
Empirical Bayesian analysis of dichotomic data with

errors and repeated classifications

Magda Carvalho Pires Roberto da Costa Quinino

Emilio Suyama

Departamento de Estat́ıstica - ICEx - UFMG

31270-901 - Belo Horizonte - MG - Brazil

Anderson Laécio Galindo Trindade

Departamento de Engenharia de Produção - USP - São Paulo - Brazil

November 27, 2006

Abstract

This paper discusses the problem of Bayesian estimation of a proportion p of in-

terest when the classification of conforming and non-conforming items is subject to

diagnosis errors. The use of non-informative prior distributions for the errors gener-

ates a symmetrical posterior distribution for p with great variability. It is therefore

necessary that prior distribution be informative, although that is not always possi-

ble. In this paper, the authors classify items repeatedly so as to generate empirical

prior distributions of errors and thus present a solution to the problem. Results

from simulation experiments reveal that the methodology proposed here leads to

a reasonable estimation of the proportion of interest when one uses the posterior

mode or the posterior median and makes at least three repeated classifications.

Keywords: Quality Control, Empirical Bayes method, Binomial distribution, classifi-

cation errors, repeated classifications
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1 Introduction

When implementing quality control for attributes, one needs to take into account the effi-

cacy of the system used to classify manufactured items as conforming or non-conforming.

Two types of errors may occur during inspection: the first, known as type I, occurs when

a conforming item is classified as non-conforming; the second, called type II, is when an

item is considered conforming when it is actually non-conforming.

In a pioneering paper, Bross (1954) has shown that, in the presence of classification

errors, the estimators obtained by means of a classical statistics approach are biased.

Other authors, such as Johnson and Kotz (1988), Johnson et al. (1991), Evans et al.

(1996), Viana (1994), Gustafson (2003) have emphasized that, if ignored, classification

errors may jeopardize the entire process of inference and, consequently, quality control.

Let us suppose that in a random sample of n units, there are X conforming items. The

random variable X has binomial distribution with parameters (n, p), that is, X ∼ Bi(n, p).

However, the occurrence of classification errors in the system implies a modification in

this probability function. Let e1 be the probability that a conforming item be wrongly

classified as non-conforming, and e2 be the probability that a non-conforming item be

classified as conforming. So, the probability that an item be classified as conforming is

q = p(1− e1) + (1− p)e2, which yields an random variable X whose binomial distribution

has parameter q instead of p.

The difficulty found in such analysis can be better grasped through the establishment

of the estimator of maximum likelihood. The likelihood function for the case that presents

classification errors may be written as L(x|n, q) = qx(1 − q)n−x. This is maximized to all

points (p, e1, e2) so that p(1−e1)+(1−p)e2 = x/n (Gaba and Winkler, 1992). Therefore,

the estimator of maximum likelihood is not unique.

In order to solve this problem, various classical methods have been suggested, and a

review can be found in Johnson et al. (1991). In general, the methods proposed rely on

alternative sampling plans for a preliminary estimation of classification errors. From a

Bayesian point of view, Gaba and Winkler (1992) considered an approach that requires

the use of a informative prior distribution. This may be a considerable restriction because
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in many cases this information is not available. They have also verified that the use of

independent non-informative prior and uniform distributions between zero and one for

parameters (p, e1, e2) yields a posterior mean for p equals 1/2, regardless of the sample

result and, besides that, every point (p, e1, e2) so that p(1 − e1) + (1 − p)e2 = x/n were

posterior modes.

In research papers on Bayesian sampling size for dichotomic data in the presence of

classification errors, Dendukuri et al. (2004) and Rahme et al. (2000) have also noted the

primordial need for informative prior distribution.

The present article proposes a model in which the process of Bayesian inference for

proportion in the presence of classification errors includes making repeated classifications,

both in order to elicit empirical prior distribution as well as to minimize the impact of

such errors. The final classification of an item is the one that most appears after repeated

classifications. In practical terms, we believe that the methodology developed here will

be useful when making repeated classifications become easier and more operational than

informative prior distributions.

