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Abstract

In this paper we present the optimum sampling size in zero-defect acceptance sampling with
rectification under diagnosis errors. Its development is based on an economical model. The
procedures are implemented in a program using the software Matlab and illustrated by an
example.
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1.  Introduction

Let us consider that items are manufactured and evaluated by attributes using a well -known
tool: the acceptance sampling. In T lots each one with N products, a sample of m is extracted
from each lot. If all sampled items are conforming in the inspection, the lot is accepted.
Otherwise all items (sampled and non-sampled) are inspected,  rectified the non-conforming
ones and then the lot is accepted. Such procedure is known as zero-defect sampling with
rectification. Rectification, i.e. replacing or discarding all non-conforming units after 100%
inspection of rejected lots, is frequently used when manufacturing costs are high. The most
common application of such acceptance sampling scheme is in the semiconductor
manufacturing. Figure 1 illustrates such procedure.

Some papers about zero-defect sampling with rectification can be found in the literature. We
may mention the contributions from Hahn (1986), Brush et al. (1990), Greenberg & Stokes
(1992) and Anderson et al. (2001).  In these papers, the main objective is to present estimator
for the number of non-conforming items in such sampling scheme. In Anderson et al. (2001),
they introduced the possibil ity of the classification criteria in zero-defect sampling with
rectification may present diagnosis errors. That is, one item is evaluated as non-conforming but
in reality it is conforming, or an item is classified as conforming but it is non-conforming.
About diagnosis errors, many authors have made contributions on this subject. For example,
Johnson et al. (1991) have early pointed out that the diagnosis errors can endanger the
performance of an acceptance sampling. Minton (1972) provides expressions to analyze the
effect of inefficient inspection and correction on the power of single sampling inspection plans,
mainly in misclassifications of defectives as non-defectives. Different authors have presented
methodologies to minimize the impact of diagnosis errors in the acceptance sampling. We may
list Greenberg & Stokes (1995), Markowski & Markowski (2002), Quinino & Ho (2003) and
Quinino & Suyama (2002).



The use of economical model to plan acceptance sampling is not a new subject, but it is still a
subject of great interest as mentioned Wetherril & Chiu (1975). It was recently used in Ferrel &
Chhoker (2002) to determine the producer’s tolerance that minimizes producer’s loss and
consumer’s loss in a single sampling, with inspection and non-inspection procedures using a
quadratic function to describe the consumer’s cost.  Aminzadeh (2003) actually used the
Inverse Gaussian distribution as a lifetime model to obtain optimal values for sample size and
action limit for employing economic variable acceptance-sampling plans based on step-loss
function. Starbird  (1997) derive the conditions under which zero-defect is the policy that
minimizes the supplier’s expected annual cost.

In this paper, we wil l consider the determination of an economically optimum sample size m
that minimizes a cost function in zero-defect acceptance sampling with rectification procedure.
The components of such function include the inspection cost, costs due to the presence of non-
conforming items in accepted lots and costs due to diagnosis errors. The inclusion of diagnosis
errors in the sample size determination in such sampling inspection procedure is a natural
extension of the earlier papers mentioned. Economical models mentioned in the literature do
not include the possibil ity of the diagnosis errors and rectification.

In Section 2, we introduce the notation and hypothesis considered in this paper. The expected
cost function and the procedure to determine the optimum value of  m is developed in Section
3. As this probabilistic model of sampling process can be viewed as a Markov chain, the
description of the absorbent and /or transitory states and their transition matrices is presented in
Section 4. This  procedure is illustrated by a numerical example in Section 5 and we finish this
paper with discussions and extensions in future works.

Figure 1: Acceptance sampling: zero defect with rectification

2.  Notation and hypothesis

Consider that from a lot with N units,  a random sample of  m units is selected without
replacement. Let D  be the number of non-conforming units in the lot. D is a binomial



random variable ( ,  )N p , with probability π , or D is  equal to zero with probabil ity ( π−1 ).
This family of distributions is sufficiently flexible to give a good fit to observed distributions of
lot quali ty by appropriate choice of the probabil ity π , and it allows a simple interpretion and
leads to a simple theory [Hald (1981)].

