson et al. (2001). In these papers, the main aojective is to present estimator
for the number of non-conforming items in such sampling scheme. In Anderson et al. (200L),
they introduced the possibility of the dassification criteria in zero-defect sampling with
rectification may present diagnasis errors. That is, one item is evaluated as nonconforming but
in redity it is conforming, or an item is classified as conforming but it is non-conforming.
Abou diagnasis errors, many authors have made @ntributions on this subject. For example,
Johnson et al. (1991) have early pointed out that the diagnosis errors can endanger the
performance of an acaptance sampling. Minton (1972) provides expressions to anayze the
effed of inefficient inspection and correction an the power of single sampling inspection plans,
mainly in misclassifications of defedives as nondefectives. Different authors have presented
methoddogies to minimize the impaa of diagnaosis errors in the aceptance sampling. We may
list Greenberg & Stokes (1995), Markowski & Markowski (20Q2), Quinino & Ho (2003) and
Quinino & Suyama (2002.



The use of econamical model to plan acceptance sampling is not a new subject, but it is ill a
subject of great interest as mentioned Wetherril & Chiu (1975). It was recantly used in Ferrel &
Chhdker (20@) to determine the producer’s tolerance that minimizes producer’s loss and
consumer’s loss in a single sampling, with inspection and non-inspection procedures using a
quadratic function to describe the consumer’'s cost. Aminzadeh (2003 actually used the
Inverse Gaussian distribution as a lifetime model to oltain opimal values for sample size and
adion limit for employing econamic variable aceptance-sampling plans based on step-loss
function. Starbird (1997) derive the conditions under which zero-defect is the policy that
minimizes the supplier's expected annual cost.

In this paper, we will consider the determination of an economicdly optimum sample size m
that minimizes a cost function in zero-defect acceptance sampling with rectification procedure.
The comporents of such function include the inspection cost, costs due to the presence of norn
conforming items in accepted lots and costs due to dagnosis errors. The inclusion of diagnosis
errors in the sample size determination in such sampling inspection procedure is a natural
extension of the earlier papers mentioned. Econamica models mentioned in the literature do
not include the possibility of the diagnosis errors and rectification.

In Sedion 2,we introduce the notation and hypothesis considered in this paper. The expected
cost function and the procedure to determine the optimum value of mis developed in Section
3. As this probabilistic model of sampling process can be viewed as a Markov chain, the
description of the absorbent and /or transitory states and their transition matricesis presented in
Sedion 4 This procedureisillustrated by a numerical example in Section 5and we finish this
paper with discussions and extensions in future works.
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Figure 1: Acceptance sampling: zero defect with rectificaion

2. Notation and hypothesis

Consider that from a lot with N units, a randan sample of m units is selected without
replacanent. Let D be the number of nonconforming units in the lot. D is a binomial



randam variable (N, p), with probability 77, or D is equal to zero with probability (1-77).
Thisfamily of distributionsis aufficiently flexible to give agoodfit to olserved distributions of
lot quality by appropriate choice of the probability 77, and it allows a simple interpretion and
leads to a simple theory [Hald (1981)].

Let:

€] — theprobability of a conforming item being classified as non-conforming;

€ — theprobability of a non-conforming item being classfied as conforming;

C, — thecosttoinspect anitem;

C, — thecost of anonconforming itemin the accepted lot;

C, — thecost to judge @roneously an item as non-conform when it is conforming ;

Dy — thenumber of actual non-conforming itemsin theinitial sample of size minthelot;

D, — the number of actual non-conforming itemsin (N-m) nonsampled items in the lot;

D =Dy + Dy - thenumber of nonconforming itemsin the lot;

Y1 — the number of items declared nonconforming after inspectionin theinitial sample of size
min thelot;

Yo — the number of items declared norrconforming in (N-m) nonsampled items in the lot if
the lot were rectified;

Y =Y, +Yo — the number of items that would be declared as non-conforming in lot if the lot

were rectified;
D4|D — the conditioned distribution of D; onD and it follows a Hypergeometric (m, D, N) .

3. Cost function

In this Section, the expeded cost function per lot (Eq,) is developed employing the earlier
notations and hypathesis from Sedion 2. The expected cost function is composed by three

parts. The first one (Elm) is related to costs of inspection d m items and the paossibility to

inspect the (N-m) non-sampled items. Such event is conditioned to the classfication of at least
one nonconforming item in the minitial inspected items and the probability of this event is
denoted by P(Y; >0):

Em = com-+co(N ~m)P(¥; >0).

