Universidade Federal de Minas (Gerais
Instituto de Ciéncias Exatas
Departamento de Estatistica

Parallel Algorithms for a
Multi-level Network
Optimization Problem

F. R. B. Cruz e G. R. Mateus

Relatério Técnico RTP-04/98

Relatorio Técnico
Série Pesquisa

Parallel Algorithms for a Multi-level Network
Optimization Problem

F. R. B. Cruz®*, G. R. Mateus®

*Departamento de Estatistica,
Departamento de Ciéncia da Computacdo,
Universidade Federal de Minas Gerais,
31270-901 - Belo Horizonte - MG, Brazil

E-mail: {fcruz@est,mateus@dcc}.ufmg.br

Abstract

This paper shall deal with parallel implementations of the classical branch-and-bound
algorithm for a multi-level network optimization problem. Multi-level network optimization
problems arise in many contexts such as telecommunication, transportation, or electric power
systems. A new model for multi-level network design is introduced and formulated as a
mixed-integer program. The formulation is innovative because it integrates in the same model
aspects of discrete facility location, topological network design, and dimensioning. We propose
implementations which are suitable for MIMD (multiple instruction stream, multiple data
stream) parallel computation systems. Thus, the implementations are very convenient for
using in networks of workstations which has become so popular nowadays. We have tested
two versions of the branch-and-bound algorithm as well as different load balancing strategies.
The results are very encouraging indicating a gain over sequential computations in terms of

execution time.

Keywords — Parallel branch-and-bound, parallel computing, load balancing, network

optimization, network design problems.

*To whom all correspondences should be addressed at: Caixa Postal 702, Departamento de Estatistica- UFMG,
30123-970 - Belo Horizonte - MG, Brazil. E-mail: fcruz@est.ufmg.br. Phone: (+55 31) 499 5929. Fax: (455 31)
499 5924.

1 Introduction

1.1 Motivation and Problem Statement

In order to guarantee quality of service (QoS) and performance at minimum cost, network design
and planning in engineering systems require policy decisions, analysis of investment strategies,
and technical and development plans. Network planning must satisfy the expected demand for
new services, upgrading, and improvements on the existing network. The aim is to explore the
hierarchical organization of each network and to propose integrated network models as decision
support systems. In this context, we have focused solutions for basic urban mapping data capture
and data analysis using a Geographic Information System (GIS) and network optimization systems
[17, 16]. The multi-level network optimization (MLNO) problem treated here is a network design
model that raises optimization aspects of dimensioning, topological design, and facility location.
In this sense, the model can be applied in network planning to explore design aspects in different

levels in a modeling approach that integrates several hierarchical levels.

We define the MLNO problem on a multi-weighted digraph D = (N, A), where N is the set of
nodes and A is the set of arcs. Figure 1 shows a m-level network example containing candidate
supply nodes, demand nodes, and transshipment nodes at each level. The objective is to determine
an optimum combination of supply nodes and arcs to provide the required flow type to all demand

nodes respecting rules of flow conservation.

The MLNO problem is an AP-hard one since it generalizes other NP-hard optimization
problems, such as the Steiner problem in graphs [9], the telephonic switching center problem
[15], or the uncapacitated location problem [8]. Little research has been done on the MLNO
problem. In some recent works, models for multi-level network design have appeared, but not as
done here. Some works do not consider the integration of location aspect [6, 7], others do not
consider dimensioning aspects [2, 3]. This paper considers a modeling issue that is to integrate
discrete location aspects, topological network design, and network dimensioning in the same model.
Somebody might argue that the MLNO problem may not be able to capture all complexities
existing in the actual network design problem. However, its solutions may provide insights and a

starting point for further and more accurate analyses.

An exact approach to solve any NP-hard optimization problem normally is to implicitly enu-
merate all solutions. Although time consuming, branch-and-bound is a well-known technique
largely applied to many similar problems and the idea of reducing the computational time of
branch-and-bound algorithms by means of parallelism is very promising [13, 11]. Possible ap-
proaches range from (i) those using parallel exploration of the branch-and-bound search tree to
(ii) those using parallelism to compute the lower and upper bounds themselves. In this work,

we are concerned about the former view, that is, to explore the branch-and-bound search tree

@ @ - first, second and m-th level candidade supply nodes
@ . - first, second and m-th level demand nodes

= — —» - first, second and m-th level flows

(O - transshipment nodes

Figure 1: The MLNO Problem

in parallel which represents a coarse grain parallel application more convenient for the parallel
machine we have available, a network of workstations (NOWSs). The grain size is defined as the
relative amount of work done between synchronizations (i.e., communications). We make use of
the SABOR system [20], that uses the PVM package [10], to provide a programming environment
in which all details concerning the synchronizations between the processes are already done leaving

to the programmer only the task of developing his application.

