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ABSTRACT 

 
Many spatial cluster finder algorithms do not have adequate procedures for controlling the 
shapes of the clusters found. The cluster candidates may sometimes spread through large 
portions of the map, making it difficult for the practitioner to assess the geographical 
meaning of the solution. We propose a novel scan statistic algorithm for finding irregularly 
shaped spatial clusters in a map divided in a finite number of regions, whose adjacency is 
defined by a graph structure, by means of a new penalty function, the cohesion penalty 
correction. Based on the graph topology, the cohesion correction was developed to avoid 
the excessive irregularity of the clusters. The cohesion correction is compared with the 
geometric concept of compactness correction, which was used previously as a penalty 
function. We show that the cohesion correction has advantages over the compactness 
correction, boosting the power to detect elongated clusters, and being less computer-
intensive. A multi-objective genetic algorithm is used to compute the solutions, consisting 
of the Pareto-set of clusters candidates. The goal of the cluster finder algorithm is to 
maximize two objectives: the scan statistic and the cohesion of the graph structure. The 
statistical significances of the clusters in the Pareto-set are estimated through Monte Carlo 
simulations, using Gumbel’s approximation for the scan statistic distribution, which are 
used as a criterion for choosing the best solution. 
 
1. INTRODUCTION  
 
Epidemiologists and crime analysts make use of cluster detectors as an effective tool to 
study the geographical patterns of diseases (Lawson et al., 1999), syndromic surveillance 
(Duczmal and Buckeridge 2006a; Kulldorff et al. 2005a,b, 2006a,b) and criminal activity.  
Softwares such as SatScan (Kulldorff, 1999) and ClusterSeer (TerraSeer, 2004), employing 
the spatial scan statistic (Kulldorff 1997) are increasingly popular. We are interested in the 
detection spatial clusters that are not restricted to circular shape. Recently, several methods 
were developed to detect irregularly shaped clusters (Patil and Tallie  2004, Duczmal et al. 
2004, 2006a,b,c,d, Iyengar 2004, Sahajpal et al. 2004, Conley et al. 2005, Tango and 
Takahashi 2005, Neill et al. 2006, Assuncao et al. 2006 and Kulldorff et al.2005, 2006a,b).  
 
We develop a novel methodology, based on a genetic multi-objective optimization 
algorithm, which was developed elsewhere (Duczmal et al. 2006d) for selecting the best 
cluster solution, among the many possible solutions found. That algorithm was developed 
to maximize two competing objectives, namely the cluster scan likelihood ratio, and the 
regularity of cluster shape. In our present paper we introduce a novel penalty function, 
which, instead of being based on the geometric shape of the clusters, is based on its 



topology. This change was motivated by the discussion in Duczmal et al. (2006b). In that 
paper, it was noted that the some clusters have low population regions, which should 
disconnect it if removed (the so called weak links). The presence of weak links impacts the 
power of detection of such cluster. This happens because the variance of the number of 
cases inside a weak link is elevated, due to its low population. As a consequence, we expect 
to find very few cases inside a weak link, thus making it difficult for the cluster detector to 
join the parts of the cluster separated by the weak link. In other words, weak links generates 
noise, in the sense that a legitimate cluster which includes a weak link should be penalized 
(see details in Duczmal et al. 2006b). The usual geometric compactness correction does not 
penalize enough clusters with weak links. As we shall see, the topological correction 
developed in this work actuates effectively in clusters with weak links, thus inhibiting the 
proliferation of such clusters, which should otherwise compete unfairly with the legitimate 
clusters solutions.           
 
The paper is divided as follows. In section 2, we summarize the concepts of Kulldorff´s 
spatial scan statistic and review the multi-objective genetic algorithm. Section 3 introduces 
the novel penalty function based on the cluster’s graph topology. Power tests are presented 
in section 4. The final remarks are discussed in section 5.  
 