Let:

→1e  the probability of a conforming item being classified as non-conforming;

→2e  the probability of a  non-conforming item being classified as conforming;

→0c  the cost to inspect an item ;

→1c  the cost of a non-conforming item in the accepted lot;

→2c the cost to judge erroneously an item as non-conform when it is conforming ;

1D →  the number of actual non-conforming items in the initial sample of size m in the lot;

2D →  the number of actual non-conforming items in (N-m) non-sampled items in the lot;

1 2D D D= + →  the number of non-conforming items in the lot;

1Y → the number of items declared non-conforming after inspection in the initial sample of size
m in the lot;

2Y → the number of items declared non-conforming in (N-m) non-sampled items in the lot if
the lot were rectified;

1 2Y Y Y= + → the number of items that would be declared as non-conforming in lot if the lot
were rectified;
D1|D � ��� ������ ����� ��	�
������� �
 D1 on D and it follows a Hypergeometric (m, D, N) .

3.  Cost function

In this Section, the  expected cost function per lot ( mE ) is developed employing the earlier

notations and hypothesis from Section 2. The expected cost function is composed by three

parts. The first one ( 1
mE ) is related to costs of inspection of m items and the possibility to

inspect the (N-m) non-sampled items. Such event is conditioned to the classification of at least
one non-conforming item in the  m initial inspected  items and  the probability of this event is
denoted by  1( 0)P Y > :

1
0 0 1( ) ( 0)mE c m c N m P Y= + − > .

The second component ( 2
mE ) is due to the possibility of an item being classified as conforming

when it is non-conforming item.  Such result can produce differences in the expenses when the
lot is accepted or when it is rejected in the inspection.  Figure 2 illustrates such procedure.

Figure 2: non-conforming when the lot is accepted or when it is rejected
Thus, we have
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where [ ]•I  denotes an indicator function; →• )(E denotes the expected value of a random

variable.  The last part ( 3
mE ) is due to the consequence of classifying an item as non-

conforming when it is a conforming item. In this case, the lot is rejected and consequently all
items classified as non-conforming and there is a chance to be rectified unnecessaril y:
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and →•• )|(E denotes the conditioned expectation value.

4.  Markov chains in zero-defect acceptance sampling with rectification in a presence of
diagnosis errors.

The process of sampling and inspection and the decision to accept or not the lot after the
inspection presented in Section 3 can be modeled as a non-irreducible Markov chain with
transition matrix P. The set of states can be denoted by the vector  ( , , , , ),s j k t z  such that s+ j+
k + t=z and z=0,…,m, being absorbent or transitory states. The variable  s can be viewed as the
number of conforming items correctly classified as conforming; j is the number of conforming



items incorrectly judged as non-conforming; k is the number of non-conforming items
classified as conforming;  t  is the number of non-conforming items correctly judged as non-
conforming and z the number of items evaluated. The absorbent  states ( 0j t  and z=m= =  or

1j  or t=1)=  indicate that the inspection procedure of the  m items is finished and the lot was
accepted or rejected even before finishing the  m inspections.

Consider the probabilities in the transition matrix P conditioned on the random variable
D . Let 1P  be the transition matrix conditioned on D when it follows a binomial distribution

with parameters ( ,  )N p  and 2P  the transition matrix when D=0. The matrix 1P  occurs with

probabili ty  π  and the matrix 2P  with probability ( π−1 ).

The probabilities in  the transition matrices 1P  and  2P  , related  to the inspected lot are

respectively:
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The probability of each state after m inspections is given by the row vectors  ( )m
1P  and

( )m
2P . They are respectively by ( ) 0m m=1 1P P P ; ( ) 0m m=2 2P P P and  [ ]00010 ......,,,=P  is

the probability of initial state vector. Each element of  0 ( ) ( ),  and m m
1 2P P P  is associated to

one state ( , , , , )s j k t z . In 0P , the initial probability of the state ( 0, 0, 0, 0, 0)s j k t z= = = = =  is
equal to one and for other states the probability is equal to zero. In the row vectors

( ) ( ) and m m
1 2P P , the non-null probabilities indicate the absorbent states deciding by the

acceptance or rejection of the lot.

Making ( ) ( ) ( )m m m� �����= 1 2P P + P allows us to calculate easily the probabilities of interest
mainly the conditioned one related to the acceptance of the lot. For example, summing up the
probabili ties of the absorbent states ( , , , , )s j k t z such that 0,  0 and j t z m= = = will provide us
the probability of accepting a lot [This is denoted by P(Y1 =0)]. The probability of non-
acceptance of  a lot is given by the sum of the probabil ities of the absorbent states ( , , , , )s j k t z ,

such that  1 or 1 j t= = in ( )mP . States with 0k >  will i ndicate the wrong acceptance of the

lot and states with  1 j = indicates that the lot was rejected wrongly.