1.2 Paper Outline

The paper is outlined as follows. In Section 2, we introduce the notation and present a mathe-
matical programming formulation for the MLNO problem. In section 3, we describe the parallel
implementations that we propose for the branch-and-bound algorithm. A preliminary version of
the algorithms has been coded in C++ and tested, and computational results are presented in
Section 4. In Section 5, we close the paper with conclusions and some open questions as well as

some future research directions.

2 Mixed-integer Mathematical Programming Formulation

In formulating the MLNO problem, we made some assumptions concerning the settings which are

made explicit below:

1. The arcs have cost parameters that include a non-negative fixed cost of using the arc

and a non-negative cost per-unit of flow.

2. The supply capacity of the first-level candidate supply nodes equals the sum of all

demands in all levels.

3. The candidate supply nodes of the other levels are really “transformation” nodes. They
receive flows from one level and convert them to another level, without gains or losses,

that is, in a 1:1 ratio.

These assumptions are consistent with what happens in practice in a two-level telecom-
munication network. A copper cable service user eventually has to be “transformed”
first into an optical fiber service user before getting connected to another similar copper

cable service user.

The ratio 1:1 keeps the model simpler and does not make it less powerful. It would be
possible to model whatever ratio by convenient adjustments on the flow scales. The
electrical engineers are used to do so in studying electric power systems referring all

voltages to one side of the transformers.

4. There is a cost for transforming flows from one level to another. We model here possible

hardwares that must be present to interconnect the different networks.

2.1 Notation
We now define the notation used.
D - directed graph,;
N - set of nodes;
A - set of arcs;
m - number of levels;

R' - set of I-th level candidate supply nodes;

D' - set of I-th level demand nodes.

&
1

demand of the I-th level demand node i € D';

Tl

fi

Zj

Ml

5+ (i)
67 (1)

2.2

The mathematical programming formulation describing the MLNO

- set of I-th level transshipment nodes, defined as follows: 7' = N — (R'U D' U R!*1)
fori=1,2,....,(m—1),and T"™ = N — (R™ U D™);

- non-negative per-unit cost for [-th level flow on arc (4, j) € A4;
- I-th level flow through arc (4, j) € 4;

- non-negative fixed cost for using arc (i,j) € A to support I-th level flow;

. - boolean variable which assumes the value 1 or 0 depending on whether or not the

arc (i,7) is being used to support I-th level flow;
- non-negative allocation cost for the I-th level candidate supply node i € R;

- boolean variable which is set to 1 or 0 depending on whether or not the node i € R!

is being selected to provide I-th level flow;

- capacity on all arcs in the /-th level, but relaxed in this paper and considered a big

enough number, i.e. M' = Z?:I EiEDL d;;

- capacity on all I-th level candidate supply nodes, but also relaxed in this paper, i.e.
st = MY,
- set of nodes j such that arc (4, j) is in set A, that is, {j|(i,j) € A};
- set of nodes j such that arc (j,7) is in set A, that is, {j](j,7) € A4}.

Formulation

flow-based mixed-integer programming (MIP) model:

Model (M):

m
miny | Y7 (el + fvl) + > fiz|

=1 [(ij)ea i€R!

s.t.:

: 1
! o -1 -1 1€ R,
Yoowhi— > ah=— D et Y et Y

=2,3,...,

jest (i) JEST(4) jest (i) JES=(4)
. 1
N o 1e T,
Z Lij — Z zji =0, ¥ 1=1,2,...m,
jest(i) JjE6=(3)
. !
! 1 1€ D",
Z L — Z zj; = —di, V 1=1,2,...m,
jest(i) Jj€6=(3)

problem is presented as a

(1)

(2)

i€ R, ‘
Z 23 — Z 2j; < sz, Y 1=1,2,..,m, ©)

jest(i) j€s=(4)

i,j) €A, ‘
xi’j < 1Mlyzl'j’ v 1(=12)m ©)

i,j) € A,
Tij > 0’ v l(:l 2) m (7)

y (1,7) € A,
y” € {0; 1}’ V =1,2,....om, (8)

i € R,

z; €4{0,1}, V j:12mm. ®)

The objective function (1) minimizes three terms: (i) the first accounts for the total flow’s
variable cost for all flow types, (ii) the second accounts for the fixed cost associated with the use
of the arcs (the overhead cost), and (iii) the last considers the total cost resulting from the use of

the supplying nodes.