The second comporent ( E%) is dueto the possibility of an item being classified as conforming

when it is norrconforming item. Such result can produce differences in the expenses when the
lot isacaepted or when it isrejected in the inspection. Figure 2 illustrates such procedure.
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Figure 2: non-conforming when the lot is accepted or when it is rejected
Thus, we have



Ein =y =00+ ![y>0)°f

wherel [] denotes an indicator function; E(*) - denotesthe expected value of arandom

variable. The last part (E%) is due to the mnsequence of classifying an item as non

conforming when it is a mnforming item. In this case, the lot is rgected and consequently all
items classified as non-conforming and there is a chanceto be rectified unnecessarily:

E%zcze_LEgN—D)l[Yl>o] =
So the expected cost ( E,) isexpressed by Ep, = E# + E%.l+ E% . Specificadly, it is:
Em =com-+co(N -m)P(¥; > 0) + ¢ E [y =] +e2l[y »0] D5+ C28 E N ~ D)I[y 5] £
=com+co(N ~m)P(Y >0) + qE H1-I[y 5])D + e2l[y 0] D g+ 28 E N - D) [y »q] £

= com-+[co(N -~ m) + 28 N] P(¥; > 0) + o E[D] - [e1 (L) + co8] E dy »0) (D1 + Do)

3.9
where: P(Y, >0) =1- P(Y1=O)=1—{7‘[E@E[P(Y1=O|D1)|D]§+(1—el)m(l—n)};
DZN DO

N mm(mD)
E%[P(Yl—owl)m]a—z ZD Dl%%a PN P L-e)™

E@[P(Yl:mDl)|D]a=1—Eg[Pm>0|D1)|D]E;
E[D]=mNp;
EH[\G>O](D1+Dz)gzﬂ{E%[Dlp(Yl>0|D1)|D]E+ E[Dz]Eg[P(\G>O|D1)|D]Q;
E[D,]=m(N-m)p;
D EI:N DO

N mln(mD) D %:ND
E@[D1P<Y1>0|Dl)|t>]a-; Zj s P e e e P,

and E(*|*) — denctes the conditioned expectation value.

4. Markov chainsin zero-defed acceptance sampling with rectification in a presence of
diagnosiserrors.

The process of sampling and inspedion and the dedsion to aacept or not the lot after the
inspection presented in Section 3 can be modeled as a non-irreducible Markov chain with
transition matrix P. The set of states can be denaoted by the vector (s, j,K,t, ), such that s+ j+

k + t=zand z=0,...,m, being absorbent or transitory states. The variable scan be viewed as the
number of conforming items correctly classified as conforming; j is the number of conforming



items incorrectly judged as non-conforming; k is the number of non-conforming items
classified as conforming; t isthe number of nonconforming items correctly judged as non
conforming and z the number of items evaluated. The dsorbent states (j =t =0andz=m or

j =1or t=1) indicate that the inspection procedure of the mitemsis finished and the lot was

acceted or rgjected even before finishing the minspedions.
Consider the probabilities in the transition matrix P conditioned onthe random variable

D. Let P; be the transition matrix conditioned on D when it follows a binomial distribution
with parameters (N, p) and P, the transition matrix when D=0. The matrix P; occurs with
probability 77 andthe matrix P, with probability (1-77).

The probabilities in the transition matrices P; and P, , related to the inspected lot are
respedively:

EP[(S+LJ kt,z+D)|(s j.kt,2)]=A

DD[(SJ+th z+D)|(s j.kt,2)]=A

EP[(SJ K+1t,z+) (s k.. 2)]= A5

[P[(Sj kt+Lz+1)|(s ]kt 2)]=A
Epv[(s,J,k,t,z)|(s,1,k,t,z)]_1 if zzmorj=lort=1
Hotherwise =0

EP[(S+LJ 0,0,z+1)](s,j,00,2)]=(1-&)
gﬂ[(suloo z+1)|(s,j,0,0,2)]=¢

Py -
P[(s.1.0,0,2)|(s,}.0,0,2)] =1, if z=mor j=1
%)therwise =0
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The probability of each state dter m ingpections is given by the row vectors Pl(m) and
P,(™  They are respedively by P(™ = pOp™: p,(M = pOp,Mang PO =[100.....0] is
the probability of initial state vedor. Each element of P9, P(™ and P,{(™ s associated to
one state (s, j,k,t,z) . In PO, theinitial probability of the state (s=0,j =0,k =0,t =0,z=0) is
equal to one and for other states the probability is equal to zero. In the row vedors

P and P,(™ | the non-null probabilities indicate the esorbent states deciding by the
accetanceor rejection of thelot.

