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Resumo

O modelo exponencial por partes (MEP) é uma alternativa aos modelos paramétri-
cos bastante flexível e popular em análise de sobrevivência. Embora paramétrico em um
sentido estrito, o MEP pode ser pensado como um modelo não-paramétrico, uma vez que
a sua função risco não apresenta restrições quanto a sua forma. Por esta razão, o MEP
tem sido bastante utilizado na literatura relativa à análise de sobrevivência e confiabili-
dade. Apesar de sua popularidade, o maior desafio de se trabalhar com o MEP reside na
especificação da grade de tempos necessária para o seu ajuste. Nesta tese de doutorado
são apresentadas extensões da abordagem introduzida por Demarqui et al. (2008) para a
modelagem da grade do MEP. As contribuições mais importantes deste trabalho dizem
respeito à generalização e unificação da abordagem inicialmente proposta por Demarqui
et al. (2008) com outras abordagens já consagradas na literatura. A metodologia proposta
se encaixa em diferentes contextos de análise de sobrevivência, e pode ser aplicada a dados
do tipo tempo até a ocorrência de um evento de interesse oriundos de qualquer área do
conhecimento. Em particular, a metodologia apresentada é utilizada para a estimação da
função risco, bem como o ajuste de modelos de regressão e modelos com fração de cura.
A abordagem proposta pode, ainda, ser estendida para a modelagem de dados de so-
brevivência multivariados e/ou espacialmente correlacionados. O mecanismo usado para
modelar a aleatoriedade da grade do MEP possui algumas características interessantes
que não são compartilhadas por outros métodos que têm sido propostos para resolver
o problema. Em especial, as restrições impostas ao conjunto de possíveis grades torna
possível a sua estimativa após especificações a priori adequadas. Além disso, a existên-
cia de pelo menos um tempo de falha em cada intervalo aleatório induzido pelas grades
aleatórias fica garantida. Outra vantagem da abordagem proposta é que a disposição
dos tempos de falha sobre o eixo do tempo é levada em conta na modelagem da grade.
Os modelos resultantes incluem outros modelos consagrados na literatura como casos es-
peciais, e fornece uma estrutura flexível para a modelagem de dados de sobrevivência.
Propriedades dos modelos propostos são discutidas e a utilização da nova metodologia é
exemplificada através da análise de conjuntos de dados reais. Para fins de comparação, os
resultados obtidos são comparados com aqueles fornecidos por outros métodos existentes
na literatura. Os modelos propostos neste trabalho são bastante gerais, e podem ser uti-
lizados para a modelagem de dados de sobrevivência resultantes de qualquer campo área
do conhecimento, desde que os tempos de sobrevivência sejam censurados à direita e ao
mecanismo de censura seja não informativo.
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Abstract

The piecewise exponential model (PEM) is a quite attractive and popular alternative
to parametric models in survival analysis. Although parametric in a strict sense, the
PEM can be thought of as a nonparametric model as far as its hazard function does not
have a closed shape. For this reason the PEM has been widely used in the literature
to model time-to-event data. Despite its popularity, the greatest challenge of working
with the PEM is the specification of the time grid needed to fit this model. In this
thesis we present some extensions of the approach introduced by Demarqui et al. (2008)
to fit the PEM with random time grid. The contributions of this work are twofold.
First, we provide a more flexible framework for modeling the randomness of the time grid
of the PEM. Then, we show how this new framework can be extended to accommodate
accordingly other well-known approaches available in the literature. The new methodology
is suitable for time-to-event data arising from any field of knowledge. It can be used in
problems involving hazard function estimation, as well as to fit regression and cure rate
models. The proposed approach can be further extended to model multivariate and/or
spatially correlated survival times. The mechanism used to model the randomness of
the time grid of the PEM has some nice features not shared by other approaches that
have been proposed in the literature. In particular, the constrained imposed on the set of
possible time grids for the PEM turns possible its estimation after directly prior elicitation.
It further guarantees the existence of at least one failure time in each random interval
induced by the random time grids. In addition, the arrangement of the failure times on
the time axes is taking into account in the modeling of the time grid. The resultant models
include other models established in the literature as special cases and provides a flexible
framework for survival data modeling. Properties of the proposed models are discussed
and the use of the new methodology is exemplified through the the analysis of a real data
sets. For comparison purposes, the results obtained are compared with those provided
by other methods existing in the literature. The new approaches introduced in this work
are quite general and can be applied to model time to event data arising from any field
of science, provided that survival times are right censored and the censoring mechanism
is not informative.



vii

Introdução

O avanço computacional observado principalmente nas duas últimas décadas, aliado

à disponibilidade de algoritmos computacionais mais eficientes, tem possibilitado sobre-

maneira o desenvolvimento de métodos estatísticos para a análise de dados com estru-

turas cada vez mais complexas. Em análise de sobrevivência, este recente desenvolvi-

mento tecnológico tem impulsionado o desenvolvimento de modelos semiparamétricos e

não-paramétricos como alternativas mais flexíveis e robustas aos modelos paramétricos.

Em particular, abordagens Bayesianas para a modelagem de dados de sobrevivência tem

recebido lugar de destaque na literatura recente. Seguindo essas tendências, e adotando o

enfoque Bayesiano, nesta tese de doutorado são propostas algumas extensões, com enfoque

Bayesiano, do Modelo Exponencial por Partes (MEP), incluindo a modelagem direta da

função risco, modelos de regressão semi-parametricos e modelos com fração de cura.

O MEP é um dos modelos mais populares para a modelagem de dados de sobrevivên-

cia. Embora paramétrico num senso estrito, o MEP pode ser pensado como um modelo

não-paramétrico, uma vez que a sua função risco não apresenta restrições quanto a sua

forma, como ocorrem nos casos das distribuições Weibull e exponencial, por exemplo. Essa

interessante característica do MEP permite-nos aproximar de maneira satisfatória funções

riscos de variadas formas, sem que haja a necessidade de impormos muitas restrições para

obtermos um ajuste adequado do modelo aos dados. Devido a essa flexibilidade, o MEP

tem sido largamente utilizado para se modelar dados do tipo "tempo até a ocorrência

de um evento de interesse" em uma gama de contextos, tais como situações clínicas in-

cluindo infecção de rins (Sahu et al. (1997)), transplante de coração (Aitkin et al. (1983)),

mortalidade hospitalar (Clark e Ryan (2002)), e estudos envolvendo diferentes tipos de

câncer como leucemia (Breslow (1974)), câncer gástrico (Gamerman (1991)), câncer de

mama (Ibrahim et al. (2001b), veja também para uma aplicação do MEP em dados com

censura intervalar), melanoma (Kim et al. (2006)) e câncer da nasofaringe (McKeague

e Tighiouart (2000)), entre outros. O MEP também tem sido utilizado em engenharia,

em estudos de confiabilidade (Kim e Proschan (1991) e Gamerman (1994)), e problemas

econômicos (Gamerman (1991) e Bastos e Gamerman (2006)). Para uma aplicação em

dados com censura intervalar, veja Sinha et al. (1999).
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O MEP é caracterizado pela aproximação da função risco por segmentos de retas cujos

comprimentos são determinados por uma grade de pontos que divide o eixo do tempo em

um número finito, digamos b, de intervalos. Para construirmos este modelo, precisamos

especificar uma grade de pontos, digamos τ = {s0, s1, ..., sb}, tal que 0 = s0 < s1 < · · · <
sb < ∞. Esta grade τ induz uma partição do eixo do tempo em intervalos contíguos

da forma Ij = (sj−1, sj], dentro dos quais assumimos uma taxa de falha constante, λj,

j = 1, · · · , b. Logo, a função risco, avaliada num tempo t > 0, é aproximada por:

h(t) = λj, t ∈ Ij = (sj−1, sj], j = 1, · · · , b.

Existem vários trabalhos que discutem propriedades e extensões do MEP. Friedman

(1982) faz uso do MEP para modelar a função de risco de base do modelo de Cox, e

apresenta condições para a existência e distribuição assintótica dos estimadores de má-

xima verossimilhanca (EMV) para as taxas de falha e coeficientes da regressão. Kim

e Proschan (1991) discutem algumas vantagens do MEP sobre o estimador de Kaplan-

Meyer para a função de sobrevivência para dados sem covariáveis. Barbosa et al. (1996)

aplicam métodos usados em modelos lineares generalizados para ajustar dados de tempos

de vida acelerados utilizando o MEP. O método da máxima verossimilhanca também é

empregado por Chen e Ibrahim (2001) para ajustar modelos com fração de cura utilizando

o MEP na presença de dados faltantes. A literatura Bayesiana relacionada ao MEP tam-

bém é bastante extensiva. Gamerman (1991) estende o modelo de Cox propondo uma

abordagem dinâmica para modelar dados de sobrevivência em que os efeitos de variáveis

explicativas variam ao longo do tempo. Sahu et al. (1997) usa o MEP para modelar dados

de sobrevivência multivariados. Em tal trabalho, fragilidades (i.e., efeitos aleatórios) são

consideradas para acomodar a correlação inerente aos tempos de sobrevivência de ele-

mentos pertencentes a um mesmo grupo, e um processo correlacionado é assumido para

modelar a incerteza sobre as taxas de falha do MEP. Uma breve revisão sobre algumas

abordagens com enfoque Bayesiano para o MEP pode ser encontrada em Ibrahim et al.

(2001b).

A escolha da grade τ = {s0, s1, ..., sJ} desempenha um papel central na qualidade

do ajuste do MEP. Uma grade contendo um número muito grande de intervalos produz

estimativas instáveis para as taxas de falha, enquanto um número muito pequeno de

intervalos, em geral, leva a uma aproximação grosseira da função de sobrevivência. Na

prática, desejamos uma grade capaz de produzir boas aproximações tanto para a função

risco quanto para função de sobrevivência. Esta questão tem sido um dos grandes desafios

para se trabalhar com o MEP. Embora exista uma vasta literatura relacionada a este
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modelo, a grade τ = {s0, s1, ..., sb} tem sido escolhida de maneira arbitrária na maioria

dos trabalhos disponíveis, entre os quais os citados anteriormente. Kalbfleisch e Prentice

(1973) sugerem que a escolha da grade deveria ser feita independentemente dos dados,

mas não apresentam um procedimento para tanto. Breslow (1974) propõe que se tome

os pontos finais sj dos intervalos Ij = (sj−1, sj] como sendo iguais aos tempos de falha

observados. Outras discussões heurísticas com respeito a possíveis escolhas para a grade

τ = {s0, s1, ..., sb} podem ser encontradas em Gamerman (1991), Sahu et al. (1997) e Qiou

et al. (1999), entre outros.

Na prática, o problema de especificarmos uma grade apropriada para o ajuste do MEP

pode ser resolvido assumindo-se que τ = {s0, s1, ..., sb} é uma quantidade aleatória. O

primeiro esforço efetivo nesta direção é devido a Arjas e Gasbarra (1994). Estes autores

assumen que os pontos finais dos intervalos Ij = (sj−1, sj] são definidos de acordo com um

processo de saltos que seguem uma estrutura de martingal, a qual é incluída no modelo

através das distribuições a priori. Extensões desta abordagem podem ser encontradas em

McKeague e Tighiouart (2000) and Kim et al. (2006).

Apesar do uso de um processo de Poisson homogêneo (PPH) fornecer uma solução para

a questão da modelagem do MEP com grade aleatória, esta estratégia apresenta alguns

inconvenientes. Primeiro, tal abordagem não possibilita a modelagem direta da grade que

define o MEP, não sendo possível, desta forma, que a mesma seja estimada. Além disso, na

ausência de qualquer informação a priori sobre λj, para que λj seja estimável é necessário

que cada intervalo Ij = (sj−1, sj] contenha pelo menos um tempo de falha. Embora esta

condição possa ser relaxada assumindo-se um processo correlacionado para a função risco

(veja, por exemplo, Gamerman (1991, 1994) e Ibrahim et al. (2001b)), intervalos contendo

pelo menos um tempo de falha são preferíveis no processo de estimação. Ademais, a

disposição dos tempos de falha sob o eixo do tempo não é diretamente considerada nesta

abordagem. Finalmente, assumindo de um PPH para gerarmos o número de intervalos

e seus respectivos pontos finais, o número total de parâmetros do modelo passa a ser

aleatório, tornando necessário o uso de um algoritmo MCMC com saltos reversíveis.

Uma alternativa inovadora para a modelagem do MEP com grade aleatória é in-

troduzida por Demarqui et al. (2008). Nesse trabalho, a estrutura de agrupamento do

Modelo Partição Produto (MPP) proposto por Barry e Hartigan (1992) é utilizada para

modelar diretamente a aleatoriedade de τ = {s0, s1, ..., sb}. Desta forma, a abordagem

proposta por Demarqui et al. (2008) é completamente Bayesiana, e permite a estimação

da grade que define o MEP, tornando a modelagem muito mais atrativa e elegante. Sob
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tal abordagem, a modelagem da grade é feita levando-se em conta a disposição dos tem-

pos de falha sob o eixo do tempo, e a existência de pelo menos um tempo de falha em

cada intervalo induzido pela grade aleatória do MEP é garantida. Além disto, apesar de o

número de parâmetros a serem estimados poder variar, esta forma de modelagem mantem

fixado o número máximo de parâmetros do modelo. Além disso, a abordagem proposta

por Demarqui et al. (2008) pode ser estendida em diversas direções, como por exemplo

no ajuste de modelos com covariáveis dependentes do tempo e/ou efeitos das covariáveis

mudando ao longo do tempo, modelos com fração de cura, modelos de fragilidade para

dados de sobrevivência multivariados e/ou espacialmente correlacionados, entre outros,

abrindo, desta forma, um novo leque de pesquisa envolvendo o MEP.

Esta tese é composta por quatro artigos. Em todos esses trabalhos, extensões da

abordagem proposta por Demarqui et al. (2008) para a modelagem da grade do MEP

são consideradas. A metodologia proposta neste trabalho é bastante geral, podendo ser

aplicada para dados do tipo tempo até a ocorrência de um evento de interesse oriundos de

qualquer área do conhecimento. Entretando, é dado enfoque nesta tese à aplicações ori-

undas da área médica, especificamente, de dados de sobrevivência referentes a indívíduos

diagnosticados com câncer. A suposição básica para a aplicabilidade dos modelos aqui

propostos é que os tempos de sobrevivência sejam censurados à direita, ou seja, os tempos

até a ocorrência do evento de interesse são maiores ou iguais aos tempos observados, e que

o mecanismo gerador das censuras seja não informativo. A abordagem proposta também

é apropriada para dados de sobrevivência com a presença de empates. A contribuição de

cada artigo é resumida a seguir.

Os dois primeiros artigos apresentados nesta tese versam sobre a situação mais sim-

ples encontrada na prática em análise de sobrevivência, que consiste na modelagem direta

da função risco na ausência de variáveis explicativas, efeitos aleatórios, etc, assumindo o

MEP com grade aleatória. No primeiro artigo uma análise Bayesiana objetiva é proposta,

assumindo-se como especificações a priori a distribuição de Bayes-Laplace para a grade,

e a distribuição de Jeffreys para as taxas de falha do MEP. O tempo de vida de pacientes

diagnosticados com câncer no cérebro no condado de Windham-CT, EUA, é analisado

utilizando-se a metodologia proposta. Os resultados são comparados com aqueles forneci-

dos pela abordagem frequentista proposta em Kim e Proschan (1991), e uma discussão

sobre as vantagens e desvantagens de cada abordagem é apresentada. No segundo artigo,

uma classe ampla e flexível de distribuições a priori para a modelagem do MEP é intro-

duzida, e quatro diferentes especificações a priori para a taxa de falha são discutidas em

detalhe. A classe proposta inclui como casos particulares o modelo proposto por Demar-



xi

qui et al. (2008), o modelo apresentado no primeiro artigo, e as abordagens introduzidas

por Gamerman (1994) e Ibrahim et al. (2001a). A análise dos tempos de sobrevivência de

indivíduos diagnosticados com câncer no cérebro no condado americano de Windham-CT,

EUA, é novamente apresentada como ilustração dos modelos propostos. As comparações

entre os modelos ajustados considerando-se grades fixas e aleatórias, bem como diferentes

distribuições a priori para a taxa de falha, são realizadas utilizando-se como medida de

comparação a média do logaritmo da pseudo-verossimilhança marginal (veja Ibrahim et

al. (2001b) e referências).

O terceiro artigo trata-se de modelos de regressão semiparamétricos com variáveis

explicativas com efeito agindo multiplicativamente na função risco. O modelo proposto

neste artigo pode ser visto como uma extensão do modelo de riscos proporcionais pro-

posto por Cox (1971), em que é permitido que covariáveis e ou seus correspondentes

efeitos variem ao longo do tempo, e incluí como caso especial o modelo dinâmico in-

troduzido por Gamerman (1991). A análise dos tempos de sobrevivência de indivíduos

diagnosticados com câncer no cérebro no condado americano de Windham-CT é nova-

mente apresentada como ilustração, considerando-se o sexo dos pacientes como variável

explicativa. Para avaliar-se o desempenho do modelo segundo diferentes especificações

a priori, considerando-se grades fixas e aleatórias para o MEP, são utilizados o fator de

Bayes e as probabilidades a posteriori de cada modelo (veja Kass e Raftery (1995) e

Ibrahim et al. (2001b), entre outros).

Finalmente, no último artigo que compõe esta tese, as abordagens propostas por

Ibrahim et al. (2001a) e Demarqui et al. (2008) são apresentadas de maneira unificada,

dando origem a uma nova abordagem semi-parametrica para dados de sobrevivência in-

cluindo uma fração de cura. O modelo resultante difere fundamentalmente do modelo

proposto por Kim et al. (2006), que também assume o MEP com grade aleatória no

contexto de modelos de fração de cura, em dois aspectos. Primeiramente, nossa abor-

dagem modela diretamente a grade de tempos, permitindo, desta forma, a sua estimação,

enquanto que, no modelo proposto por Kim et al. (2006), o uso de um PPH para a

modelagem do MEP com grade aleatória não permite a estimação da mesma. Segundo,

embora em ambas as abordagens uma função risco acumulada associada a um modelo

paramétrico seja utilizada na especificação a priori dos modelos, nossa abordagem mo-

dela diretamente as taxas de falha do MEP, ao contrário do modelo proposto por Kim

et al. (2006), em que distribuições a priori são especificadas para o logaritmo das taxas

de falha, através de uma abordagem dinâmica. O estudo clínico E1673 conduzido pela

ECOG (Eastern Cooperative Oncology Group), EUA, envolvendo pacientes diagnostica-
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dos com melanoma, é usado para ilustrar a aplicação deste modelo. O banco de dados

E1673 tem sido investigado na literatura por outros autores (veja Ibrahim et al. (2001b)

e Kim et al. (2006)), possibilitando, desta forma, a comparação do modelo proposto com

modelos concorrentes. Por este motivo, a soma do logaritmo da pseudo-verossimilhança

marginal é utilizada neste caso como medida de comparação para avaliar o desempenho do

modelo proposto, de acordo com diferentes especificações a priori, bem como estabelecer

comparações com o modelo concorrente introduzido por Kim et al. (2006)).
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Abstract

In this paper we present a fully Bayesian approach to model survival data using the
piecewise exponential model with random time grid. We assume a joint noninformative
improper prior distribution for the time grid and the failure rates of the PEM, and
show how the clustering structure of the product partition model can be adapted to
accommodate improper prior distributions in the framework of the PEM. Properties
of the model are discussed and the use of the proposed methodology is exemplified
through the analysis of a real data set. For comparison purposes, the results obtained
are compared with those provided by other methods existing in the literature.
Keywords: Bayesian inference, Gibbs sampler, piecewise exponential model, product
partition model, survival analysis.

1 Introduction

In many practical situations, specially those including medical data, it is often not possible
to control a significant part of the sources of variation of an experiment. These uncontrolled
sources of variation, when present, may compromise considerably one or more assumptions of
a given parametric model assumed to fit the data, which may lead to misleading conclusions.

The Piecewise Exponential Model (PEM) arises as a quite attractive alternative to para-
metric models for the analysis of time to event data. Although parametric in a strict sense,
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the PEM can be thought as a nonparametric model as far as it does not have a closed form
for the hazard function. This nice characteristic of the PEM allows us to use this model
to approximate satisfactorily hazard functions of several shapes. For this reason, the PEM
has been widely used to model time to event data in different contexts, such as clinical
situations including kidney infection Sahu et al. (1997), heart transplant data Aitkin et al.
(1983), hospital mortality data Clark and Ryan (2002), and cancer studies including leukemia
Breslow (1974), gastric cancer Gamerman (1991), breast cancer Ibrahim et al. (2001) (see
also Sinha et al. (1999) for an application to interval-censored data), melanoma Kim et al.
(2006) and nasopharynx cancer McKeague and Tighiouart (2000), among others. The PEM
has also been used in reliability engineering (Kim and Proschan, Kim and Proschan (1991),
Gamerman, Gamerman (1994)), and economics problems Gamerman (1991), Bastos and
Gamerman (2006).

In order to construct the PEM, we need to specify a time grid which divides the time
axis into a finite number of intervals. Then, for each interval induced by that time grid,
we assume a constant failure rate. Thus, we have a discrete version, in the form of a step
function, of the true and unknown hazard function.

The time grid τ = {s0, s1, ..., sJ} plays a central role in the goodness of fit of the PEM. It
is well know that a time grid having a too large number of intervals might provide unstable
estimates for the failure rates, whereas a time grid based on just few intervals might produce
a poor approximation for the true survival function. In practice, we desire a time grid which
provides a balance between good approximations for both the hazard and survival functions.
This issue has been one of the greatest challenges of working with the PEM. Although
there exist a vast literature related to the PEM, the time grid τ = {s0, s1, ..., sJ} has been
arbitrarily chosen in most of those works. Kalbfleisch and Prentice (1973) suggest that the
selection of the time grid τ = {s0, s1, ..., sJ} should be made independent of the data, but they
do not provide any procedure to do such. Breslow (1974) proposes defining the endpoints
sj of the intervals Ij = (sj−1, sj] as the observed failure times. We shall refer the PEM
constructed based on such time grid to as nonparametric PEM. Other heuristic discussions
regarding adequate choices for the time grid of the PEM can be found in Gamerman (1991),
Sahu et al. (1997) and Qiou et al. (1999), to cite few.

