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Neto

Universidade Federal de Minas Gerais
Belo Horizonte, Setembro de 2009





Anderson Ribeiro Duarte

Geometry and Topology of Graph
Based Spatial Clusters





Agradecimentos
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Resumo

Conglomerados (clusters) espaciais de forma irregular são dif́ıceis de de-

linear. O cluster mais verosśımil geralmente se espalha em grandes parcelas

do mapa, impactando seu significado geográfico. Métodos que empregam

a estat́ıstica Scan espacial de Kulldorff, associados a medidas de penali-

zação, foram usados para controlar a liberdade excessiva de forma dos clus-

ters. Funções de penalidade baseadas na geometria dos clusters e na não-

conectividade foram propostas recentemente. Uma outra estratégia envolveu

o uso de um algoritmo multi-objetivo para maximizar dois objetivos: a es-

tat́ıstica Scan espacial de Kulldorff e a função de penalização geométrica.

São apresentados dois novos algoritmos multi-objetivo utilizando a estat́ıstica

Scan espacial de Kulldorff: o primeiro algoritmo emprega uma função baseada

na topologia do gráfico, visando penalizar a presença de nodos de desconexão

com população baixa no cluster candidato. Um nodo de desconexão é definido

como uma região dentro de um cluster, tal que sua remoção desconecta o

cluster; o segundo algoritmo maximiza, simultaneamente, a função de pena-

lização geométrica e a função coesão para nodos de desconexão. A solução

é um conjunto de Pareto, consistindo de todos os clusters não simultane-

amente piores em ambos os objetivos. A melhor solução é determinada

pela avaliação da significância através de simulações de Monte Carlo. Nosso
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método distingue claramente aqueles clusters geograficamente inadequados

que são piores do ponto de vista geométrico e os que são piores do ponto

de vista topológico. Adicionalmente, a irregularidade da forma geométrica é

permitida desde que não impacte a regularidade topológica. Nosso método

tem o melhor poder da deteção para os conjuntos que satisfazem àquelas

exigências. Propomos uma definição mais robusta do cluster espacial usando

estes conceitos. Uma teoria estat́ıstica é apresentada para avaliar o sig-

nificado estat́ıstico das soluções obtidas através do algoritmo multi-objetivo

que emprega o conceito de funções de aproveitamento. Neste trabalho nós

comparamos diferentes métodos com a estat́ıstica espacial Scan, nos quais

empregamos a penalização geométrica, a penalização por não-conectividade

e a penalização dos nodos de desconexão. Também constrúımos algoritmos

multi-objetivo que empregam funções de penalização e os comparamos com

os algoritmos mono-objetivo anteriores (penalizados). Mostramos que os

algoritmos multi-objetivo apresentam melhor desempenho, comparados aos

algoritmos mono-objetivo, considerando o poder, a sensibilidade e o valor

preditivo positivo. Uma aplicação dos algoritmos é apresentada usando da-

dos reais para doença de Chagas em mulheres parturientes no estado de

Minas Gerais, Brasil.

Palavras-chave: vigilância sindrômica; cluster espacial; estat́ıstica espa-

cial Scan de Kulldorff; clusters espaciais de formato irregular; algoritmos

multi-objetivo; compacidade geométrica; função de regularidade para não-

conectividade; função coesão para nodos de desconexão; doença de Chagas;

testes de poder.
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Abstract

Irregularly shaped spatial clusters are difficult to delineate. The most

likely cluster often spreads through large portions of the map, impacting its

geographical meaning. Penalized likelihood methods for Kulldorff’s spatial

scan statistics have been used to control the excessive freedom of the shape of

clusters. Penalty functions based on cluster geometry and non-connectivity

have been proposed recently. Another approach involves the use of a multi-

objective algorithm to maximize two objectives: the spatial scan statistics

and the geometric penalty function. We present a two novel scan statistic

algorithm: an algorithm employing a function based on the graph topology

to penalize the presence of under-populated disconnection nodes in candi-

date clusters, the disconnection nodes cohesion function. A disconnection

node is defined as a region within a cluster, such that its removal disconnects

the cluster. By applying this function, the most geographically meaningful

clusters are sifted through the immense set of possible irregularly shaped

candidate cluster solutions; and an algorithm maximizing simultaneously

compactness and disconnection nodes regularity function of clusters. The

solution is a Pareto-set, consisting of all clusters not simultaneously worse

on both objectives. Significance evaluation through Monte Carlo simulations

determines the best cluster solution. Our method distinguishes clearly those

geographically inadequate clusters which are worse from both geometric and
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disconnection nodes cohesion function viewpoints. Besides, irregularity of

shape is allowed provided that it does not impact topological regularity.

Our method has better power of detection for clusters satisfying those re-

quirements. We propose a more robust definition of spatial cluster using

these concepts. We evaluate the statistical significance of solutions for multi-

objective scans, a statistical approach based on the concept of attainment

function is used. In this work we compare different penalized likelihoods em-

ploying the (1) geometric and (2) non-connectivity regularity functions and

introduces a novel penalty function namely (3) disconnection nodes cohesion

function. We also build multi-objective scans using those three functions

and compare them with the previous penalized likelihood scans. We show

that the multi-objective scans present better performance, compared to the

other algorithms, regarding to power, sensitivity and positive predicted value.

An application is presented using comprehensive data for Chagas’ disease in

puerperal women in Minas Gerais state, Brazil.

Keywords: disease surveillance; spatial cluster; Kulldorff’s spatial scan

statistic; irregularly shaped clusters; multi-objective; geometric compact-

ness regularity function; non-connectivity regularity function; disconnection

nodes cohesion function; Chagas’ disease; power tests.
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Chapter 1

Apresentação

1.1 Motivação

Observa-se, recentemente, um crescente número de trabalhos sobre meto-

dologias para detecção e avaliação de conglomerados (clusters) espaciais e

temporais. No enfoque deste texto, um cluster é um conjunto conexo de

regiões onde existe a ocorrência discrepante de casos localizados para algum

fenômeno de interesse. O processo de detecção pode ser realizado em interva-

los de tempo (cluster temporal) ou então, para localizações no espaço (cluster

espacial), ou em ambos (cluster espaço-temporal).

O problema de detecção de clusters espaciais encontra-se presente em

diversas situações, tais como problemas associados à saúde pública (epidemi-

ologia e vigilância sindrômica), criminologia, pesquisa de mercados, entre

outros. É importante determinar modelos satisfatórios para a execução de

procedimentos para detecção e avaliação destes clusters.
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1.2 Objetivos e escopo da tese

Um dos objetivos deste trabalho é determinar e desenvolver estratégias

para a detecção de clusters espaciais. De fato notamos que não existe um

melhor método, mas sim uma extensa gama de métodos que se adequam bem

em diferentes cenários.

Buscamos um algoritmo que seja capaz de delinear, o mais corretamente

posśıvel, os limites geográficos de posśıveis clusters espaciais, apresentando

justificativas estat́ısticas para o funcionamento adequado do método.

Apesar da tese restringir-se ao estudo para detecção de clusters espaciais,

as propostas aqui discutidas podem ser estendidas para a busca de clusters

espaço-temporais.

1.3 Principais contribuições

De uma forma geral podemos definir como principal contribuição a for-

mulação de algoritmos para detecção e inferência de clusters espaciais. As

principais contribuições são as seguintes:

• apresentação de uma revisão bibliográfica atualizada da área;

• proposição de um novo modelo de penalização para a estrutura topológica

de um cluster;

• proposição de um modelo matemático para a geometria e topologia de

clusters baseado em grafos;

• utilização de algoritmos genéticos mono e multi-objetivo para resolução

do problema;
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• obtenção de resultados, para uma ampla gama de experimentos com-

putacionais, que atestam a qualidade das soluções que podem ser obti-

das pela metodologia proposta.

• estudo de casos de incidência da doença de chagas no estado de Minas

Gerais;

1.4 Uma apresentação para o problema pro-

posto

Suponha que tenhamos um mapa dividido em regiões, cada uma delas

com uma população conhecida e um número de casos observados para a

ocorrência de um determinado fenômeno de interesse. Assim, cada caso pode

ser, por exemplo, um indiv́ıduo infectado por uma certa doença ou uma

v́ıtima de um determinado tipo de crime. Neste mapa um cluster é um

aglomerado de regiões vizinhas onde o risco de ocorrência do fenômeno de

interesse é muito elevado ou muito baixo comparado com o risco das demais

regiões, e ao mesmo tempo significativo do ponto de vista estat́ıstico.

Para cada região definimos um centróide, que é um ponto arbitrário em

seu interior. Chamaremos de zona qualquer subconjunto conexo de regiões

do mapa. A figura 1.1 mostra uma zona no mapa do estado de São Paulo

dividido em 72 microrregiões.

Kulldorff (1997) [47] propõe uma metodologia baseada em um teste de

razão de verossimilhança. Kulldorff e Nagarwalla (1995) [46] apresentam o

Scan Circular, um teste que encontra o cluster mais verosśımil dentre todas

as zonas circunscritas por ćırculos de raios variados centrados em cada região

do mapa.
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Figure 1.1: Mapa do estado de São Paulo dividido em micro regiões.

Uma janela circular sobre a área em estudo define uma zona formada

pelas regiões cujos centróides estão dentro da janela. Note pela figura 1.2

que, embora parte de uma região possa estar dentro da janela circular, se seu

centróide está fora dessa janela, essa região não fará parte da zona. Do mesmo

modo, mesmo que uma região não esteja totalmente inserida na janela, se

seu centróide está, então essa região fará parte da zona definida pela janela.

Denotaremos por Z o conjunto de todas as zonas obtidas por janelas cen-

tradas em cada centróide e de raios variando entre zero e um valor máximo.

A busca por soluções eficientes seria feita então dentro do conjunto Z.

Um grande problema desses métodos é a forma fixa dos clusters detectados,

tipicamente circulares ou quadrados, dependendo do método.

Essa restrição vem do fato de que seria computacionalmente inv́ıavel tes-

tar todas as zonas posśıveis. No entanto, em situações reais frequentemente

encontramos clusters em formatos bastante diferentes. A incidência de uma

doença pode ser maior ao longo de um rio, por exemplo, o que daria uma

forma mais alongada ao cluster.
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Figure 1.2: Uma posśıvel zona obtida para uma dada janela circular.

Muitos algoritmos para detecção de clusters espaciais não têm procedi-

mentos adequados para controlar as formas dos clusters encontrados. A

solução pode às vezes se espalhar através de diversas regiões do mapa, fazendo

com que se torne dif́ıcil a avaliação de seu significado geográfico.

Uma primeira idéia para tentar detectar um cluster poderia levar em

conta simplesmente a incidência de casos em cada zona, isto é, o número de

casos observados dividido pela população, ou ainda o risco relativo que é o

número observado de casos dividido pelo número esperado de casos. Ape-

sar de parecer razoável, essa análise não resolve o problema de detecção de

clusters, porque é posśıvel que clusters com populações muito discrepantes

possam apresentar uma mesma proporção de casos. Neste caso, estes can-

didatos seriam comparados em situação de igualdade, quando na verdade são

bastante diferentes devido à discrepância entre as populações. Um aumento

no risco relativo é tão mais significativo quanto maior é a população de risco

dentro do cluster candidato. Isso significa que, embora uma região ou uma

zona, possa apresentar um alto risco relativo, se sua população é pequena,
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ela se torna pouco significativa.

Para contornar este problema, precisamos encontrar um método que nos

permita analisar somente as zonas mais promissoras e descartar as que não

parecem muito interessantes. Uma vez que não analisam todas as zonas, esses

métodos não garantem que encontraremos a solução ótima, mas um bom

método deve encontrar uma boa solução na maioria das vezes. A estat́ıstica

Scan proposta em Kulldorff (1997) [47] prevê a possibilidade de clusters de

formato arbitrário, porém não propõe algoritmos para a detecção de clusters

de formato irregular.

Neste sentido, existem alguns algoŕıtmos que propõem estratégias para a

detecção de clusters com formatos irregulares. Uma técnica bastante razoável

e já utilizada, é a incorporação de alguma função de penalização para o

formato geométrico ou topologia do grafo associado ao cluster.

Neste trabalho iremos propor uma nova forma de penalização que visa

suprir as deficiências das penalizações já existentes, bem como a utilização

de algumas formas de penalização já existentes. Estudaremos também al-

goritmos que utilizam combinações da estat́ıstica Scan espacial com estas

funções de penalização. Iremos utilizar uma técnica que tem se mostrado

bastante eficaz em problemas de otimização, os algoritmos genéticos multi-

objetivo. Comparamos os diversos métodos propostos com os métodos já

existentes em um estudo com casos reais de doença de Chagas.

1.5 Organização da tese

Apresentamos uma tese que, essencialmente, mostra os resultados obtidos

e submetidos à publicação durante o programa de doutorado em Estat́ıstica.

Assim, parte deste texto reproduz, na integra, a estrutura de artigos já sub-
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metidos (inclusive no idioma inglês) e apresenta a seguinte organização. No

caṕıtulo 2 é apresentada uma introdução sobre os assuntos tratados nesta

tese. No caṕıtulo 3 apresentamos uma revisão detalhada da literatura so-

bre tratamentos a problemas similares. Esta revisão se transformou em um

caṕıtulo de livro contendo revisão bibliográfica apresentado em Duczmal et

al. (2009) [31] sobre o tema. No caṕıtulo 4 apresentamos, de uma forma mais

detalhada, algumas propostas já utilizadas para o tratamento do problema

proposto. No caṕıtulo 5 apresentamos uma nova estratégia de penalização

para auxiliar a detecção de clusters espaciais irregulares. Esta nova estratégia

é o tema central de Duczmal et al. (2009) [30] submetido em um periódico

internacional nesta área de pesquisa. No caṕıtulo 6 apresentamos uma des-

crição do algoritmo genético que foi utilizado, bem como a formulação dos

problemas de otimização na forma mono-objetivo e na forma multi-objetivo.