Making P = 2P, (™ + (7.)P,("™ allows us to calculate ealy the probabilities of interest
mainly the conditioned ore related to the acceptance of the lot. For example, summing up the
probabilities of the asorbent states (s, j,k,t,z) such that j =0, t =0 andz=mwill provide us
the probability of accepting a lot [This is denoted by P(Y; =0)]. The probability of non
acceptanceof alot isgiven by the sum of the probabilities of the absorbent states (s, j,k,t,2),

suchthat j=lort=1in P(M | States with k >0 will i ndicate the wrong acaeptance of the
lot and stateswith j =1 indicatesthat the lot was rejected wrongly.

5. Determination of the optimum sample size m’

The optimum value of m (m°®) is one that minimizes (3.1) and it can be obtained by diredt
seach substituting values of m=0,...,N in (3.1). As N is usualy alarge number, a direct

seach can be a hard task which may spend much time. We propose alimit Ly <N in order to
speed upour search. Either accepting or rejeding the lot, the st to inspect mitems will be &

least Gom. For the optimum valuem®, this will be com’. However, if the inspection is not
performed, that is, whenm=0, the expeded cost will beEmn=g=Nprc. As

m°cg < E - <Em=o thenit follows m’ < Nprre; / ¢g. So a direct search to find m’ must be
proceeded for all integer values of msuch that m< Ly = min{ N; Nprrc; / co} -

It is known that under some regularity condtions a hypergeometric distribution can be
approximated by a binomial distribution and this approximation simplifies the mathematical

modeling. In this case, we may obtain a new expresson for E,, denoted tyEr%, when this
approximationis considered for the randam variable D;. In this ®nse, abourdary built for Er%
can aso be eanployed to search the optimum sample size. To find aboundary for Er% isnat an

easy task. In order to simplify it, a conditioned boundary on p, =D/N for Eﬁ is proposed
andthen using thisresult, anew oneis propased for Ep,



Let E:n be the st function of Er% whenp, =D/N; m’ is its optimum sample size.
Examining AE:n. =E:n. —E:n. _1sO we obtain, after some dgebraic manipulation, the
inequality

a-m™ 4 -(n-m)p™ k<0
(5.0

with a = (cy + ncyed)(1-11); b= prer/(l-e) + (1- pp)

| =[pharl- &) + prcsa][(nes - D& + pr(l-& - &) + (1-&)]/[1-& - pr(l-& - &)] -
[co +ncoer (e + phl-e -&))];
and
k=[mphci(l- &)+ mpncoe ] [L- pr)(l-e —&)(e + ph(l-a -&))]/[1-a - ph(l-a -&)]-
[r1co (e + pr(1-6 —&)]
A set of inequalities expressed in (5.2) can be obtained from (5.1) asfunctionsof kand | .
a-mb™ Y —(n-m)b™ =0, if 1<0andk<0
0 .
%a—nbm k<0, if I<0andk>0
Eb—nbm' 1 <0, if 1>0andk<0
0

Fa-™ 4 —np™ k<o, if I>0andk>0
(52)
From (5.2), aboundary L, for m’ can be proposed in (5.3)

%n' =0, ifI<0andk<0

Iogi
K if| <0 andk>0
logb

IN
[y
+

o
1
E%DDDE?DDD%DD
I/\.
[y
+

IogE
M if1>0ardk<0
logh

a

log
T +1K it 50 ard k>0
logb

IN
[y
+

(5.3
Negative values in (5.3) indicate thatm”™ = 0. The expression (5.3) indicates that values lower
than the boundary will result AE:n. < 0. Thisimplies that for values lower than the boundary
exists one and only one minimum value for E:n .This value is aso the globa minimum.