In practice, the problem of specifying a suitable time grid to fit the PEM can be overcome
by assuming that τ = {s0, s1, ..., sJ} is itself a random quantity to be estimated using the
data information. The first effective effort in this direction is due to Arjas and Gasbarra
(1994). In that work it is assumed that the endpoints of the intervals Ij = (sj−1, sj] are
defined according to a jump process following a martingale structure which is included into
the model through the prior distributions. Similar approaches to modeling the time grid
of the PEM are considered by McKeague and Tighiouart (2000) and Kim et al. (2006).
Independently from those works, Demarqui et al. (2008) also propose an approach which
considers a random grid for the PEM. Based on the usual assumptions for the time grid and
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assuming independent gamma prior distributions for the failure rates, they prove that the
prior distribution for the time grid has a product form, and use the structure of the Product
Partition Model (PPM) proposed by Barry and Hartigan (1992) to handle the problem.
By considering such approach, the use of the reversible jump algorithm to sample from the
posteriors is avoided althought the dimension of the parametric space is not fixed.

In this paper we extend the approach proposed by Demarqui et al. (2008) by deriving
a noninformative joint prior distribution for ( λ, τ). Specifically, we assume a discrete uni-
form prior distribution for the random time grids of the PEM and then, conditionally on
those random time grids, we build the joint Jeffreys’s prior for the failure rates. Conditions
regarding the properties of the joint posterior distribution of (λ, τ) are discussed. Finally,
we illustrate the usefulness of the proposed methodology by analyzing the survival time
of patients diagnosed with brain cancer in Windham-CT, USA, obtained from the SEER
(Surveillance, Epidemiology and End Results) database. For comparison purposes, the re-
sults are compared with those provided by other methods existing in the literature.

This paper is organized as follows: the proposed model is introduced in Section 2. The
new methodology is illustrated with the analysis of a real data set in Section 3. Finally, in
Section 4 some conclusion about the proposed model are draw.

2 Model construction

In this section we introduce a piecewise exponential model(PEM) which time grid is a random
variable. We start our model presentation reviewing the piecewise exponential distribution.

2.1 Piecewise exponential distribution and the likelihood

Let T be a non-negative random variable. Assume, for instance, that T denotes the time to
the event of interest. In order to obtain the probability density function of the PEM we need
first to specify a time grid τ = {s0, s1, ..., sJ}, such that 0 = s0 < s1 < s2 < ... < sJ = ∞,
which induces a partition of the time axis into J intervals I1 , ..., IJ , where Ij = (sj−1, sj],
for j = 1, ..., J . Then, we assume a constant rate for each interval induced by τ , that is:

h(t) =


λ1, if t ∈ I1;

λ2, if t ∈ I2;
...
λJ , if t ∈ IJ .

(1)

To conveniently define the cumulative hazard function and the survival and density func-
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tions as well, we define:

tj =


sj−1, if t < sj−1,

t, if t ∈ Ij,

sj, if t > sj,

(2)

where Ij = (sj−1, sj], j = 1, ..., J .
The cumulative hazard function of the PEM is computed from (1) and (2), yielding:

H(t| λ, τ) =
J∑

j=1

λj(tj − sj−1). (3)

Consequently, it follows from the identity S(t) = exp{−H(t)} that the survival function of
the PEM is given by:

S(t| λ, τ) = exp

{
−

J∑
j=1

λj(tj − sj−1)

}
. (4)

The density function of T is obtained by taking minus the derivative of (4). Thus, we
say that the random variable T follows a piecewise exponential model with time grid τ and
vector parameter λ = (λ1, ..., λJ)

′, denoted by T ∼ PED(τ, λ), if its probability density
function is given by:

f(t| λ, τ) = λj exp

{
−

J∑
j=1

λj(tj − sj−1)

}
, (5)

for t ∈ Ij = (sj−1, sj] and λj > 0, j = 1, ..., J .
Let us assume that n individuals were observed independently. Let Xi be the survival

time under study for the i-th element, i = 1., ..., n. Also, assume that there is a right-
censoring scheme working independently of the failure process. Denote by Ci the censored
time for the the i-th element, and assume that Ci ∼ G, for some continuous distribution
G defined on the semi-positive real line. Then, the complete information associated to
the process is (Ti, δi), where Ti = min{Xi, Ci} and δi = I(Xi ≤ Ci) are, respectively, the
observable survival time, and the failure indicator function for the i-th element. Suppose
that (Ti|τ, λ) ∼ PEM(τ, λ), with τ and λ as defined before.

In order to properly construct the likelihood function over the J intervals induced by
τ = {s0, s1, ..., sJ}, assume tij as defined in (2). Further, define δij = δiν

(i)
j , where ν

(i)
j

is the indicator function assuming value 1 if the survival time of the i-th element falls in
the j-th interval, and 0 otherwise. It follows that the contribution of the survival time
ti ∈ Ij = (sj−1, sj] for the likelihood function of the PEM is λδij

j exp{−
∑J

j=1 λj(tij − sj−1)}.
Then, given a time grid τ = {s0, s1, ..., sJ}, we have that the complete likelihood function is
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given by:

L(D|λ, τ) =
n∏

i=1

(
J∏

j=1

λ
δij
j exp {−λj(tij − sj−1)}

)

=
J∏

j=1

λ
νj
j exp {−λjξj} , (6)

where the number of failures, νj =
∑n

l=1 δij, and the total time under test observed at each
interval Ij, ξj =

∑n
i=1(tij − sj−1), are sufficient statistics for λj, j = 1, ..., J .

It is noticeable that, given τ , the likelihood function given in (6) naturally factors into a
product of kernels of gamma distributions. As we shall see in the following, along with mild
conditions on the joint distribution of the time grid and failure rates, it allow us to use the
structure of the PPM proposed by Barry and Hartigan (1992) to model the randomness of
the time grid of the PEM.

2.2 Priors and the clustering structure

Following Demarqui et al. (2008), we start our model formulation by imposing some con-
strains on the set of possible time grids for the PEM. Specifically, we assume the time grid
associated to the nonparametric approach as the finest possible time grid for the PEM. We
further assume that only time grids whose endpoints are equal to distinct observed failure
times are possible. These assumptions guarantee that at least one failure time falls at each
interval induced by the random time grid of the PEM.

The randomness of the time grid of the PEM is modeled through the clustering structure
of the PPM as follows. Let F = {0, y1, ..., ym} be the set formed by the origin and the
m distinct ordered observed failure times from a sample of size n. Then, F defines a
partition of time into disjoint intervals Ij, j = 1, . . . ,m, as defined previously. Further,
denote by I = {1, ...,m} the set of indexes related to such intervals. Let ρ = {i0, i1, ..., ib},
0 = i0 < i1 < ... < ib = m, be a random partition of I, which divides the m initial intervals
into B = b new disjoint intervals. The random variable B denotes the number of clustered
intervals related to the random partition ρ. Finally, let τ = τ(ρ) = {s0, s1, ..., sb} be the
time grid induced by the random partition ρ, where

sj =

{
0, if j = 0,

yij , if j = 1, . . . , b,
(7)

for b = 1, ...,m. Then, it follows that the clustered intervals induced by ρ = {i0, i1, ..., ib}
are given by:

I(j)ρ = ∪ij
r=ij−1+1Ir = (sj−1, sj], j = 1, ..., b. (8)
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Conditionally on ρ = {i0, i1, ..., ib}, we assume that:

h(t) = λr ≡ λ(j)
ρ , (9)

where λ
(j)
ρ denotes the common failure rate related to the clustered interval I(j)ρ , for ij−1 <

r ≤ ij, r = 1, ...,m and j = 1, ..., b.
In order to complete the model specification, we need to specify the joint prior distribution

for ( λρ, ρ). This is done hierarchically by first specifying a prior distribution for the random
partition ρ, and then eliciting prior distributions for λρ, conditioning on ρ.

Under the assumption that there is no prior information available regarding the time
grid, we elicit the Bayes-Laplace prior for ρ = {i0, i1, ..., ib}, that is,

π(ρ = {i0, i1, ..., ib}) =
1

2m−1
. (10)

This prior distribution puts equal mass onto the 2m−1 possible partitions associated with the
time grids formed by time-points belonging to F , reflecting our lack of information about
the time grid. Observe that, if we set P (ρ = {i0, i1, ..., ib}) = 1 for a particular partition, we
return to the usual model that assumes a fixed time grid for the PEM.

Remember that we are defining a random time grid for the PEM in terms of a random
partition of the intervals Ij. Furthermore, we are considering that only contiguous intervals
are possible, and that the endpoint ij of each clustered interval I(j)ρ depends only upon the
previous endpoint ij−1. Thus, it follows that the prior distribution (10) can be written as
the product prior distribution proposed by Barry and Hartigan (1992):

π(ρ = {i0, i1, ..., ib}) =
1

K

b∏
i=1

c
I
(j)
ρ
, (11)

with prior cohesions c
I
(j)
ρ

= 1, ∀ (ij−1, ij) ∈ I and K =
∑

C

∏b
j=1 cI(j)ρ

= 2m−1, where C

denotes the set of all possible partitions of the set I into b disjoint clustered intervals with
endpoints i1, ..., ib, satisfying the condition 0 = i0 < i1 < ... < ib = m, for all b ∈ I.

Conditionally on ρ, we assume the Jeffreys’s prior distribution as a joint noninformative
prior distribution for λρ. Let I( λρ) denote the Fisher information matrix for λρ. Then,
the joint prior distribution for λρ is defined as:

π( λρ|ρ) ∝ |I( λρ)|
1
2

∝
b∏

j=1

(
λ(j)
ρ

)−1
. (12)

One attractive characteristic of the Jeffreys’s prior is that, regardless of the nature of
vector of parameters of model under consideration, this noninformative prior distribution
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is invariant under one-to-one transformations of those parameter, i.e., the Jeffreys’s prior is
invariant to parameterizations. In particular, the product form of (12) also induces indepen-
dence among the failure rates into different intervals.

It follows from (11) and (12) that the (improper) joint prior distribution for ( λρ, ρ) is
given by:

π( λρ, ρ) ∝ π( λρ|ρ)π(ρ)

∝
b∏

j=1

(
λ(j)
ρ

)−1
. (13)

Hence, conditionally on ρ = {i0, i1, ..., ib}, from the product form of (6) and (13) we have
that the joint distribution of the observations has also a product form, given by:

f(D|ρ) =
b∏

j=1

∫ (
λ(j)
ρ

)ηj−1
exp

{
−ξjλ

(j)
ρ

}
dλ(j)

ρ

=
b∏

j=1

Γ(ηj)

ξ
ηj
j

, (14)

where Γ(·) denotes the gamma function.
Thus, the joint distribution of the observations given in (14) satisfies the product con-

dition required for applying the clustering structure of the PPM to model the randomness
of the time grid of the PEM. Bayes inference under noninformative priors for the baseline
hazard distribution was also conisered by Sinha et al. (2003), but from different modeling
perspective.

2.3 Posterior distributions and related inference

The joint posterior distribution of ( λρ, ρ) is given by:

π( λρ, ρ|D) = L(D| λρ, ρ)π( λρ|ρ)π(ρ)

∝
b∏

j=1

(
λ(j)
ρ

)νj−1
exp

{
−λ(j)

ρ ξj
}
. (15)

It is easy to see that (15) is always a proper joint posterior distribution. This is an
immediate result of the model formulation we are proposing. Notice that (15) corresponds
to a product of kernels of gamma distributions, since that νj > 0 and ξj > 0, ∀ j, can always
be verified, regardless of the random time grid of the PEM.

The posterior distribution of ρ = {i0, i1, ..., ib} is obtained after integrating out (15) with
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respect to λρ, that is:

π(ρ|D) =

∫
λρ

L(D| λρ, ρ)π( λρ|ρ)π(ρ)d λρ

=
1

K∗

b∏
i=1

c∗
I
(j)
ρ
, (16)

where c∗
I
(j)
ρ

= (Γ(ηj)/ξ
ηj
j ) denotes the posterior cohesion associated with the j-th clustered

interval I(j)ρ , and K∗ =
∑

C

∏b
j=1 c

∗
I
(j)
ρ

.
Following the structure of the PPM, we have that the posterior distribution for λk,

k = 1, ...,m, is given by the mixture of distributions:

π(λk|D) =
∑

ij−1<k≤ij

π(λ(j)
ρ |D)R(I(j)ρ |D), (17)

where R(I
(j)
ρ |D) is named as posterior relevance, and which denotes the probability of each

clustered interval I(j)ρ to belong to the random partition ρ, and π(λ
(j)
ρ |D) denotes the poste-

rior distribution of the common parameter λ
(j)
ρ , j = 1, ..., b.

Assuming the squared-error loss function, we have that the product estimate for the
failure rate (PEFR) λk is given by:

λ̂k =
∑

ij−1<k≤ij

E(λ(j)
ρ |D)R(I(j)ρ |D), (18)

for j = 1, ..., b and k = 1, ...,m.
Finally, the posterior survival function for a new element, assumed to be independent of

the observed data set, is obtained by averaging the conditional survival function S(y|D, ρ)

over all random partitions ρ = {i0, i1, ..., ib}, that is:

S(y|D) =
∑
ρ

S(y|D, ρ)π(ρ|D), (19)

where

S(y|D, ρ) =

∫
S(y|λ(j)

ρ , ρ)π(λ(j)
ρ |D)dλ(j)

ρ

=

(
1 +

y − sj−1

γj

)−αj j−1∏
r=1

(
1 +

sr − sr−1

γr

)−αr

, (20)

for λ
(j)
ρ = (λ

(1)
ρ , ..., λ

(b)
ρ )′ and y ∈ I

(j)
ρ , j = 1, ..., b. Throughout this paper we shall refer to

(20) as product estimate for the survival function (PESF).
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3 Numerical Illustration

In this section we use the proposed model to analyze the survival times (in months) of 231
individuals diagnosed with brain cancer in Windham-CT, USA, during 1995 to 2004. This
data set was obtained from SEER database. Our interest relies on investigate the perfor-
mance of our model in estimating both the hazard and survival function. The computational
procedures needed to fit the proposed model can be found in Demarqui et al. (2008).

From the 231 patients diagnosed with brain cancer, we observed 134 failures and 97
censored times, resulting in a percentage of failures of the order of 58%. It is also noteworthy
that, as the survival times were measured in months, only 32 of the 134 observed failure times
correspond to distinct failure times. Thus, under the setup we are proposing, these 32 distinct
failure times compose the finest possible time grid for the PEM.

We first examined the performance of the proposed model in estimating the hazard
function by comparing the PEFR with the estimates provided by the competing piecewise
exponential estimators (PEXE) for the failure rates (Kim and Proschan (1991)), namely,
the estimates associated with the nonparametric PEM, obtained via maximum likelihood
approach.
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Figure 1: Estimated hazard function (solid lines) for patients with brain cancer and the 95%
HPD interval (dashed lines) provided by the PEM with random time grid.

When there are no ties among the observed survival times, the PEXE for the failure
rates are not consistent, once we have only one failure time at each interval, regardless of
the sample size n. On the other hand, in the presence of ties, asymptotic results could
hold only under the assumption that the number of ties in each interval increases without
bond, which is not a realistic assumption in practice. Therefore, asymptotic confidence
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intervals for the failure rates should not be computed in these cases. Furthermore, in the
finite sample size scenario, little is known theorically about the PEXE (Kim and Proschan
(1991)). These drawbacks of the maximum likelihood approach are easily overcome in the
setting we are proposing, since HPD intervals do not rely on the sample size n, and can be
obtained straightforwardly.

In Figure 1 we present the PEFR and the PEXE for the failure rates along with the 95%
HPD intervals provided by the proposed model. Notice that PEFR and the PEXE for the
failure rates are quite similar, and yield essentially the same estimated hazard function for
the current data set. From the clinical point of view, the estimated failure rates displayed
in Figure 1 indicate a decreasing hazard function, suggesting that the risk of death by brain
cancer decreases through time.

The well known Kaplan-Meyer product limiting estimator (KME) arises as a standard
estimator for the survival function. In practice, the PEXE yields a smoothing version of
the KME for the survival function. Moreover, as shown in Kitchin et al. (1980), the KME
and PEXE for the survival function are asymptotically equivalent. Thus, for the sake of
simplicity, we compare the PESF with the KME.

Figure 2 displays the estimated survival functions provided by the PESF and the KME,
along with their corresponding 95% confidence and HPD intervals. The similar performance
of the two competing estimators in both point and interval estimation for the survival func-
tion is also evident.
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Figure 2: Estimated survival function (solid lines) for patients with brain cancer and their
corresponding 95% confidence and HPD intervals (dashed lines) provided by the PEM with
random time grid.

Another advantage of the proposed model is that it allows us to enrich the analysis by
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making inferences about the time grid and the number of intervals used to fit the PEM. For
instance, the posterior most probable number of intervals is B = 25, with probability 0.174.
The estimated 95% HPD intervals for B is [21, 29]. Other characteristics of the posterior
sample of the number of intervals of the PEM are given in Table 1 and Figure 3.

Table 1: Summary of sample of the posterior distribution of the number of intervals.

mean sd min max
24.779 2.292 15 32

P2.50 P25.0 P50.0 P75.0 P97.50

20 23 25 26 29
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Figure 3: Posterior distribution of the number of intervals.
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4 Conclusions

In this paper we presented a fully Bayesian approach to model time to event data using
the piecewise exponential model with random time grid. Extending the previous work due
to Demarqui et al. (2008), we elicited noninformative priors for both the time grid and
the failure rates. Fixed the time grid, the Jeffreys’ prior for the failure rates is a product
distribution favoring the use of the structure of the PPM. It also induces independence
among the failure rates in different intervals. Finally, we conducted the analysis of a real
data set to illustrate the performance of the proposed model.

The results obtained from the analysis of the brain cancer data set suggest that the
estimates provided by the proposed model are comparable with the those yielded by other
estimators established in the literature such as the PEXE and the KME. However, interval
estimation is straightforward under the framework we are proposing, and it does not rely
on asymptotic approximations such as the PEXE and the KME do. Other advantage of
the proposed model is that it enriches the analysis by enabling inferences for the time grid
of the PEM. Furthermore, the assumption of a joint noninformative prior distribution for
the failure rates and the time grids is quite attractive in situations where there is no prior
information available.
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Abstract

In this paper we present semiparametric Bayesian approaches for modeling survival
data using the piecewise exponential model (PEM). We assume that the time grid
needed to fit the PEM is a random quantity and propose a flexible class of prior dis-
tributions for modeling jointly the time grid and its corresponding failure rates. The
mechanism used to model the randomness of the time grid of the PEM has several
advantages over other approaches that have been proposed in the literature. The resul-
tant approach includes other models established in the literature as special cases and
provides a flexible framework for survival data modeling. Properties of the model are
discussed in the paper. The use of the proposed methodology is exemplified through the
analysis of the survival times of patients diagnosed with brain cancer in Windham-CT,
USA, obtained from the SEER (Surveillance, Epidemiology and End Results) database.
Keywords: Bayesian inference, Gibbs sampler, product partition model, survival anal-
ysis.

1 Introduction

The Piecewise Exponential Model (PEM) arises as a quite attractive alternative to para-
metric models for the analysis of time to event data. Although parametric in a strict sense,
the PEM can be thought as a nonparametric model as far as it does not have a closed form
for the hazard function. This nice characteristic of the PEM allows us to use this model to
approximate satisfactorily hazard functions of several shapes. For this reason, the PEM has
been widely used to model time to event data in different contexts, such as clinical situations
including kidney infection, Sahu et al. (1997), heart transplant data, Aitkin et al. (1983),
hospital mortality data, Clark and Ryan (2002), and cancer studies including leukemia,
Breslow (1974), gastric cancer, Gamerman (1991), breast cancer, Ibrahim et al. (2001b) (see
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also Sinha et al. (1999) for an application to interval-censored data), melanoma, Kim et al.
(2006), and nasopharynx cancer, McKeague and Tighiouart (2000), among others. The PEM
has also been used in reliability engineering (Kim and Proschan (1991), Gamerman (1994),
and Barbosa et al. (1996)), and economics problems, Gamerman (1991), and Bastos and
Gamerman (2006).

Let T be a non-negative random variable representing a survival time of interest. In
order to construct the PEM, we first need to specify a time grid τ = {s0, s1, ..., sb}, such
that 0 = s0 < s1 < s2 < ... < sb < ∞, which induces a partition of the time axis into b

intervals Ij = (sj−1, sj], for j = 1, ..., b. Then, we assume a constant failure rate for each
interval induced by τ , that is:

h(t) = λj, t ∈ Ij, j = 1, · · · , b.

In order to express the cumulative hazard, the survival and the density functions, we
define:

tj =


sj−1, if t < sj−1,

t, if t ∈ Ij,

sj, if t > sj,

(1)

for j = 1, ..., b.
The cumulative hazard function of the PEM is computed from (1), yielding:

H(t|λ, τ) =
b∑

j=1

λj(tj − sj−1). (2)

It follows from the well-knwon identity S(t) = exp{−H(t)} that the survival function of the
PEM is given by:

S(t|λ, τ) = exp

{
−

b∑
j=1

λj(tj − sj−1)

}
. (3)

The density function associated with T is obtained by taking minus the derivative of (3).
Thus, we say that the random variable T follows a PEM with time grid τ and vector of
parameter λ = (λ1, ..., λb)

′, denoted by T ∼ PED(τ,λ), if its probability density function is
given by:

f(t|λ, τ) = λj exp

{
−

b∑
j=1

λj(tj − sj−1)

}
, (4)

for t ∈ Ij and λj > 0, j = 1, ..., b.
The time grid τ = {s0, s1, ..., sJ} plays a central role in the goodness of fit of the PEM.

A time grid with a large number of intervals might provide unstable estimates for the failure
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rates, whereas a time grid based on just a few intervals might produce a poor approximation
for the true survival function. In practice, we desire a time grid which provides a balance
between good approximations for both the hazard and survival functions. This issue has
been one of the greatest challenges of working with the PEM. Although the PEM has been
widely used in the literature, the time grid τ = {s0, s1, ..., sb} has been arbitrarily chosen in
most of those works. Kalbfleisch and Prentice (1973) suggested that the selection of the time
grid τ = {s0, s1, ..., sb} should be made independent of the data, but they did not provide
any procedure to do such. Breslow (1974) proposed defining the endpoints sj of the intervals
Ij as all the observed failure times. We shall refer the PEM constructed based on such time
grid to as nonparametric PEM. Other heuristic discussions regarding adequate choices for
the time grid of the PEM can be found in Gamerman (1991), Sahu et al. (1997) and Qiou
et al. (1999), to cite few.