5.  Determination of the optimum sample size �m

The optimum value of m ( �m ) is one that minimizes (3.1) and it can be obtained by direct
search substituting values of  0,....,m N=  in (3.1).  As N is usually a large number, a direct
search can be a hard task which may spend much time. We propose a limit 1L N≤   in order to
speed up our search.  Either accepting or rejecting the lot, the cost to inspect m items will be at

least 0c m . For the optimum value �m , this will be 0c m� . However, if the inspection is not

performed, that is, when 0m= , the expected cost will be 0 1mE Np cπ= = . As

0 0mm
m c E E =< ≤��  then it follows 1 0/m Np c cπ≤� . So a direct search to find  m�  must be

proceeded for all integer values of m such that { }1 1 0min ; /m L N Np c cπ≤ = .

It is known that under some regularity conditions a hypergeometric distribution can be
approximated by a binomial distribution and this approximation simpli fies the mathematical

modeling. In this case, we may obtain a new expression for mE , denoted by mE∆ , when this

approximation is considered for the random variable D1. In this sense, a boundary built for  mE∆

can also be employed to search the optimum sample size. To find a boundary for mE∆  is not an

easy task. In order to simpli fy it, a conditioned boundary on /hp D N=  for mE∆   is proposed

and then using this result, a new one is proposed for mE .



Let *
mE  be the cost function of mE∆  when /hp D N= ;  m•  is its optimum sample size.

Examining * * *
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A set of inequalities expressed in (5.2) can be obtained from (5.1) as functions of k and l .
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From (5.2), a boundary  2L  for  m•  can be proposed in (5.3)
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Negative values in (5.3) indicate that 0• =m . The expression (5.3) indicates that values lower

than the boundary will result * 0
m

E •∆ ≤ . This implies that for values lower than the boundary

exists one and only one minimum value for *
mE .This value is also the global minimum.

However, the boundary expressed in (5.3) is conditioned on the value of hp  and valid for *
mE .



If we unconditioned it, analyzing all possible values of hp , we can propose a new boundary for

mE∆  expressed as { }3 2max ( ) , ,h hL L p   p D N   D=1,...,N= = . For values lower than 3L  , we

have * *
1

0
m mm

E E E∆ ∆∆
∆

−
∆ = − ≤ , where m∆  denotes the optimum value. This meant that

lower than this boundary, it exists one and only one extreme value for mE∆  .This is also the

global minimum. Moreover, it is known that if 0.1m N≤  [Johnson, 1994], the approximation
of a hypergeometric distribution by a binomial distribution can proceed. So, this additional
condition must also be verified, that is, if 3 0.1L N≤ . In this case, the boundary  3L  can be

employed to delimit a minimum for mE  which will bem∆ .

A strategy to perform a computational search the optimum value m ( �m ) for the expression
(3.1) can be drawn . If 1 0.1L N≤ , search for all values lower than { }min ;1 3L L , until finding

the minimum value �m . If 1 0.1L N> , search for all values lower than { }min 0.1 ; 3N L  until

finding the minimum value. Compare this result with the search in values higher than 0.1N  but

lower or equal to 1L . The value of �m  is the lowest one. Note that the computational search is

performed searching only integer values, starting always with the lower one. The flowchart in
Figure 3 illustrates the decision process described in this section.

Figure 3: The decision process of the optimum value

6.  Numerical Example and Discussions

The example described in this section is based on Hahn (1986), Greenberg (1992), Greenberg
(1995) and Anderson (2001). Consider lots with N=5000 items that will be inspected by a zero-
defect with rectification procedure. In this context, the following costs are
considered: 0 $3.00c = , 00.100$1 =c , 00.500$2 =c , 1.0=π , 0.05p = , 001.021 == ee .



The question is to find the optimum value of  m   (
�

m ) such that minimizes (3.2). Such value
can be obtained using the direct search substituting values as shown the flowchart (Figure 2).
According to the earlier results, it indicates a search for values 0 49m≤ ≤
and 10.1 500 833N m L= < ≤ = . In the first interval,0 49m≤ ≤ , the optimum value was

found as 15 ( m
�

).