However, the boundhry expressed in (5.3) is conditioned on the value of py, and valid for E:n :



If we uncondtioned it, analyzing all possible values of py,, we can propose anew boundary for
Er% expresed aslg =max{Lo(pn)}, ph=D/N, D=1,...N. For values lower thanly , we

A _ * _ * ) i
haveAEmA —EmA EmA_lsO, where m? denotes the optimum value. This meant that

lower than this boundary, it exists one and aly one extreme value for Eﬁ, .This is dso the

global minimum. Moreover, it is known that if m< 0.1N [Johrson, 199], the approximation
of a hypergeometric distribution by a binomial distribution can proceed. So, this additional

condtion must also be verified, that is, if L3 <0.IN . In this case, the boundry L3 can be

employed to delimit aminimum for E,, which will bent.

A strategy to perform a cwmputational search the optimum value m (m°®) for the expression
(3.1) can bedrawn . If L1 <0.IN, seach for all values lower thanmin{Ly;Lg}, urtil finding

the minimum value m°. If Ly >0.IN, search for all values lower than min{0.IN;Lg} urtil
finding the minimum value. Compare this result with the search in values higher than 0.1N but

lower or equal toLy . The value of m° isthe lowest one. Note that the computational search is

performed searching only integer values, starting always with the lower one. The flowchart in
Figure 3illustrates the decision processdescribed in this section.

( Start ]

Obtain optimum value,
m¢, such that:
Ye m® = min [L1;L3]
Stop when find a
minimum point

No

X

Obtain optimum value,
m#, such that:
m? < min [0,1N;L3]
Stop when find a
minimum point

!

Compare m* with all h 4
values in [0,1N;L1] End ]
Select the optimum

value m®

Figure 3: The dedsion process of the optimum value

6. Numerical Example and Discussions

The example described in this sction is based onHahn (1986), Greenberg (1992), Greenberg
(199%) and Anderson (2001). Consider lots with N=5000items that will be inspected by a zero-
defect with rectification procedure. In this context, the following costs are

corsidered: ¢y =$3.00, ¢, =$10000, ¢, =$50000, 7=0.1, p=0.06, € =&, =0.001.
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Figure 4: Values of m versus expected cost



A sengitivity analysis was performed to evaluate the behavior of the optimum values of
m as functions of the parameters. Since al possible scenarios can result in a high number of
possibilities to examine, and analyzing al of them can become unmanageéeble, here we choose
to analyze the behavior varying one parameter at atime. The ranges of the parameters explored
inthisanalysisare

« 0O=<cy<5;

e 0O=<c <700;

« 0=<cy,<2900;

« 0<¢g<0.0@;

+ 0<e<0.15and
e O<p<l.

The results of this analysis are plotted in Figure. 5. We observed that as Cqincreases m° tends
to zero, indicating the best option is a non-sampling procedure. In the ésence of the diagnosis

errors, as Cy tendsto zero, the optimum value m° increases to a value higher than N=500Q
This fact points out the strong influence of the diagnosis errors in oltaining the optimum value

o

m-.

If Cy increases, the value of m° tendsto zero, which justifies when we observe m’ =0 the

possibility of acost Cyiseliminated. If ¢; increases the value of m° tendsto N. Thisindicates
that the proposed procedure iseconamically feasible.

If g and €y increase, it is not feasible making sampling with rectification since the amourt of

items wrongly classified will remove the benefit of the proposed procedure which isto provide
us an acoepted lot with lower amourt of non-conforming items.

If pt O, m” 1 O sincethereisonly conforming itemsinthelot. Aspt 1, m’ | 1. Thiscan

be justified since the probability to reject the lot aters dightly when m>1 indcating that
there is no neaessty to sample more than ore item.
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Figure. 5. Optimum values of mversus costs ¢y, C;,Co, p, €,and &

Now using Markov chain approach and considering a sample size of 15 items (m°), the
probability to accept the lot is 0.9323 and to reject the lot is 0.0677.Possible routes to accept
and to reject the lot are listed respedively in Tables 1 and 2. The vedors described in these
tables are dements of P™. Such vedor allows us to verify which absorbent states indicate the
corrected acceptance of the lot or the corrected rejection of the lot. With the vedor P™ it is
paossible to calculate conditional probabilities of interest. If the lot was acoepted, the probability
to be crrectly accepted is 0.999961.Similarly, if the lot was rejected, the probability to be
correctly rejected is 0.787101. These results suggest atighter verification in the rejected lots as

an attempt to decrease the number of |ots rejected wrongly.