In practice, the problem of specifying a suitable time grid to fit the PEM can be overcome
by assuming that τ = {s0, s1, ..., sb} is itself a random quantity to be estimated using the
data information. The first effective effort in this direction is due to Arjas and Gasbarra
(1994). In that work it is assumed that the endpoints of the intervals Ij are defined according
to a jump process following a martingale structure which is included into the model through
the prior distributions. Similar approaches for modeling the time grid of the PEM were
considered by McKeague and Tighiouart (2000) in the context of regression models and Kim
et al. (2006) to fit cure rate models. Independently from those works, Demarqui et al. (2008)
also proposed an approach which considers a random grid for the PEM. Based on the usual
assumptions for the time grid and assuming independent Gamma prior distributions for the
failure rates, they proved that the prior distribution for the time grid has a product form,
and have used the structure of the Product Partition Model (PPM) proposed by Barry and
Hartigan (1992) to handle the problem. By considering such approach, the the reversible
jump algorithm can be used to sample from the posterior distributions of interest.

In this paper we introduce a general framework for modeling survival data using the PEM
via PPM. The proposed methodology offers more flexibility in fitting the PEM by allowing a
broad class of prior distributions for (λ, τ). The resultant model includes as special cases the
models proposed by Demarqui et al. (2008), Gamerman (1994) and Ibrahim et al. (2001a),
and any other model whose prior process satisfies the (conditional) independence condition
for the failure rates and yields a closed form expression for the marginal distribution of the
data. Finally, we illustrate the usefulness of the proposed methodology by analyzing the
survival times of patients diagnosed with brain cancer in Windham-CT, USA, obtained from
the SEER (Surveillance, Epidemiology and End Results) database. The results obtained
by using our approach are compared with those provided by other methods existing in the
literature.

This paper is organized as follows: the proposed model is introduced in Section 2. The
new methodology is illustrated with the analysis of a real data set in Section 3. Finally, in
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Section 4 some conclusions are drawn about the proposed model.

2 A general class for the PEM via PPM

In the following sequence, we formally introduce the general framework for fitting the PEM
via PPM. The notation, as well as the conditions under which our new methodology relies
on, are addressed in Section 2.1. Particular cases arising from objective and subjective prior
specifications for the failure rates of the PEM are properly discussed in Sections 2.2 and 2.3,
respectively.

2.1 Model formulation

We start our model formulation by assuming that only time grids whose endpoints are equal
to distinct observed failure times are possible. This mild constrain on the set of possible
time grids can be justified by the plausible argument that the observed failure times are
themselves good candidates for the endpoints of the intervals needed to fit the PEM. In
addition, such constrain also guarantees the existence of at least one failure time at each
interval induced by the random time grid of the PEM.

Formally speaking, let F = {0, y1, ..., ym} be the set formed by the origin and the m

distinct ordered observed failure times from a sample of size n. Consider the time grid
τ ′ = {0, y′1, ..., y′m′} satisfying τ ′ ⊆ F , where m′, 1 ≤ m′ ≤ m, denotes the maximum
number of intervals admitted a priori. Then, the time grid τ ′ = {0, y′1, ..., y′m′} induces the
following set of disjoint intervals:

Ij =

{
(0, y′1], if j = 1,
(y′j−1, y

′
j], 1 < j ≤ m′.

(5)

Further, denote by I = {1, ...,m′} the set of indexes related to the intervals defined in (5).
Let ρ = {i0, i1, ..., ib}, 0 = i0 < i1 < ... < ib = m′, be a random partition of I dividing the
m′ initial intervals given in (5) into B = b new disjoint intervals, where the random variable
B denotes the number of clustered intervals related to the random partition ρ. Finally, let
τ = τ(ρ) = {s0, s1, ..., sb} be the time grid induced by the random partition ρ, where

sj =

{
0, if j = 0,

y′ij , if j = 1, . . . , b,
(6)

for b = 1, ...,m′. Hence, it follows from (5) and (6) that the clustered intervals induced by
ρ = {i0, i1, ..., ib} are given by:

I(j)ρ = ∪ij
r=ij−1+1Ir = (sj−1, sj], j = 1, ..., b. (7)
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Then, given ρ = {i0, i1, ..., ib}, we assume that:

h(t) = λr ≡ λ(j)
ρ , (8)

where λ
(j)
ρ denotes the common failure rate associated with the clustered interval I(j)ρ , ij−1 <

r ≤ ij, r = 1, ...,m′ and j = 1, ..., b.
In order to properly construct the likelihood function over the b intervals induced by

τ(ρ) = {s0, s1, ..., sb}, we redefine (1) in order to accommodate accordingly the information
of the n elements belonging to the observed sample as:

tij =


sj−1, if ti < sj−1,

ti, if ti ∈ I
(j)
ρ ,

sj, if ti > sj,

(9)

for j = 1, ..., b and i = 1, ..., n. Further, we also define δij = δiν
(i)
j , where ν

(i)
j is the indicator

function assuming value 1 if the survival time of the i-th element falls in the j-th interval,
and 0 otherwise.

Due to the one-to-one relationship between τ and ρ, it is possible to express the likelihood
function in terms of the random partition ρ. Then, under the assumption that there is a right-
censoring scheme working independently of the failure process it follows that the contribution
of a survival time (either failure or censored) ti ∈ I

(j)
ρ for the likelihood function of the PEM

reduces to
∏b

j=1(λ
(j)
ρ )δij exp{−λ

(j)
ρ (tij − sj−1)}. Thus, the entire likelihood function can be

written as:

L(λρ, ρ|D) =
n∏

i=1

(
b∏

j=1

(λ(j)
ρ )δij exp

{
−λ(j)

ρ (tij − sj−1)
})

=
b∏

j=1

(λ(j)
ρ )ηj exp

{
−λ(j)

ρ ξj
}
, (10)

where the number of failures, ηj =
∑n

l=1 δij, and the total time under test observed at each
interval I(j)ρ , ξj =

∑n
i=1(tij − sj−1), are sufficient statistics for λ

(j)
ρ , j = 1, ..., b.

The joint prior distribution for (λρ, ρ) is specified hierarchically by first eliciting a prior
distribution for the random partition ρ, and then specifying a prior distribution for λρ,
conditionally on ρ, that is,

π(λρ, ρ) = π(λρ|ρ)π(ρ). (11)

Demarqui et al. (2008) presented arguments justifying that the prior distribution of ρ
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can be written as the product form:

π(ρ = {i0, i1, ..., ib}) ∝
b∏

i=1

c
I
(j)
ρ
, (12)

for 0 = i0 < i1 < ... < ib = m′ and b ∈ I. Here, c
I
(j)
ρ

, called prior cohesion, is a positive
quantity representing the degree of similarity among the intervals being clustered. Moreover,
accordingly normalized, the prior cohesions c

I
(j)
ρ

can be interpreted as the one-step transition

probability of the Markov Chain defined by the endpoints of the clustered intervals I
(j)
ρ ,

j = 1, ..., b.
We further assume that, conditionally on ρ, the joint prior distribution for λρ can be

expressed by the following product form:

π(λρ|ρ) =
b∏

j=1

π(λj
ρ). (13)

This assumption is equivalent to assume that, for a given ρ, the common failure rates are
independent a priori. Hence, conditionally on ρ, it follows from (10) and (13) that the joint
(marginal) distribution of the observations reduces to the product form:

f(D|ρ) =
b∏

j=1

∫ (
λ(j)
ρ

)ηj
exp

{
−ξjλ

(j)
ρ

}
π(λ(j)

ρ )dλ(j)
ρ . (14)

According to Barry and Hartigan (1992), any joint distribution of the observations and
partitions that satisfies the product condition for the partitions and the independence condi-
tion for observations, given the partition, follows a PPM. Consequently, the product condi-
tion follows for the joint distribution of the observations given in (14), provided the integrals
are well defined (where we mean by well defined finite intervals), and the clustering structure
of the PPM can be extended for modeling the randomness of the time grid of the PEM.

The joint posterior distribution of (λρ, ρ) is:

π(λρ, ρ|D) ∝ L(λρ, ρ|D)π(λρ|ρ)π(ρ)

≡ π(λρ|ρ,D)π(ρ|D). (15)

Then, it follows from (12) and (13) that the posterior distribution of the random partition
ρ is given by:

π(ρ|D) ∝ f(D|ρ)π(ρ)

∝
b∏

i=1

c∗
I
(j)
ρ
, (16)
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where c∗
I
(j)
ρ

=
(∫

λ
(j)
ρ
(λ

(j)
ρ )νj exp

{
−λ

(j)
ρ ξj

}
π(λ

(j)
ρ )dλ

(j)
ρ

)
c
I
(j)
ρ

denotes the posterior cohesion

associated with j-th clustering interval I(j)ρ .
Following the structure of the PPM, we have that the posterior distribution of λk is given

by the following mixture of distributions:

π(λk|D) =
∑

ij−1<k≤ij

π(λ(j)
ρ |D, ρ)R(I(j)ρ |D), (17)

for k = 1, ...,m′, where R(I
(j)
ρ |D) is named as posterior relevance, and denotes the probability

of each clustered interval I(j)ρ to belong to the random partition ρ, and π(λ
(j)
ρ |D, ρ) denotes

the full conditional posterior distribution of the common parameter λ
(j)
ρ , j = 1, ..., b.

Then, assuming the squared-error loss function, it follows that the product estimate for
the failure rate (PEFR) λk is given by:

λ̂k =
∑

ij−1<k≤ij

E(λ(j)
ρ |D, ρ)R(I(j)ρ |D), (18)

for j = 1, ..., b and k = 1, ...,m′.
Under this structure, the posterior survival function for a new element, assumed to be

independent of the observed data set, is obtained by averaging the conditional survival
function S(y|D, ρ) over all random partitions ρ = {i0, i1, ..., ib}, that is:

S(y|D) =
∑
ρ

S(y|D, ρ)π(ρ|D), (19)

where

S(y|D, ρ) =

∫
S(y|λρ, ρ)π(λρ|D, ρ)dλρ,

(20)

for λρ = (λ
(1)
ρ , ..., λ

(b)
ρ )′. Throughout this paper we shall refer to (20) as product estimate for

the survival function (PESF).

2.2 Objective prior elicitation

A full objective analysis can be performed by assuming the Bayes-Laplace prior distribution
for ρ, and, the Jeffreys prior distribution for λρ, given ρ.

The Bayes-Laplace prior distribution for ρ corresponds to the special case of the prior
distribution (12) in which c

I
(j)
ρ

= 1, ∀ j such that (ij−1, ij) ∈ I. Now, given ρ, let I(λρ)

denote the Fisher information matrix associated with λρ. The Jeffreys prior distribution for
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λρ is defined as:

π(λρ|ρ) ∝ |I(λρ)|
1
2

∝
b∏

j=1

(
λ(j)
ρ

)−1
. (21)

An attractive characteristic of the Jeffreys prior is that it is invariant under param-
eterizations, a desired feature of objective prior distributions. Moreover, it also induces
independence among the λ

(j)
ρ ’s. Thus, the product condition required to use the structure of

the PPM to model the PEM with random time grid is satisfyied.
It follows from (12) and (21) that the joint prior distribution for (λρ, ρ) is given by:

π(λρ, ρ) ∝
b∏

j=1

(
λ(j)
ρ

)−1
, (22)

which is an improper prior distribution.
Replacing (22) in (15), the joint posterior distribution of (λρ, ρ) becomes:

π(λρ, ρ|D) ∝
b∏

j=1

(
λ(j)
ρ

)νj−1
exp

{
−ξjλ

(j)
ρ

}
, (23)

which is a proper posterior distribution. This is a direct consequence of our model formu-
lation, which ensures that both νj > 0 and ξj > 0, ∀ j = 1, ..., b, regardless of ρ. Moreover,
after a simple algebra, the posterior distribution of ρ in (16) becomes:

π(ρ|D) ∝
b∏
j=

Γ(νj)

ξ
ηj
j

,

where Γ(·) denotes the gamma function.

2.3 Subjective prior elicitation

The gamma family of distributions has been widely used as prior distributions for the fail-
ure rates of the PEM. This family of distributions corresponds to the conjugate family of
prior distributions for the exponential sample family, and facilitates the inference processs
regarding the PEM. In addition, structures of dependence between successive intervals can
be easily introduced through its hyper-parameters (Arjas and Gasbarra (1994), Gamerman
(1994) and Ibrahim et al. (2001a), among others).

In this section we consider three different ways to build prior distributions for the failure
rates of the PEM using Gamma distributions.
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2.3.1 Independent priors

Assume that the components of λρ are conditionally independent, with each λ
(j)
ρ following a

gamma distribution with shape and scale parameters αj and γj, respectively, for j = 1, ..., b.
Then, considering (12), the joint prior distribution for (λρ, ρ) becomes:

π(λρ, ρ) ∝
b∏

j=1

(
λ(j)
ρ

)αj−1
exp

{
−γjλ

(j)
ρ

}
c
I
(j)
ρ
. (24)

In the case that information regarding the mean of the failure rates and their variances is
available, informative prior distributions for the λ

(j)
ρ ’s can be obtained by solving the system

of equations formed by E(λ
(j)
ρ ) = αj/γj and V (λ

(j)
ρ ) = αj/γ

2
j . Furthermore, by replacing

(24) in (15), the posterior distribution of (λρ, ρ) becomes:

π(λρ, ρ|D) ∝
b∏

j=1

γ
αj

j

Γ(αj)

(
λ(j)
ρ

)αj+ηj−1
exp

{
−[γj + ξj]λ

(j)
ρ

}
c
I
(j)
ρ
. (25)

It is straightforward to show that the posterior distribution for the random partition ρ

given in (16) reduces to:

π(ρ|D) ∝
b∏
j=

γ
αj

j

Γ(αj)

Γ(αj + ηj)

(γj + ξj)αj+ηj
c
I
(j)
ρ
,

and, not surprisingly, (λ(j)
ρ |D, ρ) ∼ Ga(αj + ηj, γj + ξj), for all j = 1, ..., b.

Although the gamma family of distributions allows for subjective elicitation of the prior
distribution of each common failure rate λ

(j)
ρ , due to the randomness of ρ, it is not possible,

in practice, to set a "realistic" informative prior distribution for each component of λρ by
a direct specification of the hyper-parameters αj and γj. In this fashion, in the original
formulation of the PEM via PPM, Demarqui et al. (2008) assumed that the common fail-
ure rates were i.i.d. with λ

(j)
ρ ∼ Ga(α0, γ0), ∀ j = 1, ..., b. Nevertheless, considering this

specification, the prior means indicate a constant hazard function through time (equals to
α0/γ0), which may not be in accordance with a gamma of hazard functions associated with
many applications. Therefore, this drawback turns necessary the search for more compre-
hensive mechanism for the prior elicitation of λρ. In the next two subsections we discuss two
approaches which overcome this drawback.

2.3.2 Dynamic priors

In the following we show how the time grid of the PEM can be modeled assuming a product
distribution for the random partition ρ as well as a dynamic approach for the components
of λρ. In this setup, the dynamic model originally proposed by Gamerman (1994) arises as
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a special case when we set P (ρ = {i0, i1, ..., ib}) = 1 for a particular partition.
Let D

(0)
ρ be the subjective information that we have before the data has been observed.

Denote by D
(j)
ρ the set of all information gathered up to the j-th clustered interval I(j)ρ ,

j = 1, ..., b. We perform the following sequential analysis:

i) Set j = 1, and specify (λ
(j)
ρ |D(j−1)

ρ , ρ) ∼ Ga(αj; γj);

ii) Update the prior available information contained in (λ
(j)
ρ |D(j−1)

ρ , ρ) with the data in-
formation provided by I

(j)
ρ , yielding (λ

(j)
ρ |D(j)

ρ , ρ) ∼ Ga(αj + ηj; γj + ξj);

iii) Perform the parametric evolution (through time) by setting (λ(j+1)
ρ |D(j)

ρ , ρ) ∼ Ga(αj+1; γj+1),
where αj+1 = (αj + ηj)ϕ and γj+1 = (γj + ξj)ϕ, with 0 < ϕ ≤ 1;

iv) Increment j, return to step (ii), and repeat the cicle until all data information has
been processed.

In the literature of dynamic models, the complete conditional posterior distribution
(λ

(j)
ρ |D(j)

ρ , ρ) is often referred to as online distribution. The quantity ϕ, called discount
factor, controls the passage of information through successive intervals. As closer to one is
ϕ, as much information is allowed to pass from one interval to another. On the other hand,
as ϕ → 0, no information passes to the next interval, providing b independent estimations.
Moreover, by setting (λ

(j)
ρ |D(j−1)

ρ , ρ) ∼ Ga([αj−1 + ηj−1]ϕ; [γj−1 + ξj−1]ϕ), we have a prior
distribution for λ(j)

ρ which has the same mean of (λ(j−1)
ρ |D(j−1)

ρ , ρ), but with a variance larger
than V (λ

(j−1),ρ
ρ |D(j−1)

ρ , ρ).
The dependence between λ

(j)
ρ ’s associated with adjacent clustered intervals is specified

through the hyper-parameters of their corresponding prior distributions. In this fashion, the
components of λρ are conditionally independent, and, consequently, the joint prior distribu-
tion for (λρ, ρ) can be written in the product form given in (24). Therefore, the conditions
stated earlier in this text to model the randomness of the time grid of the PEM still hold in
the present case.

The sequential analysis described above is equivalent to assume that the common failure
rates λ

(j)
ρ ’s are related via the following evolution equation:

log(λ(j)
ρ ) = log(λ(j−1)

ρ ) + εj, (26)

where εj is a stochastic error with mean zero and variance given by:

σ2
j =

(
1

ϕ
− 1

)
V [log(λ(j−1)

ρ )|D(j−1)
ρ , ρ].

From equation (26) it is possible to obtain the complete conditional posterior distributions
of each common failure rate λ(j)

ρ given all the available information contained in D
(b)
ρ , denoted

by (λ
(j)
ρ |D(b)

ρ , ρ), j = 1, ..., b. These distributions, referred to as smoothed distributions, are
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more informative than the online distributions (λ
(j)
ρ |D(j)

ρ )’s, which are based only upon the
information available up to the current interval I(j)ρ , and therefore, should be preferred when
making inferences for the components of λρ. The recursive (smoothing) algorithm used to
obtain the smoothed distributions (λ

(j)
ρ |D(b)

ρ , ρ)’s can be found in Gamerman (1991).

2.3.3 Structural priors

In this section we consider the structural (hierarchical) framework, first introduced by
Ibrahim et al. (2001a) in the context of cure rate models, to set a prior distribution for
λρ. We refer such approach to as structural because the prior distribution for the λ

(j)
ρ ’s are

built under the assumption that both their means and variances are functions of a cumu-
lative hazard function associated with a parametric distribution. Such structural modeling
approach is particularly suitable for situations in which the estimation of the right tail sur-
vival curve is affected by the lack of data information.

Assume that the components of λρ are independent a priori so that each λ
(j)
ρ has a

Gamma prior distribution with mean and variance, respectively, given by:

µj = E(λ(j)
ρ |λ0, κ) =

H0(sj)−H0(sj−1)

sj − sj−1

(27)

and
σ2
j = V (λ(j)

ρ |λ0, κ) = µjκ
j, (28)

where H0(·|λ0) is a cumulative hazard function of a parametric survival distribution F0(·|λ0).
The choice of F0(·|λ0) is arbitrary and must reflect someone’s opinion about the right tail

of the survival curve. Note that, by taking κ → 0, the prior process approaches h0(t|λ0) =
d
dy
H0(t|λ0), once σ2

j → 0 and we have that h0(t|λ0) ≈ H0(sj)−H0(sj−1)

sj−sj−1
, for t ∈ Ij = (sj−1, sj],

j = 1, ..., b. Therefore, κ controls the degree of parametricity along the time axis. In
particular, when j → ∞, the right tail of the survival curve converges to the parametric
model F0(·|λ0), regardless of the value assumed for κ (Ibrahim et al. (2001a)).

Considering the third parameter λ0 (possible vector valued), the posterior distribution
given in (15) becomes:

π(λρ, λ0, ρ|D) ∝ L(λρ, ρ|D)π(λρ|λ0, ρ)π(ρ)π(λ0)

≡ π(λρ|λ0, ρ,D)π(λ0, ρ|D),

where π(λ0) corresponds to the prior distribution of λ0, and does not depend on λρ and ρ.
Sampling from the posterior distribution π(λρ|λ0, ρ,D) is straightforward since we have

(λ
(j)
ρ |λ0, ρ,D) ∼ Ga(µjκ

−j + ηj;κ
−j + ξj), 1 ≤ j ≤ b. In order to sample from π(λ0, ρ|D), we
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use the following complete conditional posteriors distributions:

π(ρ|λ0,D) ∝
b∏

j=1

(
(1/κj)µjκ

−j

Γ(µjκ−j)

Γ(µjκ
−j + ηj)

(κ−j + ξj)µjκ−j+ηj

)
c(j)ρ (29)

and

π(λ0|ρ,D) ∝

(
b∏

j=1

(1/κj)µjκ
−j

Γ(µjκ−j)

Γ(µjκ
−j + ηj)

(κ−j + ξj)µjκ−j+ηj

)
π(λ0). (30)

The similarity between the complete conditional posterior distributions given in (26) and
(29) is evident, since the second one depends on λ0 only through the µj’s. Therefore, the
Gibbs sampling algorithm proposed by Barry and Hartigan (1993) can still be used to sample
from (29).

We emphasize here that, although that structural modeling approach has been considered
before by Ibrahim et al. (2001a), an approach considering simultaneously that hierarchical
structure along with a random time grid for the PEM have not been considered in the
literature yet.

3 Analysis of real data set

We use the proposed methodology in this section to analyze the survival times (in months)
of 231 individuals diagnosed with brain cancer in Windham-CT, USA, during 1995 to 2004.
This data set was obtained from SEER database. Our interest here relies on investigate
the performance of the models discussed in the previous sections in estimating both the
hazard and survival function. We further carry out a sensitivity analysis taking into account
different specifications for m′, ϕ and κ as well.

From the 231 patients diagnosed with brain cancer in this period, it was observed 134
deaths and 97 censored times, resulting in a percentage of failures of the order of 58%. It
is also noteworthy that, since the survival times were measured in months, only 32 of the
134 observed failure times were distinct failure times. In order to set the finest time grid for
the PEM we proceed as follows. Given m′, we obtain k and r such that m = km′ + r. The
elements of τ ′ are then chosen so that the first m′ − r intervals have k failure times and the
remaining r intervals have k+1 failure times. We note that this procedure for specifying the
finest time grid assumed for the PEM is appealing in the sense that it allows more failure
times to be placed in the last intervals, where less data information is available.