Section 2 presents a method to include repeated classifications along with the respec-

tive establishment of the likelihood function. Section 3 presents an empirical Bayesian

analysis for the proportion of interest, and numerical examples are described in Section

4. Section 5 presents the conclusions.

2 Likelihood Function

Suppose each item in a random sample of size n be independently classified m times as

conforming or non-conforming, with m being an odd number. Let Cij(i = 1, 2, . . . , n;

j = 1, 2, . . . ,m) be a Bernoulli random variable corresponding to the j-th classification

of the i-th item. So, C2,3 = 1 means that the second item was classified as conforming

in the third classification. Let Fi be a random Bernoulli variable that denotes the final

classification of the i-th item after m classifications. Consider that Fi = 1 if, and only if,
∑m

j=1
Cij > m/2. The choice of an odd number for m avoids a tie and consequently avoids

difficulty in reaching a final classification for an item. Table 1 describes this classification
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procedure.

Table 1: Repeated classifications of n items m times each

Classifications (Cij) Final
Item 1 2 3 · · · m Classification

1 C11 C12 C13 · · · C1m F1

2 C21 C22 C23 · · · C2m F2

3 C31 C32 C33 · · · C3m F3

...
...

...
...

. . .
...

...
n Cn1 Cn2 Cn3 · · · Cnm Fn

Let Ei be also another Bernoulli random variable that denotes the real state of the

i-th item, so that the interest is to estimate P (Ei = 1) = p. So, we have e1 = P (Cij =

0 | Ei = 1) e e2 = P (Cij = 1 | Ei = 0). The probability that an item be classified as

conforming results from

P (Fi = 1) = pBi
(

m
2
; m, e1

)

+ (1 − p)Bi
(

m
2
; m, e2

)

(1)

where Bi
(

m
2
; m, ek

)

denotes the cumulative binomial distribution function defined at m
2

and Bi
(

m
2
; m, ek

)

= 1−Bi
(

m
2
; m, ek

)

. Note that if m → ∞ and the probabilities associ-

ated to classification errors are smaller than 0.5 then (1) converges to p, thus corroborating

the benefit of using repeated classifications.

Now let us suppose a random sample of n items where r items are considered con-

forming; the likelihood function can be written as

L(r|n,m, p, e1, e2) =
[

pBi
(

m
2
; m, e1

)

+ (1 − p)Bi
(

m
2
; m, e2

)]r
×

[

1 − pBi
(

m
2
; m, e1

)

− (1 − p)Bi
(

m
2
; m, e2

)]n−r
(2)

Note that if m = 1, then (2) equals

L [r|n, p, e1, e2] = [p(1 − e1) + (1 − p)e2]
r [pe1 + (1 − p)(1 − e2)]

n−r (3)

Expression (3) is precisely the likelihood function used by Gaba and Winkler (1992)
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and Viana et al. (1993), which indicates that expression (3) is a generalization of these

models obtained through the introduction of repeated classifications.

3 Empirical Bayesian analysis

Consider a joint prior distribution of (p, e1, e2) given by:

f(p, e1, e2) = fβ(p|α, β)fβ(e1|α1, β1)fβ(e2|α2, β2) (4)

where fβ(a|b, c) denotes a Beta density function for the random variable a with parameters

b and c. Beta distributions are widely used in Bayesian models to describe information

concerning proportions (Gupta and Nadarajah, 2004). In this article, we consider the

random variables (p, e1, e2) to be prior independent. As in Rahme et al. (2000) and