Também apresentamos uma contribuição de Duarte et al. (2009) [22] recen-

temente aceito para publicação em um periódico internacional nesta área de

pesquisa, uma abordagem que avalia simultaneamente duas funções de pe-

nalização para o cluster, sendo uma para sua forma geométrica e outra para

sua estrutura topológica. No caṕıtulo 7 apresentamos análises numéricas que

mostram a qualidade dos métodos aqui propostos na detecção de clusters em

um estudo com casos simulados de câncer de mama no nordeste dos Estados

Unidos e em outro onde os dados são casos reais de incidência de doenças

de Chagas no estado de Minas Gerais. No caṕıtulo 8 conclúımos a tese com

observações finais e tópicos para futuros trabalhos.
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Chapter 2

Introduction

Algorithms for the detection and inference of irregularly shaped spatial clus-

ters have attracted considerable attention recently. The geographic delin-

eation of spatial clusters in a map is important to assess the causal mecha-

nisms for the occurrence of diseases in Lawson et al. (1999) [54] and Lawson

(2001) [55]. The circular scan, presented in Kulldorff and Nagarwalla (1995)

[46], a particular case of the spatial scan statistic, is the most popular method

for the detection and inference of disease clusters. Nevertheless, situations

where spatial disease clusters do not have a regular shape (e.g. non-circular

or non-square shaped clusters) are fairly common. Clusters with arbitrary

shape are found along traffic ways, plumes of air pollution, or geographical

features such as rivers, shores and valleys. Many heuristics were developed

recently to find arbitrarily shaped clusters.

Two problems arise when detecting irregularly shaped clusters. First, the

set of possible (connected) cluster candidates increases exponentially with

the number of regions in the map. Second, even if this immense set could be

listed and the candidate clusters were analyzed one by one, the selection of

the best cluster solution based solely on the maximization of the likelihood
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ratio scan leads to poor solutions. High likelihood ratio clusters can be easily

assembled by adjoining the highest risk regions of the map, glued together

using lower risk regions, or “bridges”, forming very irregularly shaped clus-

ters. Those clusters spread through large portions of the study area and

do not bring useful information about the location of potentially interest-

ing clusters within the map, which are generally smaller and have somewhat

lower likelihood ratio values. As a result, the power of detection is reduced.

Other measures for the strength of a cluster must be taken into consideration,

such as geometric (Kulldorff et al. (2006) [52], Duczmal et al. (2006) [25],

Duczmal et al. (2007) [27], Duczmal et al. (2008) [26]) or non-connectivity

(graph-based) presents in Yiannakoulias et al. (2007) [84] regularity function

or disconnection nodes cohesion function in Duczmal et al. (2009) [30]. Most

cluster finding methods do not address this problem, however. Based on the

fact that the circle is the most compact geometric shape, the geometric com-

pactness regularity function acts like a low-pass filter, reducing the value of

clusters which are very different from a round shape. The non-connectivity

regularity function penalizes more a cluster whose associated adjacency graph

has fewer edges, given its number of nodes. In other words, the most penal-

ized clusters are those whose graphs are trees, which are loosely connected

by definition. In Duczmal et al. (2006) [25], the concept of disconnection

node was briefly discussed. A disconnection node is a region within a cluster

which disconnects it when removed, splitting the cluster into two or more

connected pieces. In Duczmal et al. (2009) [30] we argue that the presence

of under-populated disconnection nodes impacts the power of detection of

clusters. It happens because it is more difficult to aggregate loosely con-

nected pieces which are glued through small population regions. A novel

regularity function, the disconnection nodes cohesion function, is defined in

10



order to measure the strength or cohesion of a cluster, based on the presence

or absence of under-populated disconnection nodes.

Multi-objective genetic algorithms was developed elsewhere (Duczmal et

al. (2009) [26]) to identify irregularly shaped clusters. Those methods con-

duct a search aiming to maximize two objectives, namely the scan statistic

and the regularity of shape (using either the geometric compactness regular-

ity function presented in Duczmal et al. (2008) [26], the non-connectivity

regularity function presented in Yiannakoulias et al. (2007) [84], the discon-

nection nodes regularity function presented in Duczmal et al. (2009) [30]

and the simultaneous compactness and disconnection nodes multi-objective

scan where Kulldorff’s likelihood ratio scan statistic is combined with both

the geometric compactness function and the disconnection nodes cohesion

function presented in Duarte et al. (2009) [22], and used as the two objec-

tives of a multi-objective scan genetic algorithm. The solution presented is

a Pareto-set, consisting of all the clusters found which are not simultane-

ously worse in both objectives. The multi-objective approach has an advan-

tage over penalized likelihood methods: all potential clusters are considered

for comparison without altering their ranking due to penalty modifications.

Thus ranking decision is executed only after all the candidates are evalu-

ated. Penalized methods otherwise decide beforehand the amount of applied

penalty, being prone to distortions in the process of choosing the most likely

cluster. Multi-objective methods eliminate all but a small set of potential

non-dominated solutions, the candidate clusters which are not worse than any

other candidate in both objectives simultaneously. The significance evalua-

tion is conducted in parallel for all the clusters in the Pareto-set through a

Monte Carlo simulation, determining the best cluster solution. In this work,

we also employ a more efficient multi-objective genetic algorithm based on

11



the NSGA-II, described in Deb et al. (2002) [19].

We also present the statistical basis for the evaluation of the significance

of solutions for our multi-objective scans, through the idea of the attainment

function described in da Fonseca et al. (2001) [18] and Fonseca et al. (2005)

[35]. Previous approaches, based on the union of the Pareto-sets into a set

of independent points, lead to a loss of information about the distribution of

the Pareto sets among the objective space under the null hypothesis. The

natural extension of the p-value concept to the bi-objective space is achieved

with the use of the attainment function, due to the preservation of the depen-

dence between points within the same Non-dominated sets, for all Pareto-sets

obtained by the Monte Carlo simulation.

In this work we compare four multi-objective scan methods using the

geometrical compactness, the non-connectivity, the disconnection node cohe-

sion function as one objective and the spatial scan statistics as the second

objective and the simultaneous compactness and disconnection nodes multi-

objective scan. Those methods are compared with the corresponding single-

objective likelihood penalized methods. Their power to detect irregularly

shaped spatial clusters, sensitivity and positive predicted value are studied

through numerical simulations and in a real data study.
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Chapter 3

Review - Extensions of the scan

statistic for the detection and

inference of spatial clusters

3.1 Introduction

Algorithms for the detection and evaluation of the statistical significance

of spatial clusters are important geographic tools in epidemiology, syndromic

and disease surveillance, crime prevention and environmental sciences. The

elucidation of the etiology of diseases, the availability of reliable alarms for

detecting intentional and non-intentional outbreaks, the study of spatial pat-

terns of criminal activities, and the geographic monitoring of environmental

changes are current topics of intense research. Methods for finding spatial

clusters were reviewed in Elliott, Martuzzi and Shaddick (1995), Waller and

Jacquez (2000), Kulldorff (1999), Lawson et al. (1999), Moore and Carpenter
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(1999), Glaz, Naus and Wallestein (2001), Lawson (2001), Balakrishnan and

Koutras (2002) and Buckeridge et al. (2005) [33, 86, 48, 54, 59, 38, 55, 6, 8].

A descendant of Naus’ pioneering spatial scan statistic, Kulldorff’s spa-

tial scan statistic Kulldorff (1997) and Kulldorff (1999) [47, 48] is currently

the most popular method for finding spatial clusters. The significance of the

most likely cluster is estimated through a Monte Carlo simulation (Dwass

(1957) [32]). It can be used for data with exact point locations or for aggre-

gated data, where a study region is partitioned into cells. The circular scan

(Kulldorff and Nargawalla (1995) [46]), the most commonly used spatial scan

statistic, sweeps completely the configuration space of circularly shaped clus-

ters, but in many situations we would like to recognize spatial clusters in a

much more general geometric setting. Several proposals for finding arbitrar-

ily shaped spatial clusters are reviewed in section 3.2. Section 3.3 examines a

number of recent data-driven algorithms for cluster detection that have been

developed to include spatial mobility, survival time, multiple data streams,

alternative parametric models, and non-parametric and learning models.

3.2 Irregularly shaped spatial clusters

When searching for clusters with unlimited freedom of geometric shape,

the power of detection is reduced. This happens because the collection of

all connected zones, irrespective of shape, is very large; the maximum value

of the objective function is likely to be associated with ‘tree-shaped’ clus-

ters, which merely link the highest likelihood ratio cells of the map, without

contributing to the discovery of geographically meaningful solutions that de-

lineate correctly the ‘true’ cluster. In other words, there is much ‘noise’,

against which the legitimate solutions cannot be distinguished. That prob-
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lem occurs in every irregularly shaped cluster detector. In this section several

proposed solutions for this issue are reviewed.

The Upper Level Sets (ULS) scan statistic (Patil and Taillie (2004) [73])

controled the excessive freedom of shape exploring a very small collection of

graph connected candidate zones z, evaluated according to their rate (num-

ber of cases divided by the population at risk) in the study area of n regions.

The ULS-tree is constructed such that selected zones with the highest rates

consisting of single region, which are local maxima for the rate, form the

leaves of the ULS-tree. Neighboring regions in the study area are succes-

sively joined to the individual regions represented by the leaves, forming

larger zones with lower rates which are then identified with the lower inner

nodes of the ULS-tree. Eventually, those aggregated zones coalesce creating

even larger, lower rated zones, represented as inner nodes closer to the root.

The root itself represents the entire study area. The collection of zones repre-

sented by the ULS-tree nodes constitutes the ULS reduced parameter space,

its cardinality being at most n. The ULS-tree needs to be calculated again

for each new Monte Carlo replication. This procedure is fast, but possibly

many interesting clusters are overlooked in this procedure, due to the small

cardinality of the ULS-tree. This issue is tackled in Patil et al. (2006) [74]

where an extension of the original ULS set is constructed. In Modarres and

Patil (2007) [58] discussed an extension of the ULS scan statistic to bivari-

ate data. The sensitivity of the joint hotspots to the degree of association

between the variables is studied.

Duczmal and Assunção (2004) [23] proposed a simulated annealing (SA)

algorithm. The collection of connected irregularly shaped zones consists of

all those zones for which the corresponding subgraphs are connected. This

collection is very large, and it is impractical to calculate the likelihood ratio
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(LR) statistic for all of them. Instead the SA tries to visit only the most

promising zones, as follows. Two zones are neighbors when they differ by a

single region. For each individual region of the study area, the circular scan

is used to define a starting cluster z0. The algorithm chooses some neighbor

z1 among all the neighbors of z0. In the next step, another neighbor z2 is

chosen among the neighbors of z1, and so on, until a pre-defined threshold

in the number of regions is attained. Thus, at each step a new zone is built

adding or excluding one cell from the zone in the previous step. Instead of

behaving all the time like a greedy algorithm, always choosing the highest LR

neighbor at every step, the SA algorithm evaluates if there has been little or

no LR improvement during the latest steps; in that case, the SA algorithm

opts for choosing a random neighbor. This is done while trying to avoid

getting stuck at LR local maxima. The search is restarted many times, each

time using each individual cell of the map as the initial zone. Thus, the effect

of this strategy is to keep the program openly exploring the most promising

zones in the configuration space and abandoning the directions that seems

uninteresting. The best solution found by the program, which maximizes

the LR is the most likely cluster. It is called a quasi-optimal solution, and

is a compromise due to computer time restraints for the identification of the

geographical location of the clusters.

The Flexibly Shaped (FS) spatial scan statistic (Tango and Takahashi

(2005) [82]) made an exhaustive search of all possible first-order connected

clusters contained within a set encompassing the nearest K neighbors of a

given region. For each region i, the flexibly shaped scan considers K concen-

tric circles plus all the sets of connected regions whose centroids are located

within the K − th largest concentric circle. The procedure is repeated for

each region of the map, enabling that all connected clusters are enumerated
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up to a size limit K. The set of potential clusters is stored in memory, so

the runs under null hypothesis are executed without rebuilding them every

time. For computational reasons, the search is restricted to relatively small

clusters. The authors consider that a practical value for K is about 30 - find-

ing clusters larger than that should take more than one week of computation

on a desktop PC. Compared to the SA without bounds on cluster size, the

FS algorithm founds more compact clusters, but when the SA pre-defined

number of regions threshold is set to the same size limit K, both algorithms

give similar results. (Takahashi et al. (2007) [80]) further extended the FS

scan to detect space-time irregularly shaped clusters.

The Static Minimum Spanning Tree (SMST) proposed by Assunção et

al. (2006) [5] used a greedy algorithm to aggregate regions. Starting with a

zone consisting of one individual region, the algorithm selects the adjacent

region that maximizes the likelihood ratio scan statistic and aggregates it to

the zone, successively until a maximum population proportion is attained,

or all regions are used. The procedure is repeated for each region of the

study area. The paper describes this algorithm as the growth of a minimum

spanning tree; it minimizes the sum of edge weights, defined as the difference

in rates between vertices within the tree. Each step of tree growth represents

a new candidate cluster. The most likely cluster is defined as the cluster that

maximizes the LR.