In the following analysis, we will restrict our attention to discrete uniform prior distri-
butions for the random partition ρ. Such prior distributions can be obtained by setting
c
I
(j)
ρ

= 1 for all j = 1, ..., b, b ∈ I. Other prior specifications for the random partition ρ, can
be found in Demarqui et al. (2008). We refer to as Model 1 the model based on the objective
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Jeffreys prior distribution for λρ introduced in Section 2.2. The model originally proposed
by Demarqui et al. (2008), briefly discussed in Section 2.3, is referred to as Model 2. For
that specific model, it is assumed that λ

(j)
ρ ∼ Ga(0.001; 0.001) for all j = 1, ..., b, and b ∈ I,

so that the λ
(j)
ρ ’s have a flat prior distribution with mean 1 and variance equals to 1000.

The dynamic model described in Section 2.3.2 is referred to as Model 3. For that case, we
assume that (λ

(1)
ρ |D(0)

ρ ) ∼ Ga(0.001; 0.001). Finally, Model 4 is referred to as the structural
model discussed in Section 2.3.3. For that model the Weibull distribution with cumulative
hazard function H(t|λ0) = exp(β)tζ , where λ0 = (ζ, β)′ was considered. Consequently, it
follows that µj = exp(β)(sζj − sζj−1)/(sj − sj−1) and σ2

j = κj exp(β)(sζj − sζj−1)/(sj − sj−1).
In this case, we assumed that ζ and β are independent a priori, with ζ ∼ Ga(0.001; 0.001)

and β ∼ N(0; 1000), respectively.
Samples from the quantities of interest were obtained by using MCMC techniques. Specif-

ically, the Gibbs sampler algorithm proposed by Barry and Hartigan (1993) was considered
to sample from the posterior distribution of the random partition ρ, and the adaptive rejec-
tion Metropolis sampling (ARMS) algorithm introduced by Gilks et al. (1995) was used to
sample from the posterior distribution of λ0 = (ζ, β)′, whereas samples from the posterior
distribution of λρ were obtained straightforwardly. For all scenarios considered in our analy-
sis, it was considered single chains of size 100,000. Samples of size 1,000 were obtained after
considering a burn-in period of 50,000 iterations and a lag of 50 to eliminate correlations.
All computational procedures were implemented in the Object-oriented Matrix Program-
ming Language Ox version 5.1 (Doornik; 2007), and are available from the first author upon
request.

In order to evaluate the performance of the models under investigation, we considered
the average of the logarithm of the pseudo-marginal likelihood as a measure to assess the
goodness of fit of each model. Such measure, which we shall refer to as B-statistic, is based on
the conditional predictive ordinate (CPO) statistic (see Ibrahim et al. (2001b) and references
therein), and is defined as

B =
1

n

n∑
i=1

log(CPOi). (31)

Here, the quantity CPOi corresponds to the posterior predictive density of ti if ti is a failure
time, and the posterior predictive probability of the event (T > ti) if ti is a censored time.
In both cases, it can be shown that the CPOi can be well approximated by

ĈPOi = M

{
M∑
l=1

[L(ti|λl
ρl , ρ

l)]−1

}−1

, (32)

where (λl
ρl , ρ

l) corresponds to the l-th draw of the the posterior distribution π(λρ, ρ|D),
l = 1, ...,M , and M is the size of the posterior sampled distribution of the parameters.
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Table 1: B-statistic for all fitted models.

random fixed
m′ = 10 m′ = 20 m′ = 32 m′ = 10 m′ = 20 m′ = 32

Model 1 -2.503350 -2.516439 -2.606023 -2.506534 -2.532250 -2.63161
Model 2 -2.513367 -2.510599 -2.511427 -2.506528 -2.532218 -2.669160
Model 3 random fixed

ϕ m′ = 10 m′ = 20 m′ = 32 m′ = 10 m′ = 20 m′ = 32
0.05 -2.496495 -2.49401 -2.502240 -2.498875 -2.518719 -2.599979
0.25 -2.496463 -2.491982 -2.49662 -2.493988 -2.493242 -2.518089
0.50 -2.506806 -2.496618 -2.494191 -2.502427 -2.492373 -2.495125
0.75 -2.548372 -2.518222 -2.503464 -2.540568 -2.509052 -2.495988
0.95 -2.674377 -2.65032 -2.621556 -2.65979 -2.626306 -2.587857

Model 4 random fixed
κm′

m′ = 10 m′ = 20 m′ = 32 m′ = 10 m′ = 20 m′ = 32
1× 10−15 -2.512682 -2.508459 -2.508458 -2.514249 -2.518155 -2.517366
1× 10−10 -2.506334 -2.502427 -2.508058 -2.504214 -2.519977 -2.513245
1× 10−05 -2.501480 -2.495374 -2.512812 -2.501460 -2.515992 -2.522181
1× 10−01 -2.502772 -2.501773 -2.516225 -2.500776 -2.519597 -2.570711

It can be noticed from Table 1 and Figure 1 that, when random time grids were assumed
to fit Model 1, it provided better fits than the models with fixed time grids, independently of
the choice for m′. Looking at Figure 1, we further noticed that, either when fixed or random
time grids were assumed to fit this model, poorer fits were obtained as the number of initial
intervals m′ was increased.

Figure 2 displays the estimated hazard functions assuming fixed and random time grids
for the PEM with m′ = 10. We further show in Figure 2 the estimated survival functions
provided by the PEM with random time grid considering m′ = 10, 20 and 32, and the Kaplan
& Meier estimate (KME). By analyzing separately the estimates for both the hazard and
survival functions regarding each scenario considered for Model 1, we found that, given m′,
Model 1 yielded essentially the same estimates for both the hazard and survival functions of
the PEM when either fixed or random time grids were assumed.The corresponding estimated
survival functions were quite similar, showing slight differences only in the last months of
follow up.

According to Table 1, Model 2 showed its best performance when we set a fixed time
grid for the PEM along with m′ = 10. Nevertheless, despite the best performance associated
with this specific scenario, we can observe from Figure 1 that, if m′ was set equal to either
20 or 32, better fits were obtained when random time grids were assumed for Model 2. It
is also noticeable that Model 2 presented similar performances for all choices of m′ when
random time grids were considered, whereas the goodness of fit associate with the models
fitted assuming fixed time grids were strongly affected by larger values of m′.

In opposite to what was found for Model 1, regardless of m′, the estimated hazard
functions, displayed in Figure 3, provided by Model 2 differed substantially when random and
fixed time grids were assumed to fit the PEM. Specifically, for all choices of m′ we observed
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Figure 1: B-statistic for Models 1 and 2: random time grid (solid line) and fixed time grid
(dashed line).
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Figure 2: Estimated hazard and survival functions provided by Model 1.

that the estimated hazard functions associated with random time grid were considerably
smoother than those obtained when fixed time grids were considered.

In order to evaluate the effect of different choices of ϕ on the performance of Model
3, we considered ϕ equals to 0.05, 0.25, 0.50, 0.75 and 0.95. As shown in Table 1, Model
3 presented the best performances among all fitted models. However, the performance of
this model was substantially influenced by different choices of ϕ and m′. Specifically, by
examining Figure 4 when random time grids were assumed, it is noteworthy a well defined
association between the performance of Model 3 and ϕ (with better performances for small
values of ϕ), regardless of the choice of m′. Figure 4 also indicates that large values of m′
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Figure 3: Estimated hazard and survival functions provided by Model 2.

tend to produce poorer fits. Moreover, when fixed time grids were assumed, the effect of ϕ on
the goodness of fit of the model seems to depend strongly on the number of initial intervals
m′ than as it was observed for the random time grid scenario, with better performances for
intermediate values of ϕ.

In Figures 5 and 6 we display the estimated hazard and survival functions, respectively,
provided by Model 3 considering the extreme choices for ϕ, say ϕ equals to 0.05 and 0.95, for
m′ = 10, 20 and 32. It is possible to observe in Figure 5 that there is relationship between
the choices of m′ and ϕ and the smoothness of the hazard functions provided by Model
3. Specifically, by increasing the value of ϕ, we got the smoother estimates for the hazard
function for each choice of m′, whereas small values of ϕ provided less smooth estimates.
Regardless of the choice of m′, for both choices of ϕ, when a random time grid was assumed
for Model 3, it provided smoother estimates for the hazard function than the corresponding
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Figure 4: B-statistic for Model 3 - m′ = 10 (solid line), m′ = 20 (dashed line), and m′ = 32
(dotted line).

model with fixed time grid. Indeed, this result was verified for all choices of ϕ. This fact was
already expected since that by assuming a random time grid for the PEM, we are allowing
some intervals associated with the finest time grid to be clustered, which reduces the number
of intervals and, consequently, leads to smoother estimates for the hazard function.

The estimated survival functions provided by Model 3 assuming ϕ = 0.05 were quite
similar, with slight differences observed only in the last months of follow up, independently
of the choice of m′. Such estimates are also in agreement with the KME of the survival
function, indicating that the models seems to be well fitted. By either assuming fixed and
random time grids for the PEM we also obtained similar estimated survival functions for
ϕ = 0.95. Nevertheless, we observed that the corresponding estimated survival functions
for m′ = 32 were substantially different from those estimates obtained assuming the finest
time grids with 10 and 20 intervals. In addition, such estimates were considerably set apart
from the KME of the survival function, which corroborates with the lack of goodness of fit
indicated by the analysis of the B-statistic displayed in Table 1. This can be understood as
a result of the effect of the over-smoothed estimated hazard functions shown in Figure 5.

Turning our attention to Model 4, we investigated the role played by the smoothing
parameter κ on the goodness of fit of this model. We performed a sensitivity analysis
considering different values of κ. With this aim we set κ so that κm′ was equal to 10−01,
1×10−05, 1×10−10 and 1×1015, respectively. In the random time grid scenario we observed
from Figure 7 that, regardless of the choice of κm′ , the best fitted models were obtained
when m′ = 20. Close results were obtained by assuming m′ = 10, and, in both cases, the
values of κ so that κm′ was equal to 10−05 provided the best fits. For m′ = 32 we observed
a decreasing in the goodness of fit as κm′ got larger. Differently from what was observed in
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Figure 5: Estimated hazard functions provided by Model 3: random time grid and ϕ = 0.05
(a), fixed time grid and ϕ = 0.05 (b), random time grid and ϕ = 0.95 (c), and fixed time
grid and ϕ = 0.95 (d),

the random time grid scenario, in the fixed one it can be noticed in Figure 7 that the best
fitted models were obtained by setting m′ = 10. In addition, when we set m′ = 32, we can
observe that the goodness of fit of the model was considerably affected as the value of κm′

is changed. The worst performance was obtained for κm′
= 1× 10−01.

We show in Figures 8 and 9 the plots regarding the estimated hazard and survival
functions provided by Model 4 considering m′ = 10, 20 and 32, for κm′

= 1 × 10−01 and
κm′

= 1 × 10−15. Taking into account scenarios (a) and (b) in Figure 8, it can be observed
that the estimated hazard functions provided by Model 4 assuming a random time grid for
the PEM were smoother than those yielded by the model with fixed time grid, regardless of
the choice of m′. However, when we look at scenarios (c) and (d) in Figure 8, we can see that,
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Figure 6: Estimated survival functions provided by Model 3: random time grid and ϕ = 0.05
(a), fixed time grid and ϕ = 0.05 (b), random time grid and ϕ = 0.95 (c), and fixed time
grid and ϕ = 0.95 (d),

in opposite to what was observed for scenarios (a) and (b), for all choices of m′ smoother
estimates for the hazard function were obtained when the model with fixed grid was con-
sidered. In order to understand such result, we need to have in mind that, as the value of
κ was fixed in advance, whenever a random time grid for the PEM was assumed, b ≤ m′

and, consequently, κm′ ≤ κb, which yields "less" informative prior distributions for the λ(j)
ρ ’s.

Hence, when κm′ was too small (it turns out that this was the case for κm′ ≤ 1× 10−05 for
the current data set), the model with fixed time grid was forced to be more parametric than
the model with random time grid, which explains the results displayed in Figure 8.

As we have already pointed out, one of the many attractive features of the approach we
are proposing is that it enable us to make inferences regarding both the time grid of the
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Figure 7: B-statistic for Model 4 - m′ = 10 (solid line), m′ = 20 (dashed line), and m′ = 32
(dotted line).

PEM as well as its corresponding number of (clustered) intervals. In this fashion, we show
in Table 2 the most probable time grids associated with the best fitted models according to
Table 1. The corresponding posterior distributions of the number of clustered intervals are
displayed in Figure 10, for which some summary statistics are presented in Table 3. Finally,
Figure 11 provides an insight of the reduction in the number of initial intervals assumed for
the PEM due to the clustering structure used to model the randomness of the time grid.

Table 2: Most probable time grids associated with the best fitted models.

Model time grid probability
1 τ = {0, 3, 6, 12, 16, 19, 22, 27, 44, 118} 0.088
2 τ = {0, 23, 118} 0.290
3 τ = {0, 2, 3, 4, 10, 12, 17, 21, 23, 27, 53, 118} 0.002
4 τ = {0, 5, 6, 7, 12, 19, 21, 23, 34, 44, 118} 0.002

Except for Model 1, whose best fit was obtained by considering m′ = 10, the other models
shown in Table 2 were obtained when m′ = 20. Among the models presented in Table 2,
Model 2 yielded the estimated time grid with the greatest reduction regarding the initial
number of intervals. In addition, estimated time grid provided by Model 2 had by far the
highest posterior probability.

In terms of the reduction in the number of initial intervals, we observed from Figure 11
that Model 1 presented an overall low reduction (around 20%) whereas Models 2 showed
the greatest reduction among all fitted models (> 70% for all choices of m′). The reduction
associated with Model 3 ranged from 10% to 70%, depending on specific combinations of ϕ
and m′, and a reduction falling between 40% and 72% was observed for model 4, according
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Figure 8: Estimated hazard functions provided by Model 4: random time grid and κm′
=

1×10−01 (a), fixed time grid and κm′
= 1×10−01 (b), random time grid and κm′

= 1×10−15

(c), and fixed time grid and κm′
= 1× 10−15 (d).

Table 3: Summary statistics for the number of clustered intervals associated with the best fitted
models.

Model m′ median mean sd 95% HPD-interval mode (prob.)
1 10 8 7.92 1.197 [6; 10] 8 (0.334)
2 20 3 2.705 0.496 [2; 3] 3 (0.670)
3 20 11 11.094 1.738 [8; 14] 11 (0.247)
4 20 10 9.845 1.951 [6; 13] 9 (0.222)

to different choices of κm′ and m′.
We complete our analysis discussing, in general lines, the improvement in the goodness

of fit as a result of the assumption of random time grids for the PEM. Based on Table 4,
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Figure 9: Estimated survival functions provided by Model 4: random time grid and κm′
=

1×10−01 (a), fixed time grid and κm′
= 1×10−01 (b), random time grid and κm′

= 1×10−15

(c), and fixed time grid and κm′
= 1× 10−15 (d).

which summarizes the performance of the PEM with random time grid, we observe that the
assumption of random time grid provided better fits in 100% of the scenarios considered for
Model 1, and in 66.66% of those considered for Model 2. Despite the overall performance
of Model 3 with random time grids was lower than we expected (better fitted models in
40% of the cases), we remark that Model 3 with a random time grid provided the best
fitted model among all models considered. Therefore, we strongly suggest the reader to
performing a sensitivity analysis taking into account different specifications for both m′ and
ϕ when fitting Model 3. With regard to Model 4, it was observed an improvement of the
order of 75% in the goodness of fit when a random time grid was assumed for the PEM.
A sensitivity analysis considering different choices of κ is also recommended in this case.
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Figure 10: Posterior distributions of the number of intervals for the best fitted models.

Finally, considering all fitted models, the PEM with random time grid yielded better fits in
60% of the scenarios analyzed, indicating that the usefulness of the proposed approach.

Table 4: Performance of the PEM with random time grid.

Model better fit total %
1 3 3 100.00
2 2 3 66.66
3 6 15 40.00
4 9 12 75.00

All models 20 33 60.60
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Figure 11: Reduction due to clustering structure: Model 3 - ϕ = 0.05 (solid line), ϕ = 0.25
(dashed line), ϕ = 0.50 (dotted line), ϕ = 0.75 (dashed-dotted line), and ϕ = 0.95 (double-
dashed line); Model 4 - κm′

= 1 × 10−01 (solid line), κm′
= 1 × 10−05 (dashed line), κm′

=
1× 10−10 (dotted line) and κm′

= 1× 10−15.

4 Conclusions

We have introduced a class of semiparametric Bayesian approaches for modeling survival
data assuming the PEM with random time grid. The proposed model extends other models
discussed in the literature by allowing more flexibility in the modeling of both the time grid
and the failure rates of the PEM, and is suitable for modeling right censored time-to-event
data arising from any area of knowledge.

The proposed approach has several advantages over other ones that are available in the
literature. It allows the direct modeling of the time grid of the PEM after suitable prior
elicitation. In particular, the mechanism assumed to generate the random time grids for
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the PEM depends only upon a set of observed failure times. This fact enables us to model
the time grid taking into account the arrangement of the observed failure times over the
time axis, as well as to control the maximum number of failure times associated with all the
random intervals induced by the generated time grids. Furthermore, the proposed approach
accommodates a wide class of prior distributions for both the time grid and the failure rates
of the PEM (not all considered in this paper), and includes other models established in the
literature as special cases, which provides a flexible framework for survival data modeling.

Based on our experience, we recommend Models 3 and 4 as the best models under the
framework we have proposed. Such models have shown to provide better performances than
Models 1 and 2, as was illustrated in the analysis of the brain cancer data. Moreover,
we understand that the dynamic and structural prior distributions add more flexibility in
survival data modeling. Nevertheless, since Models 3 and 4 have shown to be sensible
to different prior specifications, a sensitivity analysis taking into account different prior
specifications is strongly recommended.

Future works involve carrying out a study with artificial data sets in order to evaluate
to confirm the good performance the proposed methodology. In addition, the proposed
approach can be readily extended to the proportional hazards framework as well as to model
survival data with cure fraction. Further possible extensions include introducing frailties
into the model to accounting for multivariate and/or spacial correlated survival data.
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Abstract

A novel fully Bayesian approach for modeling survival data with explanatory vari-
ables using the Piecewise Exponential Model (PEM) with random time grid is proposed.
We consider a class of correlated Gamma prior distributions for the failure rates. Such
prior specification is obtained via the dynamic generalized modeling approach jointly
with a random time grid for the PEM. A product distribution is considered for model-
ing the prior uncertainty about the random time grid, turning possible the use of the
structure of the Product Partition Model (PPM) to handle the problem. A unifying
notation for the construction of the likelihood function of the PEM, suitable for both
static and dynamic modeling approaches, is considered. Procedures to evaluate the
performance of the proposed model are presented. The use of the new methodology is
exemplified by the analysis of a real data set of survival times of patients with brain
cancer obtained from SEER (Surveillance Epidemiology and End Results) database.
For comparison purposes, the data set is also fitted using the dynamic model with fixed
time grid established in the literature. The results obtained show the superiority of the
proposed model..
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1 Introduction

The Piecewise Exponential Model (PEM) is one of the most popular and useful models in
Reliability and Survival Analysis. This model provides good approximations to many con-
tinuous distributions and, in practical situations, can describe accordingly hazard functions
of several shapes. An interesting practical feature of this model is that it is not needed
to specify a distribution for the data which has a closed form expression for the hazard
function. This characteristic brings great flexibility in modeling. For this reason, the PEM
has been widely used to model time to event data in different contexts, such as in relia-
bility engineering (Kim and Proschan, 1991, Gamerman, 1994), clinical situations such as
kidney infection (Sahu et al.; 1997), heart transplant data (Aitkin et al.; 1983), hospital mor-
tality data (Clark and Ryan; 2002), economics (Bastos and Gamerman; 2006), and cancer
studies including leukemia (Breslow; 1974), gastric cancer (Gamerman; 1991), breast cancer
(Ibrahim et al.; 2001b), melanoma (Kim et al.; 2006) and nasopharynx cancer (McKeague
and Tighiouart; 2000), among others

In order to construct the PEM we need to specify a finite time grid τ = {s0, s1, ..., sJ}
which divides the time axis into J disjoint intervals. Given this time grid, we assume a
constant failure rate λj for each interval Ij = (sj−1, sj], j = 1, ..., J . Consequently, we have
a discrete version, in the form of a step function, of the true and unknown hazard function.
Therefore, it is evident that a good approximation for the true hazard function depends on
a suitable choice of the time grid.

There are many previous works related to the PEM. Friedman (1982) considers the PEM
to model the baseline hazard function of the Cox model, and derives conditions regarding the
existence and asymptotic properties of the maximum likelihood estimators (MLEs) for both
the failure rates and the regression coefficients. Later, Kim and Proschan (1991) discuss
some advantages of the PEM over the well-known Kaplan-Meyer estimator (KME) for the
survival function in the absence of covariates. Barbosa et al. (1996) apply generalized linear
model methods to fit accelerated life tests data using the PEM. The maximum likelihood
method for fitting cure rate models using the PEM in the presence of missing covariates
is considered by Chen and Ibrahim (2001). The Bayesian literature related to the PEM is
also extensive. Gamerman (1991) extends the Cox model by proposing a dynamic approach
to fit survival data in the presence of explanatory variables with effects changing through
time. Sahu et al. (1997) use the PEM to model multivariate survival data. In that work,
frailties are considered to account for correlation of survival times of elements within a same
specific group, and a correlated process for the failure rates of the PEM is assumed. An
overview of some Bayesian approaches considering independent gamma prior distributions,
Jeffreys’s prior and some correlated processes for the failure rates of the PEM, is given in
Ibrahim et al. (2001b). The PEM with a correlated process for the failure rates governed
by a smoothing parameter is considered by Ibrahim et al. (2001a) to fit a cure rate model
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based upon biological motivations. Dynamic models accommodating spatial correlation and
time varying covariate effects are proposed by Bastos and Gamerman (2006).