Constraints (2) ensure the network flow conservation between adjacent levels at each supply
candidate node. Constraints (3) and (4) are the usual network flow conservation equalities at each
transshipment node and demand node. For example, from the point of view of level 1 all nodes
i € N — (R'U D! U R?) are transshipment nodes (see Figure 1). Constraints (5) ensure there is
no flow transformation in a candidate supply node if it is not selected, and constraints (6) express

the fact that the flow through an arc must be zero if this arc is not included in the design.

3 Algorithms

We propose parallel implementations based on the sequential branch-and-bound algorithm de-
picted in Figure 2. In that description, Upgst is the global upper bound and £ is a list of
unexplored problems (M)?, each of which is of the form Zi, = min{cx s.t.: x € S}, where
S? C S and S is the set of feasible solutions. Associated with each problem in £ are a lower
bound L! < Z]iv[and an upper bound U? > ZJZ'VI. The bounds L! and U? are computed according
to a Lagrangean relaxation based procedure as known in the literature [4]. Before creating its
children (M)%+*! and (M)?+2 the problem (M)’ is reduced by a Lagrangean relaxation based
algorithm [5]. The branching variable selected is the first free variable found that does not form

cycles with the remaining previously fixed variables [5]. For memory economy purposes, the search

rule applied was last-in-first-out which yields a depth-first search strategy.

The branch-and-bound algorithm is parallelized using a controller-worker approach. The con-
troller process is responsible for the general initializations, creation of the worker processes, and
their coordination. We now describe two parallel versions for the branch-and-bound algorithm,

the centralized and the distributed.

algorithm Branch-and-Bound
UsgsT «— +00
£ —{(M))
while £ # 0 do
/* search rule */
select and delete a problem (M) from L
/* bound rule */
Compute_Lower_and_Upper_Bounds(Li ,Ui)
update UggsT
/* branch rule */
if I' < Upgst and (M)' is not a leaf then
£ LU} U {(M)P+2)
end if
end while
end algorithm

Figure 2: Sequential Branch-and-Bound Algorithm

3.1 Centralized version

The high level algorithm for the centralized version are presented in Figure 3. In such a version,
the controller manages the list £ of unexplored problems (M) but the task of expanding the
problems is attributed to the workers, i.e. the worker processes are responsible for computing the

bounds and generating the respective children.

UpgsT — 400 Upst — +oc
L — {(M)°} while not terminate do
while there is work do receive problem (M) and Upgst
if £ # 0 then Compute_Lower_and_Upper_Bounds(Li ,Ui)
select a problem (M)' from L update Uhpst
send (M)Z and Uggst to worker i< Ufgst and (M)i is not a leaf then
end if L= {(M)+1} U {(M)2+2)
if there is an answer then else
receive Ugpst and L' from worker L — 0
update UprsT end if
L—LuLl send Uhgst and L' to controller
end if end while
end while
terminate workers

a) Controller Algorithm b) Worker Algorithm

Figure 3: Centralized Parallel Branch-and-Bound Algorithm

In other words, the controller keeps itself in the main loop while there are problems (M)? to be
solved in the list £ or else there is still some worker in expansion work. If there is any problem in
the list £, the controller choose one of them according to the last-in-first-out strategy and sends
it to the first worker free. Having any expansion concluded, the controller receives the partial
best upper bound Uhggr and the list £’ of recently generated children. It updates its own best
upper bound Upgst and its list £. Otherwise, the controller sends a terminate message to all

workers. By themselves, the workers keep in a main loop receiving problems (M)¢, solving them,

and sending back the results to the controller until they receive the terminate sign.

Because this implementation demands frequent synchronizations, it may cause a bottleneck
in the controller and results in sub-utilization of the worker processes. However, it may be
efficient if the granularity of the problem solved is coarse enough, i.e. if the problem expansion
is computationally intensive compared to the communication costs. The distributed version we

present tries to overcome this possible drawback.