2. THE MULTI-OBJECTIVE SPATIAL SCAN GENETIC ALGORITHM   

 
In this section we review the spatial scan statistic (Kulldorff, 1997), the geometric concept 
of compactness (Duczmal et al., 2006a), the usual geometric compactness correction, the 
multi-objective genetic algorithm and the statistical significance estimation of the clusters 
found (Duczmal et al., 2006b, 2006c), using the Gumbel´s approximation (Abrams et al. 
2005). 
 
2.1. THE SPATIAL SCAN STATISTIC 
 
Given a map divided into  regions, total population  and C  cases, a zone  is 
defined as any set of connected regions. The number of cases in each region follows a 
Poisson distribution, with average proportional to its population, under the null hypothesis 
that there are no clusters in the map. Defining  as the expected number of cases inside 

 under the null hypothesis, c  as the number of observed cases inside , 
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if the relative incidence inside is higher than 1, and 1 otherwise. The zone with the 
maximum likelihood is defined as the most likely cluster. The test statistic is max . 

This likelihood ratio, maximized over all the zones, identifies the zone that constitutes the 
most likely cluster. See Kulldorff (1997) for details. The test statistic can detect not only 
circular clusters, but we should expect lesser power for the irregular ones. 

Z
)(zLR

z

 



2.2. THE REGULARITY OF CLUSTER SHAPE 
 
Highly irregularly shaped zones in the map tend to have very large scan likelihood ratio 
values and are almost always undesirable, because they compete unfairly with the more 
legitimate cluster candidates, which tend to have more regular shapes and more modest 
scan likelihood ratio values. In this sense, they constitute noise, against which the signal, 
represented by the more geographically meaningful cluster candidates, is superimposed. 
We now define a quantitative measure of the regularity of cluster shape. Given a planar 
geometric object , define  as the area of  and  as the perimeter of the convex 
hull of . Intuitively, the convex hull of a planar object is the cell inside a rubber band 
stretched around it. The compactness of  is  
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This formula is equivalent to  divided by the area of the circle with perimeter . 
Compactness does not depend on the size of the object, only on its shape. The maximum 
compactness value, namely one, is attained by the circle. Compactness can be used as a 
penalty function acting as a filter to restrain the presence of those extremely high LLR 
valued large tree-shaped clusters, allowing the presence of the somewhat lower LLR valued 
clusters solutions with real geographic meaning that we are looking for. For details, see 
Duczmal et al. (2006b).   
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2.3.   THE GENETIC ALGORITHM  
 
A genetic algorithm was developed for spatial cluster detection and inference using the 
scan statistic in a map divided in regions. The algorithm aims to maximize an objective 
function, modifying an initial set of individuals, or population, for a number of generations. 
The variance of the population is increased through the crossing-over and mutation 
operators. The selection operator picks the individuals that will remain in the next 
generation, maintaining the population size fixed during the process. The crossing-over 
operator creates new children individuals, or zones, mixings the features of two randomly 
chosen parents at a time, which are themselves zones from the previous generation, see 
details in Duczmal et al. (2006c). In this manner, several children are produced, which are 
intermediate zones between the two extremes zones A and B. The selection operator rank 
the zones according to the value of the objective function, namely the compactness 
corrected spatial scan statistic mentioned in section 2.2. We expect to find individuals with 
increasingly higher values as the algorithm advance through the generations.     
 
The statistical significance of the most likely cluster of observed cases is computed through 
a Monte Carlo simulation (Dwass, 1957). Under null hypothesis, simulated cases are 
distributed over the map and the scan statistic is computed for the most likely cluster. This 
procedure is repeated thousands of times, and the obtained distribution of the values is 
compared with that of the most likely cluster of observed cases, producing an estimate of its 
p-value. The algorithm has fast convergence, and good power of detection.  
 