Despite the vast existing literature, the time grid τ = {s0, s1, ..., sJ} has been arbitrar-
ily chosen in most of the works related to the PEM, including all those cited previously.
Kalbfleisch and Prentice (1973) suggest that the selection of the time grid τ = {s0, s1, ..., sJ}
should be made independent of the data, but they do not provide any procedure to do such.
Breslow (1974) proposes defining the endpoints sj of the intervals Ij = (sj−1, sj] as the
observed failure times. This choice of time grid for the PEM, which we shall refer in this
paper to as the nonparametric approach, has been commonly used to fit the PEM. Other
heuristic discussions regarding adequate choices for the time grid of the PEM can be found
in Gamerman (1991), Sahu et al. (1997) and Qiou et al. (1999), and a lot of others. The
first effective effort to model the time grid of the PEM is due to Arjas and Gasbarra (1994).
In their work it is assumed that the endpoints of the intervals Ij = (sj−1, sj] are defined
according to a jump process following a martingale structure which is specified through
the prior distributions. Latter, McKeague and Tighiouart (2000) introduce a general class
of models in which the jump times sj’s are generated from a time-homogeneous Poisson
process and, conditionally on the jump times sj’s, the log-baseline hazard is modeled as a
Gaussian Markov random field. Such approach includes as special cases the models proposed
by Gamerman (1991) and Arjas and Gasbarra (1994). Kim et al. (2006) also consider the
PEM with a random grid to model the baseline hazard function of cure rate models. Similar
to McKeague and Tighiouart (2000), Kim et al. (2006) assume a time-homogeneous Poisson
process to describe the uncertainty about the endpoints of the time grid.

The assumption of a time-homogeneous Poisson process to model the time grid τ =

{s0, s1, ..., sJ} has some drawbacks. First, as pointed out by Chen et al. (1999), in the
absence of any prior information about λj, at least one failure is supposed to occur at each
interval Ij = (sj−1, sj] so that λj may be estimable. Although this condition can be relaxed
by assuming a correlated or smoothed hazard function for the PEM (see Gamerman; 1991,
1994; Ibrahim et al.; 2001b, for instance), it is not possible to establish conditions on the time
grid under that assumption. Besides, by assuming a time-homogeneous Poisson process to
generate the endpoints of the time grid τ = {s0, s1, ..., sJ}, the number of parameters in the
model becomes random, and a reversible jump Markov chain Monte Carlo algorithm (Green;
1995) is needed to sample from the posterior distributions, which leads to an increase in
algorithmic complexity. Moreover, it seems to be more reasonable to set a time grid to fit
the PEM which is somehow related to the failure times.

Based on the arguments presented above, Demarqui et al. (2008) introduce an approach to
model the time grid of the PEM that overcome those drawbacks. By imposing a constraining
on the set of possible time grids, they prove that the prior distribution of τ = {s0, s1, ..., sJ}
can be written as a product form, and show how the structure of the Product Partition
Model (PPM) proposed by Barry and Hartigan (1992) can be used to handle the problem.
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In their approach, however, a regression structure on the hazard function is not considered,
and independent gamma prior distributions are assumed for the failure rates induced by the
random time grids.

In this paper we introduce a general class of PEM in which the time grid is random
and both the failure rates and the regression coefficients in different intervals are correlated.
This new approach extends static models such as in Ibrahim et al. (2001b) and Demarqui
et al. (2008), as well as the dynamic model based on an arbitrary time grid proposed by
Gamerman (1991). By considering a dynamic generalized modeling approach along with
a product distribution for the random time grid, we assume a class of correlated Gamma
prior distributions for the failure rates and use the clustering structure of the PPM to model
the randomness of the time grid of the PEM. We further develop procedures to evaluate
the performance of the proposed model and carry out sensitivity analysis for different prior
specifications. Finally, to illustrate the use of the proposed model, the analysis of survival
times of patients with brain cancer is performed. Such data set is obtained from SEER
(Surveillance, Epidemiology and End Results) database. The results are compared with
those obtained by fitting the dynamic model proposed by Gamerman (1991).

This paper is organized as follows: in Section 2 we develop the formulation of the model
and the necessary notation needed. The new methodology is applied to analyze a real data
set in Section 3, and in Section 4 some conclusions and perspectives of future works are
presented.

2 Model formulation

In survival analysis, covariate effects are usually specified through the hazard function. In
this spirit, the proportional hazard (PH) model introduced by Cox (1972) is one of the mostly
used survival models to incorporate covariate effects into the analysis. The PH model is given
by:

h(t) = h0(t)g(x β), (1)

where h0(t) is called the baseline hazard function, x is a 1 × p vector of covariates, β is a
p× 1 vector of regression coefficients, and g(.) is a non-negative function.

Under the framework of PH models, the PEM appears as an attractive alternative to
model the baseline hazard function h0(t). Assuming the PEM, a more general structure
of model (1) can be obtained by allowing the regression coefficients to vary through the
intervals induced by the time grid. In this setup, Gamerman (1991) proposes a dynamic
Bayesian approach to model time to event data, but a method for specifying accordingly
the time grid need to fit the PEM is not established in his work. In this section a twofold
extension of the approach introduced by Demarqui et al. (2008) is described. We provide a
suitable way to fit the PEM assuming a random time grid when covariates are available, and
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also consider the dynamic structure proposed by Gamerman (1991) to add in the model, the
correlation among successive intervals.

By assuming a dynamic structure and a random time grid, estimates and predictions are
obtained by first conditioning on a particular realization of the random time grid, and then
averaging over all possible time grids. Thus, we start the model presentation by reviewing
the generalization of model (1) proposed by Gamerman (1991), considering the time grid
τ = {s0, s1, ..., sJ} fixed. The mechanism used to deal with the randomness of time grid
of the PEM is then introduced in Subsection 2.2. In Subsection 2.3 the dynamic structure
for the time varying regression coefficients is specified. Finally, in Subsection 2.4 the issue
regarding model comparison is addressed.

Following Gamerman (1991), giving a time grid τ = {s0, s1, ..., sJ}, and setting x =

(1, x1, x2, ..., xp) and βj = (βj0, βj1, ..., βjp)
′, with λj = exp{β0j}, model (1) becomes:

h(t) = exp{x βj}, (2)

for t ∈ Ij = (sj−1, sj], j = 1, ..., J .
It is noticeable that, conditionally on τ = {s0, s1, ..., sJ}, model (2) has no longer a con-

stant hazard ratio over time. In fact, the constant hazard ratio assumption of the PH model
is satisfied only within each interval Ij = (sj−1, sj], unless the βj’s are all equal. However,
model (2) presents several advantages over model (1). First, correlated or smoothed hazard
functions are, in general, more suitable than hazard functions specified via processes with
independent increments. Second, in many practical situations, the assumption of propor-
tional hazards cannot be verified, and accommodation of temporal influences of covariates
is not possible for those cases. Third, a dynamic structure to model covariate effects in the
hazard function also enables to model time-dependent covariates straightforwardly. Fourth,
the class of dynamic models includes the class of static models as a particular case.

2.1 Likelihood function

Suppose we observe an independent sample of size n. Let Yi be the survival time under study
for the i-th element, i = 1., ..., n. Assume that there is a right-censoring scheme working
independently of the failure process. Denote by Ci the censored time for the the i-th element.
The complete information associated to the i-th element is (Ti, δi), where Ti = min{Yi, Ci}
and δi = 1(Yi ≤ Ci) are, respectively, the observable survival time, and the failure indicator
function.

Denote by D = (t, δ) the observed data set, where t′ = (t1, ..., tn) and δ′ = (δ1, ..., δn).
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In order to properly construct the likelihood function, given τ = {s0, s1, ..., sJ} we define:

tij =


sj−1, if ti < sj−1,

ti, if ti ∈ Ij,

sj, if ti > sj,

(3)

where Ij = (sj−1, sj], i = 1, ..., n and j = 1, ..., J . Consider δij = δiν
(i)
j , where ν

(i)
j is the

indicator function assuming value 1 if the i-th element experiences an event (either failure
or censored) at the j-th interval, and 0 otherwise. Also consider the set λ = {λij : λij =

exp{xi βj}, i = 1, ..., n, j = 1, ..., J}, where λij is the hazard function for the i-th element at
the j-th interval. Hence, the pair (tij, δij) corresponds to the contribution of the i-th element
at the j-th interval, for which the hazard function is given by λij.

In the dynamic framework for the PEM proposed by Gamerman (1991), the data in-
formation, as well as the parametric evolution, is processed by each interval induced by
τ = {s0, s1, ..., sJ}. In this context, the information contained in the pair (tij, δij) is incorpo-
rated into the likelihood function through the conditional piecewise exponential distribution
via λij exp{−λij(tij − sj−1)}, if the i-th element has experienced an event (either failure or
censored) at the j-th interval, or via exp{−λij(tij − sj−1)}, otherwise. Then, we have that
the complete likelihood function is given by:

Lτ ( λ;D) =
J∏

j=1

n∏
i=1

(λij)
δij exp {−λij(tij − sj−1)} . (4)

The definition of the survival times given in (3) provides a quite attractive way for
constructing the likelihood function of the PEM. Note that the likelihood function for the
static PEM (Ibrahim et al.; 2001b) can be easily obtained by exchanging the product order
given in (4), and redefining the hazard function given in (2) accordingly, say, assuming
βj = β, j = 1, ..., J . Therefore, definition (3) provides a simple and unified notation for

both static and dynamic approaches for the PEM.
Finally, we observe that the likelihood function in (4) depends on β = ( β1, ..., βJ)

′ only
through the link function λij = exp{xi βj}, i = 1, ..., n and j = 1, ..., J . Furthermore, it
naturally factors into a product form, which is a required condition for applying the structure
of the PPM to fit the PEM with random time grid. See details in Subsection 2.2.

2.2 Clustering structure

One of the greatest challenges of working with the PEM is to find an appropriate time grid
to obtain a well fitted model. It is well known that a time grid with a large number of
intervals might provide unstable estimates for the failure rates, whereas a small number of
intervals might produce a poor approximation for the true survival function (Sahu et al.;
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1997; Qiou et al.; 1999). Therefore, there is a need for seeking to a time grid for the PEM
which provides a balance between good approximations for both the hazard and survival
functions. The approach proposed by Demarqui et al. (2008) to fit the PEM with random
time grid is extended in the following to fit the dynamic model in (2).

Although unnecessary, to guarantee that at least one failure time falls at each interval
induced by the random time grid, Demarqui et al. (2008) started the model construction by
imposing the time grid associated to the nonparametric approach as the finest possible time
grid for the PEM. Then, the structure of the PPM is used to cluster the intervals induced by
that initial time grid. We generalize such approach by clustering the intervals induced by a
coarser initial time grid. Such grid assumes that intervals containing more than one failure
time are possible a priori. This allow us to control the maximum number of intervals, and
consequently, the maximum number of parameters in the model.

Let F = {0, y1, ..., ym} be the set formed by the origin and the m distinct observed failure
times from a sample of size n. Consider the time grid τ ′ = {0, y′1, ..., y′m′} satisfying τ ′ ⊆ F ,
where m′, 1 ≤ m′ ≤ m, denotes the maximum number of intervals admitted a priori. Then,
τ ′ = {0, y′1, ..., y′m′} defines the following set of disjoint intervals:

Ij =

{
(0, y′1], if j = 1,
(y′j−1, y

′
j], 1 < j ≤ m′.

(5)

The degree of parametricity of the model is controlled by m′. As m′ gets closer to m, the
model becomes more nonparametric. On the other hand, when m′ approaches 1, the model
becomes more parametric. A completely parametric model is obtained whenever m′ = 1. In
this case, the PEM reduces to the exponential model and no clustering structure is needed.

Denote by I = {1, ...,m′} the set of indexes related to the intervals defined in (5). Let
ρ = {i0, i1, ..., ib}, 0 = i0 < i1 < ... < ib = m′, be a random partition of I, which divides
the m′ initial intervals given in (5) into B = b new disjoint intervals. The random variable
B denotes the number of clustered intervals related to the random partition ρ. Now, let
τρ = τ(ρ) = {s0, s1, ..., sb} be the time grid induced by the random partition ρ, where

sj =

{
0, if j = 0,

y
′
ij
, if j = 1, . . . , b,

(6)

for b = 1, ...,m′. Then, it follows from (5) and (6) that the clustered intervals induced by
ρ = {i0, i1, ..., ib} are given by:

I(j)ρ = ∪ij
r=ij−1+1Ir = (sj−1, sj], j = 1, ..., b.

Observe that we are defining a random time grid for the PEM in terms of a random
partition of the intervals given in (5). Besides, since we are considering that only contiguous
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intervals are possible, it is reasonable to assume that the endpoint ij of each clustered
interval I(j)ρ depends only upon the previous endpoint ij−1. Thus, under this assumption,
it is unavoidable to assume a product distribution to describe the prior uncertainty about
ρ = {i0, i1, ..., ib}. Then, we assume the following prior distribution for ρ = {i0, i1, ..., ib}:

P (ρ = {i0, i1, ..., ib}) =
1

K

b∏
j=1

c
I
(j)
ρ
,

where c
I
(j)
ρ

> 0 denotes the prior cohesion related to the clustered interval I(j)ρ , and represents
the degree of similarity among the observations into the intervals Ir, ij−1 < r ≤ ij, for
r = 1, ...,m′, and K =

∑
C

∏b
j=1 cI(j)ρ

, with C denoting the set of all possible partitions of
the set I into b disjoint clustered intervals with endpoints i1, ..., ib, satisfying the condition
0 = i0 < i1 < ... < ib = n, for all b ∈ I. Notice that if P (ρ = {i0, i1, ..., ib}) = 1 for a
particular partition, we return to the usual model that assumes fixed time grid.

Let βk = (βk0, βk1, ..., βkp)
′ be the vector of regression coefficients associated with the

k-th interval defined in (5). Then, conditionally on ρ = {i0, i1, ..., ib}, we assume that
βk ≡ β(j)

ρ , where β(j)
ρ = (β

(j0)
ρ , β

(j1)
ρ , ..., β

(jp)
ρ )′ denotes the common vector of regression

coefficients related to the clustered interval I(j)ρ .
In order to complete the model specification, we need to specify the prior distributions for

both βρ = ( β(1)
ρ , .., β(b)

ρ )′ and λρ = {λ(ij)
ρ : λ

(ij)
ρ = exp{xi β

(j)
ρ }, i = 1, ..., n, j = 1, ..., b}.

For the failure rates λ(ij)
ρ , we assume conjugate gamma prior distributions Gamma(αij, γij).

Further, we also assume that the failure rates λ
(ij)
ρ are conditionally independent, given αij

and γij. The prior specification for βρ is made according to the dynamic modeling approach
we shall see in the next subsection. In Subsection 2.3, we also show how the hyperparameters
αij and γij can be obtained from the prior distributions of the common regression coefficients
βρ. This approach introduces temporal correlation between the common parameters of

successive intervals.
Hence, under the conditions presented above, conditionally on ρ = {i0, i1, ..., ib} we have

that the joint distribution of the observations has the following product form:

f(D|ρ) =
b∏

j=1

f
I
(j)
ρ
(D), (7)

where

f
I
(j)
ρ
(D) =

n∏
i=1

γ
αij

ij

Γ(αij)

∫ (
λ(ij)
ρ

)αij+δij−1
exp

{
−λ(ij)

ρ [γij + (tij − aj−1)]
}
dλ(ij)

ρ

=
n∏

i=1

γ
αij

ij

Γ(αij)

Γ(αij + δij)

[γij + (tij − aj−1)](αij+δij)
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is named data factor, and corresponds to the marginal distribution of the data associated
with the clustered interval I(j)ρ .

Thus, the joint distribution of the observations given in (7) satisfies the product condition
required for applying the clustering structure of the PPM. Then, following the structure of
the PPM, the posterior distribution of ρ = {i0, i1, ..., ib} is:

P (ρ = {i0, i1, ..., ib}|D) =
1

K∗

b∏
i=1

c∗
I
(j)
ρ
,

where c∗
I
(j)
ρ

= f
I
(j)
ρ
c
I
(j)
ρ

denotes the posterior cohesion associated with the j-th clustered

interval I(j)ρ , and K∗ =
∑

C

∏b
j=1 c

∗
I
(j)
ρ

.
The posterior distribution for βk, k = 1, ...,m′, is given by the following mixture of

distributions:
π( βk|D) =

∑
ij−1<k≤ij

π( β(j)
ρ |D)R(I(j)ρ |D), (8)

where R(I
(j)
ρ |D) is named posterior relevance, and which denotes the probability of each

clustered interval I(j)ρ belongs to the random partition ρ, and π( β(j)
ρ |D) denotes the posterior

(smoothed) distribution of the common parameter β(j)
ρ , j = 1, ..., b, which are obtained in

Subsection 2.3. Then, assuming the squared-error loss function, we have that the product
estimate for βk is given by:

β̂k =
∑

ij−1<k≤ij

E( β(j)
ρ |D)R(I(j)ρ |D), (9)

for j = 1, ..., b and k = 1, ..., n.
Finally, the posterior survival function for a new element, assumed to be independent of

the observed data set, and having a vector of covariates x∗, is obtained by averaging over all
random partitions ρ = {i0, i1, ..., ib} as follows:

S(y|D) =
∑
ρ

S(y|D, ρ)π(ρ|D),

where

S(y|D, ρ) =

∫
S(y| λ(x∗)

ρ , ρ)π( λ(x∗)
ρ |D)d λ(x∗)

ρ

=

(
1 +

y − sj−1

γ
(x∗)
j

)−α
(x∗)
j j−1∏

r=1

(
1 +

sr − sr−1

γ
(x∗)
r

)−α
(x∗)
r

, (10)

for λ(x∗)
ρ = (λ

(x∗;1)
ρ , ..., λ

(x∗;b)
ρ )′ and y ∈ I

(j)
ρ , j = 1, ..., b.
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2.3 Dynamic modeling approach

In the previous section we showed how the structure of the PPM can be used to fit the PEM
with a random time grid. In this section we present an overview of the dynamic modeling
approach for the PEM proposed by Gamerman (1991). This approach can be viewed as an
extension of the class of dynamic general linear models (DGLMs) proposed by West et al.
(1985). All the results derived are obtained after conditioning on ρ = {i0, i1, ..., ib}.

The analysis of dynamic models is performed sequentially. In order to move from one step
to another (i.e., from one clustered interval to another), we first need to specify the evolution
system, which defines the way the parametric evolution is performed. Second, we construct
the likelihood function at each step, and then we perform the parametric estimation or
updating.

As in Gamerman (1991), we assume that the common parameters of different clustered
intervals are related through the following evolution equation:

β(j)
ρ = Gj(∆j) β

(j−1)
ρ + ϵj, (11)

where Gj is a matrix of known coefficients that defines the systematic evolution of β(j)
ρ

over time, ∆j is the length of the current interval j, and ϵj is a stochastic error whose
distribution has mean zero and covariance matrix Wj. The stochastic error ϵj is further
assumed to be independent of time as well as of the observed data set.

In the approach proposed by West et al. (1985), for each step in the dynamic analysis,
prior and posterior distributions are partially specified in terms of their moments. Let D(j−1)

ρ

be the set of all the available data information up to interval I(j−1)
ρ . Assume that the posterior

distribution for the common vector of regression coefficients β
(j−1)
ρ has mean vector mj−1

and covariance matrix Cj−1. Such posterior is denoted by ( β(j−1)
ρ |D(j−1)

ρ ) ∼ (mj−1,Cj−1).
Then, using (11), we can show that the prior distribution of β(j)

ρ , given D
(j−1)
ρ , is

( β(j)
ρ |D(j−1)

ρ ) ∼ (aj,Pj),

where aj = Gj(∆j)mj−1 and Pj = Gj(∆j)Cj−1G
′
j(∆j) +Wj.

Let rj denote the number of elements that are still at risk at the beginning of the interval
I
(j)
ρ . Denote by D

(i−1;j−1)
ρ the set of all data information available up to interval I(j−1)

ρ , along
with the processed information associated with the first i − 1 elements that still at risk at
the beginning of interval I(j)ρ . Then, assuming ( β(j)

ρ |D(i−1;j−1)
ρ ) ∼ (aij,Pij), we have that

the joint prior distribution for ( β(j)
ρ , log λ

(ij)
ρ ) is given by:[(

β(j)
ρ

log λ
(ij)
ρ

)
|D(i−1;j−1)

ρ

]
∼

[(
aij

fij

)
;

(
Pij sij

s′ij qij

)]
, (12)

where sij = Pijx
′
i, qij = xisij and fij = xiaij.
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The prior distribution (λ
(ij)
ρ |D(i−1;j−1)

ρ ) is the gamma distribution Gamma(αij, γij) as-
sumed in Subsection 2.2. The hyperparameters αij and γij of this distribution are obtained
from the moments of λij = exp(xi β

(j)
ρ ). Such moments are approximations derived from (12)

by using a first order Taylor series expansion, which yields αij = q−1
ij and γij = q−1

ij exp{−fij}.
Once the prior distribution (λ

(ij)
ρ |D(i−1;j−1)

ρ ) ∼ Gamma(αij, γij) becomes available, the
posterior distribution (λ

(ij)
ρ |D(i;j−1)

ρ ) ∼ Gamma(αij + δij, γij + (tij − sj−1)) can be obtained
straightforwardly by using the information provided by the i-th element at risk in I

(j)
ρ . Then,

applying linear Bayesian methods (West et al.; 1985), we update ( β(j)
ρ |D(i−1;j−1)) ∼ (aij,Pij)

into the posterior ( β(j)
ρ |D(i;j−1)) ∼ (mij,Cij), where

mij = aij +
sij
qij

log

{
1 + qijδij

1 + qij(tij − sj−1) exp(fij)

}
and

Cij = Pij −
δij

1 + qijsijs′ij
.

At the beginning of each clustered interval I(j)ρ the updating starts by setting a1j = aj,
P1j = Pj and D

(0,j−1)
ρ = D

(j−1)
ρ . As there is no evolution within intervals, after processing

the information of the i-th element at risk in I
(j)
ρ , we set ai+1;j = mij and Pi+1;j = Cij and

continue this cycle until the data information associated with the rj elements is processed.
Then, we set mrj ,j = mj, Crj ,j = Cj and D

(rj ,j)
ρ = D

(j)
ρ , and perform the parametric evolu-

tion through equation (11), and start a new updating cycle, until all the data information
D

(b)
ρ = D has been processed.
In practice, due to the randomness of the time grid of the PEM, the elicitation of the

covariance matrices Wj in (11) requires an automated mechanism. This can be done by
using the concept of discount factor discussed in West and Harrison (1997). Specifically, we
assume that Pj =

1
ϕ
Cj−1, for the discount factor 0 < ϕ ≤ 1. Notice that proceeding in such

a way, the increase of uncertainty inherent to the parametric evolution is preserved, and the
variance matrix Wj can be easily recovered by setting Wj = ( 1

ϕ
− 1)Cj−1.