3.2 Distributed version

The high level algorithm for the distributed version are illustrated in Figure 4. The controller is
responsible for the initial load distribution and the algorithm finalization. Each worker implements
the sequential branch-and-bound algorithm with slight modifications that permit load exchanges

with other workers.

UpgsT + +00 receive problem (M)'*
generate problems (M) Uggst — +o©
for all k do L— {(M)'*}
send problem (M) to worker k while not terminate do
end for if £ # 0 then
while somebody is working do select a problem (M)Z from L
recetve current status of workers Compute_Lower-and_Upper_Bounds(Li ,Ui)
end while update Ulgst
terminate workers if I' < Ubpsr and (M)* is not a leaf then
for all k do L= {(M)* YU {(M)*+?)
receive Ufgst from worker k else
update UsgsT L— 0
end for end if
send Upgst and L' to other workers
end if
receive Ubpst and L' from other workers
L—LucLl
send current status to controller
end while
send results to controller

a) Controller Algorithm b) Worker Algorithm

Figure 4: Distributed Parallel Branch-and-Bound Algorithm

The controller expands the problem (M)° up to the point it has as many children (M)% as
it has workers. So, the controller distributes the load and keeps itself in a loop waiting the k-th
worker to explore completely the problem (M)i* received. Thus, the controller terminates the
workers, receives all partial best solutions Ufgrgp and chooses the best among all received.

According to the load balancing policy in use, the workers are entitled to solve the sub-problems
they received by exchanging load between themselves. Concerning this issue, we have tested three

different load balancing policies. We shall describe them now.

Static balancing

This is the simplest load balancing procedure which means no dynamic balancing at all. Each
worker receives an initial assignment, problem (M)% and has to solve it alone no matter how
long it takes. An immediate possible drawback on this approach has to do with those problem

instances with unbalanced search trees. We shall talk more about this in the following section.

Zhang balancing

This balancing policy is a contribution of Karp and Zhang [12]. The policy is also very simple.
Here, the workers are entitled to exchange loads. Each time a worker expands a problem or it
keeps the children to itself or sends them to some neighbor choosing it by a random distribution.
In such a case, the controller communicates merely with one of the workers and sends to it the
initial problem (M)°. The remaining workers will receive their loads as long as somebody already

working chooses them to send its children.

Modified balancing

We think we could improve Zhang’s algorithm in practice by including the following modification.
First, a worker should not be entitled to send the list £’ out if this action would result in a null
load. Moreover, the workers should be more active and ask for load when they were running out
of problems. Of course, this is not a simpler approach but may result in some gain in terms of

processing time. We shall now present computational results where all possibilities are tested.

4 Computational Experience

Before showing the computational results, we shall present the measures we employ to evaluate
the performance of our implementations and to compare them. There are various different quality
measures for parallel algorithms [18]. We shall use only two of them. The first is the speedup,
s(p), which is defined as follows:

3(p) = tseq/tpar(p), (10)

where t5eq is the time spent by the best known sequential algorithm and ¢,,:(p) is the time spent
by the parallel algorithm with p processors.

The other measure is the processor usage, u, defined below:

U= 100% X tcalc/ttotala (11)

where tiota] 18 the total execution time and t.5)c is the time really spent within useful calculations,

i.e. the total time minus the time the processor idles waiting for load.

All randomly generated testing problems came from a procedure similar to that one presented
in the literature [1], which has been extensively applied to create test problem instances of the
Steiner problem in graphs, a special case of the MLNO problem. According to this procedure,
node positions, arc extremities, basic arc weights ;;, candidate supply nodes, and demand nodes
are chosen by uniform distribution. The problems actually solved were the directed version of

the graph generated, each edge being substituted by two opposite arcs with the same weight. All

1

demands were considered unitary. The costs f;; and ci-j were derived from the weights €;; using

constant factors.

4.1 Homogeneous Network

The programs were executed in a homogeneous network with five Sun SPARC SLC machines,
an Ethernet network, 10 MBits, connected by a TCP/IP protocol bus [19], and NFS file system
server. In our analysis, for sake of simplicity, we concentrate in two one-level random problem
instances, (i) 71, which has 20 nodes, 58 arcs and 4 demand nodes, and (ii) 75, which has 35
nodes, 98 arcs and 5 demand nodes. The costs used were f;; = ¢;; = €;;.