S j Kk t Z Probability
15 0 0 0 15 | 0.9322332500®0000@M00000®O000
14 0 1 0 15 | 0.0000366687P9999997000WO000
13 0 2 0 15 | 0.0000001330109900@M0O0003®O0O00
12 0 3 0 15 | 0.000000000033662@G00000MO400
11 0 4 0 15 | 0.00000@0000®M0047PH46350W0000
10 0 5 0 15 | 0.0000000000M0000M55628%H4000
9 0 6 0 15 | 0.0000000000@M0000MO0004B4566
8 0 7 0 15 | 0.00000@0000@®0000MO0000®O331

Sum of the values 0.9322620518413610098986219297

Table 1: Absorbent states — ot accepted




S J K t z Probability
0 0 0 1 1 0.00499H90000M00002D00000@O000
1 0 0 1 2 0.0047480470@M0000100000@0000
2 0 0 1 3 0.0044987600@M0000®00000MO000
3 0 0 1 4 0.0042695320@®M00002200000@0000
4 0 0 1 5 0.004052092999999900000@O000
6 0 7 1 14 0.0000000000MO000MO0000MO005
5 0 7 1 13 0.0000000000MO000MO0000MO002
0 1 6 0 7 0.0000000000MO000MO0000MO001
4 0 7 1 12 0.0000000000@MO000MO0000MO001
Sum of the probabilities 0,06773D0000MO0005.00000®O009

Table 2: Absorbent states —lot rgjected

7. Conclusionsand final remarks

Diagnosis errors can cause asignificant impad in determining the optimum sample size in a
zero-defed with rectification procedure. Asillustrated in this study, even small diagnosis errors
as  =0.001ande, =0.001, they can alter significantly the value of optimum m (m®). In this

sensg, it is fundamental to consider the diagnaosis errors. They must be incorporated in the
model and evaluated in an econamic perspective.

Extensions of this study can be made in two directions. One is to change the initial criteriain
the sampling inspedion for a value other than zero, that isc,c = 0. Ancther dternative is to
make repetitive tests to minimize the dfect of the diagnasis errors. An item would be dassified
as conforming if the number of conforming independent classifications is higher than a
specified value a. In this senery, the objective is to determine the optimum values of m, the
number of the independent repetitive inspections in an item, the value of a and the value of ¢
such that minimize the total expected cost.

References

(1) Aminzadeh, M. S. (2003). Bayesian Econamic Variable Acceptance-Sampling Plan Using
Inverse Gaussian Model and Step-Loss Function, Communication in Statistics — Theory and
Methods, 32(5), 961-982.

(2) Anderson M. A.; Greenberg B. S. and Stokes S. L. (2001). Acceptance sampling with
rectification when inspection errors are present, Journal of Quality Technology, 33(4), 493505.

(3) Brush G. G.; Hoadley B., and Saperstein B. (1990). Estimating outgoing quality using the
quality measurement plan. Technametrics, 32, 31-41.

(4) Ferrell G.W. and Chhdker A. (2002). Design of econamically optimal acceptance sampling
plans with inspection error, Computers & Operations Research, 29, 1283-1300.

(5) Greenberg B. S. and Stokes S. L. (1992). Estimating nonconformance rates after zero defect
sampling with rectificaion. Technometrics, 34(2), 203-213.



(6) Greenberg B.S. and Stokes S.L. (19%). Repetitive testing in the presence of inspection
errors. Technametrics, 37(1), 102111.

(7) Hahn G.J. (19%). Estimating the percent nonconforming in the accepted product after zero
defect sampling, Journal of Quality Technology, 18(3), 182-188.

(8 Johrson N.L.; Kotz S. and Baakrishnan N. (1992). Univariate Discrete Distributions,
SeowndEdition, JohnWiley & Sons, Inc., New York.

(9) Johrson N.L.; Kotz S. and Wu X. (1991). Inspedion errors for attributes in quality control,
Chapman & Hall, London.

(10) Hald, A. (198L). Statisticd Theory of Sampling Inspedion by Attributes. Academic Press
New York.

(1) Markowski E.P. and Markowski C.A. (20@). Improved attribute aceptance sampling
plans in the presence of misclassfication error, European Journa of Operation Research,
1393), 501510.

(12) Minton G. (1972). Veificaion error in single sampling inspection dans for processing
survey data, Journal of the American Statistical Association, 67, 46-54.