The online distribution ( β(j)
ρ |D(j)

ρ ) retains all the required information to perform the
parametric evolution over the successive intervals induced by the partition ρ = {i0, i1, ..., ib}.
However, this distribution is obtained using only the data information available up to interval
I
(j)
ρ . Therefore, a posterior distribution of β(j)

ρ given all data information D, known as
smoothed distribution, is more informative than the online distribution ( β(j)

ρ |D(j)
ρ ), and

should be preferable for making inferences about the common regression coefficients β(j)
ρ ’s,

as well as to predict survival times of future observations. For this reason, these distributions
are used to obtain (8), (9) and (10) in Subsection 2.2.

The smooth distributions ( β(j)
ρ |D)’s are obtained via a recursive algorithm which redis-
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tribute all the data information smoothly for the parameters. This algorithm is an extension
of the smoothing algorithm used in standard dynamic linear models (DLMs) proposed by
West (1982), and its proof is presented in Gamerman (1991).

Denote by ( β(j)
ρ |D) ∼ (mD

j ;C
D
j ) the smoothed distribution of the parameters associated

to the interval I(j)ρ . Initialize with mD
b = mb and CD

b = Cb. Then, the moments of the
smooth distribution ( β(j)

ρ |D) are given by the following equations:

mD
j = E[ β(j)

ρ |D] = mj +CjG
′
j+1(∆j+1)P

−1
j+1(m

D
j+1 − aj+1)

and

CD
j = V [ β(j)

ρ |D] = Cj −CjG
′
j+1(∆j+1)P

−1
j+1(Pj+1C

D
j+1)Gj+1(∆j+1)Cj,

for j = 1, ..., b− 1.

2.4 Model comparison

In Bayesian theory for model comparison (see Kass and Raftery (1995) and Kadane and
Lazar (2004), among others), Bayes factor (BF) and posterior model probability (PMP) are
standard measures used to compare competing models. In this subsection we describe how
these measures can be computed in the framework we are proposing.

Let Mτ ′ and Mρ be the PEM with arbitrary and random time grids, respectively. The
marginal distribution f(D|Mρ) is obtained by firstly computing the marginal distribution
of D conditioning on the partitions, and then averaging over all the partitions, that is:

f(D|Mρ) =
∑
ρ

∫
L( λρ, ρ;D)π( λρ|D, ρ)π(ρ|D)d λρ.

The predictive distribution f(D|Mτ ′) is obtained straightforward. Consequenltly, the
Bayes factor to compare models Mτ ′ and Mρ becomes:

BF (Mρ,Mτ ′) =

∑
ρ

∫
L( λρ, ρ;D)π( λρ|D, ρ)π(ρ|D)d λρ∫

Lτ ′( λ;D)π( λ|D)d λ
.

When we are interested in comparing more than two models, say Mi, i =, ...,M and
2 < M < ∞, the usual procedure consists of computing the posterior model probability of
each model Mi:

π(Mi|D) =
f(D|Mi)p(Mi)∑M
i=1 f(D|Mi)p(Mi)

,

where p(Mi) is the prior probability associated to model Mi, satisfying
∑M

i=1 p(Mi) = 1,
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and f(D|Mi) is the corresponding marginal distribution of D. Then, one may choose that
model with the highest posterior probability among all models under consideration.

3 Analysis Real data sets

In this section we use the model discussed in the previous sections to analyze the survival
times (in months) of 231 individuals diagnosed with brain cancer in Windhan-CT, USA,
during 1995 to 2004. This data set was obtained from SEER database. Our main interest
relies on comparing the inferences that were made using both the PEM with fixed and
random time grids, and to perform a sensitivity analysis for different choices of the initial
number of time itervals m′ and the discount factor ϕ. We also investigate the effect of the
risk factor age (in years) on the survival times (in months) of those individuals diagnosed
with brain cancer. Another study (not included in this paper) using the proposed model,
considering other risk factor for brain cancer such as gender and race, showed that those risk
factors are not statistically significant for the particular population under investigation.

For the brain cancer data set we observed that the median survival time is 16.25 months.
The percentiles of order 2.5% and 97.5% are 14.42 and 18.93 months, respectively. The mean
and the standard deviation for the covariate age is 49.52 and 23.33 years, respectively. For
this data set, it was observed a total of 134 failure times, resulting in percentage of failures
of the order of 58%. From those total of failure times, we observed 32 distinct failure times.
In order to specify the finest time grids τ ′ admitted for the PEM, we considered m′ equals to
20, 25 and 32. Given these values of m′, we proceeded as follows. First, we obtained values
k and r from the identity m = km′ + r. Then, we chose the elements of τ ′ so that the first
m′ − r intervals had k failure times and the remaining r intervals had k + 1 failure times.
This procedure can be justified by arguing that it allows more failure times to be in the last
intervals, where less data information is available.

Prior elicitation for the regression coefficients βρ was made as follows. For the regres-
sion coefficients of the first clustered interval I(1)ρ we assumed that, given ρ = {i0, i1, ..., ib}
(β

(1)
ρ |D(0)

ρ ) ∼ [0, 100Ip+1]. It was also assumed a random walk for the parametric evolution
through time by setting in (11) G

(j)
ρ = Ip+1, j = 1, ..., b. The covariance matrices Wj were

specified according to the discount factor strategy briefly discussed in Subsection 2.3. Fi-
nally, we elicited a discrete uniform prior distribution for ρ = {i0, i1, ..., ib} by assuming the
following prior cohesions: c

I
(j)
ρ

= 1, for j = 1, ..., b and b ∈ I. A detailed study about other
prior cohesions choices can be found in Demarqui et al. (2008).

The Gibbs Sampler algorithm given in Demarqui et al. (2009) was used to sample from the
posterior quantities of intereste. Some diagnostic procedures discussed in Cowles and Carlin
(1996) were used to check the convergence. Single chains of size 160,000 were considered.
Posterior samples of size 15,000 were obtained after considering a burn-in period of 10,000
iterations and a lag of 10 to eliminate correlations. All computational procedures were
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implemented in Ox version 5.1 (Doornik; 2007).
Table 1 provides the Bayes factor for the PEM with random time grid over the one with

fixed time grid. Three choices of m′ and 16 values ϕ were considered, thus, for each m′,
32 models were compared. The corresponding posterior probabilities of those models are
displayed in Figure 1. The superiority of the PEM with random time grid over the PEM
with fixed time grid can be observed by analyzing simultaneously Table 1 and Figure 1.
For discount factor ϕ ≤ 0.5, except if m′ = 20 and ϕ = 0.5 or ϕ = 0.45, BF indicates
strong (BF ≥ 10) or decisive (BF ≥ 100) evidence for the PEM with random time grid.
On the other hand, for ϕ ≥ 0.7 the PEM with fixed time grid must be prefered. In this
cases, however, Figure 1 shows that the posterior probabilities for PEM with random time
grid do not differ substantially of those obtained for models with fixed time grid. It is also
noteworthy that, in those scenarios in which the PEM with fixed time grid performs better
than the PEM with random time grid, the posterior model probabilities associated with
those models are considerably lower than those in which the PEM with random time grid
has a superior performance.

Table 1: Bayes Factor (random/fixed time grids) for different choices of m′ and ϕ.

ϕ 0.1 0.15 0.2 0.25
m′ = 32 3.5E+24 7.1E+17 2.9E+13 1.9E+10
m′ = 25 1.4E+17 1.3E+12 7.8E+08 4.1E+06
m′ = 20 6.6E+11 1.0E+08 4.4E+05 10663

ϕ 0.3 0.35 0.4 0.45
m′ = 32 7.7E+07 1.1E+06 40405 2810.8
m′ = 25 90247 5133.1 559.18 94.71
m′ = 20 781.29 113.42 26 8.12

ϕ 0.5 0.55 0.6 0.65
m′ = 32 318.64 51.57 10.78 2.7
m′ = 25 22.74 6.83 2.4 0.93
m′ = 20 3.13 1.39 0.67 0.35

ϕ 0.7 0.75 0.8 0.85
m′ = 32 0.76 0.23 0.08 0.03
m′ = 25 0.38 0.17 0.08 0.06
m′ = 20 0.19 0.12 0.08 0.06

Figure 1 also provides some insight of the effect of ϕ in the model fitting. Considering the
PEM with fixed time grid in scenario (a) we can observe a smooth increase in the performance
of the fitted models until ϕ = 0.75, followed by a smooth decrease in their performance for
the remaining values of ϕ. Similar behavior is shared by the PEM with fixed time grid
in scenarios (b) and (c), with the best models obtained when ϕ = 0.65 and ϕ = 0.55,
respectively. For the PEM with random time grid, the posterior model probabilities also
have a unique modal value. The best models are obtained by setting ϕ = 0.50 in scenario
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Figure 1: Posterior model probabilities for m′ = 32 (a), m′ = 25 (b), m′ = 20 (c), and
random time grid with m′ = 20, 25, 32, all together (d)

(a), and ϕ = 0.20 and ϕ = 0.25 in scenarios (b) and (c), respectively.
Notice that there exist a well defined pattern between the choices of m′ and ϕ, and the

performance of the fitted models. By reducing m′, and consequently, allowing more data
information, say, more failure times into each interval, one can observe that the models with
both fixed and random time grids perform better if smaller values for ϕ are chosen. As a
result of the assumptions made for the random time grids of the PEM, this pattern is even
more clear when we look at the PEM with random time grid. A reasonable explanation for
this is that, if more data information is allowed to each interval, considering values for ϕ

closer to 1 may over smooth the parameters of the model.
For the remaining of this section, we concentrate our attention on making inferences

for the quantities of interest based on the PEM with random time grid with m′ = 20 and
ϕ = 0.25, which corresponds to the most probable model a posteriori among those considered
in our sensitivity analysis.

One advantage of the PEM with random time grid over the PEM with fixed time grid
is that it enables us to make inferences about the time grid and the number of intervals
used to fit the PEM. For the current model under investigation, the posterior most probable
number of intervals is B = 9, with probability 0.241. The estimated 95% HPD intervals for
B is [6, 12]. There is a significant reduction on the number of intervals when compared with
the maximum number of intervals assumed a prior (m′ = 20, for this case). Other summary
measures related to the posterior sample of the number of intervals of the PEM are given in
Table 2 and Figure 2.

The estimated mean trajectory of the risk factor age on the survival times of those
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Table 2: Summary of sample of the posterior distribution of the number of intervals.

mean sd min max
9.335 1.648 4 16
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Figure 2: Posterior distribution of the number of intervals associated with the PEM with
random time grid with m′ = 20 and ϕ = 0.25.

patients diagnosed with brain cancer in Windhan, CT, is shown in Figure 3, along with its
corresponding 95% HPD interval. Notice that the effect due to age changes through time,
showing a decreasing trend as the time goes by. It is also noteworthy that after a period
of approximately 25 months, this effect becomes statistically nonsignificant (as the HPD
interval turns to include zero).

In Figure 4 we present the posterior survival curves for two individuals with 10 and
53 years along with the 95% HPD intervals for S(y| λρ, ρ,D). It is noticeable that those
patients are more likely to die in the period of approximate 25 months after the disease is
diagnosed. We also can observe from Figure 4 that older patients are considerable likely to
die than younger ones.

4 Final Remarks

This paper presented a novel framework to model time to event data using a dynamic
piecewise exponential model with random time grid. The issue of modeling the time grid of
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Figure 3: Estimated mean trajectory (solid line) of the effect of age on patients with brain
cancer and its corresponding 95% HPD interval (dashed line) provided by the PEM with
random time grid assuming m′ = 20 and ϕ = 0.25.
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Figure 4: Posterior survival functions for 10 and 53 years old individuals provided by the
PEM with random time grid with m′ = 20 and ϕ = 0.25.

the PEM was addressed by firstly assuming a finest time grid for the PEM such that only
intervals with endpoints given by distinct observed failure times were possible, and then
using the clustering structure of the PPM to generate the random time grids. Conditionally
on those generated time grids, a correlated process for the common set of parameters (both
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the failure rates and the regression coefficients) was also assumed for the successive intervals
through time. We further introduced a unified notation suitable for both static and dynamic
approaches for the PEM. The proposed model also includes the approaches proposed by
Gamerman (1991, 1994) and Demarqui et al. (2008) as special cases. Procedures (Bayes
factor and posterior model probabilities) to evaluate the performance of the model were
derived, and a sensitivity analysis, using a real data set obtained from the SEER database,
was carried out.

The mechanism we considered in this paper to model the time grid of the PEM has
clearly advantages over other approaches existing in the literature. By constraining the
finest possible time grid for the PEM to have only changing points belonging to a subset
of the set of observed failure times, we ensure that all intervals induced by the random
time grids contain at least one failure time. This increases considerably the consistency of
the estimates of the parameters of interest. Notice that it is not possible to impose such
restriction on the intervals generated by the time-homogeneous Poisson process assumed
in Arjas and Gasbarra (1994), McKeague and Tighiouart (2000), and Kim et al. (2006).
Another nice characteristic of the proposed model is that, although the random time grid of
the PEM is assumed to be a random quantity, the final number of parameters of the model
remains fixed. In addition, the posterior distributions of those parameters are given by a
mixture of posterior distributions of the set of common parameters associated with each
clustered interval, weighted according to the generator mechanism of the random time grids.
This provides smoother estimates for the parameters of interest and, consequently, leads to
more accurate inferences.

The maximum number of intervals admitted a priori for the PEM, m′, plays a central role
in the goodness of fit of the proposed model by determining the degree of parametricity of the
model. It also controls the smoothness of the estimates of the parameters along the successive
intervals induced by the finest time grid assumed for the PEM by determining the number
of failures in those intervals. Moreover, it is particularly useful for handling large data sets.
In these situations, many failure times are often available, and a clustering structure over
a large number of intervals is usually not needed, and also computationally expensive. In
practice, we suggest the user to perform a sensitivity analysis taking into account different
values for m′. It is also noticeable that there exist a close relationship between the maximum
number of intervals admitted a prior and the choice of the discount factor, indicating that
smaller values for the discount should be preferable when the maximum number of intervals
assumed for the PEM is small.

The new methodology we introduced is quite general and can be applied in a variety
of practical problems. The proposed model is specially suitable for modeling data sets in
which the proportional hazard assumption of the well known Cox’s model (Cox; 1972) cannot
be verified, such as data sets including time-dependent covariates and/or covariate effects
changing through time, as the brain cancer data set analyzed in this paper. As expected,
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the results obtained from the analysis of this data set suggests that the PEM with random
time grid performs better than the PEM with fixed time grid. From the medical point of
view, it was verified that age is a significant risk factor for individuals diagnosed with brain
cancer. We further observed that the effect of age on the survival time of those patients
with brain cancer changes through time according to a decreasing pattern. The study we
conducted also showed that there is a high probability of death for patients within the first
20 to 30 months after diagnose, specially for patients above the age of 50 years old.

Future works include the extension of the proposed model to accommodate random effects
(or frailties). Survival models with random effects have become quite popular in the literature
to model multivariate survival time as well as to introduce geographical information to
account for spatial correlation. Other model diagnostic tools such as CPO can also be
derived.
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Abstract

In this paper we consider a piecewise exponential model (PEM) with random time
grid to develop a full semiparametric Bayesian cure rate model. An elegant mechanism
enjoying several attractive features for modeling the randomness of the time grid of
the PEM is assumed. To model the prior behavior of the failure rates of the PEM
we assume a structural modeling approach which allows us to control the degree of
parametricity in the right tail of the survival curve. Some properties of the proposed
model are discussed. In particular, we consider improper non-informative prior distri-
butions for the regression coefficients and state conditions under which the resulting
posterior distribution is proper. We further develop an efficient collapsed Gibbs sampler
algorithm for carrying out posterior computation. A Bayesian diagnostic method for
accessing goodness of fit and perform model comparisons is briefly discussed. Finally,
we illustrate the usefulness of the new methodology with the analysis of a melanoma
clinical trial which has been discussed in the literature.
Keywords: Bayesian inference, Gibbs sampler, piecewise exponential model, survival
analysis.

1 Introduction

Due to the recent medical advances and the increasing number of early diagnosis experienced
specially in the last two decades, studies involving several types of cancer including breast
cancer, non-Hodgkins lymphoma, leukemia, prostate cancer, melanoma and head and neck
cancers, have shown that a significant fraction of the population has been cured. Therefore,
survival models incorporating a fraction of cured individuals in the population, known as
cure rate models or long-term survival models, have received considerable attention in the
literature.
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Despite of the recent popularity of the cure rate models, the concept of cure fraction was
introduced almost 60 years ago by Berkson and Gage (1952). In the original formulation
of the model, Berkson and Gage (1952) assumed that a fraction of the population is cured.
Further, the survival times of the remaining non-cured individuals of the population are
modeled according to some distribution function F ∗. In this fashion, the survival function
for the entire population, denoted by S∗

pop(t), is given by:

S∗
pop(t) = π + (1− π)S∗(t), (1)

where S∗(t) = 1− F ∗(t).
The binary mixture model proposed by Berkson and Gage (1952) has played a major role

in the literature on cure rate models, and it has been discussed by many authors, including
Farewell (1982, 1986), Kuk and Chen (1992), Maller and Zhou (1996), Peng and Dear (2000)
and Sy and Taylor (2000), among others. An alternative parametric cure rate model, known
as promotion time cure rate model, is first discussed in Yakovlev et al. (1993) and Chen et al.
(1999). In this approach, which has a strong biological appeal, a latent random variable N
representing the number of competing causes (or risks) which may lead to the occurrence of
the event of interest is introduced into the model. Given N , it is further considered that Zk,
k = 1, ..., N , as non-observable random variables denoting the time-to-event (the promotion
time) associated with the k-th competing cause. The Zk’s are assumed to be independent
of N , and also independent and identically distributed random variables with a distribution
F . The number of competing causes as well as their corresponding promotion times are not
observed, and the observable survival time is defined as the minimum promotion time.

A Bayesian formulation of the promotion time cure rate model, along with a detailed
discussion about its relationship with the mixed cure rate model proposed by Berkson and
Gage (1952), is given in Chen et al. (1999). Latter, Tsodikov et al. (1998) introduce the
concept of bounded cumulative hazard (BCH) models, which contains the promotion time
cure rate model proposed by Yakovlev et al. (1993) as a particular case. An excellent
discussion of all those models can be found in Tsodikov et al. (2003). Unified approaches
considering both the mixture and promotion time cure rate models are given in Yin and
Ibrahim (2005), Rodrigues et al. (009a) and Rodrigues et al. (009b).

The way the hazard functions associated with either F ∗ or F is modeled is of major
importance in the context of the cure rate models, since those are closely related to the
survival function of the entire population. The exponential and Weibull distributions are
common choices for modeling those hazard functions. However, those distributions are re-
strictive with respect to the shape of their hazard functions. A quite attractive alternative
model to address this issue is to use the Piecewise Exponential Model (PEM) to deal with
the problem. Although parametric in a strict sense, the PEM can be thought as a nonpara-
metric model as far as it does not have a closed form for the hazard function. This nice

2



characteristic of the PEM allows us to use this model to approximate satisfactorily hazard
functions of several shapes, providing great flexibility in survival data modeling.

In order to construct the PEM we need to specify a time grid which divides the time
axis into a finite number b of intervals, say τ = {a0, a1, ..., ab}. Given τ = {a0, a1, ..., ab}, we
assume a constant failure rate λj for each interval Ij = (aj−1, aj], j = 1, ..., b. Consequently,
we obtain a discrete version, in the form of a step function, of the true and unknown hazard
function. As a result, a good approximation for the true hazard function depends on a
suitable choice of the time grid. For this reason, appropriate specifications for the time grid
τ plays one of the greatest challenges in working with the PEM.

In the context of the alternative cure rate model, Ibrahim et al. (2001a) consider a
hierachical Bayesian approach for modeling the baseline hazard function of the PEM by
introducing a smoothing parameter which controls the degree of parametricity in the right
tail of the survival distribution. However, in that approach an arbitrary time grid is assumed
for the PEM. Extending some previous works, Kim et al. (2006) consider a time-homogeneous
Poisson process (THPP) to generate random time grids for the PEM. Similarly to Ibrahim
et al. (2001a), conditionally on the generated time grids, Kim et al. (2006) further specify
a prior process which controls the degree of parametricity in the right tail of the survival
curve by assuming a correlated process for the baseline hazard of the PEM. Although the
randomness of both b and the time jumps aj’s yields a nonparametric hazard function, the
mechanism used by Kim et al. (2006) to generate the random time grid τ = {a0, a1, ..., ab},
permits no control of how the failure times are distributed over the random intervals Ij =

(aj−1, aj].
In this paper we propose an alternative semiparametric full Bayesian approach for mod-

eling the promotion time cure rate model introduced by Chen et al. (1999) assuming the
PEM with random time grid. Extending the approaches proposed by Ibrahim et al. (2001a)
and Demarqui et al. (2008), we consider in the context of cure rate models a unified ap-
proach for modeling the time grids for the PEM which depends only upon a set of observed
failure times. This allows us to model the time grid taking into account the arrangement
of the observed failure times over the time axis, as well as to control the maximum number
of failure times associated with all the random intervals induced by the random time grid.
Besides, although time grid to fit the PEM is considered a random quantity, under the pro-
posed model the number of parameters remains fixed, and the posteriors distributions of the
failure rates are given by a mixture of distributions, providing smoother estimates for the
failure rates.

This paper is organized as follows. In Section 2 we present an overview of the promotion
time cure rate model as discussed in Chen et al. (1999). The proposed model is presented
in Section 3. A Bayesian diagnostic method for accessing goodness of fit and perform model
selection is considered in Section 4. The analysis of the E1673 data from a melanoma clinical
trial conducted by the Eastern Cooperative Oncology Group (ECOG) using the proposed
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methodology is presented in Section 5. Some conclusions about the proposed model in
Section 6 ends the paper.

2 The Promotion Time Cure Rate Model

Suppose that for each individual belonging to a sample of size n we observe the triple
(ti, δi,xi), where ti denotes the observed survival time, which may be right censored, δi
is the censoring indicator, assuming value 1 if ti is a failure time, and 0 otherwise, and
x′
i = (xi1, ..., xip) is the vector of covariates associated with the i-th individual, i = 1, ..., n.