In Table 1, we show the average speedup s(p) obtained for all tested versions, made over five
experiments in a low load period. For problem 77, it is noticeable that we almost reached the
theoretical ideal speedup, i.e. 5, applying the centralized algorithm. Considering the distributed
algorithm, the best results were those with the modified load balancing approach. However, in this
case, the reached speedup equals 2.1 which is smaller than the speedup of the centralized version.
For problem 73, the centralized algorithm also shows superiority, but in this case the speedup
equals 3.1. In the distributed algorithm, the best speedup reached was by using the static load

balancing policy. Nevertheless, for all three balancing policies, the speedup was roughly the same.

Table 1: Average* Speedup for all Implementations

Algorithms
Distributed
Problem Centralized Static Zhang Modified
T 4.9 1.5 1.8 2.1
Ty 3.1 1.8 1.7 1.7

*Over 5 experiments

In Figure 5, we show the processor usage rates and the load balance for the centralized version.
The controller process is identified by label ‘—1’. The remaining processors run worker processes.
Looking at these pictures, we can conclude that the usage is quite good. The minimal usage value
is 82.4%. For the problem T3, the results are even better with a minimal usage around 90.6%! This
could help to explain the centralized algorithm superiority. Once the grain seems to be coarse,

i.e. they are problems in which the lower and upper bound calculations are relatively intensive,

10

the communication existing in this algorithm does not degenerate it performance.

[®][&][z] kiviat

Hindou

Increasing Ordering

Inspect log

Disniss

I Decreasing Ordering

a) Problem T}

[®][&][z] kiviat

Hindou

Decreasing Ordering

Inspect log

Increasing Ordering I

Disniss

b) Problem T,

Figure 5: Kiviat Diagrams for the Centralized Version

Figure 6 shows results for the distributed version. We can note improvements on the usage
throughout the three balancing policies. The worst minimal usage value is obtained with the static
balancing (23%) and the better is with the modified balancing (approximately 74%). We see that
the better usage values obtained with the distributed algorithm is lesser than that obtained with
the centralized version. This fact explains the better results reached for the speedup. Nevertheless,
we can not conclude definitively that the centralized algorithm is always better, since only three

balancing policies were tested.

[E&EI[?] kiviat =] [l FH BT &[] kiviat (=] [l FH E &[] kiviat (=] [l FH E

asing Ordering || Dooreasing Ord asing Ordoring || Docreasing Ord asing Ordoring || Docreasing Ord

I Tncre.

TInspect log [| Disniss

T I T I

Figure 6: Kiviat Diagrams for the Distributed Version (Problem T7)

I Tncre.

TInspect log [| Disniss

b) Zhang

I Tncre.

TInspect log [| Disniss

c) Modified

orine I

a) Static

Figure 7 presents the behavior for the three versions of the distributed algorithm using problem
Ty. The results are quite similar to those previously shown. Here, comparing to the other alter-
native policies, the modified strategy also produced a more uniform load balancing in association

with considerable better usage rates.

11

&[] kiviat (=] [l FH E [EE[?] kiviat =] [l FH BT &[] kiviat

(=] [l FH E

2
99.99 896

Tnoreasing Ordering || Decreasing Ordering Tnoreasing Ordering || Decreasing Ordering Tnoreasing Ordering || Decreasing Ordering
TInspect log [| Disniss TInspect log [| Disniss TInspect log [| Disniss

a) Static b) Zhang c) Modified

Figure 7: Kiviat Diagrams for the Distributed Version (Problem T3)

It is noticeable that the static balancing policy leads to very unbalanced usage rates, as it
can be seen in Figures 6 and 6, letter a. This is because there is no load exchange between
workers. Thus, the worker that takes the harder subproblem will spend more time to solve it and
consequently will have a higher usage rate. On the other hand, the modified balancing policy is
quite similar to the centralized version in terms of usage pattern, indicating that the modification
is effective and makes the distributed version a competitive approach. However, , up to this point

of our research, we still recommend the use of the centralized version because its higher speedup.