(13) QuininoR.C. and Ho L.L. (2003. Repetitive tests as an econamic dternative procedure to
control attributes with diagnosis errors, European Journa of Operation Reseach, Article in
Press.

(14) Quinino R.C. and Suyama,E. (2002. Numero étimo de classificagdes independentes com
erro na avaliagd da aonformidade de produtos, Pesquisa Operaciondl, 22(1), 1-8.

(15 Starbird, A. (1997). Acceptance sampling, imperfed production, and the
optimality of zero defeds. Naval Research Logistics, 44, 515530,

(16) Wetherrill G.B. and Chiu W. K. (1975). A review of acceptance sampling schemes with
emphasis onthe emnomic aspect, International Statistical Review, 43(2), 91-210.



Appendix

Use aMatlab Editor to write the files*. m. Run optimum.m the software Matlab.

% optimum.m

cleer dl;

globa cOclc2pi N el e2

tic;

c0=3;

¢l =100;

c2 =500;

pi =0.1;

p =0.05;

N = 650;

el =0.001;

€2 =0.001;

L1=ceil (min(N,N*p*pi*cl/c0));

L2=ceil (0.1*N);

L3=ceil (limiteL3(N));

ifL2>L1
achouparou=1,
faixal=[1:1:min(L1,L3)];
faixa2=[];

dsef L2<L3
achouparou=0;
faixal=[1:1:L2];
faixa2=[L2:1:L1];

dse
achouparou=0;
faixal=[1:1:L3];
faixa2=[L2:1:L1];

end

s5=inf;

$A4=1€30;

i=0

whilei<length(faixal) & s4<s5
i=i+1;
s5=s4;
m=faixal(i);
progresso(m,faixal,faixa2);
s1=0; s2=0; s3=0;

thinom=binopdf(0:1:N,linspace(N,N,N+1),linspac(p,p,
N+1));
for D=0:N
minimo=min(m,D);
D1=0:1:minimo;

thiper=tbinom(D+1)* hygepdf(D1,linspace(N,N,minimo
+1),

linspacg(D,D,minimo+1),linspaceglm,m,minimo+1));
sl=sl+sum(thiper.*(1-(1-€1).~(m-
D1).*e2."D1).*D1);
s2=s2+sum(thiper.*(1-(1-e1).A(m-D1).*e2."D1));
s3=s3+sum(thiper.*(1-e1).A(m-D1).*e2./D1);
end
Um = 1-(pi*s3+(1-el) m*(1-pi));
custo(i) = c0*m + cO*(N-m)*Um + c1*pi*N*p -
cl*(1-e2)*pi*sl
- c1*(1-e2)*pi*(N-m)*p*s2 + c2*N*el*Um -
c2*el*pi*sl - c2*el
*pi*(N-m)*p*sZ;
amostra(i)=m,;
SA=custo(i);
end

if achouparou==
for j=1:length(faixa2)
m=faixa2(j);
progresso(m,faixal,faixa2);
s1=0; s2=0; s3=0;

tbinom=binopdf(0:1:N,linspace(N,N,N+1),linspac(p,p,
N+1));
for D=0:N
minimo=min(m,D);
D1=0:1:minimo;

thiper=tbinom(D+1)*hygepdf(D1,linspace(N,N,minimo
+1),

linspace(D,D,minimo+1),linspacg(m,m,minimo+1));
sl=sl+sum(thiper.* (1-(1-e1).A(m-
D1).*e2.AD1).*D1);
s2=s2+sum(thiper.* (1-(1-e1).A(m-
D1).*e2.AD1));
s3=s3+sum(thiper.* (1-e1).A(m-D1).*e2.AD1);
end
Um = 1-(pi*s3+(1-el) m* (1-pi));
custo(i+j) = c0*m + c0*(N-m)*Um + c1*pi*N*p -
cl*(1-e2)*pi*sl —
cl*(1-e2)*pi* (N-m)*p*s2 + c2*N*el*Um -
c2*el*pi*sl -
c2*el*pi*(N-m)*p*s2;
amostra(i+j)=m;
end
end
amostra=[0 amostra]
custo=[N*p*pi*cl custo]
[Minimo, pos]=min(custo);
Optimum=amostra(pos);
cc;

fpﬂnﬁ(@@GQﬂnT*******************************
khkkhkhkkhkhkkhkkhhkhhkhhhhhhhhhkhhxhhkhhxhkhkxhxhkdxdhkdxhhid
*********');