The Density-Equalizing Euclidean Minimum Spanning Tree (DEEMST)

method (Wieland et al. (2007) [87]) was an improvement of the SMST idea.

A study region is provided with n points in the data set of cases and controls.

Neighboring points are connected through edges, forming the complete graph

T of the whole study area. Initially a Voronoi diagram of the control locations

is built, subdividing the study area into regions, satisfying the property that
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the density, or the number of controls in each region divided by the region’s

area, is kept constant. This constitutes the density-equalizing cartogram, a

distorted map in which the regions are magnified or demagnified according

to their local density. Next, the method finds all the potential clusters, here

defined as the subset of points S such that each subset of S is closer to

at least one other point in S than to any other point outside of S. The

authors prove that it is not needed to consider all connected subgraphs of

T : aside from the trivial n individual points, there are only n− 1 non-trivial

potential clusters. Those are found from the Euclidean minimum spanning

tree solution using greedy edge deletion algorithm. This method does not

use the likelihood ratio statistic, but the sum of the euclidean distances of

the minimum spanning tree. This method was compared with the circular

SaTScan. It was found that the EMST has higher power to detect irregularly

shaped clusters, but the circular scan has higher power to detect large circular

clusters. Compared with the circular SaTScan, for non-circular clusters, the

EMST gains in average fraction of the true cluster detected, but loses in

average fraction of the most likely cluster coinciding with the true cluster.

Demattëı et al. (2007) [20] proposed a method based on the construction

of a trajectory for multiple cluster detection using the spatial scan statistic

in point data sets. It begins by determining a certain trajectory linking the

data set points. The general idea of the method is based on the assumption

that the consecutive points inside a cluster have lower associated distances

than those of points outside the cluster, because the density of points is

higher within the cluster. Potential clusters are located by modelling the

multiple structural changes of the distances on the selection order and the

best model (containing one or several potential clusters) is selected. Finally

a p-value is obtained for each potential cluster. The authors discuss the
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possibility that the trajectory leaves the cluster before going through all

the cluster points. They conclude that the remaining cluster points will be

detected as a second component cluster and the proximity analysis of these

two component clusters by specialists could allow them to build a new bigger

cluster as the union of the two clusters detected. It is not clear, however,

how a fast automatic procedure could be devised to construct these unions,

particularly when there are more than just a few components.

Kulldorff et al. (2006) [52] presented an elliptic version of the spatial scan

statistic, generalizing the circular shape of the scanning window. It uses an

elliptic scanning window of variable location, shape (eccentricity), angle and

size, with and without an eccentricity penalty. The elliptic scan has more

power to detect elongated clusters, compared to the circular scan statistic.

Duczmal et al. (2006) [25] developed a geometric penalty for irregularly

shaped clusters. Many algorithms frequently end up with a solution that is

nothing more than the collection of the highest incidence cells in the map,

linked together forming a “tree-shaped” cluster spread through the map; the

associated subgraph resembles a tree, except possibly for some few additional

edges. This kind of cluster does not add new information with regard to its

special geographical significance in the map. One easy way to avoid that

problem is simply to set a smaller upper bound to the maximum number of

cells within a zone. This approach is only effective when cluster size is rather

small (i.e., for detecting those clusters occupying roughly up to 10% of the

cells of the map). For larger upper bounds in size, the increased geometric

freedom favors the occurrence of very irregularly shaped tree-like clusters,

thus impacting the power of detection. Another way to deal with this problem

is to have some shape control for the zones that are being analyzed, penalizing

the zones in the map that are highly irregularly shaped. For this purpose the
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geometric compactness of a zone is defined as the area of z divided by the

circle with the perimeter of the convex hull of z. Compactness is dependent

on the shape of the object, but not on its size. Compactness also penalizes

a shape that has small area compared to the area of its convex hull. A user

defined exponent α is attached to the penalty to control its strength; larger

values of α increases the effect of the penalty, allowing the presence of more

compact clusters. Similarly, lower α values allows more freedom of shape.

The idea of using a penalty function for spatial cluster detection, based on

the irregularity of its shape, was first used for ellipses (Kulldorff et al. (2006)

[52]), although a different formula was employed.

The greedy algorithm idea was used by Yiannakoulias et al. (2007) [84] to

explore the space of all possible configurations. A new penalty function is now

defined as the ratio of the number of edges e(Z) to the total possible number

of edges in the candidate cluster Z. The total possible number of edges is

computed as 3(v(Z)− 2) based solely on the number of vertices v(Z) in the

candidate cluster. The non-connectivity penalty is employed as an exponent

to the LR, analogously to the geometric compactness penalty. In the same

way, a user defined exponent α is attached to the non-connectivity penalty to

control its strength. Instead of stopping the candidate clusters’ aggregation

process before reaching a pre-specified population proportion limit, another

criterion is used, based on the failure to increase the LR to a higher value after

a certain number u of steps. The parameter u is set by the user; larger values

of u relaxes the search constraint, and making u = 0 halts the search when no

vertices can be added that increases the LR. Although the non-connectivity

penalty is in many ways similar to the geometric compactness penalty, it

has an important difference: it does not rely on the geometric shape of the

candidate cluster, which could be an interesting advantage when searching for
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real clusters that are highly irregularly shaped, but present good connectivity

properties.

Conley et al. (2005) [15] proposed a genetic algorithm to explore a config-

uration space of multiple agglomerations of ellipses for point data sets. The

method employed a strategy to “clean-up” the best configuration found in

order to simplify geometrically the cluster.

Sahajpal et al. (2004) [77] also used a genetic algorithm to find clusters

shaped as intersections of circles of different sizes and centers in point data

sets.

Duczmal et al. (2007) [27] described a genetic algorithm scan for the de-

tection and inference of irregularly shaped spatial clusters. Assuming a map

divided into regions with given populations at risk and cases, the graph-

related operations are minimized by means of a fast offspring generation and

evaluation of Kuldorff´s spatial scan statistic. The penalty function of (Ducz-

mal et al. (2006) [25]), based on the geometric non-compactness concept, is

employed to avoid excessive irregularity of cluster geometric shape. This al-

gorithm is an order of magnitude faster and exhibits less variance compared

to the simulated annealing scan, and is more flexible than the elliptic scan.

It has about the same power of detection as the simulated annealing scan for

mildly irregular clusters and is superior for the very irregular ones.

Gaudart et al. (2005) [36] oblique decision tree (ODT) was a modifica-

tion of the classification and regression tree (CART) strategy to obtain an

optimal partitioning procedure in order to detect spatial patterns and find

the candidate clusters without prior specifications. Instead of using rectan-

gular partitions of the covariate space as in CART, ODT provides oblique

partitions maximizing the interclass variance of the independent variable,

providing polygonal candidate clusters. Classical ODT algorithms in Rn re-
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lies on evolutionary algorithms or heuristics, but in this work an optimal

ODT algorithm is developed in R2, based on the directions defined by each

couple of point locations. The procedure consists on finding several parti-

tions of the plane. The first step finds the best oblique split of the plane

between two adjacent classes, maximizing the interclass variance. Going re-

cursively, this algorithm will split the plane into several partitions, until a

specific stopping criterion is reached. Monte Carlo replications are used to

test significance.

Multi-Resolution methods (MR) (Neill and Moore (2003) [64] and Neill

and Moore (2004) [65]) maximized Kulldorff’s scan statistic over the square

regions S of a grid of g × g squares, each one with an assigned number of

cases and controls. Instead of using a näıve approach which would require

O(g3) calculations (multiplied by R Monte Carlo replications), the MR al-

gorithm partitions the grid into overlapping regions, bounds the maximum

score of sub-regions contained in each region, and prunes regions which can-

not contain the maximum density region. The maximum density region is

found using O(g2), for sufficiently dense regions. (Neill et al. (2005) [66])

later introduced another algorithm, the fast spatial scan (FS), generalizing

the original bi-dimensional MR to arbitrary dimensions and using rectangles

instead of squares. Applications include multiple data streams in syndromic

surveillance (emergency department visits and over-the-counter drug sales),

and discovery of regions of increased brain activity corresponding to given

cognitive tasks (from fMRI data).

Given n baseline and case points, Agarwal et al. (2006) [3] presented an

algorithm to compute exactly the maximum discrepancy rectangle in time

O(n4). If the points lie in a g × g grid, the algorithm runs in time O(g4).

This algorithm has the same asymptotic running time as the MR algorithm.
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A much better performance is achieved for the general family of discrepancy

functions (including Kulldorff’s scan), through the Approx-Linear Algorithm

(AL) by representing the discrepancy function as the upper envelope of a col-

lection of linear functions. It is shown that a thoroughly linear approximation

of the discrepancy function, which would require many linear functions, is

not strictly necessary, because the approximation needs only to preserve the

ordering of points along the direction of the search. As a result, a much

better algorithm can maximize the discrepancy function over axis parallel

rectangles in time O(n2 log n). The algorithm is also extended to aggregate

data sets using a regular g × g grid. A further technique is presented, using

sampling to compute an approximation to the maximum linear discrepancy.

Aldstadt and Getis (2006) [4] proposed the AMOEBA (Multidirectional

Optimum Ecotope-Based Algorithm). An ecotope or habitat is defined in the

literature as a specialized region within a larger region. A local spatial auto-

correlation statistic is employed to construct a spatial weights matrix, used

to describe the association between contiguous spatial units. The weights

matrix is used in the determination of geometric form of spatial clusters.

It searches for spatial association in all specified directions, starting from a

selected collection of ’seed’ spatial units. The main objective is to identify

the ecotopes, the spatially homogeneous subregions within the study area.

AMOEBA is compared with SaTScan.

Duczmal et al. (2008) [26] proposed an approach to the geographic delin-

eation of irregularly shaped disease clusters, treating it as a multi-objective

optimization problem. Irregularly shaped spatial disease clusters occur com-

monly in epidemiological studies, but their geographic delineation is poorly

defined. Most current spatial scan software usually displays only one of the

many possible cluster solutions with different shapes, from the most compact
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round cluster to the most irregularly shaped one, corresponding to varying

degrees of penalization parameters imposed to the freedom of shape. Even

when a fairly complete set of solutions is available, the choice of the most ap-

propriate parameter settings is left to the practitioner, whose decision is often

subjective. A quantitative criteria for choosing the best cluster solution is

presented, maximizing simultaneously two competing objectives: regularity

of shape (K(z)), and scan statistic value (LLR). The Pareto set is defined

as the set of all clusters candidates z such that no other cluster has both

higher LLR and higher regularity than z. For each value of K(z), a separate

empirical distribution of LLR under the null-hypothesis is computed, con-

stituting a two-dimensional p-value surface. The cluster with lowest p-value

is considered the most likely cluster. Instead of running a cluster finding

algorithm with varying degrees of penalization, the set of non-dominated so-

lutions is found in parallel, through a genetic algorithm. The p-value surface

is computed using Gumbel approximations (Abrams et al. (2006) [2]).The in-

troduction of the concept of Pareto-set in this problem, followed by the choice

of the most significant solution, is shown to allow a rigorous statement about

what is such “best solution”, without the need of arbitrary parameters.

Maps with irregularly shaped or multiple clustering, when there is not a

clearly dominating primary cluster, occur frequently. Moura et al. (2007)

[62] developed a method to analyze more thoroughly the several levels of

clustering that arise naturally in a disease map divided into m regions. In-

stead of using a genetic algorithm, this method incorporates the simplicity

and speed of the circular scan, being able to detect and evaluate irregu-

larly shaped clusters. The circular occupation (CO) of a cluster candidate

is defined roughly as its population divided by the population inside the

smallest circle containing it. The CO concept, computationally faster and
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relying on familiar concepts, substitutes here the compactness definition as

the measure of regularity of shape. A multi-objective modification of the

circular scan algorithm is applied, using CO and LLR as the objectives. The

comparison of Pareto-sets for observed cases with those computed under the

null-hypothesis provides valuable hints for the spatial occurrence of diseases.

The potential for monitoring incipient spatial-temporal clusters at several

geographic scales simultaneously is a promising tool in syndromic surveil-

lance, especially for contagious diseases when there is a mix of short and

long range spatial interactions. The presence of “knees” in the Pareto-sets

indicates sudden transitions in the clusters structure, corresponding to rear-

rangements due to the coalescence of loosely knitted (usually disconnected)

clusters.

Yiannakoulias et al. (2007) [85] employed Quad trees to generate nonuni-

form grid points in order to detect spatial clusters in study areas provided

with a large number of points. This strategy is compared with another

scheme, which uses uniform grid points. The quad tree approach is more

sensitive to high-resolution spatial clusters and is also more flexible, com-

pared with the uniform grid approach.

Boscoe (2003) [10] proposed a tool to visualize relative risk and statistical

significance simultaneously. Given a map of n regions, with their respective

centroids, the procedure builds a grid of equidistant points between all com-

binations of two, three and four adjacent region centroids. For each grid

point the distances to the regions centroids are computed and sorted. These

distances are used to define almost circular groupings of regions, with their

respective cumulative numbers of observed and expected cases. The relative

risk and the LLR are then calculated for each circular grouping. The LLR

values are compared to the results of a Monte Carlo simulation under the
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null hypothesis. Groupings with LLR values exceeding 95% of those obtained

from the simulation are stored and stratified into ten levels of relative risk.