Stamey et al. (2004) a natural way to obtain the posterior distribution of p could be

the use of MCMC methods. Another way would be to use the Sampling/Importance

Resampling (SIR) technique or Bayesian weighted bootstrap (Rubin, 1988). However, we

have chosen an approach based on numerical integration since the posterior distribution

of p could be made explicit despite not having a closed form. For this, the equation (2)

must be rewritten as

L(r|n,m, p, e1, e2) =
r

∑

j=0

n−r
∑

t=0

(

r

j

)(

n−r

t

)

pn−j−t (1 − p)j+t ×

Bi(m
2
; m, e1)

r−jBi(m
2
; m, e1)

n−r−tBi(m
2
; m, e2)

tBi(m
2
; m, e2)

j (5)

The posterior joint density of (p, e1, e2) is obtained by multiplying the prior distribu-

tion (4) by the likelihood function (5) and normalizing as required by Bayes’ Theorem

(Winkler, 2003). Integrating with respect to e1 and e2, one finds the marginal posterior

density function for p, which can be written as:

f(p|r, n,m) =
r

∑

j=0

n−r
∑

t=0

w∗
jtfβ (p|α∗, β∗) (6)
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where w∗
jt =

a∗

jt
∑r

j=0

∑n−r
t=0

a∗

jt

, with a∗
jt =

(

r

j

)(

n−r

t

)

B (α∗, β∗) k1 (j, t) k2 (j, t) and

k1(j, t) =

∫

1

0

eα1−1

1 (1 − e1)
β1−1 Bi

(

m
2
; m, e1

)r−j
Bi

(

m
2
; m, e1

)n−r−t
de1;

k2(j, t) =

∫

1

0

eα2−1

2 (1 − e2)
β2−1 Bi

(

m
2
; m, e2

)t
Bi

(

m
2
; m, e2

)j
de2;

and B (α∗, β∗) the value of the Beta function being calculated at (α∗, β∗) with α∗ =

α + n − j − t and β∗ = β + j + t.

The fact that the information needed to define informative prior distributions for

classification errors and interest proportion is insufficient implies, for instance, the use

of U(0, 1) distributions, which is particular to Beta distribution when parameters are

equal to unit [B(1, 1)]. The employment of these distributions yielded a posterior multi-

modal distribution for p with great variability. Repeated classification extenuates the

problem, but its results are still unsatisfactory. The situation is even worse when a

single classification is made. In this case, one finds a posterior mean of p that equals 0.5

regardless of the sample result (Gaba and Winkler, 1992). The use of prior distribution

B(0.5, 0.5) as an alternative to the representation of the non-information of parameters

generated results similar to the use of B(1, 1).

Thus, the posterior distribution obtained may indeed be of little use to provide nec-

essary information on the proportion of interest, which evidences the need to obtain

additional information on classification errors.

An alternative that could minimize this problem is the use of repeated classification

results (m > 1) in order to estimate the hiperparameters (α1, β1) and (α2, β2) of the Beta

prior distribution for classification errors together with the use of U(0, 1) distribution

for p. This procedure may be understood as a process of parametric empirical Bayes

inference, as discussed by Carlin and Louis (2000), Gupta and Nadarajah (2004), Morris

(1983) and Gelman et al. (2004).

Hiperparameters (α1, β1) and (α2, β2) were estimated according to the

Method of Moments. First, the random sample of size n was divided into two sub-
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samples: one made up of items whose final classification was conforming (Fi = 1) and the

other with items whose final classification was non-conforming (Fi = 0). For each item

in the first subsample we calculated the proportion of non-conforming repeated classifi-

cations, bearing in mind that the mean and the variance of these proportions estimate,

respectively, the mean and variance of the Beta prior distribution for e1. In the second

subsample, we calculated the proportion of conforming classifications for each item. The

mean and the variance of these proportions estimate, respectively, the mean and variance

of the Beta prior distribution for e2. Finally, through the closed expressions for the mean

and variance of the Beta distribution we were able to estimate (α1, β1) and (α2, β2) thus

solving systems from two equations and two unknowns. The estimates for (α1, β1) and

(α2, β2) can be written, respectively, as:

α̂1 = k3(k
2

4 + k2

3 − k3)/k
2

4 (7)

β̂1 = (k2

4 + k2

3 − k3)(k3 − 1)/k2

4 (8)

α̂2 = k5(k
2

6 + k2

5 − k5)/k
2

6 (9)

β̂2 = (k2

6 + k2

5 − k5)(k5 − 1)/k2

6 (10)

where

k3 =
n

∑

i=1

m
∑

j=1

(1 − Cij) I{Fi=1}

m
n
∑

s=1

I{Fs=1}

; k4 = k3 (1 − k3)
n

∑

i=1

I{Fi=1};

k5 =
n

∑

i=1

m
∑

j=1

(1 − Cij) I{Fi=0}

m
n
∑

s=1

I{Fs=0}

; k6 = k5 (1 − k5)
n

∑

i=1

I{Fi=0}.

The use of empirical prior distribution for m = 1 is not viable in the method proposed

here, given the impossibility to estimate (α1, β1) and (α2, β2) from proportions of mistaken
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classifications. In the event that, in a particular subsample, all repeated classifications

generate identical results, one needs to increase n or m so as to capture the effects of

classification errors, and allow for the estimation of (α1, β1) and (α2, β2) according to the

Method of Moments.

4 Numerical examples and discussions

The numerical performance of the methodology proposed in this article was evaluated

through the analysis of 48 cases randomly chosen with all possible combinations of the

following parameter values: p = 0.55; 0.75 or 0.9; e1 = 0.05 or 0.15; e2 = 0.05 or 0.15;

n = 250. We have also used 1, 3, 5, and 7 for repeated classifications. Moreover, all

combinations were analyzed using empirical prior distributions and U(0, 1) for errors.

The prior distribution for p was U(0, 1) in all cases studied. We used software Matlab to

create a program that calculates and graphically generates the posterior distribution for

p with its respective mean, mode and median (available to download from corresponding

author homepage - www.est.ufmg.br/~roberto). Figures 1 to 7 were simulated using

parameters p = 0.75; e1 = 0.15; e2 = 0.15; n = 250, corresponding to 1, 3, 5 and 7

repeated classifications; these figures illustrate all cases studied.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
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1.0

1.5
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median = 0.5000
mode = 0.0000; 1.0000
variance = 0.0932

f(
p

|r
,n

,m
)

p

Figure 1: Posterior distribution of p with n=250, m=1 and prior distribution U(0, 1) for
e1 e e2.
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Figure 2: Posterior distribution of p with n=250, m=3 and prior distribution U(0, 1) for
e1 e e2.
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Figure 3: Posterior distribution of p with n=250, m=3 and empirical prior distribution
for e1 e e2.
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Figure 4: Posterior distribution of p with n=250, m=5 and prior distribution U(0, 1) for
e1 e e2.
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Figure 5: Posterior distribution of p with n=250, m=5 and empirical prior distribution
for e1 e e2.
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Figure 6: Posterior distribution of p with n=250, m=7 and prior distribution U(0, 1) for
e1 e e2.
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Figure 7: Posterior distribution of p with n=250, m=7 and empirical prior distribution
for e1 e e2.
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We noted that, considering the same number of repeated classifications, the posterior

distributions for p that were obtained using empirical prior distribution for classification

errors present less variability and smaller number of regions with significant probabilistic

mass in comparison to the posterior distributions for p obtained from prior distribution

U(0, 1) for classification errors.

Tables 2 presents the average absolute bias for simulated combinations. The use of

empirical prior distribution reveals a better performance, since it generates less absolute

bias than the use of uniform prior distribution. The posterior mean presents the greatest

average absolute bias, and thus it is not a good choice when estimating p. The median

and mode, though, present values for absolute average bias smaller than 4% for 3, 5, or 7

repeated classifications, while the mode has even a slightly better performance.