A program using the software Matlab was developed (see Appendix 1) to find the optimum

value
�

m . Such program provides us the optimum sample size (m
�

) equal to 15 which
corresponds to an expected cost of $2360.26. In the absence of diagnosis errors the optimum

sample increases to 
�

m  = 57 which corresponds to a decreased expected cost of $1707.02.
Note that even small diagnosis errors can alter significantly the expected cost as also the
optimum sample size. To corroborate the analytical results, another program was developed
using Matlab to simulate a zero-defect with rectification by Monte Carlo simulations
using 15m = . Five hundred thousand runs were used in such simulation and the difference
between the expected cost and the analytical results is lower than 0.3%. Figure 4 illustrates the
behavior of mE  as function of  the value of m.

Figure 4: Values of  m versus expected cost



A sensitivity analysis was performed to evaluate the behavior of the optimum values of
m as functions of the parameters. Since all possible scenarios can result in a high number of
possibilities to examine, and analyzing all of them can become unmanageable, here we choose
to analyze the behavior varying one parameter at a time. The ranges of the parameters explored
in this analysis are

• 00 5c≤ ≤  ;

• 10 700c≤ ≤ ;

• 20 2900c≤ ≤ ;

• 10 0.002e≤ ≤ ;

• 20 0.15e≤ ≤ and

• 0 1p≤ ≤ .

The results of this analysis are plotted in Figure. 5. We observed that as 0c increases 
�

m  tends

to zero, indicating the best option is a non-sampling procedure. In the absence of the diagnosis

errors, as 0c  tends to  zero, the optimum value  
�

m  increases to a value higher than N=5000.

This fact points out the strong influence of the diagnosis errors in obtaining the optimum value
�

m .

If  2c  increases, the value of  
�

m  tends to  zero, which justifies when we observe  0m =
�

 the

possibility of a cost 2c is eliminated. If 1c  increases the value of 
�

m  tends to N. This indicates

that the proposed procedure is economically feasible.

If 1e and 2e  increase, it is not feasible making sampling with rectification since the amount of

items wrongly classified will remove the benefit of the proposed procedure which is to provide
us an accepted lot with lower amount of non-conforming items.

If 0p ↓ , 0m ↓
�

 since there is only conforming items in the lot. As 1p ↑  , 1m ↓
�

. This can

be justified since the probabili ty to reject the lot alters slightly when  1m>  indicating that
there is no necessity to sample more than one item.
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Figure. 5. Optimum values of  m versus costs 0c , 1c , 2c , p , 1e , and 2e

Now using Markov chain approach and considering a sample size of 15 items (
�

m ), the
probabili ty to accept the lot is 0.9323 and to reject the lot is 0.0677. Possible routes to accept
and to reject the lot are listed respectively in Tables 1 and 2. The vectors described in these
tables are elements of P(m). Such vector allows us to verify which absorbent states indicate the
corrected acceptance of the lot or the corrected rejection of the lot. With the vector P(m) it is
possible to calculate conditional probabilities of interest. If the lot was accepted, the probability
to be correctly accepted is 0.999961. Similarly, if the lot was rejected, the probability to be
correctly rejected is 0.787101. These results suggest a tighter verification in the rejected lots as
an attempt to decrease the number of lots rejected wrongly.

s j k t Z Probability
15 0 0 0 15 0.932233125000000000000000000000
14 0 1 0 15 0.000036066879999999997000000000
13 0 2 0 15 0.000000013301099000000003000000
12 0 3 0 15 0.000000000003036620600000000400
11 0 4 0 15 0.000000000000000479946350000000
10 0 5 0 15 0.000000000000000000055628364000
9 0 6 0 15 0.000000000000000000000004884566
8 0 7 0 15 0.000000000000000000000000000331

Sum of the values 0.932269205184136100598986249297
Table 1: Absorbent states – lot accepted



s J K t z Probability
0 0 0 1 1 0.004995000000000002000000000000
1 0 0 1 2 0.004740504700000001100000000000
2 0 0 1 3 0.004498976000000000900000000000
3 0 0 1 4 0.004269753200000001200000000000
4 0 0 1 5 0.004052209299999999900000000000
. . . . . .
. . . . . .
. . . . . .
6 0 7 1 14 0.000000000000000000000000000005
5 0 7 1 13 0.000000000000000000000000000002
0 1 6 0 7 0.000000000000000000000000000001
4 0 7 1 12 0.000000000000000000000000000001

Sum of the probabilities 0,067731000000000005100000000009
Table 2: Absorbent states – lot rejected

7.  Conclusions and final remarks

Diagnosis errors can cause a significant impact in determining the optimum sample size in a
zero-defect with rectification procedure. As illustrated in this study, even small diagnosis errors

as 001.01 =e  and 00102 .e = , they can alter significantly the value of optimum m (m
�

). In this
sense, it is fundamental to consider the diagnosis errors. They must be incorporated in the
model and evaluated in an economic perspective.