Within each risk level, the grouping with largest LLR is then mapped. Cir-

cular groupings with lower LLR are also mapped if they did not overlap any

grouping previously mapped. The final result is a ten color shaded map of

regions with statistically significant relative risks, providing a very effective

visualization tool to grasp these two concepts.

There exist many methods to detect boundaries and to detect clusters;

Jacquez et al. (2007) [45] proposed the b-statistic as a tool for the simulta-

neous detection of boundaries and clusters. It evaluates boundaries between

adjacent areas with different values, and also the existing links between adja-

cent areas with similar values. Clusters are constructed by joining similarly

high valued areas, which are then connected through a link. Unlike the local

Moran and other statistics, which describe local spatial variation in the im-

mediate local neighborhood about a central location, the b-statistic describes

properties of the edge between two areas. The b-statistic was compared with

Polygon wombling cf.Womble (1951) [88] for detecting boundaries and the

local Moran test (Moran (1948) [60] and Moran (1950) [61]).

Haiman and Preda (2002) [39] derived approximations for the estimation

of the distribution of scan statistics for a two-dimensional Poisson process.

Through extensive numerical tests, Abrams et al. (2006) [2] showed that,

under the null hypothesis, the empirical distribution of values of Kulldorff’s

scan statistic for circular clusters is approximated by the well-known Gum-

bel distribution. The authors calculated that using this semi-parametric

approach, 100 Monte Carlo replications suffice to provide the same accuracy

in significance estimation as 10,000 replications using the usual empirical

distribution.
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Kulldorff et al. (2003) [50] presented a large collection of simulated bench-

mark data sets generated under different cluster models and the null hypoth-

esis, to be used for power evaluations. These data sets are used to compare

the power of the spatial scan statistic, the maximized excess events test and

the nonparametric M statistic.

Duczmal et al. (2008) [28] described a graph based model for cluster

detection and inference on networks based on the scan statistic. Nodes,

associated to cities, are linked by means of edges, which represent routes

between cities. Instead of forming clusters candidates by grouping neighbor-

ing nodes of the original graph, the cluster candidates are chosen among the

connected subgraphs of the dual graph. The objective is to find collections

of plausible pathways by which the disease could be transmitted. The most

likely cluster is naturally the most structurally stable connected subgraph,

or arrangement of pathways, meaning that adding or subtracting pathways

to it should decrease the observed signal-to-noise proportion. In this model,

traffic between cities is the analogous of population in the usual scan, and

the number of syndromic individuals traveling between cities corresponds to

the number of cases.

The Prospective Time Periodic Scan (Kulldorff (2001) [49]) was a space-

time scan statistic for regular time periodic disease surveillance to detect

any active geographical clusters of disease. The statistical significance of

such clusters is adjusted for multiple testing, taking account of all possible

geographical locations and sizes, time intervals and time periodic analyses.

The pyramidal flexible shape space-time scan for point data sets proposed

by Iyengar (2004) [42], instead of building space-time cylinders, adopted the

more flexible pyramid or cone shapes with its axis perpendicular to the space

plane. It represents an advance over the usual cylindrical approach, because
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it is now possible to model emerging spatially growing or shrinking clusters

over time.

Kulldorff et al. (2005) [51] presented the Space-Time Permutation Scan

Statistics (STPSS) for outbreak detection in syndromic surveillance systems.

Emerging clusters are detected using cylinder with variable radius and height

which are used to scan the space-time region in order to select the candidate

cluster with maximum likelihood. A data permutation procedure is executed

through Monte Carlo simulation in order to estimate the p-value of the most

likely cluster. This method does not require the previous knowledge of the

population at risk. Costa et al. (2008) [17] extended the STPSS to detecting

irregular space-time clusters.

3.3 Data-Driven Spatial Cluster Detection Mod-

els

In this section we review data-tailored algorithms for spatial cluster

detection including censored survival data, spatial mobility, multiple data

streams, parametric models different from the usual Poisson or Bernoulli

distributions, non-parametric and learning models.

Cook et al. (2007) [16] considered a Spatial scan statistic for censored

outcome data. In contrast to the traditional scan statistics, which usually

requires a complete specification of the model, this paper uses a statistic

score of the model of proportional risks to allow more flexibility. Cluster

significance is estimated through permutation tests.

Huang et al. (2007) [40] proposed a spatial scan statistic based on an ex-

ponential model to include uncensored or censored continuous survival data.

The method achieves good power and sensitivity, for several survival distri-
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bution functions including the exponential, gamma, and log-normal distri-

butions. Huang et al. (2007) [41] applied the previous methodology to in-

vestigate possible relationships between the cluster locations and social and

health conditions using nonparametric methods, and compare socioeconomic

factors inside and outside of the detected clusters and evaluate the effect of

related covariates on significant long and short-survival detected clusters.

Kulldorff et al. (2007) [53] proposed the Multivariate Scan Statistic. Fre-

quently more than one data stream may be available in disease surveillance

systems. When analyzed separately instead of combined, the power of detec-

tion of an outbreak signal that is present in all data streams may decrease

due to low counts in each. Besides, the simple summation of all data stream

counts may obliterate a signal that is primarily present in just one data

stream, due to random noise present in the other data sets. These two prob-

lems are tackled by defining an extension of the space-time scan statistic as

the sum of the individual log likelihoods for those data sets for which the

observed case count is more than the expected.

The multivariate Bayesian scan statistic (MBSS) of Neill et al. (2007) [68]

proposed modeling different outbreak types employing multiple data streams.

However, this approach uses fixed methods and models for analysis, and

cannot improve their performance over time. Neill and Makatchev (2008)

[70] incorporated machine learning algorithms in the MBSS system. Two

methods were devised for overcoming this limitation, learning a prior over

outbreak regions and learning outbreak models from user feedback. They

demonstrate through simulations that learning can enable systems to improve

detection performance over time.

Motivated by the fact that the regions inside a cluster candidate are not

homogeneous, Takahashi and Tango (2007) [79] proposed an alternative scan
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statistic that can take the variability of the relative risks of regions included in

Z into account, employing Anscombe’s variance stabilization transformation.

Tango (2007) [83] proposed a modified likelihood ratio test statistic which

accounts for each individual region’s risk. This modified scan includes an in-

dicator variable based on the p-value for the zone consisting of the individual

region i. Given a pre-specified α1 significance level, and if pi the p-value of

the zone consisting of the individual region i, then the modified LR scan for

a cluster including i is taken as zero when pi > α1.

Neill and Moore (2006) [67] presented the Expectation-Based Scan Statis-

tics (EBSS) as an extension of the usual spatial and space-time scan statistics

by inferring expected counts for each location from past data and detecting

regions where recent counts are higher than expected. Neill and Lingwall

(2008) [69] presented the Nonparametric Scan Statistic (NPSS), a general

detector of space-time clusters in syndromic surveillance using multiple data

streams. It does not assume a parametric model, but instead combines em-

pirical p-values across multiple locations, days, and data streams to detect

anomalies.

A discrete event model was used by Beeker et al. (2007) [9] to simulate

the spread of infectious diseases through an agent-based, stochastic model

of transmission dynamics. The objective is to generate a benchmark from a

network of individual contacts in an urban environment using publicly avail-

able population data. Such benchmark can be used to test the performance

of various temporal and spatio-temporal detection algorithms when real data

are not available or cannot be used due to confidentiality issues.

Duczmal and Buckeridge (2006) [24] have derived an extension to the

spatial scan statistic that accounts for the mobility of individuals between

home address and workplace. An analyst can use the workflow scan statistic
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to search for disease clusters due to workplace exposure when health records

contain only residential address. The effect of the workflow scan statistic

is to ’pull back’ the scattered workers that were contaminated in the work-

place. Simulation studies demonstrate that in most scenarios, the workflow

scan statistic has greater power than the usual scan statistic for detecting

disease outbreaks due to workplace exposures. The workflow scan statistic

is particularly useful when clusters are not circularly symmetrical, and thus

more easily recognized by the workflow scan than by the usual spatial scan

algorithm.

Cami et al. (2007) [11] presented a refinement of a Bayesian algorithm

used for aerosol detection (BARD) incorporating a model that includes the

mobility of the individuals. The population is subdivided into groups based

on the residential and workplace information.

Local, global and focused tests were developed by Jacquez et al. (2005)

[43] to evaluate clustering in case-control data that take into account in-

dividual mobility. Matrices of nearest neighbor relationships are employed

to represent the changing topology of cases and controls. The model in-

cludes the latency between exposure and disease manifestation. Jacquez

et al. (2006) [44] analysed case-control clustering with individual mobil-

ity accounting for risk factors and covariates. Meliker and Jacquez (2007)

[57] extended those previous ideas to space-time clustering of case-control

data with individual mobility. Using the Q-statistic, a statistic that includes

time-dependent nearest-neighbors, the authors evaluate empirical induction

periods, age-specific susceptibility, and calendar year-specific effects.

Zhang and Lin (2007) [89] presented a decomposition of Moran’s I test

into three components so that each component represents a global test statis-

tic. The three components tests for the existence of high-value clustering,
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low-value clustering, and negative autocorrelation. A set of simulations shows

that the first test statistic is likely to be significant only for high-value clus-

tering, the second test statistic is likely to be significant only for low-value

clustering, and the last test statistic is likely to be significant only for nega-

tively correlated spatial structures. Two real data examples where studied,

and in both cases low-value clustering and high-value clustering were shown

to exist simultaneously.

Lin and Zhang (2007) [56] combined the permutation test of Moran’s

I to the residuals of a loglinear model under the asymptotic normality as-

sumption. It provides the versions of Moran’s I based on Pearson residuals

and deviance residuals so that they can be used to test for spatial clustering

while at the same time account for potential covariates and heterogeneous

population sizes.

Aggregation is commonly used as a mask to protect health data confi-

dentiality of individuals. Ozonoff et al. (2007) [72] studied the association

between spatial resolution and power of detection through thousands of sim-

ulations with the spatial scan statistic. Power to detect clusters decreased

from nearly 100% when using exact locations to roughly 40% at the coarsest

level of spatial resolution. The authors conclude that aggregation has the

potential to obliterate existing clusters.

The usefullness of individual-level health data point locations in provid-

ing high quality data for epidemiological research must be balanced with the

easiness of breaking the confidentiallity of the identities of the individuals.

Geographic masking is being employed as a tool for achieving an appropriate

balance between data utility and confidentiality. Usually the masks employ

perturbation, aggregation of areas, and a combination of both. Zimmer-

man and Pavlik (2008) [90] discussed whether certain characteristics of the
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mask (mask metadata) should be disclosed to data users and whether two or

more distinct masked versions of the data can be released without breaching

confidentiality.

Glaz and Zhang (2006) [37] defined a maximum scan score-type statistic

for testing the null hypotheses that the observed data are iid according to a

specified distribution, against a class of window clustering-type alternatives.

The maximum scan score-type statistic detects clustering effectivelly in the

situation where the window size is unknown. The extension to multivariate

data is discussed by the authors.

In disease surveillance, anomalies may be detected either by computing

confidence intervals for region rates or by running a disease cluster detection

algorithm. Rosychuk (2006) [75] attempts to determine when those two

approaches give the same answers. The study compared (Besag and Newell

(1991) [7]) cluster detection method with confidence intervals for crude and

directly standardized rates. Simulations suggest that the cluster detection

method is preferred when the cluster size exceeds the number of cases in a

region or when the expected number of cases exceeds a threshold.

In some situations of disease surveillance, it is prefereable to use disease-

related events instead of individuals as the units of analysis.

Rosychuk et al. (2006) [76] proposed a compound Poisson method that

detects event clusters by testing individual areas that may be combined with

their nearest neighbors. This technique is useful where the population sizes

are diverse and the population distribution by important strata may differ

by area.

Song and Kulldorff (2003) [78] compared the statistical power of several

disease clustering tests: Besag-Newell’s R, Cuzick-Edwards’ k-Nearest Neigh-

bors (k-NN), the spatial scan statistic, Tango’s Maximized Excess Events
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Test (MEET), Swartz’ entropy test, Whittemore’s test, Moran’s I and a

modification of Moran’s I. Except for Moran’s I and Whittemore’s test, all

other tests have good power for detecting some kind of clustering. The spa-

tial scan statistic is good at detecting localized clusters. Tango’s MEET is

good at detecting global clustering. With appropriate choice of parameter,

Besag-Newell’s R and Cuzick-Edwards’ k-NN also perform well.

Aamodt et al. (2006) [1] conducted a simulation study to compare three

methods: SaTScan, generalized additive models (GAM) and Bayesian disease

mapping (BYM).

Ozdenerol et al. (2005) [71] compared the results of Kulldorff’s Spa-

tial Scan Statistic with the results of Rushton’s Spatial filtering technique

through increasing sizes of spatial filters.

.

34



Chapter 4

The spatial scan statistics and

regularity functions

In this chapter we review the spatial scan statistic (Kulldorff (1997)

[47]), the geometric (Duczmal et al. (2006) [25]) and the non-connectivity

(Yiannakoulias et al. (2007) [84]) regularity functions.