According to Chen et al. (1999), the promotion time cure rate model can be built based on the
following biologic motivation. Let Ni be the non-observable number of metastasis-competent
tumor cells which remains active in the i-th individual after the initial treatment. Assume
that Ni follows a Poisson distribution with mean θi = exp(x′

iβ), where β = (β1, ..., βp)
′ is the

corresponding vector of regression coefficients. Further, denote by Zik the non-observable
random time for the production of detectable metastatic disease by the k-th metastasis-
component tumor cell associated with the i-th individual, that is, the promotion time for
the k-th tumor cell of the i-th individual. Given Ni, the promotion times Zik, k = 1, ..., Ni,
are assumed to be independent and identically distributed with a common c.d.f. F (t|ψ),
which depends only on the parameter (possibly vector valued) ψ. The time to relapse to
cancer of the i-th individual, which is in fact the observable quantity, is defined as the random
variable Ti = min{Zik, 0 ≤ k ≤ Ni}, with P (Zi0 = ∞) = 1.

It can be shown that, given Ni > 0, the conditional survival and hazard functions of Ti
are, respectively, given by

h(t|ψ,Ni > 0) = Nih(t|ψ), (2)

and

S(t|ψ,Ni > 0) = S(t|ψ)Ni . (3)

The conditional hazard function given in (2) has a biological appeal, since the number
of metastasis-competent tumor cells acts multiplicatively on (2), suggesting that the higher
the Ni in the body, the lower will be the chance of cure.

Using (3), it follows that the populational survival function for the i-th individual can
be expressed as

Spop(t) = P (no metastatic cancer by time t)

=
∞∑
k=0

P (Ni = k)S(t)k = exp{−θiF (t|ψ)}. (4)
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Some comments about (4) are in order. By taking θi → ∞, the cure fraction tends to
0, whereas if θi approaches 0, the cure fraction gets closer to 1. Furthermore, when t→ ∞,
Spop(t) converges to P (Ni = 0) = exp(−θi), which can be interpreted in this formulation
as the cure fraction of the mixture cure rate model proposed by Berkson and Gage (1952).
Therefore, the survival function (4) is not properly a survival function.

After some algebraic calculations, it can be shown that the populational hazard function
is given by:

hpop(t) = θif(t|ψ), (5)

where f(t|ψ) = d
dt
F (t|ψ). Therefore, the effect of covariates is multiplicative in (5), and the

proportional hazard structure holds for the populational hazard function. Such structure
is quite attractive in survival analysis, since it provides an appealing interpretation of the
covariate effects on the hazard function, and is also very convenient from the computational
point of view. Indeed, as shown in Rodrigues et al. (009a), the proportional hazard structure
in (5) holds if, and only if, the latent random variables Ni’s follow a Poisson distribution.

Let Dobs = (t, δ,X) and D = (t, δ,X,N) be the observed and complete data sets,
respectively, where t = (t1, ..., tn)

′, δ = (δ1, ..., δn)
′, X is the n × p matrix of covariates

with i-th row x′
i = (xi1, ..., xip), and N = (N1, ..., Nn)

′ is the corresponding vector of latent
variables. Then, the complete data likelihood function for the cure rate model can be written
as:

L(β, ψ|D) =

(
n∏

i=1

[Nih(ti|ψ)]δiS(ti|ψ)Ni

)

× exp

{
n∑

i=1

[Ni(x
′
iβ)− log(Ni!)− exp(x′

iβ)]

}
, (6)

and the likelihood function based only on the observed data is obtained by summing out N
in expression (6), that is,

L(β, ψ|Dobs) =
∑
N

L(β, ψ|D) =
n∏

i=1

[θif(ti|ψ)]δi exp {−θi[1− S(ti|ψ)]} . (7)

As a final remark on the alternative cure rate described above, we emphasize that the
latent variables Ni and Zi = (Zi1, ..., ZiNi

)′ do not necessarily need to have any physical
or biological interpretation as long as they are introduced into the model only to facilitate
the model formulation and computational implementation as well. Therefore, despite its
biological motivation, the alternative cure rate model is suitable for modeling any type of
time-to-event data whenever the cure fraction assumption is reasonable and the survival
times Ti can be thought of as a result of observing an unknown number Ni of competing
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risks Zi1, ..., ZiNi
, i = 1, ..., n.

3 Full Semiparametric Bayesian Cure Rate Model

In the sequel, we present our formulation for the cure rate model addressed in the previous
section. The PEM with random time grid will be assumed for modeling the distribution
of the promotion times Zik’s. We emphasize here that, although the use of the PEM with
random time grid to fitting cure rate models has been considered previously by Kim et al.
(2006), our approach differs fundamentally from that by the way such random time grids
are generated, as can be seen in the following.

3.1 Random Time Grid Modeling

We start our model formulation by specifying the finest time grid for the PEM, say τ ′, with
possibly a moderate to large number of intervals. Then we introduce a clustering structure on
the set of intervals induced by τ ′ in order to get a more parsimonious model. Our approach
is full Bayesian since it avoids the use of ad-hoc procedures for choosing the time grid τ . In
addition, by allowing the direct modeling of uncertainty about τ through suitable prior, we
get a more flexible cure rate model.

The finest time grid is chosen in such a way that only distinct observed failure times
are allowed to belong to τ ′. This constrain enables us to have total control over the sample
space of the random time grids, turning possible its estimation. It further guarantees that all
random intervals induced by the random time grids contain at least one failure time, which,
as pointed out before, consists of a desired property of τ .

Denote by F = {y1, ..., ym} the set of the m distinct observed failure times from a sample
of size n. Let τ ′ = {y′1, ..., y′m′} be the initial time grid satisfying 1 ≤ m′ ≤ m and τ ′ ⊆ F ,
where m′ is the maximum number of initial intervals admitted a priori. Then, the time grid
τ ′ = {y′1, ..., y′m′} induces the following set of disjoint intervals

Ij =

{
(0, y′1], if j = 1,
(y′j−1, y

′
j], 1 < j ≤ m′.

(8)

The maximum number of initial intervals m′ plays an important role in the goodness of fit
of the PEM, since it controls the degree of parametricity of the model. Asm′ gets closer tom,
the model becomes more nonparametric. On the other hand, when m′ approaches to 1, the
model becomes more parametric. Particularly, whenm′ = 1 we have a completely parametric
model as the PEM reduces to the Exponential model. Consequently, no clustering structure
is needed in this case. In practice, we suggest performing a sensitive analysis considering
different values for m′.
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In this paper we propose the intervals associated with the finest time grid can be specified
as follows. For a given m′ we obtain values k and r such that m = km′ + r. Then, we chose
the elements of τ ′ such that the first m′ − r intervals have k failure times and the remaining
r intervals have k + 1 failure times. This procedure allows more failure times to be in the
last intervals, where few data information is usually available.

After τ ′ = {y′1, ..., y′m′} is properly specified, the clustering structure is performed as
follows. Denote by I = {1, ...,m′} the set of indexes related to the intervals defined in
(8). Let ρ = {i0, i1, ..., ib}, 0 = i0 < i1 < ... < ib = m′, be a random partition of the set of
indexes I, which divides the m′ initial intervals given in (8) into B = b new disjoint intervals,
where B is a random variable denoting the number of clustered intervals associated with the
random partition ρ. Further, let τ = τ(ρ) = {a0, a1, ..., ab} be the time grid induced by the
random partition ρ, where

aj =

{
0, if j = 0,
y′ij , if j = 1, ..., b.

(9)

Then, the clustered intervals induced by ρ = {i0, i1, ..., ib} are given by

I(j)ρ = ∪ij
r=ij−1+1Ir = (y′r−1, y

′
r], j = 1, ..., b. (10)

To properly construct the likelihood function, conditionally on ρ = {i0, i1, ..., ib}, we
assume that

h(t) = λr ≡ λ(j)ρ , (11)

where λ(j)ρ denotes the common failure rate related to the clustered interval I(j)ρ , for ij−1 <

r ≤ ij, r = 1, ...,m′ and j = 1, ..., b. We further define

tij =


aj−1, if ti < aj−1,

ti, if ti ∈ I
(j)
ρ ,

aj, if ti > aj,
(12)

for i = 1, ..., n and j = 1, ..., b.
Thus, given a particular random partition ρ = {i0, i1, ..., ib}, survival function associated

with the PEM can be written as

S(t|λρ, ρ) = exp

{
−

b∑
j=1

λ(j)ρ (tij − aj−1)

}
, (13)

where λρ = (λ
(1)
ρ , ..., λ

(b)
ρ )′ is the vector of clustered failure rates. Thus, replacing (11) and
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(13) in the likelihood function given in (6), the complete data likelihood function reduces to:

L(β,λρ, ρ|D) =
b∏

j=1

(
λ(j)ρ

)ηj
exp

{
−ξjλ(j)ρ

}
× exp

{
n∑

i=1

[νi log(Ni) +Ni(x
′
iβ)

−log(Ni!)− exp(x′
iβ)]} , (14)

where δij = δiν
(i)
j , ν(i)j is the indicator function assuming value 1 if the i-th observation

falls at the j-th interval, and 0 otherwise, ηj =
∑n

i=1 δij and ξj =
∑n

i=1Ni(tij − aj−1), for
j = 1, ..., b. Then, the likelihood based on the observed data Dobs is obtained after summing
out N in (14), yielding

L(β, λρ, ρ|Dobs) = exp

{
n∑

i=1

νi(x
′
iβ) +

n∑
i=1

b∑
j=1

[
δij log λ

(j)
ρ − νiλ

(j)
ρ (tij − aj)

]
+

n∑
i=1

exp(x′
iβ)

[
1− exp

(
−

b∑
j=1

λ(j)ρ (tij − aj)

)]}
. (15)

3.2 Prior specifications

In order to complete the model specification, we need to specify the prior distributions for
the parameters of interest, (β,λρ, ρ). The prior distribution for (λρ, ρ) will be assigned
hierarchically by first specifying a prior distribution for the random partition ρ, and then
eliciting a joint prior distribution for λρ, conditioning on ρ. The joint prior distribution for
β will be set independently of (λρ, ρ).

The random time grid for the PEM is defined in terms of random partitions of the
intervals given in (8). Moreover, we assumed that only contiguous intervals are possible, and
that the endpoint ij of each clustered interval I(j)ρ depends only upon the previous endpoint
ij−1. Therefore, the prior distribution for ρ can be written as the product prior distribution
proposed by Barry and Hartigan (1992):

π(ρ = {i0, i1, ..., ib}) =
1

K

b∏
i=1

c
I
(j)
ρ
, (16)

where c
I
(j)
ρ
> 0 denotes the prior cohesion related to the clustered interval I(j)ρ , and represents

the degree of similarity among the initial intervals which compose I(j)ρ , j = 1, ..., b. , where
C denotes the set of all possible partitions of the set I into b disjoint clustered intervals with
endpoints i1, ..., ib, satisfying the condition 0 = i0 < i1 < ... < ib = m′, for all b ∈ I.

The gamma family of distributions has been widely used as prior distributions for the
failure rates of the PEM. It is a flexible class which also includes non-informative prior
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distributions and from which correlated process can be easily constructed (see Arjas and
Gasbarra (1994), Gamerman (1994) and McKeague and Tighiouart (2000), among others).
We consider a structural prior distribution for λρ by assuming independent Gamma prior
distributions for the failure rates λ(j)ρ ’s, with mean and variance given, respectively, by

µj = E(λ(j)ρ |λ0, ρ) =
H0(aj)−H0(aj−1)

aj − aj−1

(17)

and
σ2
j = V (λ(j)ρ |λ0, ρ) = µjκ

j, (18)

where κ, 0 < κ < 1, is a smoothing parameter which controls the degree of parametricity
in the right tail of the survival curve, and H0(·|λ0) is a cumulative hazard function of a
parametric survival distribution F0(·|λ0). The function F0(·|λ0) is arbitrarily chosen, and
must reflect someone’s opinion about the right tail of the survival curve.

The prior specification described above was introduced by Ibrahim et al. (2001a) and has
some nice properties. Note that, if κ→ 0, then σ2 → 0, and the prior process approximates
h0(t|λ0) = d

dy
H0(t|λ0) as h0(t|λ0) ≈ H0(aj)−H0(aj−1)

aj−aj−1
, for t ∈ Ij = (aj−1, aj], j = 1, ..., b. It

is also noticeable that when j → ∞, σ2 → 0 at the rate κ, implying more parametricity
in the right tail of the survival curve, regardless of any choice of κ. Moreover, as shown in
Ibrahim et al. (2001a), by assuming (aj−1 + aj)/2 → t as aj − aj−1 → 0, it follows that
E(λ

(j)
ρ |λ0, ρ) → h0(t|λ0).
The model is completely specified by eliciting the prior distributions for β and λ0. In

this spirit, we will assume that

(i) β has the improper prior distribution π(β) ∝ 1, and

(ii) λ0 is independent of β and λρ, and has a prior distribution π(λ0) specified according
to the choice of F0(·|λ0).

Under these assumptions, the joint prior distribution for (β,λρ, λ0, ρ) is

π(β, λρ, λ0, ρ) ∝

[
b∏

j=1

((
λ(j)ρ

)µjκ
−j−1

exp
{
−κ−jλ(j)ρ

})
c(j)ρ

]
π(λ0). (19)

Although such an approach has been previously considered before by Ibrahim et al.
(2001a), as far as we know, an approach considering simultaneously this structural prior for
the components of λρ along with a random time grid for the PEM has not been proposed
yet. In particular, our model includes as a special case the model proposed in Ibrahim et al.
(2001a) by setting P (ρ = {i0, i1, ..., ib}) = 1 for a particular partition ρ. Moreover, the
proposed model differs fundamentally from Kim et al. (2006), which also consider a random
time grid for the PEM to fit the cure rate model reviewed in Section 2, in two directions.
First, our approach provides an elegant way for modeling the randomness of the time grid
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of the PEM through the direct specification of suitable prior distributions for ρ, whereas, by
assuming a THPP for modeling the PEM with random time as in Kim et al. (2006), such
time grid cannot be estimated. Second, although both approaches consider a cumulative
risk function associated to a parametric model to build the prior elicitation, in our approach
prior distributions are directly assigned for the failure rates of the PEM, and in the model
considered in Kim et al. (2006) prior distributions are dynamically specified for the logarithm
of the failure rates of the PEM.

3.3 Posterior Inference and Computations

Considering the likelihood in (15) and the prior specifications provided in Section 3.2, the
joint posterior distribution of (β,λρ, λ0, ρ) becomes

π(β,λρ, λ0, ρ|Dobs) ∝ L(β,λρ, ρ|Dobs)π(λρ|λ0, ρ)π(λ0)π(ρ)

∝ exp

{
n∑

i=1

δi(x
′
iβ) +

n∑
i=1

b∑
j=1

[
δij log λ

(j)
ρ − δiλ

(j)
ρ (tij − aj)

]
+

n∑
i=1

exp(x′
iβ)

[
1− exp

(
−

b∑
j=1

λ(j)ρ (tij − aj)

)]}

×

(
b∏

j=1

(
λ(j)ρ

)µjκ
−j−1

exp
{
−κ−jλ(j)ρ

}
c
I
(j)
ρ

)
π(λ0). (20)

Since we consider a improper prior distribution for β, it is necessary to prove that the
joint posterior distribution for (β,λρ, λ0, ρ) is proper. In the following theorem we state
conditions under which such property of the posterior distribution in (20) is satisfied.

Theorem: Let X∗ be an m× p matrix with the i-th row given by δix′
i and consider the

prior specifications for ρ and λρ discussed in the previous section. If i) when δi = 1, then
ti > 0; ii) m ≥ p and X∗ is of full rank; and iii) the prior distribution π(λ0) in (19) is proper,
regardless of the choice of F0(·|λ0), then, the joint posterior distribution π(β,λρ, λ0, ρ|Dobs)

is proper.
The proof of this theorem is given in the appendix. The conditions established in the

previous theorem are, in practice, satisfied for most data sets. This enables us to perform
noninformative Bayesian inference for the regression coefficients as well as to perform com-
parisons with the maximum likelihood approach.

In order to sample from (20), we introduce the latent variables N = (N1, ..., Nn). Thus,
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from (14) we obtain the corresponding joint posterior distribution of (β,λρ, λ0, ρ,N):

π(β,λρ, λ0, ρ,N|Dobs) ∝

(
b∏

j=1

(
λ(j)ρ

)ηj+µjκ
−j

exp
{
−[ξj + κ−j]λ(j)ρ

}
c
I
(j)
ρ

)

× exp

{
n∑

i=1

[Ni(x
′
iβ)− log(Ni!)− exp(x′

iβ)]

}
π(λ0). (21)

It is noteworthy that the posterior distribution in (21) does not have a closed form.
Hence, MCMC methods are required to carry out our Bayesian analysis. We will consider a
collapsed Gibbs sampler to generate from the posterior full conditional (p.f.c.) distributions
(β,N|λρ, λ0, ρ,Dobs) and (λρ, λ0, ρ|β,N, Dobs). This strategy helps to improve the perfor-
mance of the MCMC algorithm by reducing the computational time as well as the correlation
among the parameters a posteriori. Further details regarding this procedure can be found
in Chen et al. (1999), Ibrahim et al. (2001b), and references therein.

To sample from (β,N|λρ, λ0, ρ,Dobs), we consider the p.f.c. distributions (β|λρ, λ0, ρ,Dobs)

and (N|β,λρ, λ0, ρ,Dobs), which are given, respectively, by

π(β|λρ, λ0, ρ,Dobs) ∝ exp

{
n∑

i=1

[
δi(x

′
iβ)− exp(x′

iβ)

(
1− exp

{
−

b∑
j=1

λ(j)ρ (tij − aj−1)

})]}
.

(22)

and

(Ni|β,λρ, λ0, ρ,Dobs) ∼ Poisson

(
exp

{
x′
iβ −

b∑
j=1

λ(j)ρ (tij − aj−1)

})
+ δi, (23)

for i = 1, ..., n.
It can be shown that π(β|λρ, λ0, ρ,Dobs) is log-concave in each component of β. Thus,

the adaptive rejection sampling algorithm (Gilks and Wild (1992)) can be used to sample
from (β|λρ, ρ,Dobs). Sampling from (N|β, λρ, ρ,Dobs) is straightforward.

Similarly, samples from (λρ, λ0, ρ|β,N, Dobs) are obtained from the f.c.p. distributions
(λ0, ρ|β,N, Dobs) and (λρ|β, λ0, ρ,N, Dobs), respectively, given by

π(λ0|ρ,β,N, Dobs) ∝

(
b∏

j=1

(1/κj)µjκ
−j

Γ(µjκ−j)

Γ(µjκ
−j + ηj)

(κ−j + ξj)µjκ−j+ηj

)
π(λ0) (24)

and

π(ρ|λ0,β,N, Dobs) ∝
b∏

j=1

(
(1/κj)µjκ

−j

Γ(µjκ−j)

Γ(µjκ
−j + ηj)

(κ−j + ξj)µjκ−j+ηj

)
c(j)ρ . (25)
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The Metropolis-Hasting (M-H) algorithm (see Gilks et al. (1996) and Casella and Robert
(2005)) or the adaptive rejection Metropolis sampling (ARMS) algorithm proposed by Gilks
et al. (1995) can be used to sample from (24). The product form of the joint prior distribution
given in (19) enables us to use the Gibbs sampling algorithm proposed by Barry and Hartigan
(1993) to sample from (25).

Finally, the joint prior distribution for (β,λρ, λ0, ρ) given in (20) implies that the com-
plete conditional posterior of each common failure rate λ(j)ρ is:

(λ(j)ρ |β, λ0, ρ,N, Dobs) ∼ Gamma(µjκ
−j + ηj;κ

−j + ξj), (26)

As a consequence, the f.c.p. distribution for λk, k = 1, ...,m′, can be recovered by taking:

π(λk|β, λ0,N, Dobs) =
∑

ij−1<k≤ij

π(λ(j)ρ |β,N, Dobs)R(I
(j)
ρ |β,N, Dobs), (27)

where R(I(j)ρ |β,N, Dobs) is called posterior relevance, and denotes the probability of each
clustered interval I(j)ρ belongs to the random partition ρ, and π(λ(j)ρ |β,N, Dobs) denotes the
posterior distribution of the common parameter λ(j)ρ , for j = 1, ..., b and b ∈ {1, ...,m′}.

Under the framework we are proposing, the posterior populational survival function and
posterior cure fraction are given, respectively, by

Spop(tn+1|Dobs) =
∑
ρ

∫
β,λρ,λ0

exp {− exp(xn+1β)F (tn+1|λρ, ρ)}

× π(β,λρ, λ0, ρ, |Dobs)dβdλρdλ0; (28)

and

π̂n+1 =
∑
ρ

∫
β,λρ,λ0

exp
{
− exp(x

′

n+1β)
}
π(β,λρ, λ0, ρ, |Dobs)dβdλρdλ0. (29)

Since (28) and (29) are not available in closed form expressions, inferences regarding such
quantities are made numerically through the posterior sample of (β,λρ, ρ, λ0).

4 Model selection

In this section we present a brief overview of conditional predictive ordinate (CPO) statistics.
The CPO is a useful tool for model selection which allows us to assess goodness of fit as well
as to perform model comparisons. For a more detailed discussions about CPO we refer the
reader to Dey et al. (1997) and Ibrahim et al. (2001b), and references therein.

Let D(−i)
obs denote the observed data set excluding the i-th observation, D(i)

obs = (ti, δi,xi).
Denote by f(ti|β,λρ, D

(−i)
obs ) = [θif(ti|λρ)]

δi exp {−θi[1− S(ti|λρ)]}, where θi = exp(x′
iβ).

12



The CPO statistic associated with the i-th observation is defined as the predictive density
of ti, conditionally on D(−i)

obs , that is:

CPOi = f(ti|D(−i)
obs )

=
∑
ρ

∫
β,λρ,λ0

f(ti|β,λρ, D
(−i)
obs )π(β,λρ, ρ|D(−i)

obs )dβdλρ. (30)

The CPOi in (30) cannot be obtained in close form. However, it is possible to estimate
(30) by using the MCMC samples from the posterior π(β,λρ, ρ|Dobs). It can be shown (Dey
et al. (1997)) that a Monte Carlo estimate for CPOi , i = 1, ..., n, is given by:

ĈPOi = L

(
M∑
l=1

[
f(ti|βl,λl

ρ, Dobs)
]−1

)−1

, (31)

where M denotes the MCMC sample size of the posterior π(λρ, β, ρ|Dobs). The posterior
distribution of (λρ, β, ρ) is obtained by conditioning on the complete observed data set Dobs.
Therefore, the computation of the CPOi’s is straightforward when MCMC samples of the
posteriors of the quantities of interest are available.