Extensions of this study can be made in two directions. One is to change the initial criteria in
the sampling inspection for a value other than zero, that is 0≥c ,c . Another alternative is to
make repetitive tests to minimize the effect of the diagnosis errors. An item would be classified
as conforming if the number of conforming independent classifications is higher than a
specified value a. In this scenery, the objective is to determine the optimum values of  m, the
number of the independent repetitive inspections in an item, the value of a  and the value of  c
such that minimize the total expected cost.
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Appendix

Use a Matlab Editor to write the files *.m. Run optimum.m the software Matlab.

% optimum.m 
clear all; 
global c0 c1 c2 pi N e1 e2 
tic; 
c0 = 3; 
c1 = 100; 
c2 = 500; 
pi = 0.1; 
p = 0.05; 
N = 650; 
e1 = 0.001; 
e2 = 0.001; 
L1=ceil (min(N,N*p*pi*c1/c0)); 
L2=ceil (0.1*N); 
L3=ceil (limiteL3(N)); 
if L2 > L1    
    achouparou=1; 
    faixa1=[1:1:min(L1,L3)]; 
    faixa2=[]; 
elseif L2 < L3 
    achouparou=0; 
    faixa1=[1:1:L2]; 
    faixa2=[L2:1:L1]; 
else 
    achouparou=0; 
    faixa1=[1:1:L3]; 
    faixa2=[L2:1:L1]; 
end     
s5=inf; 
s4=1e30; 
i=0 
while i<length(faixa1) & s4<s5 
    i=i+1; 
    s5=s4; 
    m=faixa1(i);  
    progresso(m,faixa1,faixa2); 
    s1=0; s2=0; s3=0; 
    
tbinom=binopdf(0:1:N,linspace(N,N,N+1),linspace(p,p,
N+1)); 
    for D=0:N 
        minimo=min(m,D); 
        D1=0:1:minimo; 
        
thiper=tbinom(D+1)*hygepdf(D1,linspace(N,N,minimo
+1), 
        
linspace(D,D,minimo+1),linspace(m,m,minimo+1)); 
        s1=s1+sum(thiper.*(1-(1-e1).^(m-
D1).*e2.^D1).*D1); 
        s2=s2+sum(thiper.*(1-(1-e1).^(m-D1).*e2.^D1)); 
        s3=s3+sum(thiper.*(1-e1).^(m-D1).*e2.^D1); 
    end 
    Um = 1-(pi*s3+(1-e1)^m*(1-pi)); 
    custo(i) = c0*m + c0*(N-m)*Um + c1*pi*N*p - 
c1*(1-e2)*pi*s1 
     - c1*(1-e2)*pi*(N-m)*p*s2 + c2*N*e1*Um - 
c2*e1*pi*s1 - c2*e1 
     *pi*(N-m)*p*s2; 
    amostra(i)=m; 
    s4=custo(i); 
end 

if achouparou==0  
    for j=1:length(faixa2) 
        m=faixa2(j); 
        progresso(m,faixa1,faixa2); 
        s1=0; s2=0; s3=0; 
        
tbinom=binopdf(0:1:N,linspace(N,N,N+1),linspace(p,p,
N+1)); 
        for D=0:N 
            minimo=min(m,D); 
            D1=0:1:minimo; 
            