4.1 Kulldorff’s Spatial Scan Statistic

A study area map A is divided into M regions, with total population

N and C total cases. A non-directed graph denoted by GA is associated to

the study area A with M nodes representing the regions and edges linking

nodes associated with adjacent regions. A zone is any collection of con-

nected regions. Under the null hypothesis there are no clusters in the map,

and the number of cases in each region is Poisson distributed proportion-

ally to its population. For each zone z, the number of observed cases is cz

and the expected number of cases under null hypothesis is µz. The relative

risk of z is I(z) = cz/µz and the relative risk of the complement of z is
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O(z) = (C − cz)/(C − µz). Defining L(z) as the likelihood function under

the alternative hypothesis and L0 as the likelihood function under the null

hypothesis, it can be shown (see Kulldorff (2007) [47] for details) that the

logarithm of the likelihood ratio for the Poisson model is given by:

LLR(z) = log

(
L(z)

L0

)
=





cz log(I(z)) + (C − cz) log(O(z)) if I(z) > 1

0 otherwise

(4.1)

It is maximized over the chosen set Z of potential zones z, identifying

the zone that constitutes the most likely cluster. For instance, when the set

Z contains the zones defined by circular windows of different radii and cen-

ters, maxz∈Z LLR(z) is the circular scan statistic (Kulldorff and Nagarwalla

(1995) [46]); when Z contains all the zones defined by elliptical windows of

different sizes, centers, elongations and orientations, maxz∈Z LLR(z) is the

elliptic scan statistic (Kulldorff et al. (2006) [52]). When Z is the set of all

connected zones, the evaluation of every zone of Z is not feasible in practice,

and many heuristics have appeared recently to compute approximate val-

ues for maxz∈Z LLR(z) (Duczmal et al. (2009) [31]). Those heuristics (often

called irregularly shaped spatial scan statistics) employ stochastic algorithms

to explore the set of configurations Z or alternatively evaluate a restricted

subset of Z.

The statistical significance of the most likely cluster of observed cases

is computed through a Monte Carlo simulation, according to Dwass (1957)

[32]. Under the null hypothesis, simulated cases are distributed over the

study area and the scan statistic is computed for the most likely cluster. This

procedure is repeated thousands of times, and the distribution of the obtained

values is compared with the LLR of the most likely cluster of observed cases,

producing an estimate of its p-value.
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4.2 The geometric penalty function

Most irregularly shaped spatial cluster detection algorithms frequently

end up with a cluster solution that is merely a collection of the high incidence

regions, linked together forming a “tree-shaped” zone spread through the

map; the associated sub-graph resembles a tree, possibly except for some

few additional edges. In general, it is hard to give a geographical meaning

for this kind of cluster, because this kind of solution does not add any new

information with regard to its special location in the map. One easy way

to avoid that problem is simply to set an upper bound to the maximum

number of cells within a zone. This approach is only effective when cluster

size is rather small (i.e., for detecting clusters occupying roughly up to 10%

of the regions of the map). For larger upper bounds in size, the increased

geometric freedom favors the occurrence of very irregularly shaped tree-like

clusters, thus impacting the power of detection. The geometric compactness

penalty for irregularly shaped clusters was presented in Duczmal et al. (2006)

[25], penalizing the zones in the map that are highly irregularly shaped. For

this purpose the geometric compactness K(z) of a zone z is defined as the

area of z divided by the area of the circle with the same perimeter as the

convex hull of z.

We will penalize the zones in the map that are highly irregularly shaped.

Given a planar geometric object z, define A(z) as the area of z and H(z) as

the perimeter of the convex hull of z. Define the compactness of z is as:

K(z) =
4πA(z)

H(z)2
(4.2)

Compactness is dependent on the shape of the object, but not on its size.

Compactness also penalizes a shape that has small area compared to the
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area of its convex hull (Duczmal et al. (2006) [25]). The circle is the most

compact shape (K(z) = 1) and a square has compactness (K(z) = 0.785).

The compactness penalyzed scan statistic is defined as maxz∈ZLLR(z).K(z).

A user defined exponent a can be attached to K(z) in order to control its

strength; the resulting scan statistic is then maxz∈ZLLR(z).K(z)a. Larger

values of a increase the effect of the penalty, allowing the presence of more

compact clusters only. Similarly, lower values of a allow for more freedom

in shape. The idea of using a penalty function for spatial cluster detection,

based on shape irregularity, was first used for ellipses (Kulldorff et al. (2006)

[52]) although a different formula was employed.

4.3 The non-connectivity penalty function

Yiannakoulias et al. (2007) [84] proposed a greedy algorithm to explore

the space Z of all possible zones z. A new non-connectivity penalty function

was based on the ratio of the number of edges e(z) to the number of vertices

v(z) in the candidate cluster z.

The non-connectivity penalty of z is defined as:

Y (z) =
e(z)

3(v(z)− 2)
(4.3)

The non-connectivity penalty was employed as a multiplier to LLR(z),

analogously to the geometric compactness penalty. In the same way, a user

defined exponent a is attached to the non-connectivity penalty to control its

strength. Although the non-connectivity penalty is in many ways similar to

the geometric compactness penalty, it has an important difference: it does

not rely on the geometric shape of the candidate cluster, which could be

an interesting advantage when searching for real clusters which are highly
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irregularly shaped, but present good connectivity properties.

Some examples can illustrate the proposal of the non-connectivity penalty

function, see the figure 4.1.

Figure 4.1: Non-connectivity penalty function evaluation for several clusters.

We can observe through the example that the Cluster A is less connected

if consider its nodes and edges, already Cluster B is a little more connected

and the Cluster C better connected of all. In this case that we have the

following measures for each one of clusters

Cluster A y(z) =
7

3(8− 2)
= 0, 389

Cluster B y(z) =
9

3(8− 2)
= 0, 500

Cluster C y(z) =
15

3(8− 2)
= 0, 833
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Chapter 5

The disconnection node

cohesion function

In this chapter, we present a new penalty proposal for zones in the study

map. In this case, we will penalize a zone z according to its topological

structure.

5.1 Cohesion function

Consider a study area map A with its associated non-directed graph GA, and

a connected zone z with the corresponding connected sub-graph G = (V, E)

of GA. The nodes in set V correspond to the regions of z and each non-

directed edge (i, j) in set E occurs whenever the regions i and j share a

common boundary. A node x ∈ V is called a disconnection node of G if the

sub-graph obtained from G with the nodes set V −{x} is not connected. Let

GD = {x1, . . . , xd} ⊂ V be the set of all the disconnection nodes of G. For

each xi ∈ GD, let pop(xi) be the population of the region associated with

node xi. Let µxi
be the expected number of cases of the region corresponding
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to node xi under the null hypothesis, which is proportional to pop(xi). The

sub-graph with the nodes set V − GD, obtained from G, consists of the L

remaining connected subgraphs ẑ1, . . . , ẑL, where 2 ≤ L ≤ |V |−d. Let pop(ẑj)

be the population of the remaining connected zone associated to ẑj. The L

connected parts ẑ1, . . . , ẑL are ranked in decreasing order according to their

populations, as ẑ(1), . . . , ẑ(L).

The cohesion function of the sub-graph G is now defined as:

c(G) =





(
d∏

i=1

(
1− e−µxi

)
)

L∏
i=1

pop
(
ẑ(i)

)
L∑

j=i

pop
(
ẑ(j)

)
if GD is not empty

1 otherwise

(5.1)

If each region has non-zero population, then 0 < c(G) ≤ 1.

If we assume that the number of cases cxi
in each disconnecting node

xi ∈ D is a Poisson random variable with mean µxi
, then the factor 1− e−µxi

is equal to P (cxi
> 0), the probability of the number of the cases being greater

than zero. It is important to note that we are not assuming independence

with respect to the product over the disconnecting nodes of the factors 1 −
e−µxi . Thus the first term in the cohesion formula penalizes those zones which

have low populated disconnecting nodes, indicated by lower values of µxi
.

The second term penalizes homogeneous population distribution among

the L connected subgraphs ẑ1, . . . , ẑL: it is understood that the presence

of disconnecting nodes which break the cluster apart more evenly (regard-

ing their populations) strongly impacts its cohesion. Otherwise, breaking

the cluster more heterogeneously, i.e., leaving large parts of it intact while

breaking away only low populated remaining connected parts, is considered

less damaging to its cohesion.

Figure 5.1 presents six clusters A-F where the regions are represented
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by hexagons. The disconnecting nodes are indicated by dark gray hexagons.

Each cluster consists of one or two disconnecting nodes and two or three re-

maining connected zones(represented by connected sets of light gray hexagons).

Each remaining connected zone carries a number representing its population.

The value of the cohesion function c(z) is displayed below each cluster.

Figure 5.1: Disconnection nodes cohesion function evaluation for several clus-

ters.

Consider that the study area has a total of 100 cases and population

1,000, representing 10% of the total risk population. The cohesion value for

cluster E, for instance, is computed as:

c(z) = (1− exp (−0.1× 5))2

(
35

35 + 35 + 20

)(
35

35 + 20

)(
20

20

)
= 0.038

Clusters A and B differ in the population size of their disconnection

nodes. Cluster A has larger cohesion and is considered more structurally
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stable because its two remaining zones are linked by a disconnection node

with larger population.

Clusters A and C differ in the population heterogeneity of their remain-

ing zones. When removed from cluster C, the disconnection node leaves a

relatively large remaining connected zone of population 55 intact. Cluster

C has larger cohesion and is considered more structurally stable because its

two remaining zones have very different populations, compared with the two

evenly distributed remaining zones of cluster A.

Cluster D illustrates the effect of splitting the cluster into more than two

remaining connected zones. Compared to cluster B, cluster D has very low

cohesion due to the fact that it is split into three equally populated remaining

zones after the removal of the disconnection node.

The removal of the two disconnection nodes in clusters E and F pro-

duces three remaining connected zones in each cluster. The three remaining

connected zones of cluster E are more homogeneously distributed than the

corresponding ones of cluster F . Consequently, cohesion for cluster F is

higher, due to the fact that the central remaining connected zone of cluster

F has relatively higher population 70.

When used as a penalty factor, c(G) is incorporated in the expression

(4.1) for the test statistic as a multiplier for the log likelihood ratio, meaning

that the penalization is strong when the cohesion function assumes lower

values (there is no penalization at all when c(G) = 1).

5.2 Multi-objective optimization

As another way to deal with the problem of cluster detection is through

multi-objective optimization procedures. Since cluster detection problems
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can be formulated as multi-objective optimization problem, we will present

a brief description of the multi-objective concepts.

A multi-objective optimization problem (MOP) arises when one must

optimize simultaneously two or more conflicting objective-functions, subject

or not to some constraints. “Conflicting” here refers to the fact that it is

not plausible that one choice for the optimization variables will optimize all

objectives simultaneously. For that reason, the search for the best solution

in a MOP is closely related to the dominance concept.

Let a function to be maximized f(x) = (f1(x), ..., fn(x)) be defined in a

space X. A point x1 ∈ X dominates another point x2 ∈ X if fi(x1) ≥ fi(x2),

i = 1, ..., n and fk(x1) > fk(x2) for at least one k ∈ {1, ..., n}. In other words,

a point x1 dominates another point x2 if the evaluation of x1 is better than

the evaluation of x2 for at least one objective while not being worse for the

other objectives. Then notice given two solutions s1 and s2, one, and only

one of the three will occur: (i) s1 dominates s2, or (ii) s2 dominates s1 or

(iii) neither s1 dominates s2, nor s2 dominates s1 (in this case we say that

s1 and s2 are incomparable). Now, consider a set of solutions. The Pareto-

set is formed by all solutions that are not dominated by any solution in the

search space X. Note that any pair of the solutions in the Pareto-set are

incomparable.

From the last paragraph it is clear that the solution of a MOP is a set of

non-dominated solutions, called the Pareto-set. This set represents a trade-

off between the objectives, meaning that if one tries to improve one objective,

at least one of the other(s) objective(s) will fatally suffer a deterioration effect.
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5.3 The multi-objective disconnecting node

cohesion

We discuss an implementation of the multi-objective treatment employ-

ing both the test statistic (4.1) and the disconnecting node cohesion function

c(G). Now the cohesion function is not used as penalty correction but in-

stead as the second objective to be maximized. In the example of Figure 5.2,

two possible clusters ACB and ADB, are evaluated. The number of cases

“X” and population “Y” are represented as “X/Y” for each region. Cluster

ACB has weak link C and population 29, and cluster ADB has weak link D

and population 25 (both have 2 cases). Cluster ACB has lower LLR than

cluster ADB, but cluster ACB has greater cohesion than cluster ADB, due

to the the larger population of weak link C, and neither one dominates the

other (see the graph in Figure 5.2).

Figure 5.2: LLR and disconnection nodes cohesion for the clusters ACB and

ADB.
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5.4 The simultaneous compactness and dis-

connection nodes multi-objective scan

In our second implementation of the multi-objective treatment, one of

the objectives is defined as f1(z) = k(z).LLR(z), while the second objective

is defined as f2(z) = c(z).LLR(z), for each cluster z. This is motivated

by the single-objective compactness penalized spatial scan statistic discussed

in section 4.1. The motivation for building this algorithm is to evaluate

clusters based simultaneously on their regularity of shape and abscence of

disconnecting nodes. The algorithm automatically discards those clusters

which do not have high cohesion (due to the presence of disconnecting nodes)

and at the same time are very irregularly shaped.

Next we discuss the computation of the significance of each cluster in the

non-dominated set, and how it is used to determine the best solution. The

multi-objective algorithm is first executed to find the non dominated set of

the best clusters candidates in the quadrant (0,∞) × (0,∞) of the space

k(.).LLR(.)× c(.).LLR(.).

Considering clockwise sense starting from the topleft cluster we have a

cluster with high cohesion and low compactness (1), high cohesion and com-

pactness (2), low cohesion and high compactness (3), low cohesion and com-

pactness (4) (see figure 5.3).