4.2 Heterogeneous Test

For the sake of simplicity, all instances tested had 8 node, 14 arcs, only 1 supply node, and 1

demand node in the first-level. For the second-level, we have worked with 1 candidate supply

2
ij

node as well as 4 demand nodes. The costs = 2Q;; and c?j = 128€);; were considered higher
than fllj = y; and c}j = 8€);;, which is a reasonable assumption in practical multi-level networks.
Usually the higher (i.e. first) levels take advantage of higher demands and are allowed to use
special media with lower per-unit cost. On the other hand, if demand is not high enough, as it
is in lower (z.e. second) levels, less efficient media with higher per-unit costs may be required in
order to guarantee lower overall cost.

The parallel results reported were executed in the network of workstations (NOWSs), an Eth-
ernet network, 10 MBits, connected by a TCP/IP protocol bus [19], and NFS file system server.
More information about the hardware is shown in Table 2. These machines were used as a fully
connected parallel heterogeneous computer.

Figure 8 shows the results we have obtained with the centralized parallel branch-and-bound
implementation, using up to 6 processors (machines). All CPU times reported are the elapsed

time in order to solve the hardest instance out of 5 different ones which were tested.

We compare the speedup with the linear (ideal) speedup. Even considering that we have

12

Table 2: Hardware Details of the Machines Used in the Parallel Experiments

Name Operating System CPU Type System Model RAM “Speed”*

aroeira SunOS Release 5.5.1 Model 140 UltraSPARC Ultra 1 128 MB 1.00
caviuna SunOS Release 5.5 110 MHz microSPARC II SPARCstation 4 64 MB 0.74
turmalina SunOS Release 5.5.1 Model 140 UltraSPARC Ultra 1 160 MB 0.71
diamante SunOS Release 5.5.1 Model 61 SuperSPARC Axil 320 256 MB 0.63

cello SunOS Release 5.5.1 50 MHz microSPARC 1 SPARCclassic 16 MB 0.24
fluorita SunOS Release 5.5.1 50 MHz microSPARC 1 SPARCclassic 16 MB 0.24

* (60 seconds) + (average sequential time to solve the hardest problem in the set)

computed the speedup based on the sequential time of the fastest machine (machine aroeira,
Table 2), in the average case, the parallel algorithm solved the hardest problem in the set as much
as twice faster. It is important to mention that the machines were not dedicated to run only the
parallel algorithm. The average times presented were taken over several days in a low load period
since it was impossible to isolate all machines used to conduct the parallel experiments.

160

T T
LY Mininum -— Linear -—
" Average -+ 6 Mininum -+ |
Maximum -8--

130 | 4

CPU (5)
Speedup

L L L L L
2 3 4 5 6 2 3 4
Number of Processors Number of Processors

a) CPU time b) Speedup s(p)

Figure 8: Results for the Centralized Parallel Branch-and-Bound Algorithm

Concerning Figure 8, we remark that we were able to solve the problem twice faster in average.
Again, here we shown that the use of a parallel branch-and-bound algorithm in a heterogeneous
cluster of workstations is a very promising tool for solving hard multi-level network optimization

problems.

5 Conclusions and Final Remarks

A multi-level network optimization (MLNQO) problem was defined and its importance was dis-
cussed. The MLNO problems integrates location, topological network design and dimensioning
aspects. One possible mathematical programming formulation for the problem was proposed and
branch-and-bound algorithms based on this formulation was developed. We have focused on two
parallel implementations for the branch-and-bound algorithm. The parallel implementations have

followed a controller-worker approach. In the centralized version, the controller manages the list

13

of unsolved problems and distributes jobs to workers all around the time. The distributed version
corresponds to a more coarse grain parallel application where the controller is responsible only for
initial assignments and algorithm finalization. For the distributed version, we have tested three
different load balancing policies, one of them is completely original. In Table 1, all implementations
were compared in terms of average speedup. The results seem to indicate a gain over the sequen-
tial computation. Therefore, we should conclude that the parallelization of branch-and-bound
algorithms applied to this network design problems is very promising.