Table 2: Average absolute bias of p with n=250

Empirical prior distribution Uniform prior distribution
m p Mean Median Mode Mean Median Mode

0.55 - - - 0.05 0.05 0.25
1 0.75 - - - 0.25 0.25 0.33

0.90 - - - 0.40 0.40 0.54
0.55 0.04 0.02 0.02 0.05 0.05 0.21

3 0.75 0.03 0.02 0.02 0.25 0.25 0.41
0.90 0.07 0.03 0.03 0.40 0.40 0.58
0.55 0.03 0.01 0.01 0.05 0.05 0.04

5 0.75 0.02 0.01 0.01 0.25 0.25 0.22
0.90 0.06 0.02 0.01 0.40 0.40 0.85
0.55 0.02 0.01 0.00 0.05 0.05 0.04

7 0.75 0.01 0.01 0.00 0.25 0.25 0.25
0.90 0.02 0.01 0.01 0.40 0.40 0.09

Table 3 presents the maximal absolute bias obtained for simulated error combinations.

Considering 3, 5, or 7 repeated classifications, one notices that the mode presents better

performance, with values for maximal absolute bias smaller than 6%, whereas the median

presents values smaller than 7%.

When using empirical or U(0, 1) prior distribution for errors, we noticed a tendency

toward the occurrence of negative bias, that is, the p proportion of interest is underes-

timated. This may occur due to the criterion used when making the final classification
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Table 3: Maximal absolute bias of p with n=250

Empirical prior Distribution Uniform prior Distribution
m p Mean Median Mode Mean Median Mode

0.55 - - - 0.05 0.05 0.45
1 0.75 - - - 0.25 0.25 0.66

0.90 - - - 0.40 0.40 0.86
0.55 0.05 0.04 0.04 0.05 0.05 0.45

3 0.75 0.05 0.04 0.04 0.25 0.25 0.66
0.90 0.12 0.06 0.05 0.40 0.40 0.80
0.55 0.05 0.01 0.01 0.05 0.05 0.05

5 0.75 0.02 0.01 0.01 0.25 0.25 0.59
0.9 0.10 0.04 0.03 0.40 0.40 0.90
0.55 0.05 0.01 0.01 0.05 0.05 0.05

7 0.75 0.02 0.01 0.01 0.25 0.25 0.25
0.90 0.04 0.02 0.02 0.40 0.40 0.10

as conforming (Fi = 1) or non-conforming (Fi = 0). Since in the simulated examples

p > 0.5, e1 ≤ 0.15 and e2 ≤ 0.15 then on the average the number of items that were really

conforming tends to be greater, which implies that the number of occurrences when a

conforming item is classified as non-conforming may be greater than the number of cases

when a non-conforming item is classified as conforming. Consequently, the proportion

tends to be underestimated. In case p < 0.5 there will be a tendency to overestimate the

proportion.

Note also that bias is asymptotically null as repeated classifications increase. Figure

8 illustrates this situation through the establishment of the posterior distribution for p

with mean, median and mode obtained, respectively, from a simulation in which n = 500,

p = 0.75, m = 99 and with empirical prior distribution for errors. In this scenario, the

maximal bias is about -0,1% resulting from the posterior mean. The graph also indicates

that, as m increases, the posterior mode tends to present less bias.

This article presents an empirical Bayesian methodology to estimate a proportion

when evaluations are subject to classification errors and when prior information on such

errors is not available. We propose the use of repeated classifications and, through them,

one can elicit empirical prior distributions for classification errors.

A simulation study revealed that the methodology presents satisfactory performance,
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Figure 8: Posterior distribution of p with n=500, m=99 and empirical prior distribution
for e1 e e2.

since, when compared to prior distribution U(0, 1), empirical prior distribution gener-

ates posterior estimates with less absolute deviation and posterior distributions with less

variability.

For posterior estimation of proportion of interest we recommend as best alternative

the posterior mode with at least three repeated classifications.
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