Considering a set of non-dominated solutions clusters like cluster (4)

with simultaneous low cohesion and compactness would be automatically

discarded.
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Figure 5.3: LLR and disconnection nodes cohesion.
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Chapter 6

Genetic Algorithms for Cluster

Detection and Spatial Cluster

Inference

In this chapter we describe how we use a genetic algorithm in a cluster

detection algorithm. Actually we use a genetic algorithm in two versions.

In the first, a single-objective version. We use a genetic algorithm to op-

timize a objective function given by spatial scan Statistic (Duczmal (2007)

[27]). In the second, a multi-objective version, a genetic algorithm is used to

optimize two objective functions. In Duczmal (2008) [26] one of the objec-

tive functions is the spatial scan statistic and the second is the compactness.

In this work we propose three new versions of a multi-objective genetic al-

gorithm. The first version uses the Spatial Scan Statistic as one objective

and the non-connectivity regularity function as the second objective. In the

second version uses the Spatial Scan Statistic as one objective and the new

cohesion function as the second objective. In the third version we use the

cohesion function penalized spatial scan statistic as one objective function

49



and the compactness function penalized spatial scan statistic as the second

objective. The inference about the detected cluster candidates use a new

attainment function introduced in da Fonseca et al. (2001) [18], Fonseca et

al. (2005) [35] and Cançado (2009) [12].

A genetic algorithm (GA) uses ideas derived from biological evolution

to search for the best solutions of an optimization problem, simulating the

mechanisms of random variation and adaptive selection. These mechanisms

are called operators and usually include operations of crossover, mutation

and selection. It is well known that the design of these operators affects the

performance of the algorithm. Particularly, specifically tailored operators

work better than generic ones, because they take advantage of the problem

structure (Carrano et al. (2006) [13]).

6.1 Single-Objective Genetic Algorithms

Conley et al. (2005) [15] proposed a genetic algorithm to explore a con-

figuration space of multiple aglomerations of ellipses for point data sets. The

method employed a strategy to “clean-up” the best configuration found in

order to geometrically simplify the cluster. In Sahajpal (2004) [77] a genetic

algorithm is used to find clusters in point data sets shaped as intersections

of circles of different sizes and centers.

The genetic algorithm employed in this work uses the same crossover and

mutation operators described in Duczmal et al. (2007) [27] and Duczmal

(2008) [26]. These operators were designed specifically for the spatial clus-

tering problem and they have proved to be very efficient for this problem.

The single-objective algorithm described in Duczmal (2007) [27] aimed to

maximize Kulldorff’s spatial scan statistics (4.1) over the set of potential
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clusters, starting from a set of zones representing individuals of an initial

population. The initial population is successively modified for a number of

generations, according to the operators’ rules. The cross-over operator cre-

ates new individuals, mixing the features of two randomly chosen parents A

and B, which are themselves zones from the previous generation that have

at least of region in common. Offspring are thus produced, consisting of a

set of intermediate zones between parents A and B (see Figure 6.1). The

mutation operator introduces few random perturbations in individual zones,

either adding or removing one random region. Both operators increase the

variance of the population. The selection operator ranks the zones according

to some objective function values, and chooses the individuals that would

remain at the next generation, maintaining a fixed genetic population size.

As the algorithm advances through new generations, it is expected to find

individuals with increasingly higher values of the objective function.
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Figure 6.1: Crossover between parents A = {a, b, c, d, e} and B =

{b, c, f, g, h, i, j} in the map (above) generated the offspring formed by the

four intermediate zones (below). The offspring constitutes a randomly cho-

sen path in the space of configurations among all the possible paths between

the extreme zones, which are parents A and B.

The graph-related operations are minimized by means of a fast offspring

generation and evaluation of Kulldorff’s spatial scan statistic. A geometric

compactness penalty function is employed to avoid excessive irregularity of

cluster geometric shape.
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6.2 Multi-Objective Genetic Algorithms for

Cluster Detection

We now describe the multi-objective optimization approach to the prob-

lem of finding spatial clusters. The genetic algorithm described in Section 6.1

will be modified to deal simultaneously with the two quantities: the selected

regularity function (either the compactness or the disconnection node cohe-

sion, for instance), and Kulldorff’s original spatial scan LLR(.). The selected

regularity function will no longer be used as a penalty correction, but instead

as a new objective function. That approach simplifies the problem and allows

a stronger grasp of the question of finding the “best” cluster solution. The

compactness regularity function was used in this context in Duczmal et al.

(2008) [26]. The Yiannakoulias regularity function defined in section 4.3 and

the novel disconnecting node cohesion function described in chapter 5 will

now be used.

For the multi-objective algorithm, the initial population construction, the

crossover and mutation operators are identical to those used in the single-

objective genetic algorithm, and the reader is referred to Duczmal et al.

(2007) [27] and Duczmal et al. (2008) [26] for details. The selection procedure

is modified in order to approximate the structure employed by the widely used

Non dominated Sorting Genetic Algorithm (NSGA-II), described in Deb et

al. (2002) [19]. The NSGA-II incorporates the following features:

1. Non-dominated sorting : consists of sorting the solutions according to

the non-dominance level. Individuals belonging to the original set of

non-dominated solutions are assigned as level 1. Level 2 is assigned

to those individuals belonging to the set of non-dominated solutions

obtained after the removal of the individuals of level 1, and so on.
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2. Crowding-distance: is based on the distance between one individual

and its immediate neighbors to the left and to the right (when two

objectives are involved).

3. Binary tournament : consists of choosing two individuals randomly and

comparing them according to some fitness function. The one with best

fitness evaluation is selected.

In this context, solutions belonging to lower dominance levels are better

than solutions situated at higher levels. An individual belonging to level 1 is

not dominated by any of the solutions while an individual belonging to level

2 is dominated by at least one individual (of level 1). The crowding distance

is used as a measure of occupation in the neighborhood of a solution in

the objectives’ space. If one solution has high crowding distance evaluation

it means that its neighbors are far away and therefore its neighborhood is

sparsely populated. Such individual should have more chances to remain

in the population in the evolution process. Alternatively, one individual

with low crowding distance evaluation belongs to a well represented area.

The use of crowding distance helps us avoid situations where the obtained

Pareto-set is too concentrated on one small part of the real Pareto surface,

leading the algorithm to the situation where the non-dominated points are

more uniformly spread (refer to figure 6.2). For the binary tournaments, the

level of the solutions is employed as the fitness function. If both solutions

compared belong to the same level, the tie is broken by the crowding distance:

the one with higher crowding distance evaluation is selected. The binary

tournament is performed with replacement, i.e., all individuals take part in

all random draws.
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Figure 6.2: Pareto sets - left graph: The Pareto set is well represented by

its component points; right graph: the Pareto set is not well represented in

some parts where points are absent.

We now describe the general structure of our NSGA-II, including the

selection procedure.

1. The initial population P0 of size N is generated and evaluated regarding

the objectives functions. Non-dominance levels and crowding distances

are also computed for all the N individuals of P0.

2. While some stopping criterion is not achieved, the population of the

(i + 1)th generation is obtained from ith generation following the steps:

• From Pi we perform N binary tournaments obtaining a list of N

selected individuals. These individuals take part in crossover and

mutation, generating a list Qi of M new individuals.

• A combined population Ci = Pi ∪Qi of size N + M is formed and

the new levels and crowding distances are computed for Ci.

• Individuals of the lowest levels are inserted into the new popula-

tion Pi+1 until we reach N individuals. In general, the last inserted

level, say level l, will not totally fit inside the new population, so
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the individuals of the last inserted level l are inserted according

to the crowding distance criterion, from higher to lower ones. The

crowding distance of the selected individuals must be updated and

non-dominance levels of Pi+1 are preserved from Ci.

Note that some individuals may have more than one selected copy af-

ter the binary tournament. Particularly, individuals of the lower levels have

higher probabilities of being represented with two or more clones, while in-

dividuals at higher levels have lower probabilities of being selected. With

this structure our GA is very close to the original NSGA-II. The difference

is due to our crossover operator nature. The original algorithm performs

N/2 crossovers at each generation, obtaining a list of N individuals, since

most crossover operators generate two new individuals. Since it is not always

possible to execute our crossover for a given pair of solutions, we make a max-

imum of cmax crossover attempts at each generation with randomly chosen

pairs from the list obtained by the binary tournament, or a maximum of

N/2 well-succeeded crossovers. So we do not guarantee that N/2 crossovers

will take place, and even if we attain N/2 well-succeeded crossovers we typ-

ically do not obtain N new individuals, because each crossover can generate

a varying number of new individuals. This explains why the Qi set has a

varying number M of individuals for different generations. We observed a

considerable performance gain using the NSGA-II over the simpler Genetic

Algorithm employed in Duczmal et al. (2007) [27] and Duczmal et al. (2008)

[26].
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6.3 Attainment function

Consider a bi-objective maximization problem for the objective functions

f1, f2. Let E = {xj, j = 1, ..., Q} be the set of all evaluated solutions, and

define its image I = {Yj = (f1(xj), f2(xj)), j = 1, ..., Q} contained in the

objective space R2. As mentioned is section 6.2, the solution xj is called non-

dominated if xj is not dominated by any other solution in E. Let {x∗j , j =

1, ..., q} ⊂ E be the set of non-dominated solutions of E. The subset Y =

{Y ∗
j = (f1(x

∗
j), f2(x

∗
j)), j = 1, ..., q} ⊂ I is defined as the the outcome of a

single run of a bi-objective algorithm.

We can associate a boundary to Y which splits the objective space in

two regions R1 and R0: R1 is the region consisting of points dominated by

at least one point of Y plus the points that equal some point of Y and R0

consists of the points that are not dominated by any of the points within Y

(see Figure 6.3). When the solution x is dominated by at least one solution

of a given outcome Y, we say that x is attained by Y. In Figure 6.3, any

solution located in the region R1 is attained by Y. Now consider n runs of the

algorithm. As each run produces distinct outcomes we will obtain multiple

boundaries, as in Figure 6.4(a).
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Figure 6.3: The attainment surface splits the objective space in two regions.

Points lying in the upper right of the figure were not attained in any

of the runs. Points that lie in the lower left were attained in all the runs.

And points lying between different outcomes were attained in some runs but

not in others. So we can split the space in n + 1 types of regions according

to the frequency with which these regions are attained. The boundaries of

these regions are called attainment surfaces (ref. Figure 6.4(b) and Fonseca

et al. (2005) [35]). These frequencies are used to estimate the probability

of attaining a point in the objective space, when a large number of runs is

executed.
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Figure 6.4: (a) Outcomes obtained by multiple runs of a biobjective algorithm

and (b) the corresponding estimated attainment surfaces.

The attainment function described in da Fonseca et al. (2001) [18] and

Fonseca et al. (2005) [35] evaluated at Y can be estimated by the outcome

sets Y1, ...,Yn obtained through n independent runs of the algorithm, as
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An(Y ) =
1

n

n∑
i=1

I(Yi D Y )

where the symbol “D” means that Yi attains Y and I is the indicator function

having value 1 if Yi D Y , and value zero otherwise.

In the specific problem of the present work we are interested in estimat-

ing the p-value of non-dominated candidate cluster solutions represented by

points in the (LLR, Mes) objective space, where Mes is the desired measure,

such as compactness, non-connectivity or cohesion, discussed in the previous

sections.

Formally, we define A(Y ) as the lim
n→∞

An(Y ) when it exists. Now, given

0 < p ≤ 1 the isoline is defined as the inverse image A−1(p). For sufficiently

smooth conditions, A−1(p) is an 1-dimensional surface dividing the objective

space into two regions R0 and R1, such that if Y ∈ R1 then A(Y ) > p, and if

Y ∈ R0 then A(Y ) ≤ p. In practice, given n outcome sets Y1, ...,Yn, we can

construct approximations of the p-value isolines for every p = i/(n + 1), i =

1, ..., n through the estimated attained function An(Y ). The example of

Figure 6.5 displays some p-value isolines resulting from n = 1000 outcome

sets under the null hypothesis. The outcome points are displayed in gray.

When a stochastic algorithm is used, only part of the potential set of solu-

tions is evaluated, and there is no guarantee that the optimal non-dominated

solutions are found. This of course could lead to a biased estimation of

the significance, producing underestimated p-values. Thus the computed

p-values are in fact lower bounds for the theoretical p-values.
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Figure 6.5: The 0.316, 0.1, 0.032 and 0.01 p-value isoline curves for the null

hypothesis Monte Carlo simulation, using 1,000 Pareto-sets.

6.4 Spatial Cluster Inference

If we know the probability distribution of the spatial scan statistic un-

der the null hypothesis of cluster non-existence we could determine a critical

value such that the significance level (typically 5%) represents the probabil-

ity of the scan statistic assumes values greater that the critical value. Since,

in principle, that probability distribution is unknown, we use Monte Carlo

simulations (Dwass(1957) [32]) in order to obtain an empirical distribution

of the scan statistic values under the null hypothesis. To make one Monte

Carlo simulation, first we distribute a fixed total number of cases throughout

the regions of the study area. The cases distribution, conditioned on the to-

tal number of cases is made according a multinomial distribution where the
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probability of an individual to become a case in come region is proportioned

to its population. Then the scan statistic is calculated for the most likely

cluster given the simulated cases distribution. This procedure is repeated

n times and the obtained scan statistic values are ranked (the value corre-

sponding to the 95% quantile is the estimate of the critical value at a 5%

significance level). Given the scan statistic value of the observed cases map,

the estimate of its p-value is
nobs

n + 1
, where nobs is its ranking position among

the n + 1 values (where n is the number of simulated values).

