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Resumo

Problemas de classi�ca�c~ao/categoriza�c~ao de texto tornam-se ainda mais
desa�adores quando os documentos de interesse s~ao curtos. Al�em da falta de
contexto, texto advindos dawebtem o agravante da espontaneidade, exibil-
idade e informalidade. Esse trabalho prop~oe uma metodologia que viabilize a
indu�c~ao de classi�cadores de texto para bases de dados grandes por usu�arios
com disponibilidade de computadores comuns e sem conhecimento avan�cado
em computa�c~ao paralela e/ou distribu��da. A metodologia proposta divide-
se em dois passos. No primeiro deles, como etapa inicial, procede-se com a
parti�c~ao do banco de dados em subconjuntos de dados menores. No segundo
passo cada subconjunto induz um classi�cador espec���co a partir de uma
t�ecnica supervisionada de Aprendizado de M�aquina. A indu�c~ao de um clas-
si�cador com a cole�c~ao completa �e substitu��da por indu�c~oes de classi�cadores
com menos dados o que reduz o esfor�co computacional. Al�em disso, viabiliza-
se tamb�em a indu�c~ao de m�ultiplos classi�cadores em distintos cores do com-
putador concomitantemente. Isso denota uma paraleliza�c~ao computacional
simples, o que reduz o tempo de processamento para a execu�c~ao da tarefa. A
metodologia tamb�em permite o emprego de distintas formas de representa�c~ao
do texto (o uso do vocabul�ario observado, com diferentes formas de sele�c~ao
de atributos, o uso de anota�c~ao, bigramas, etc). Tamb�em �e poss��vel o uso de
diferentes t�ecnicas de agrupamento e Aprendizado de M�aquina. Tais t�ecnicas
podem ser especi�cadas de acordo com as preferências do usu�ario, contexto
e di�culdades do problema ou infra-estrutura dispon��vel. Experimentos com
distintos tipo de t�ecnicas de classi�ca�c~ao s~ao realizadas. Apresentam-se
an�alises para um base detweetscoletados na regi~ao de S~ao Paulo-SP, Brasil
no t�opico de crime. A e�ciência da metodologia �e comprovada com o seu
emprego em uma base de dados de 1.600.000tweets em inglês, no dom��nio
de An�alise de Sentimento.

Palavras chave: Classi�ca�c~ao de texto, aprendizado de m�aquina, clus-
tering particional, sele�c~ao de atributos, distância Levenshtein/edit distance.
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Abstract

This work describes the classi�cation of texts as being either crime-

related or non crime-related. Given the spontaneity and popularity

of Twitter we collected some posts related with crime and criminol-

ogy, in the state of S~ao Paulo-SP Brazil. However, this data set is

not a collection of crime reports. As the web language is character-

ized by diversity including exibility, spontaneity and informality we

need a classi�cation rule to �lter the documents which really are in

the context. The proposed methodology works in a two step frame-

work. In the �rst step we partition the text database into smaller

data sets which de�ne text collections with characteristics (not neces-

sarily directly observable) which allow a better classi�cation process.

This enables the usage of parallel computing which decreases the time

process required for the technique execution. Later on each subset of

the data induces a distinct classi�cation rule with a Supervised Ma-

chine Learning technique. For the sake of simplicity we work with

KMeans and KMedoids and liner SVM. We will present our results in

terms of speed and classi�cation accuracy using various feature sets,

including semantic codes. Analysis with distinct classi�er induction

techniques asRandom Forest, Logistic Regression, and Boosting are

also provided. An application with a huge data set of 1,600,000 tweets

written in English proofs the method's e�ciency.

Keywords: Text classi�cation, machine learning, partition clustering,
feature selection, edit distance.
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1 Introduction

Text data originating from the web are a rich source of information. There is
a huge amount of data, from many di�erent users who report and complain
about any subject of interest. In general, it is said that social web can give
a good portrait of public opinion. Furthermore, it is easier to deal with text
data rather than audio, images or videos.

Nevertheless, the usage of these texts requires speci�c analysis. The lan-
guage itself is hard to study as a consequence of its subjective nature and the
inuence of many individual, economic, social and regional aspects, among
others.

Text data is characterized by the fact that it includes unusual forms of
usage like the usage of irony and metaphors. It must be added that an
aggravating factor is that many words are polysemic, which means that they
have more than one meaning. The wordbank is a good example of word with
polysemy.

Moreover, the web's exibility, spontaneity and informality intensify the
challenges in studies and analysis.

It might also be noticed that the web texts are getting smaller and smaller.
Today, it is really common to share texts with status updates and which
means that, unlike blog posts, the users usually write many times a day.
These updates can be related to any subject; sport events, natural disasters,
election campaigns or entertainment.

1.1 Preliminary Considerations

In this way, we can see that even for texts which share common words there
can be texts in diverse topics. If the �nal aim is to use exclusively the texts in
a given context we notice the need to apply a method to verify which texts do
appertain to the intended context. Hence, we are facing aText Classi�cation
or Text Categorization task, discussed in more details in Sub-section 1.1.1.

Pustejovsky and Stubbs [2012] describeText Categorizationbriey as the
task to correctly sort a collection of elements into the proper category.

To simplify, let's say that the categories represent the phenomenon that
we want to analyze and/or forecast. Then, there is a set of two classes (`to
belong to the context' vs `not to belong to the context') which enables us to
refer to it as binary classi�cation.

There are numerous works which make use of small texts in the study
of a social phenomenon. Sakaki et al. [2010] propose a noti�cation system
for earthquake events which monitors Twitter posts and sends noti�cations
instantly. Tumasjan et al. [2010] evaluate Twitter as a tool for predicting
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elections in Germany. Souza and Meira Jr [2016] use Twitter's data to de-
tect infectious disease hot spots. In a hundred million (100,000,000) available
posts the authors �lter exclusively the posts which denotes the author's per-
sonal experience.

The references presented reinforce the need to studyText Categorization.
The usage of textual information can be impaired by a bad classi�er perfor-
mance such that methods which minimize this undesired possibility should
be strongly pursued.

As our data naturally comes in a digital form and as the data set can
achieve high dimensionality we want an automated way of doing this task.
Consequently, we want a classi�er which learns the classi�cation decision
criterion automatically. This means that the Text Classi�cation process is
machine learning-based. More speci�cally, a supervised learningprocess.

1.1.1 Text Categorization

Figure 1, boxes (A), (B) and (D), represent an ideal procedure to classify a
text collection. In box (A) there is initially an universe of texts, in which
each color denotes a distinct subject. Let's say we want to collect the ones
with a given topic, represented in pink/violet color. Filtering the collection
by the presence or absence of a set of expressions we end up with a smaller
collection although still hybrid. It includes the desired texts but also others
(represented in grey). This collection of texts are the input to a classi�er
developed by algorithms in a computer, represented in box (B). The classi�er
outputs, for each text, the corresponding label which represents whether the
document belongs to the subject of interest, shown in box (D).

Pustejovsky and Stubbs [2012] de�nes steps in aSupervised Learning
framework, like Text Classi�cation problems, briey presented below:

1. To identify the target function. In the case of this work, the system
should learn to identify if the instancesare in the context of interest.

2. To choose a learning algorithm which derives a function able to distin-
guish the instancesin the context of interest.

3. To evaluate the results according to a reasonable performance metric.

1.1.2 Motivation

The classi�cation task of a text collection crawled from web can easily achieve
high dimensions. The speed and high quantity of data production and the
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