The genetic algorithm is suitably modified to deal simultaneously with the two quantities: 
the compactness  (section 2.2), and Kulldorff´s original spatial scan  (section 
2.1), constituting the multi-objective genetic algorithm (Duczmal et al. 2006d). The pairs 
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, indicating the compactness and scan statistic computed for each individual i, are 
plotted in the Cartesian plane. The selection operator is now defined in terms of two 
objectives, maximizing the compactness and the scan statistic. This operator relies on the 
concept of dominance: a point is said to be dominated if it is worse than another point in at 
least one objective, while not being better than that point in any other objective (Chankong 
and Heimes, 1983). The Pareto-set is the set that does not contain any dominated solution 
(Takahashi et al. 2003). 
 
The selection operator is modified as follows. At first we compute the current generation 
list, which consists of the parents set augmented several times with the addition of newly 
produced offspring through the crossing-over operator. Next we compute the Pareto-set of 
the current generation list, which is stored in the initially empty next generation list, and 
then removed from the current generation list. This procedure is repeated until the new 
generation list has grown to contain at least M individuals. The eventually excessive 
individuals added in the last step are removed randomly to form a new next generation list 
with exactly M individuals. The next generation population consists of the individuals of 
the next generation list, thus formed by selecting a set consisting of  points that are not 
dominated by any other point outside this set. The current generation list is finally 
substituted by the next generation list. 

M

 
The crossing-over operator builds again new offspring, and the procedure is repeated for a 
number of successive generations. We observe a collective displacement of points towards 
generally higher values of K and L. The Pareto-set of the latest generation is considered the 
solution given by the algorithm. We observe that the later generations point sets become 
closer to their respective Pareto-sets, and that proximity could be used as a criterion for 
convergence.  
 
2.4. THE MULTI-OBJECTIVE ALGORITHM  
 
A scheme based on multi-objective optimization was developed elsewhere (Duczmal et al. 
2006d) for selecting the best cluster solution, among the many possible solutions found. 
The algorithm aims to maximize two competing objectives, namely the cluster scan 
likelihood ratio, and the regularity of cluster shape. This is done computing the Pareto-set 
of the collection of all the solutions found. Following that, a Monte Carlo simulation is 
conducted: we assign random cases to the regions, according to a Poisson distribution 
under null hypothesis, where the average of cases allocated to each region is proportional to 
its population. The process of finding the Pareto-set is repeated hundreds of times, each 
time for a different allocation of random cases under the null hypothesis. Those Pareto-sets 
are joined, obtaining a collection of thousands of points. We then partition the strip 

into a number of parallel bands , where . Next, we 
compute the approximate Gumbel´s distribution that fits best to the log likelihood ratio 
values of the points encased in each band. The integral of the tail of the Gumbel 
distribution furnishes our estimated p-values for the mid point 
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of p-values estimates for all the strips are then used to compute the interpolated p-value 
surface, from which the individual p-values for the points in the observed cases Pareto-set 
are then computed. In the example of Figure 1, where 10,000 Pareto sets were obtained 



under the null hypothesis, the 0.01, 0.001 and 0.0001-value isocline curves are shown in 
green. The blue curve indicates the 0.05-value isocline curve.        
 
 
3. THE COHESION CORRECTION OF THE CLUSTER 
 
In this section we define the cohesion correction to be used as a measure of topological 
regularity of the cluster associated to a graph G. To each graph  with  nodes we 
associate a set of nodes or vertices which belongs to G  and that are called the 
disconnection set G , . Each node  is such that the 
resulting graph G  is not connected. In other words, each time any node  is 
removed from the graph G  this removal breaks the original graph in two or more 
connected pieces.  To each  we define a partition G  of the original graph G  
made of the node  and the two or more parts into which the node breaks the original 
graph as it is removed from it. We write an arbitrary partition G  as 

 where  denotes the J-th connected part of the broken 

graph and the number of parts  L  is less or equal to   Also to each connected part 
 we associate its relative population  
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where respectively,  and  pop  represent the populations of the connected 

part  and the whole graph G . 
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Given any partition  of some graph G  we rank the connected 

parts according their relative populations and rewrite the G  partition in its ranked version  
as . Then we define a cohesion function for a ranked 

partition as: 
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and the exponent dp  from damping factor are defined as: 
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Now we define the cohesion function of the whole graph G  as: 
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If the set G  is the empty set, then   disc .1)(ch =G