In the multi-objective case when we run the genetic algorithm for a given

cases distribution the outcome solution is a set of non-dominated solutions

or best clusters candidates. Under the null hypothesis and conditioned on a

fixed total number of cases we distribute the cases among the map regions

according a multinomial distribution where the probability of an individual

to become a case in come region is proportioned to its population. With the

outcome of n simulations we use the attainment function to construct p-value

isolines in the (LLR, Mes) objective space as explained in section 6.3. To

determine the statistical significance of the best cluster candidates obtained

from the observed cases map we just plot those candidates in the objective

space with the p-value isolines.
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Chapter 7

Numerical Evaluations

In this chapter we compare numerically the disconnection nodes cohesion

scan (DN), the geometric compactness scan (GC), the non-connectivity scan

(NC) and the no-penalty genetic scan (NP). We also compare the correspond-

ing multi-objective scans: the multi-objective disconnection nodes cohesion

scan (MDN), the multi-objective geometric compactness scan (MGC), the

multi-objective non-connectivity scan (MNC) and the simultaneous multi-

objective geometric compactness and disconnection nodes cohesion scan (MGD).

We evaluate their power of detection, sensitivity and positive predicted value

(PPV).

7.1 New England benchmark tests

A benchmark dataset for real data population for breast cancer of the North-

eastern US is used (Duczmal et al. (2006) [25]). This benchmark consists of

245 counties in 10 states and the District of Columbia, with a total popula-

tion at risk of 29,535,210 women. The map of Figure 7.1 display the counties

population quantiles by shades of gray. Nine simulated irregularly shaped
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clusters, A-F , NY , BOS and D.C., are displayed in the remaining three

maps of (Figures 7.2,7.3,7.4). These clusters were chosen with the purpose

of testing the limits of the algorithms for some very irregular cluster shapes.

Clusters NY , BOS and D.C. are located in highly populated areas, contrast-

ing with the remaining clusters, which are located in rural or mixed areas

defined roughly by geographic features such as rivers or shores (see Duczmal

et al. (2006) [25]). The lighter shade regions indicate disconnection nodes

inside the clusters. All clusters have at least one disconnection node, except

B and BOS which have c(z) = 1. Clusters F , C and E have the lowest

disconnection nodes cohesion.

Figure 7.1: Map with counties populations quantiles by shades of gray for

245 counties northeastern U.S. map, shades indicate counties populations.
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Figure 7.2: Simulated data clusters for the 245 counties northeastern U.S.

map, the clusters A, B, C and D were used in the power evaluations. Lighter

shades indicate disconnection nodes.
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E

F

Figure 7.3: Simulated data clusters for the 245 counties northeastern U.S.

map, the clusters E and F were used in the power evaluations. Lighter shades

indicate disconnection nodes.
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BOS

NY
DC

Figure 7.4: Simulated data clusters for the 245 counties northeastern U.S.

map, the clusters DC, NY and BOS were used in the power evaluations.

Lighter shades indicate disconnection nodes.

67



From now on, those clusters will be called real clusters, in contrast to

the detected clusters found by the algorithms. For each simulation of data

under these nine alternative hypotheses, 600 cases are distributed randomly

according to a Poisson model using a single cluster; we set a relative risk

equal to one for every cell outside the real cluster, and greater than one and

identical in each cell within the cluster. The relative risks for each cluster

are defined such that if the exact location of the real cluster was known in

advance, the power to detect it should be 0.999 (see Kulldorff et al (2003)

[50]).

Given an alternative hypothesis model, the estimate power in the single-

objective case is the proportion of values of the objective function greates

than critical value.

In the multi-objective algorithm, given an alternative hypothesis model,

5, 000 runs produce the corresponding non-dominated sets, which are joined

and compared to the 0.05 isoline, obtained under null hypothesis through

10, 000 Monte Carlo replications with the attainment function, as explained

in section 6.3. The proportion of non-dominated sets which have at least one

point located to the right of the 0.05-value isoline is an estimate of the power

of the algorithm for that particular alternative hypothesis model.

Additionally, we perform a set of four null hypotheses simulations of

10, 000 runs corresponding to MGC, MNC, MDN and MGD algorithms.

The measures of sensitivity and PPV (Positive Predicted Value) also serve

to evaluate the quality of the cluster detection process. These measures are

defined in the terms of the population size. We define sensitivity and PPV

as:

Sensitivity =
Pop(Detected Cluster ∩ Real Cluster)

Pop(Real Cluster)
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PPV =
Pop(Detected Cluster ∩ Real Cluster)

Pop(Detected Cluster)

For the non-penalty single-objective scan, the three measures, namely,

detection power, sensitivity an PPV were computed for the most likely cluster

in each replication. For the multi-objective scans, they were computed based

on the cluster within the Pareto-set which maximized all of those measures.

Tables 7.1 presents the average power, sensitivity and PPV for 5, 000

replications of each of the nine alternative hypotheses obtained with the

single-objective algorithms and 7.2 presents the results obtained with the

multi-objective algorithms.

When we compare tables 7.1 and 7.2, we can observe a significant gain

using the multi-objective strategy. All the multi-objective scans show consis-

tently better performance, regarding power, PPV and sensitivity, in compares

on with the single-objective penalized and non-penalized scans.

From Table 7.2 we conclude this section observing that the power of

detection of the MGD scan is better in some situations compared to the

other three scans. Moreover the MGD scan presented the worse power value

among the four multi-objective scans in the specific case of cluster “F”; this

particular cluster is highly irregular and presents many disconnection nodes.

Both MGC and MNC scans have better PPV performance than the MDN

and MGD scans; the MDN scan has better sensitivity in most situations,

compared with the other scans. It must be noted that the MNC scan is

significantly faster. The MGC scan and the MGD scan have presented con-

sistently better results regarding all three performance measurements.
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Table 7.1: Power, positive predicted value and sensitivity comparisons for

the mono-objective algorithms.

Power PPV Sensitivity

cluster NP GC NC DN NP GC NC DN NP GC NC DN

A 0.838 0.822 0.881 0.839 0.624 0.578 0.665 0.619 0.796 0.551 0.792 0.767

B 0.882 0.843 0.926 0.898 0.699 0.691 0.786 0.765 0.707 0.598 0.784 0.743

C 0.827 0.814 0.826 0.667 0.625 0.344 0.659 0.582 0.851 0.360 0.796 0.607

D 0.896 0.840 0.922 0.877 0.696 0.616 0.771 0.734 0.668 0.506 0.713 0.668

E 0.874 0.778 0.885 0.822 0.719 0.633 0.762 0.704 0.534 0.414 0.544 0.508

F 0.629 0.433 0.585 0.510 0.664 0.314 0.650 0.565 0.583 0.170 0.523 0.430

NY 0.759 0.747 0.819 0.868 0.898 0.621 0.929 0.941 0.580 0.364 0.650 0.643

BOS 0.792 0.834 0.864 0.892 0.781 0.389 0.827 0.861 0.747 0.295 0.806 0.841

D.C. 0.803 0.903 0.877 0.901 0.788 0.518 0.865 0.887 0.725 0.426 0.791 0.802

• NP - AG single-objective with LLR(z);

• GC - AG single-objective with LLR(z).k(z);

• NC - AG single-objective with LLR(z).y(z);

• DN - AG single-objective with LLR(z).c(z);
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Table 7.2: Power, positive predicted value and sensitivity comparisons for

the multi-objective algorithms.

Power PPV Sensitivity

cluster MGC MNC MDN MGD MGC MNC MDN MGD MGC MNC MDN MGD

A 0.950 0.939 0.946 0.951 0.902 0.806 0.746 0.813 0.827 0.843 0.864 0.808

B 0.954 0.967 0.967 0.963 0.895 0.906 0.832 0.860 0.801 0.857 0.827 0.786

C 0.934 0.910 0.932 0.928 0.813 0.778 0.762 0.744 0.860 0.855 0.881 0.818

D 0.962 0.963 0.972 0.969 0.860 0.891 0.823 0.823 0.740 0.769 0.781 0.796

E 0.947 0.942 0.964 0.953 0.868 0.876 0.822 0.805 0.609 0.596 0.616 0.560

F 0.752 0.733 0.824 0.700 0.796 0.777 0.745 0.686 0.583 0.593 0.645 0.522

NY 0.891 0.906 0.923 0.908 0.961 0.973 0.965 0.977 0.689 0.743 0.715 0.690

BOS 0.918 0.924 0.943 0.956 0.939 0.896 0.888 0.920 0.837 0.873 0.885 0.851

D.C. 0.955 0.933 0.937 0.960 0.977 0.927 0.899 0.956 0.880 0.874 0.849 0.849

• MGC - AG multi-objective with LLR(z) and k(z);

• MNC - AG multi-objective with LLR(z) and y(z);

• MDN - AG multi-objective with LLR(z) and c(z);

• MGD - AG multi-objective with LLR(z).k(z) and LLR(z).c(z).
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7.2 Chagas disease clusters

Chagas’ disease is caused by the parasite Trypanosoma cruzi. It is trans-

mitted to animals and people by blood-sucking insect vectors (triatomine

bugs), which are found only in the Americas. The disease is found chiefly

in poor rural areas of Latin America. An individual can be infected if the

parasite present in the bug’s feces enter the body through mucous mem-

branes, the bite wound itself or others breaks in the skin. Others ways

of infection include: consumption of uncooked food contaminated with fe-

ces from infected bugs; congenital transmission (from a infected pregnant

woman to her baby); blood transfusion and organ transplantation. In the

last years, due to better control of the triatomine bugs infestation, the con-

genital transmission became one of the main transmission mechanism of the

Chagas infection. In this work we study the occurrence of Chagas’ disease

in puerperal women in the state of Minas Gerais, located in Brazil’s south-

east. The population at risk consists of women that gave birth to babies

in the period of July to September, 2006. The new-born babies were blood

tested to detect the presence of the Chagas disease antigen, with coverage

above 96%. A positive test means that the mother is infected. These tests

were conducted through the project PETN-MG (Minas Gerais State Pro-

gram of New-Born Screening) coordinated by the research group NUPAD-

MEDICINA/UFMG from Federal University of Minas Gerais Medical School

(http://www.nupad.medicina.ufmg.br) in collaboration with Minas Gerais

State Health Secretary. The state is divided into 853 municipalities with a

total population at risk of 24, 969 women. After a comprehensive screening

to eliminate false positives a total number of 113 cases were obtained. In

Figure 7.5 the incidence map (cases per 1000 women) for each municipality

is shown and in Figure 7.6 and the quantile population map is shown. Most
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municipalities have zero cases in the period. To detect clusters, we apply the

circular scan, the single-penalty mono-objective genetic scan and our four

multi-objective scans described in the previous sections.

< 4.77
4.77 to 21.36
21.36 to 64.94
64.94 to 142.86
> 142.86

Figure 7.5: Map of rates (per one thousand individuals) of Chagas’ disease

in the state of Minas Gerais, Brazil.
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< 10
10 to 53
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96 to 319
> 319

Figure 7.6: Map of populations at risk in the state of Minas Gerais, Brazil.
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The primary and secondary cluster detected by the circular scan are

shown in Figure 7.7 and described in Table 7.3.

Figure 7.7: Primary (darker shade) and secondary (lighter shade) Chagas’

disease clusters detected by the circular scan.

The four graphs of Figures 7.8, 7.9, 7.10, 7.11 display the complete set of

non-dominated solutions for the MGC, MNC, MDN and MGD scans respec-

tively. The ‘×’ symbols represent the clusters in the non-dominated solution

set for the observed cases map. The MGC, MNC, MDN and MGD scans non-

dominated solution sets consist of respectively 150, 63 ,12 and 75 clusters.

The gray points at the left part of each graph represents 1000 non-dominated

solution sets simulated under the null hypothesis. As explained in section

6.3, for each scan the most likely cluster was selected among the clusters of

the non-dominated solution set of the observed cases map according to its

smallest estimated p-value. The p-value isolines represents constant p-values

for the clusters found under the null hypothesis, ranging from 10−3 to 10−27
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or less at the rightmost line. Those p-values are estimated through extrapo-

lation from the 1000 null hypothesis non-dominated solutions sets using the

attainment function method of section 6.3. Employing the Gumbel semi-

parametric model (Abrams (2006) [2] and Duczmal et al. (2008) [26]), we

assumed that the p-values decrease according to the logarithm of the LLR.

In the specific case of the MGD scan, the extrapolation employs the polar

coordinates of the p-value isolines, obtained from the 1000 null hypothesis

non-dominated solution sets, using the attainment function method of sec-

tion 6.3. Of course there is a large amount of uncertainty for the precise

location of those very small p-values isolines, but the relevant feature here,

namely the overall isolines’ slopes, are less prone to extrapolation error. The

point representing the most likely cluster is distinguished among the non-

dominated solution set according to these slopes.
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Figure 7.8: Isoline curves and observed clusters (×) found by the MGC scan.

Isolines were obtained by extrapolation of the 1,000 Pareto-sets, indicated

by gray points.

77



0 20 40 60 80 100 120 140 160 180

0.4

0.5

0.6

0.7

0.8

0.9

1

LLR(z)

Y
(z

)

0.
00

1

1e
−

6

1e
−

9

1e
−

12

1e
−

15

1e
−

18

1e
−

21

1e
−

24

1e
−

27

1e
−

30

1e
−

33

Figure 7.9: Isoline curves and observed clusters (×) found by the MNC scan.