Along all computational experiments with the centralized version, we have observed it would
be advisable to work better on the load balancing. The applied strategy was to assign a node
expansion to the first free worker. Are there better alternatives? Moreover, the controller is
clearly a bottleneck in this version. Would it be possible to minimize this effect? Concerning the
distributed versions, we have seen that the static version does not work well since it produces poor
load balancing. However, there are research results proving that parallel branch-and-bound under
static balancing policy can reach high average processor utilization [14]. So, new modifications
could be done in our system with the purpose of improving the performance under the static
balancing policy. The modification proposed in Zhang’s algorithm holds this property of high
utilization and reaches higher speedups but there is still work to be done as some questions remain
open. How would be the algorithm behavior under different problem instances? Are there better
ways to parallelize the branch-and-bound algorithm? These are only few possible directions for
further work on this matter. Possible extensions of this work might also include the investigation

of these questions.

Acknowledgment

The authors wish to thank Prof. J. MacGregor Smith for his careful reading and valuable comments
on an earlier version of this paper as well as Prof. Rosangela H. Loschi for her constructive
suggestions. The research of Frederico Rodrigues Borges da Cruz and Geraldo Robson Mateus is
supported in part by grants from the Brazilian agencies Conselho Nacional de Desenvolvimento
Cientifico e Tecnolégico, CNPq, and Fundagao de Amparo d Pesquisa do Estado de Minas Gerais,
FAPEMIG.

References

[1] Y. P. Aneja. An integer linear programming approach to Steiner problem in graphs. Networks,

10:167-178, 1980.

[2] A. Balakrishnan, T. L. Magnanti, and P. Mirchandani. A dual-based algorithm for multi-level
network design. Management Science, 40(7):567-581, 1994.

14

[3]

A. Balakrishnan, T. L. Magnanti, and P. Mirchandani. Modeling and heuristic worst-case
performance analysis of two-level network design problem. Management Science, 40(7):846—

867, 1994.

F. R. B. Cruz, J. MacGregor Smith, and G. R. Mateus. Solving to optimality the uncapac-
itated fixed-charge network flow problem. Computers & Operations Research, 25(1):67-81,
1998.

F. R. B. Cruz, J. MacGregor Smith, and G. R. Mateus. Algorithms for a multi-level network
optimization problem. European Journal of Operational Research, 118(1):165-181, 1999.

J. R. Current, C. S. ReVelle, and J. L. Cohon. The hierarchical network design problem.
FEuropean Journal of Operational Research, 27:57-66, 1986.

C. W. Duin and A. Volgenant. Reducing the hierarchical network design problem. European
Journal of Operational Research, 39:332-344, 1989.

D. Erlenkotter. A dual-based procedure for uncapacitated facility location. Operations Re-

search, 26(6):992-1009, 1978.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman and Company, New York, 1979.

A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PVM: Parallel
Virtual Machine - A Users’ Guide and Tutorial for Networked Parallel Computing. The MIT
Press, Cambridge, Massachusetts, 1994.

B. Gendron and T. G. Crainic. Parallel branch-and-bound algorithms: Survey and synthesis.
Operations Research, 42(6):1042-1066, 1994.

R. M. Karp and Y. Zhang. Randomized parallel algorithms for backtrack search and branch-
and-bound computation. Journal of the ACM, 40(3):765-789, 1993.

P. S. Laursen. Simple approaches to parallel branch-and-bound. Parallel Computing, 19:143—
152, 1993.

P. S. Laursen. Can parallel branch-and-bound without communication be effective? SIAM

Journal on Optimization, 4(2):143-152, 1994.

H. P. L. Luna, N. Ziviani, and R. M. B. Cabral. The telephonic switching centre network prob-
lem: Formalization and computational experience. Discrete Applied Mathematics, 18:199-210,

1987.

15

[16] G. R. Mateus, F. R. B. Cruz, and H. P. L. Luna. An algorithm for hierarchical network
design. Location Science, 2(3):149-164, 1994.

[17] G. R. Mateus, C. I. P. S. Padua, and H. P. L. Luna. Integrated network models for local
access network design. In Proceedings of the International Telecommunications Symposium

1996, pages 6-10, Acapulco, Mexico, 1996.

[18] M. J. Quinn. Designing Efficient Algorithms for Parallel Computers. McGraw-Hill Book
Company, New York, first edition, 1987.

[19] A. S. Tanenbaum. Computer Networks. Prentice-Hall, New York, 1981.

[20] A. 1. Tavares, M. L. B. Carvalho, and G. R. Mateus. Aided design and analysis of distributed
branch-and-bound algorithms. In Annals of XV International Conference of the Chilean
Society of Computer Science, pages 448-458, Arica, Chile, 1995. Chilean Society of Computer

Science.

16