 
The cohesion function is used as a penalization factor in the expression for the test statistic 
(actually it goes as an exponent of the likelihood ratio). The cohesion function is conceived 
with the intention to penalize graphs that are broken in “homogeneous” parts (parts that 
have approximately the same population). This is associated with the second term on the 
right side of formula (1). Also the penalization is high if the disconnecting node is “weak”, 
meaning that it has small population. This is accomplished by the first term on the right 
side of formula (1). This particular penalization effect is attenuated by the damping factor 

 that takes in account if the remaining relative population, namely, one minus the 
relative population of the disconnecting node and the relative population of the most 
populated part, is still significant. 

dp

 
4. POWER TESTS 
 
A benchmark dataset is constructed using real data population from the northeastern U.S. (245 
regions) with one of 11 simulated irregularly shaped clusters A to K, displayed in Figure 2 
(Duczmal et al. 2006b).  These clusters were chosen with the purpose of testing the algorithms for 
some very irregular cluster shapes. From now on, the clusters A to K will be denoted real clusters, 
in contrast to the detected clusters found by the scan statistics. For each simulation of data under 
these eleven alternative hypotheses, 600 cases are distributed randomly according to a Poisson 
model using a single cluster; we set a relative risk equal to one for every cell outside the real cluster, 
and greater than one and identical in each cell within the cluster. The relative risks are defined such 
that if the exact location of the real cluster was known in advance, the power to detect it should be 
0.999 (Kulldorff et al. 2003). 10,000 runs of the both the compactness (GAC) and topological 
(GAT) genetic algorithm statistics were done under the null hypothesis, plus 1,000 runs for each 
entry in the table, under the alternative hypothesis. Observe that the power is significantly 
higher for the elongated string-shaped clusters C, F and G. for the other clusters, the power 
is about the same for both algorithms. The running time was less than one second for each 
Monte Carlo simulation. 
 
5. CONCLUSIONS 
 
We developed and tested a novel penalty function, the cohesion penalty correction. Based 
on the graph topology, the cohesion correction was developed to avoid the excessive 
irregularity of the clusters. The cohesion correction was compared with the geometric 
concept of compactness correction through a multi-objective genetic algorithm. It was 



shown that the cohesion correction has higher power of detection, when used for finding 
elongated string-shaped clusters. For less elongated clusters, the algorithm based on the 
cohesion correction exhibited the same power of detection of the compactness correction 
algorithm. We also have shown that the cohesion correction is faster. 
 

6. REFERENCES 
 

Abrams A, Kulldorff M, Kleinman K, 2005. Empirical/Assymptotic P-values for Monte Carlo-   
Based Hypothesis Testing: an Application to Cluster Detection Using the Scan Statistic. 2005 
Syndromic Surveillance Conference.  

Chankong V, Haimes YY, 1983. Multiobjective Decision Making: Theory and Methodology. North-
Holland. 

Conley J, Gahegan M, Macgill J, 2005. A genetic approach to detecting clusters in point-data sets. 
Geographical Analysis, 37, 286-314 

Duczmal L, Assunção R, 2004. A simulated annealing strategy for the detection of arbitrarily 
shaped spatial clusters, Comp. Stat. & Data Anal., 45, 269-286. 

Duczmal L, Buckeridge DL, 2006a. A Workflow Spatial Scan Statistic. Statistics in Medicine, 
25;743-754. 

Duczmal L, Kulldorff M, Huang L., 2006b. Evaluation of spatial scan statistics for irregularly 
shaped clusters. J. Comput. Graph. Stat. 15;1-15.      