Isolines were obtained by extrapolation of the 1,000 Pareto-sets, indicated

by gray points.
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Figure 7.10: Isoline curves and observed clusters (×) found by the MDN scan.

Isolines were obtained by extrapolation of the 1,000 Pareto-sets, indicated

by gray points.
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Figure 7.11: Isoline curves and observed clusters (×) found by the MGD scan.

Isolines were obtained by extrapolation of the 1,000 Pareto-sets, indicated

by gray points.

For the four MDN, MGC, MNC and MGD scans, the most likely clusters

found using this procedure are presented in the maps of Figures 7.12, 7.13,

7.14, 7.15. Table 7.3 displays the number of regions, LLR, corresponding

values for compactness, non-connectivity and cohesion, population, number

of cases, rate and estimated p-value for the most likely clusters found. The

p-values shown in the table are conservative estimates based only on counting

for the 1000 Monte Carlo simulations, but they are in fact much smaller (less

than 10−24), as can be inferred from Figures 7.8, 7.9, 7.10, 7.11.
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Table 7.3: Chagas’ disease clusters of the Pareto-set of Figures 7.7, 7.12,

7.13, 7.14, 7.15.

n(z) LLR measures pop cases rate×1000 p-value

circular prim. 40 87.5 - 1,444 57 39.47 < 0.001
circular sec. 18 13.6 - 453 13 28.70 < 0.001

MGC 40 134.9 k(z) =0.319 1,634 75 45.90 < 0.001
MNC 40 128.3 y(z) =0.798 1,487 71 47.75 < 0.001
MDN 40 137.4 c(z) =1.000 1,732 77 44.46 < 0.001
MGD 25 88.7 k(z) =0.698 720 46 63.89 < 0.001

c(z) =1.000

• MGC - AG multi-objective with LLR(z) and k(z);

• MNC - AG multi-objective with LLR(z) and y(z);

• MDN - AG multi-objective with LLR(z) and c(z);

• MGD - AG multi-objective with LLR(z).k(z) and LLR(z).c(z).
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Figure 7.12: Most likely cluster found by the MGC algorithm.
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Figure 7.13: Most likely cluster found by the MNC algorithm.
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Figure 7.14: Most likely cluster found by the MDN algorithm.
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Figure 7.15: Most likely cluster found by the MGD algorithm.

Each of the four maps of Figures 7.16, 7.17, 7.18, 7.19 display simul-

taneously all clusters in the respective MGC, MNC, MDN and MGD scans’

non-dominated solution sets. A gray color coding scheme was used to in-

dicate the proportion of times that each region of the map is present in a

non-dominated solution set cluster, from black (the region is present in all

clusters) to white (the region is not present in any cluster). This gray scale

representation helps the practitioner distinguish those regions which appears

in almost all clusters, thus being part of the cluster “core”. Note that this

core usually does not match exactly the most likely cluster, and constitute

an additional tool for identifying the most prevalent regions of the cluster.
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Figure 7.16: Prevalence gray scale map for the observed non dominated

solutions obtained by the MGC algorithm.
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Figure 7.17: Prevalence gray scale map for the observed non dominated

solutions obtained by the MNC algorithm.
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Figure 7.18: Prevalence gray scale map for the observed non dominated

solutions obtained by the MDN algorithm.
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Figure 7.19: Prevalence gray scale map for the observed non dominated

solutions obtained by the MDN algorithm.

The MGD most likely cluster is more regularly shaped and has higher rate

than the MNC, MGC and MDN most likely clusters. The MDN most likely

cluster encompasses more cases and has higher LLR than the other three,

but it must be taken in account that the most likely MGD scan solution has

only 25 regions. It should be noted that all four MGD, MDN, MGC and

MNC scans’ most likely clusters are very similar, and in every respect they

have better characteristics than the most likely circular cluster found. Even

if the primary and secondary circular clusters were added to form a larger

cluster, all the four multiobjective scans still present higher rates, number of

cases and LLR.
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Chapter 8

Conclusions

We compared penalized likelihood and multi-objective methods for the

detection and inference of spatial disease clusters employing Kulldorff’s spa-

tial scan statistics. Penalized likelihood methods maximize the product of

a regularity function by the likelihood ratio scan statistic over the set of

potential clusters, employing a genetic algorithm. Regularity functions eval-

uate a potential cluster, in terms of its geometric shape or topological graph

structure, and are used to control the excessive freedom of shape of clus-

ters. The novel disconnection node cohesion function was introduced in this

work and compared with two previous regularity functions, the geometric

compactness and the non-connectivity functions. The cohesion function is

based on the graph topology to penalize the presence of under-populated

disconnection nodes in candidate clusters, the disconnection nodes cohesion

function. A disconnection node is defined as a region within a cluster, such

that its removal disconnects the cluster. By applying this function, the most

geographically meaningful clusters are sifted through the immense set of pos-

sible irregularly shaped candidate cluster solutions. The disconnection nodes

cohesion regularity function penalizes inconsistent clusters, but without for-
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bidding the presence of the geographically interesting irregularly shaped ones.

It penalizes irregularly shaped clusters selectively: the irregularity is allowed

only to the extent that it does not impact the stability of the cluster, or its

sensitivity to the removal of disconnection nodes.

We have proposed multi-objective scans to maximize two objectives: the

spatial scan statistics and a chosen regularity function. All three regularity

functions were used to build the corresponding three multi-objective scans.

Additionally the compactness function and the disconnection nodes cohesion

function were combined with Kulldorff’s spatial scan statistic LLR(z) in a

fourth multi-objective optimization algorithm (MGD). Specifically, we maxi-

mize simultaneously two objective functions, LLR(z).k(z) and LLR(z).c(z).

The advantage of the MGD approach is to provide a criterion for selecting

clusters based simultaneously on their shape and presence of disconnection

nodes. Those clusters which do not have good internal cohesion, due to the

presence of disconnection nodes, and at the same time have very irregular

shape, are automatically discarded by the algorithm. Only clusters which

fare well in at least one criterion, regularity of shape or disconnection nodes

cohesion, are thus selected as potential clusters candidates. A large degree of

freedom is available in the choice of the “best” cluster, without compromising

interesting and desirable features. Irregularity of shape is allowed, provided

that it does not impact the structural stability of the cluster (measured here

by the absence of disconnection nodes). Conversely, a few disconnection

nodes may occur, if the cluster is not very irregularly shaped. In this fash-

ion, realistic clusters are not discarded by the algorithm, and at the same

time a large number of inadequate cluster candidates are eliminated.

The power of detection, sensitivity and positive predicted value of the

multi-objective scans were compared with the corresponding evaluations for
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the three penalized likelihood scans, the non-penalty genetic algorithm scan

and the usual circular scan. Our simulations suggest that the four multi-

objective scans have better performance than the mono-objective scans. None

of the multi-objective scans have shown better performance when compared

to the other multi-objective scans: the power of detection of the cohesion

scan and the MGD scan were higher for most situations; both geometric and

non-connectivity scans shown better PPV performance; the cohesion scan

presented generally better sensitivity. The non-connectivity scan is signifi-

cantly faster.

We applied the statistical methodology of the attainment function to

extend way the meaning of the p-value to the bi-objective space in a natural,

while preserving the dependence between points within the same Pareto set,

for all Pareto-sets obtained by the Monte Carlo simulation. This approach

gives a more robust definition clusters’s significance for multi-objective scans.

The MGD scan distinguishes clearly those clusters which are worse both

from the geometric and the topological viewpoint. The algorithm’s power

to detect spatial clusters, its sensitivity and positive predicted value were

studied through numerical simulations. The power of detection was good for

clusters satisfying at least one of the requirements of high geometric compact-

ness or high weak link cohesion. Clusters which are simultaneously highly

penalized on both requirements do not fare well using our novel method, as

expected. From a geographic perspective, those clusters are undesirable, and

it makes sense to penalize them, and at the same time allowing those clusters

which are strong in at least one of these two objectives.

An application was presented for Chagas’ disease incidence in puerperal

women in Brazil. This study case is particularly difficult to analyze, due to

the sparsity of cases and the presence of many regions with zero cases, which
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could potentially produce a large uncertainty in the delineation of clusters.

However, the novel algorithms produced very interesting clusters solutions,

with the algorithm using zero cases regions as optimal links between the high

risk regions. Those solutions compared favorably with the circular clusters

or the non-penalty clusters solutions.

We also propose a more robust definition of spatial cluster using these

concepts: a geographically stable spatial cluster satisfies at least one of the

requirements of high geometric compactness or high disconnection nodes co-

hesion. The most likely geographically stable spatial cluster is the most signif-

icant cluster of the Pareto-set obtained through the compactness × discon-

nection nodes cohesion a multi-objective algorithm. We expect that this work

should contribute to the investigation of what are the desirable characteristics

of geographically sound spatial clusters, and provide adequate quantitative

tools to detect them and assess their significance.
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Optimizing Simultaneously the Geometry and the Internal Cohesion of

Clusters, Advances in Disease Surveillance, 5, 27.

[22] Duarte, A.R., Duczmal, L., Ferreira, S.J. and Cançado, A.L.F. (2009).
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1.2 Uma posśıvel zona obtida para uma dada janela circular. . . . 5

4.1 Non-connectivity penalty function evaluation for several clusters. 39

5.1 Disconnection nodes cohesion function evaluation for several

clusters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2 LLR and disconnection nodes cohesion for the clusters ACB

and ADB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3 LLR and disconnection nodes cohesion. . . . . . . . . . . . . . 48

6.1 Crossover between parents A = {a, b, c, d, e} and B = {b, c, f, g, h, i, j}
in the map (above) generated the offspring formed by the four

intermediate zones (below). The offspring constitutes a ran-

domly chosen path in the space of configurations among all the

possible paths between the extreme zones, which are parents

A and B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.2 Pareto sets - left graph: The Pareto set is well represented by

its component points; right graph: the Pareto set is not well

represented in some parts where points are absent. . . . . . . . 55

6.3 The attainment surface splits the objective space in two regions. 58

107



6.4 (a) Outcomes obtained by multiple runs of a biobjective algo-

rithm and (b) the corresponding estimated attainment surfaces. 59

6.5 The 0.316, 0.1, 0.032 and 0.01 p-value isoline curves for the

null hypothesis Monte Carlo simulation, using 1,000 Pareto-sets. 61

7.1 Map with counties populations quantiles by shades of gray for

245 counties northeastern U.S. map, shades indicate counties

populations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.2 Simulated data clusters for the 245 counties northeastern U.S.

map, the clusters A, B, C and D were used in the power eval-

uations. Lighter shades indicate disconnection nodes. . . . . . 65

7.3 Simulated data clusters for the 245 counties northeastern U.S.

map, the clusters E and F were used in the power evaluations.

Lighter shades indicate disconnection nodes. . . . . . . . . . . 66

7.4 Simulated data clusters for the 245 counties northeastern U.S.

map, the clusters DC, NY and BOS were used in the power

evaluations. Lighter shades indicate disconnection nodes. . . . 67

7.5 Map of rates (per one thousand individuals) of Chagas’ disease

in the state of Minas Gerais, Brazil. . . . . . . . . . . . . . . . 73

7.6 Map of populations at risk in the state of Minas Gerais, Brazil. 74

7.7 Primary (darker shade) and secondary (lighter shade) Chagas’

disease clusters detected by the circular scan. . . . . . . . . . 75

7.8 Isoline curves and observed clusters (×) found by the MGC

scan. Isolines were obtained by extrapolation of the 1,000

Pareto-sets, indicated by gray points. . . . . . . . . . . . . . . 77

7.9 Isoline curves and observed clusters (×) found by the MNC

scan. Isolines were obtained by extrapolation of the 1,000

Pareto-sets, indicated by gray points. . . . . . . . . . . . . . . 78

108



7.10 Isoline curves and observed clusters (×) found by the MDN

scan. Isolines were obtained by extrapolation of the 1,000

Pareto-sets, indicated by gray points. . . . . . . . . . . . . . . 79

7.11 Isoline curves and observed clusters (×) found by the MGD

scan. Isolines were obtained by extrapolation of the 1,000

Pareto-sets, indicated by gray points. . . . . . . . . . . . . . . 80

7.12 Most likely cluster found by the MGC algorithm. . . . . . . . 82

7.13 Most likely cluster found by the MNC algorithm. . . . . . . . 83

7.14 Most likely cluster found by the MDN algorithm. . . . . . . . 84

7.15 Most likely cluster found by the MGD algorithm. . . . . . . . 85

7.16 Prevalence gray scale map for the observed non dominated

solutions obtained by the MGC algorithm. . . . . . . . . . . . 86

7.17 Prevalence gray scale map for the observed non dominated

solutions obtained by the MNC algorithm. . . . . . . . . . . . 87

7.18 Prevalence gray scale map for the observed non dominated

solutions obtained by the MDN algorithm. . . . . . . . . . . . 88

7.19 Prevalence gray scale map for the observed non dominated

solutions obtained by the MDN algorithm. . . . . . . . . . . . 89

109



110



List of Tables

7.1 Power, positive predicted value and sensitivity comparisons

for the mono-objective algorithms. . . . . . . . . . . . . . . . . 70

7.2 Power, positive predicted value and sensitivity comparisons

for the multi-objective algorithms. . . . . . . . . . . . . . . . . 71

7.3 Chagas’ disease clusters of the Pareto-set of Figures 7.7, 7.12,

7.13, 7.14, 7.15. . . . . . . . . . . . . . . . . . . . . . . . . . . 81

111