fprintf("%60s\n’,’ Result’);
fprlntf('%S(B\n"'** kkkkkhkkkkkkkhkkkkkhkkhkhkhkkkhkhkkhkhkkxkx
khkkkhkkhkhkkhkhkhhkhhkhhhhhhhhhkhhxhhkhrxhhkxhxhkdxhhkdxhhid
*kkkkkkkkk! ’

fprintf('%o2s\n',’ );

fprintf('%640s\t %10.6f\n','Expeded Cost =

', Minimoy);

fprintf("%40s\t %66.0f\n’,” m optimum =

' Optimum);

fprintf('%2s\n',’ *);

fprintf("%40s\t %64.6f\n’,' Time (min) =

' toc/60);

fprintf('%o2s\n',’ );
fpﬂnﬁ(@@SOﬁnﬂW******************************
khkkkhkkhkhkkhkhkhhkhhkhhhhhhhhhkhhxhhkhrhhkxhxhkdxhkhkdxhhik

*********')



%limitel3.m
function y=limiteL 3(interval o)
global cOclc2pi N el e2
for z=0O:intervalo
w=z/intervalo;
p=w;
a=(c0+N*c2*el*el)*(1-pi);
b=(p*e2/(1-e1)+(1-p));
c=(c1*(1-e2)+c2*el)*p;
d=(N*e2-1)*(el+p*(1-el-e2))+1-e2;
e=1-el-p*(1-el-e2);
f=(cO+N*c2*el* (el+p* (1-el-€2)));
g=c0*(1-pi)*el,;
h=(1-e1-e2)*(1-p);
i=(el+p*(1-el-e2));
k=pi*c*h*i/e-cO*pi*i;
|=c*d/e-f;
m1=0;
m2=a/(N*k);
m3=al/(pi*l);
md=al(pi*|+N*k);
if <=0 & k<=0
L1=mi;
mm(z+1)=L1,;
esef <=0 & k>0
L2=1+(log(m2)/log(b));
mm(z+1)=L2;
eseaf 1>0 & k<=0
L3=1+(log(m3)/log(b));
mm(z+1)=L3;
eseaf 1>0 & k>0
L4=1+(log(m4)/log(b));
mm(z+1)=L4;
end
pp(z+1)=p;
end

L=max(mm)
L=floor(L)
y=L;

%oprogreso.m

function y=progress(m,faixal,faixa2)
dc;

minl=min(faixal);
max1=max(faixal);
min2=min(faixa2);
max2=max(faixa2);

fprlntf('%GOs\n' Thk kkhkkkkkkkkhkkhkhkkhkhkhkhkkkkhkkhkkhkhkkhhkkkkkkx*k
,
kkhkkkhkkhkkkkkkkkkhkkhkkhkhkhkhkhkkhkkkhkkhkkhkkhkhkhkhkkkhkkhkkhkhkhkkhhkhkhkkkkkhkkx*%
*k kkkkkk |).

;
fprintf('%60s\n',’ Progress);
fprlntf('%sos\n' Tkk kkhkkkkkkkkhkkhkhkkhkhkhkhkkkkhkkhkkhkhkkhkkkkkkkx*k

)

kkhkkkhkkhkkkkkkkkhkkhkkhkkhkhkkhkkhkkhkkkhkkhkkhkkhhkhkhkhkkhkkkhkkhkhkkhkhkhkhkkkkkkkx*%

*kkkkkkkkkk"

fprintf('%2s\n'," *);

fprintf('%40s\t %66.0f\n','Boundary 1 (min) =
' minl);

fprintf("%40s\t %06.0f\n’',Boundary 1 (max) =
" max1);

fprintf('%o2s\n'," );

fprintf('%40s\t %66.0f\n’,'Boundary 2 (min) =
' min2);

fprintf("%40s\t %06.0f\n’,Boundary 2 (max) =
" max2);

fprintf('%62s\n',’ );

fprintf("%40s\t %06.0f\n’,;/m =',m);
fprintf('%2s\n'," *);

fprintf('%40s\t %4.6f\n','time (min) =

' toc/60);

fprlntf('%SOS\n','** kkkkkhkkhkkkkkkhkkkhkkhkkhkhkkkkkkkhkkhhkhkkxkx

**********l).
’