Duczmal L, Cançado ALF, Takahashi RHC, Bessegato LF, 2006c. A genetic algorithm for 
irregularly shaped spatial scan statistics (submitted to Comput. Stat. Data Anal.). 

Duczmal L, Cançado ALF, Takahashi RHC, 2006d. Delineation of Irregularly Shaped Disease 
Clusters through Multi-Objective Optimization (submitted) 

Dwass M. 1957. Modified randomization tests for nonparametric hypotheses. Ann. Math. Stat., 
28:181-187. 

Iyengar, VS, 2004. Space-time Clusters with flexible shapes. IBM Research Report RC23398 
(W0408-068) August 13, 2004. 

Kulldorff M, 1997. A Spatial Scan Statistic, Comm. Statist. Theory Meth., 26(6), 1481-1496. 
Kulldorff M, 1999. Spatial scan statistics: Models, calculations and applications. In Scan Statistics 

and Applications, Glaz and Balakrishnan (eds.). Boston: Birkhauser, 303-322. 
Kulldorff M, Tango T, Park PJ., 2003. Power comparisons for disease clustering sets, Comp. Stat. 

& Data Anal., 42, 665-684.  
Kulldorff M, Heffernan R, Hartman J, Assuncao R, Mostashari F, 2005. A Space-Time Permutation 

Scan Statistic for Disease Outbreak Detection. PLoS Medicine, Feb.15.  
Kulldorff M, Huang L, Pickle L, Duczmal L, 2006. An Elliptic Spatial Scan Statistic. Statistics in 

Medicine (to appear).  
Kulldorff M,  Mostashari F,  Duczmal L, Yih K, Kleinman K, Platt R., 2006b, Multivariate Scan 

Statistics for Disease Surveillance. Statistics in Medicine (to appear). 
Lawson A., Biggeri A., Böhning D.  Disease mapping and risk assessment for public health. New 

York, John Wiley and Sons, 1999.  
Neill DB, Moore AW, Cooper GF., 2006, A Bayesian spatial scan statistic. Advances in Neural 

Information Processing Systems 18 (in press).  
Patil GP, Taillie C, 2004. Upper level set scan statistic for detecting arbitrarily shaped hotspots. 

Envir. Ecol. Stat., 11, 183-197. 
Sahajpal R., Ramaraju G. V., Bhatt V. (2004) Applying niching genetic algorithms for multiple 

cluster discovery in spatial analysis. International Conference on Intelligent Sensing and 
Information Processing. 

Takahashi RHC, Vasconcelos JA, Ramirez JA, Krahenbuhl L, 2003. A multiobjective methodology 
for evaluating genetic operators. IEEE Transactions on Magnetics, 39(3), 1321-1324. 



Tango T, Takahashi K., 2005. A flexibly shaped spatial scan statistic for detecting clusters. Int. J. 
Health Geogr., 4:11.  

TerraSeer, 2004. http://www.terraseer.com 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
Figure 1- The p-value isocline curves for the null hypothesis Monte Carlo simulation, using 10,000 
Pareto-sets. 
 
 
 
 
 
 
 



 

 

 

 
 
Figure 2. Simulated data clusters for the northeastern U.S. The clusters A-K, were used in the power 

evaluations. (Duczmal et al. 2006b).  

 
 
 



real cluster A B C D E F G H I J K 
#regions 13 16 7 15 21 23 26 29 23 55 78 

GAC 
 
.86 

 
.81 

 
.79 

 
.87 

 
.77 

 
.45 

 
.50 

 
.65 

 
.62 

 
.58 

 
.49 

GAT 
 
.86 

 
.79 

 
.86 

 
.90 

 
.80 

 
.56 

 
.57 

 
.62 

 
.63 

 
.58 

 
.47 

 
Table 1- Power comparison between the genetic algorithm employing the compactness 
correction (GAC) and the topological correction (GAT).  