thiper=tbinom(D+1)*hygepdf(D1,linspace(N,N,minimo
+1), 
           
linspace(D,D,minimo+1),linspace(m,m,minimo+1)); 
            s1=s1+sum(thiper.*(1-(1-e1).^(m-
D1).*e2.^D1).*D1); 
            s2=s2+sum(thiper.*(1-(1-e1).^(m-
D1).*e2.^D1)); 
            s3=s3+sum(thiper.*(1-e1).^(m-D1).*e2.^D1); 
        end 
        Um = 1-(pi*s3+(1-e1)^m*(1-pi)); 
        custo(i+j) = c0*m + c0*(N-m)*Um + c1*pi*N*p - 
c1*(1-e2)*pi*s1 – 
        c1*(1-e2)*pi*(N-m)*p*s2 + c2*N*e1*Um - 
c2*e1*pi*s1 - 
        c2*e1*pi*(N-m)*p*s2; 
        amostra(i+j)=m; 
    end 
end 
amostra=[0 amostra] 
custo=[N*p*pi*c1 custo] 
[Minimo, pos]=min(custo); 
Optimum=amostra(pos); 
clc; 
fprintf('%60s\n','** * ** ** ** ** ** ** ** ** ** ** ** ** ** **
** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** *
** ** ** ** * '); 
fprintf('%60s\n','                                          Result'); 
fprintf('%50s\n','** * ** ** ** ** ** ** ** ** ** ** ** ** ** **
** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** *
** ** ** ** ** '); 
fprintf('%2s\n','  '); 
fprintf('%40s\t %10.6f\n','Expected Cost                 = 
',Minimo); 
fprintf('%40s\t %6.0f\n',' m optimum                     = 
',Optimum); 
fprintf('%2s\n','  '); 
fprintf('%40s\t %4.6f\n',' Time (min)                    = 
',toc/60); 
fprintf('%2s\n','  '); 
fprintf('%50s\n','** * ** ** ** ** ** ** ** ** ** ** ** ** ** **
** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** *
** ** ** ** * '); 



%limitel3.m 
function y=limiteL3(intervalo) 
global c0 c1 c2 pi N e1 e2 
for z=0:intervalo 
    w=z/intervalo; 
    p = w; 
    a=(c0+N*c2*e1*e1)*(1-pi); 
    b=(p*e2/(1-e1)+(1-p)); 
    c=(c1*(1-e2)+c2*e1)*p; 
    d=(N*e2-1)*(e1+p*(1-e1-e2))+1-e2; 
    e=1-e1-p*(1-e1-e2); 
    f=(c0+N*c2*e1*(e1+p*(1-e1-e2))); 
    g=c0*(1-pi)*e1; 
    h=(1-e1-e2)*(1-p); 
    i=(e1+p*(1-e1-e2)); 
    k=pi*c*h* i/e-c0*pi* i; 
    l=c*d/e-f; 
    m1=0; 
    m2=a/(N*k); 
    m3=a/(pi*l); 
    m4=a/(pi*l+N*k); 
    if l<=0 & k<=0 
        L1=m1; 
        mm(z+1)=L1; 
    elseif l<=0 & k>0 
        L2=1+(log(m2)/log(b)); 
        mm(z+1)=L2; 
    elseif l>0 & k<=0 
        L3=1+(log(m3)/log(b)); 
        mm(z+1)=L3; 
    elseif l>0 & k>0 
        L4=1+(log(m4)/log(b)); 
        mm(z+1)=L4; 
    end 
    pp(z+1)=p; 
end 
 
L=max(mm) 
L=floor(L) 
y=L; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

%progresso.m 
function y=progresso(m,faixa1,faixa2) 
clc; 
min1=min(faixa1); 
max1=max(faixa1); 
min2=min(faixa2); 
max2=max(faixa2); 
 
fprintf('%60s\n','** * ** ** ** ** ** ** ** ** ** ** ** ** ** **
** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** *
** ** ** ** '); 
fprintf('%60s\n','                                   Progress'); 
fprintf('%50s\n','** * ** ** ** ** ** ** ** ** ** ** ** ** ** **
** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** *
** ** ** ** ** '); 
fprintf('%2s\n','  '); 
fprintf('%40s\t %6.0f\n','Boundary 1 (min)              = 
',min1); 
fprintf('%40s\t %6.0f\n','Boundary 1 (max)              = 
',max1); 
fprintf('%2s\n','  '); 
fprintf('%40s\t %6.0f\n','Boundary 2 (min)              = 
',min2); 
fprintf('%40s\t %6.0f\n','Boundary 2 (max)              = 
',max2); 
fprintf('%2s\n','  '); 
fprintf('%40s\t %6.0f\n','m                             = ',m); 
fprintf('%2s\n','  '); 
fprintf('%40s\t %4.6f\n','time (min)                    = 
',toc/60); 
fprintf('%50s\n','** * ** ** ** ** ** ** ** ** ** ** ** ** ** **
** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** ** *
** ** ** ** ** '); 
 