A visual criterion for evaluating the performance of two or more competing models con-
sists in plotting in the same graph their respective CPOi’s against the observations. Then,
that model whose trajectory of CPOi’s is predominantly higher than the trajectories of the
remaining competing models should be preferred.

Another useful measure for comparing competing models, which can be derived directly
from the CPOi’s, is the logarithm of the pseudo-marginal likelihood (LPML), which is
defined as:

LPML =
n∑

i=1

log (CPOi) , (32)

where n denotes the sample size. Hence, the higher the LPML is, the better is the fit of the
model under investigation.

As a final remark on the the CPOi statistics (and consequently the LPML statistic),
we emphasize that it is well defined as long as π(β,λρ, ρ|D(−i)

obs ) is proper, i = 1, ..., n. In
addition, it is also very computational stable (Ibrahim et al. (2001b)), and it can be easily
computed when the number of parameters is not fixed, which turns the CPO particularly
attractive for the approach we are proposing.

5 Case Study

In this section we analyze the E1673 data from a melanoma clinical trial conducted by
the Eastern Cooperative Oncology Group (ECOG) reported in Kim et al. (2006) using the
proposed methodology. The E1673 data consists of the overall survival (in years), defined as

13



the time from randomization until death, and three covariates, namely age in years, gender
(0 = male, 1 = female), and performance status (0 = fully active, 1 = other). The E1673
study lasted over 20 years and included n = 650 patients. By the time the study was closed,
it was observed that 257 patients remained alive, which corresponds to approximately 40%
of the patients involved in the trial. We refer the reader to Ibrahim et al. (2001b) and Kim
et al. (2006) for more details regarding this data set.

Our aim here is to carry out a sensitivity analysis for different choices of m′ and κ

when the Weibull distribution with shape and scale parameters α and γ, respectively, is
assumed for F0(·|λ0). For comparison purposes, we further compare the results provided by
our approach with those yielded by the competing approach proposed by Kim et al. (2006).
With these regards, the LPML measure discussed in the previous section is used to evaluate
the goodness of fit of the fitted models.

Under the assumption that there is no prior information available regarding the time
grid, we put equal mass onto the 2m

′−1 possible partitions ρ = {i0, i1, ..., ib} by setting
c
I
(j)
ρ

= 1, ∀ (ij−1, ij) ∈ I. This choice for the prior cohesions c
I
(j)
ρ

yields

π(ρ = {i0, i1, ..., ib}) =
1

2m′−1
,

which turns to be the Bayes-Laplace prior distribution for ρ.
We consider the Weibull distribution as a parametric model for F0(·|λ0), along with the

cumulative hazard function in the following parametrization: H(t|λ0) = exp(γ)tα, where
λ0 = (α, γ)′, so that µj = exp(γ)(aαj −aαj−1)/(aj −aj−1) and σ2

j = κj exp(γ)(aαj −aαj−1)/(aj −
aj−1). We also assume independence between α and γ, and as prior distributions we elicit
α ∼ Ga(0.001; 0.001) and γ ∼ N(0; 1000).

To carry out our Bayesian analysis using the collapsed Gibbs sampler discussed in the
previous section, we considered posterior samples of size 1,000 for all scenarios analyzed by
running single long chains, discarding the initial iterations needed to reach convergence and
assuming lag 100 to eliminate correlations. All computational procedures were implemented
in the Object-Oriented Matrix Programming Language Ox version 5.1 (Doornik, 2007), and
are available from the author upon request.

We evaluated the effect of the maximum number of intervals intervals admitted a priori
on the goodness of fit of the proposed model by considering values of m′ ranging from 10
to 60. We further examined the role played by the smoothing parameter κ on the model
fitting. For this purpose, we chose κ such that κm′ was equal to 1 × 10−01 and 1 × 10−05.
The results obtained are displayed in Table 1 and Figure 1.

As it can be observed in Figure 1, the proposed model yielded similar performances for
both choices of κm′ , regardless of the choice of m′. We further observed that m′ = 10 led
to the poorest fits whereas the best fits were obtained when m′ = 20. For the fixed time
grid model, both choices of κm′ also provided close results for m′ ≤ 30, and better fits when
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Table 1: LPMLs for the melanoma data according to different specifications for m′ and κ.

τ κm
′ 10 20 30 40 50 60

random 1× 10−01 -1339.879 -1329.780 -1332.310 -1332.576 -1331.657 -1335.453
1× 10−05 -1338.355 -1327.910 -1331.356 -1331.690 -1332.511 -1335.214

fixed 1× 10−01 -1339.178 -1332.954 -1337.905 -1344.310 -1350.325 -1356.122
1× 10−05 -1339.407 -1334.567 -1336.502 -1337.340 -1340.383 -1344.551

m′ = 20. Nevertheless, a decrease in the goodness of fit for m′ > 30 could be observed. In
particular, the performance of the model was substantially affected when κm′

= 1× 10−01.
Based on the results obtained, the introduction of a random time grid in the modeling

seems to improve the goodness of fit of the model. It is also noteworthy that the LPML
measures provided in Table 1 were, in general, greater than those yielded by the competing
model presented in Kim et al. (2006), regardless of the assumption of a fixed or random time
grid for the PEM, which suggests the superiority of the proposed model.
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Figure 1: LPML associated with the fitted models according to different choices of m′, for
κm

′
= 1× 10−01 (solid line) and κm′

= 1× 10−05 (dashed line).

According to Table 1, the best fitted model was obtained when a random time grid for the
PEM was assumed along with m′ = 20 and κm′

= 1× 10−05. For this model, it was observed
that the posterior most probable number of intervals was 11, with probability 0.238, and
the corresponding 95% HPD intervals was [8, 14]. It is remarkable that there is a significant
reduction on the number of intervals when compared with the maximum number of intervals
assumed a priori (m′ = 20). Other posterior summaries related to the number of intervals of
the PEM are given in Table 2 and Figure 2. Finally, the most probable time grid a posteriori
was τ = {0, 0.476, 0.668, 0.794, 1.533, 5.629, 11.077, 24.208}, with probability 0.004.

15



Histogram of b

b

D
en

si
ty

6 8 10 12 14 16

0.
00

0.
05

0.
10

0.
15

0.
20

Figure 2: Posterior summaries for the number of intervals - PEM with random time grid,
m′ = 20 and κm′

= 1× 10−05.

Table 2: Summary of the sample of the posterior distribution of the number of intervals - PEM
with random time grid, m′ = 20 and κm

′
= 1× 10−05.

mean sd min max
11.103 1.734 5 17

P2.50 P25.0 P50.0 P75.0 P97.50

8 10 11 12 14

The parameter estimates associated with the best fitted models considering the PEM with
random and fixed time grids are displayed in Tables 3 and 4, respectively. The estimated
regression coefficients associated with age, gender and PS were quite similar when fixed and
random were assumed for the PEM. However, different estimates for the hyper-parameters
α and γ, as well as the intercept, were obtained when fixed and random time grids were
considered. The analysis of Tables 3 and 4 also shows that the status performance not be
not significant to explain the survival time of patients with melanoma tumor, whereas gender
and age are statistically significant prognostic variables. In this spirit, one my conclude that
older patients are more likely to die from melanoma cancer than younger patients, and the
risk of a man to die from melanoma cancer is approximately 1.5 times a woman’s risk.

Figure 3 shows the estimated baseline hazard functions associated with the best fitted
models with random and fixed time grids respectively, along with their corresponding 95%
HPD intervals. As expected, the PEM with random time grid provides a smoother estimate
for the baseline hazard function when compared with the PEM with fixed time grid. We
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Table 3: Summary of the posterior distributuions - PEM with random time grid, m′ = 20 and
κm

′
= 1× 10−05.

95% HPD interval
variable mean sd lower upper
intercept 1.0374 0.3347 0.4784 1.7304

age 0.2053 0.0545 0.0910 0.3018
gender -0.3902 0.1063 -0.6208 -0.2065

PS 0.2585 0.1445 -0.0124 0.5557
α 0.4981 0.1452 0.2405 0.7737
γ -1.3167 0.4424 -2.1053 -0.4474

Table 4: Summary of the posterior distributions - PEM with fixed time grid, m′ = 20 and κm
′
=

1× 10−01.

95% HPD interval
variable mean sd lower upper
intercept 0.6136 0.1831 0.2684 0.9582

age 0.2037 0.0521 0.1027 0.3010
gender -0.3830 0.1058 -0.5774 -0.1815

PS 0.2424 0.1492 -0.0717 0.5143
α 0.6966 0.1389 0.4473 0.9860
γ -0.7233 0.3844 -1.5272 -0.0370

further observed that both baseline hazard functions displayed in Figure 3 are smoother than
those provided by the competing model given in Kim et al. (2006).

The boxplot for the overall cure rate estimates associated with the best fitted models
considering the PEM with random and fixed time grids are shown in Figure 4, and the
estimated populational survival functions (solid lines) along with their corresponding 95%
HPD intervals (dashed lines) for average fully active men and women are displayed in Figure
5. The PEM with random time grid provided smaller estimates for the cure rate of the
patients included in the E1673 study than the PEM with fixed time grid, as well as a shorter
variability among estimates associated with different patients. This is in agreement with
the estimated populational survival functions plotted in Figure 5, which indicates slightly
lower populational survival curves associated with the PEM with random time grid when
compared with the PEM with fixed time grid.
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Figure 3: Estimated baseline hazard functions assuming m′ = 20, κm′
= 1× 10−05 (random

time grid), and κm′
= 1× 10−01 (fixed time grid).
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Figure 4: Overall cure rate estimates - PEM with random time grid, m′ = 20 and κm
′
=

1× 10−05 (a), and PEM with fixed time grid, m′ = 20, κm′
= 1× 10−01 (b).

6 Conclusions

In this paper we have proposed a novel semiparametric full Bayesian approach for modeling
survival data with cure fraction using the PEM with random time grid and a structural prior
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Figure 5: Estimated populational survival function for average fully active men and women
- m′ = 20, κm′

= 1 × 10−05 (random time grid), and m′ = 20 and κm
′
= 1 × 10−01 (fixed

time grid).

distributions for the failure rates. We discussed in detail properties of the proposed model
and provided an efficient and easy-to-implement Gibbs sampler algorithm for carrying out
Bayesian analysis using the proposed approach. The usefulness of the proposed model was
illustrated through an extensive analysis of the E1673 data from a melanoma clinical trial
conducted by the Eastern Cooperative Oncology Group (ECOG). A sensitivity analysis tak-
ing into account different prior specifications was performed. Finally, comparisons between
the results yielded by the proposed model and those reported in Kim et al. (2006) indicates
the superiority of the proposed approach over the competing model.

Our approach is fully Bayesian since all quantities involved in the model can be estimated
after direct prior elicitation. Given the random time grid, prior elicitation for the failure rates
of the PEM are based on local approximations to a continuous hazard function associated
with a parametric model which is expected to describe the behavior of the right tail of the
survival curve. The resulting model corresponds to an extension of the model proposed by
Demarqui et al. (2008) and includes the semiparametric model introduced by Ibrahim et al.
(2001a) as a special case. Another nice characteristic of the proposed model is that the
constrains imposed on the set of possible time grids are based on solid arguments which
permits, in a very elegant way, to model jointly the time grid and failure rates of the PEM,
adding more flexibility in survival data modeling. Moreover, it makes better use of the data
information in modeling the time grid of the PEM by taking into account the exact position
in which the failure times have occurred, so that the endpoints of the intervals which defines
the PEM are more likely to provide a better approximation for the unknown true baseline
hazard function.
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Future research includes the extension of the proposed methodology to account for mul-
tivariate survival data such as time to first and second infection, time to relapse to cancer
and death, and so forth. Another possible extension comprehends the inclusion of spatial
frailies into the model to accounting for spatial correlated survival data.
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7 Appendix

We provide the proof for the theorem given in Section 3.3. The following result, which is
given in Chen et al. (1999), will be helpful in our proof.

Lemma: Let g1(z) = ze−z

1−e−z and g2(z) = ze−z. Then, there exist a common constant M0

such that g1(z) ≤M0 and g2(z) ≤M0, for all z > 0;
Proof of theorem:

In order to prove the result, we need to show that:

∑
ρ

∫
λ0

∫
λρ

∫
β
L(β,λρ, ρ|Dobs)π(λρ|λ0, ρ)π(λ0)π(ρ)dβdλρdλ0 <∞. (33)

Since the sum with respect to ρ in (33) is finite and π(ρ) is a genuine probability mass
function, it is sufficient to show that

∫
λ0

∫
bλρ

∫
β L(β,λρ, ρ|Dobs)π(λρ|λ0, ρ)π(λ0)dβdλρdλ0 <

∞ for a given ρ.
Remember that

L(β,λρ, ρ|Dobs) =
∑
N

L(β,λρ, ρ|D)

=
n∏

i=1

[exp(x′
iβ)f(ti|λρ, ρ)]

δi exp {− exp(x′
iβ)[1− S(ti|λρ, ρ)]} , (34)
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where f(ti|λρ, ρ) =
b∏

j=1

(
λ(j)ρ

)δij
exp

{
−λ(j)ρ (tij − aj−1)

}
and S(ti|λρ, ρ) = exp

{
−

b∑
j=1

λ(j)
ρ (tij − aj−1)

}
We first note that, if δi = 0, then

exp {− exp(x′
iβ)[1− S(ti|λρ, ρ)]} ≤ 1, (35)

Hence, it follows from (34) and (35) that∫
β

n∏
i=1

[exp(x′
iβ)f(ti|λρ, ρ)]

δi exp {− exp(x′
iβ)[1− S(ti|λρ, ρ)]} dβ

≤
∫
β

m∏
k=1

[
exp(x′

lk
β)f(tlk |λρ, ρ)

]νlk exp{− exp(x′
lk
β)[1− S(tlk |λρ, ρ)]

}
dβ, (36)

where {lk : lk = i, δi = 1, k = 1, ...,m, i = 1, ..., n}.
Using the lemma, it can be shown that

θif(ti|λρ, ρ) exp {θi[1− S(ti|λρ, ρ)]} ≤M0
f(ti|λρ,ρ)

1−S(ti|λρ,ρ)
. (37)

Furthermore, since X∗ is of full rank and m ≥ p, there must exist l∗1, l∗2, ..., l∗p such that
δl∗1 = δl∗2 = ... = δl∗p = 1 and X∗

p = (xl∗1
,xl∗2

, ...,xl∗p)
′ and X∗

p is of full rank. Thus, using (37)
in (36) we have that:∫

β

m∏
k=1

[exp(x′
iβ)f(tlk |λρ, ρ)]

νlk exp
{
− exp(x′

lk
β)[1− S(tlk |λρ, ρ)]

}
dβ

=

(∫
β

p∏
k=1

f(tl∗k |λρ, ρ) exp
{
x′l∗kβ − [1− S(tl∗k |λρ, ρ)] exp(x

′
l∗k
β)
}
dβ

)

×
m∏

k=p+1

M0
f(tlk |λρ, ρ)

1− S(tlk |λρ, ρ)
. (38)

To integrate out β in expression (38), we take the one-to-one transformation u =

(u1, ..., up)
′ = exp(X∗

pβ). Then, we have

∫
β

p∏
k=1

f(tl∗k |λρ, ρ) exp
{
x′
l∗k
β − [1− S(tl∗k |λρ, ρ)] exp(x

′
l∗k
β)
}
dβ

=
1

|X∗
p |

p∏
k=1

∫ ∞

−∞
f(tl∗k |λρ, ρ) exp

{
uk − [1− S(tl∗k |λρ, ρ)] exp(uk)

}
duk

=

p∏
k=1

f(tl∗k |λρ, ρ)

1− S(tl∗k |λρ, ρ)
. (39)

Moreover, for each pair δlk = 1 and tlk ∈ I
(j)
ρ = (aj−1, aj], j = 1, ..., b, and using the
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lemma again, we have

f(tlk |λρ, ρ)

1− S(tlk |λρ, ρ)
=

[
b∏

j=1

(
λ(j)

ρ

)δlkj

]
exp{−

∑b
j=1 λ

(j)
ρ (tlkj − aj−1)}

1− exp{−
∑b

j=1 λ
(j)
ρ (tlkj − aj−1)}

≤

[
b∏

j=1

(
λ(j)

ρ

)δlkj

]
exp{−λ(j)ρ (tlkj − aj−1)}

1− exp{−λ(j)ρ (tlkj − aj−1)}

≤ M0

b∏
j=1

(
λ(j)

ρ

)δlkj

. (40)

Therefore, using the lemma again, the right-hand of expression (38) becomes:

Mm−p
0

∫
λ0

∫
λρ

m∏
k=1

f(tlk |λρ, ρ)
1− S(tlk |λρ, ρ)

π(λρ|λ0, ρ)π(λ0)dλρdλ0 (41)

≤M2m−p
0

∫
λ0

∫
λρ

m∏
k=1

b∏
j=1

(
λ(j)

ρ

)δlkj

π(λρ|λ0, ρ)π(λ0)dλρdλ0

=M2m−p
0

∫
λ0

∫
λρ

b∏
j=1

(
λ(j)

ρ

)∑m
k=1 δlkj

π(λρ|λ0, ρ)π(λ0)dλρdλ0, (42)

which is obviously finite, since
∑m

k=1 δlkj ≥ 1 ∀ j, and each component of λρ has a gamma
prior distribution. This completes the proof.
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xiii

Conclusões

Nesta tese de doutorado foram apresentadas extensões da abordagem introduzida por

Demarqui et al. (2008) para a modelagem da grade do MEP. As contribuições mais impor-

tantes desta tese dizem respeito à generalização e unificação da abordagem inicialmente

proposta por Demarqui et al. (2008) com outras abordagens já consagradas na literatura.

A metodologia proposta se encaixa em diferentes contextos de análise de sobrevivência,

tais como a estimação da função risco, modelos de regressão e modelos com fração de

cura, e pode ser aplicada para dados do tipo tempo até a ocorrência de um evento de

interesse oriundos de qualquer área do conhecimento.

Na obordagem originalmente introduzida por Demarqui et al. (2008), uma grade com

tantos intevalos quanto tempos distintos de falha observados é assumida como a grade

mais fina possível para o MEP, e a estrutura de agrupamento do MPP é introduzida sobre

os intervalos resultantes. Esta suposição garante que cada intervalo agrupado induzido

pelas grades aleatórias contenha pelo menos um tempo de falha observado. Na prática, um

número muito grande de intervalos, no entanto, é desnecessário para uma boa aproximação

da função risco, e esta condição pode ser ralaxada. Neste contexto, foi proposto um novo

procedimento para a especificação da grade mais fina associada ao MEP. Especificamente,

assumiu-se que esta grade é formada por um subconjunto do conjunto de tempos distintos

de falhas observados. Tal suposição permite-nos controlar o número máximo de intervalos,

bem como a suavidade das estimativas das taxas de falha. Ademais, a especificação de

um número máximo de intervalos a priori evita o crescimento, sem limites, do número de

intervalos quando o número de falhas tende a infinito, o que tornaria a abordagem proposta

inviável, tanto do ponto de vista teórico quanto computacional. Na prática, uma análise

de sensibilidade considerando-se valores pequenos à moderados para o número máximo

de intervalos é recomendada.

O mecanismo considerado neste trabalho para modelar a grade do PEM apresenta

claras vantagens sobre outras abordagens existentes na literatura. Primeiro, a restrição

imposta sobre a grade mais fina possível para o PEM permite a modelagem direta da

mesma após apropriadas especificações a priori, enquanto a utilização de um PPH para

a modelagem do MEP com grade aleatória não possibilita tal estimação. Neste contexto,
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a abordagem proposta enriquece a análise possibilitando inferências sobre a grade, bem

como o número de intervalos aleatórios associados ao MEP. Além disso, a abordagem

proposta apresenta outras características interessantes que não são compartilhadas pelas

abordagens que assumem um PPH para a modelagem do MEP com grade aleatória, como

por exemplo, assegurar que todos os intervalos aleatórios contenham pelo menos um tempo

de falha, além de considerar a disposição dos tempos de falha observados ao longo do eixo

do tempo. Finalmente, os modelos modelos discutidos nesta tese abrigam uma ampla

classe de distribuições a priori, tanto para a grade de tempo quanto para as taxas de falha

do PEM (nem todas consideradas neste trabalho), e inclui outros modelos consagrados na

literatura como casos especiais, tornando, desta forma, a abordagem proposta bastante

flexivel e atraente.

A seguir são discutidos, resumidamente, as principais contribuições e resultados asso-

ciados a cada artigo apresentado nesta tese.

Artigo 1

Neste artigo foi proposta uma análise Bayesiana objetiva assumindo-se a distribuição

de Bayes-Laplace para a grade de tempos e a distribuição a priori de Jeffreys para as

taxas de falha do MEP. A escolha desta distribuição a priori conjunta para a modelagem

do MEP é atrativa em situações nas quais não se tem informação a priori disponível.

Além disso, tal especificação a priori possibilita uma comparação mais justa entre as

estimativas Bayesianas e as de máxima verossimilhança para as taxas de falha e função

de sobrevivência do MEP.

Os resultados obtidos a partir da análise dos tempos de sobrevivência de paciêntes di-

agnosticados com câncer no cérebro mostraram que as estimativas fornecidas pelo modelo

proposto são comparáveis com as estimativas de máxima verossimilhança obtidas para

o mesmo conjunto de dados. Entretanto, para a abordagem frequentista encontram-se

disponíveis apenas intervalos de confiança, baseados em aproximações assintóticas, para

a função de sobrevivência, enquanto a abordagem Bayesiana proposta possibilita a esti-

mação intervalar de ambas as funções risco e de sobrevivência, de maneira direta, e sem

depender de resultados assintóticos.
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Artigo 2

Uma classe de modelos Bayesianos semiparamétricos para a modelagem de dados de

sobrevivência considerando-se o MEP com grade aleatória foi introduzida neste artigo.

A estrutura de agrupamento do MPP foi utilizada para modelar a incerteza acerca da

grade que define o MEP. Condicionando-se na grade aleatória, quatro diferentes especi-

ficações a priori para as taxas de falha do MEP foram apresentadas. Especificamente,

a distribuição a priori de Bayes-Laplace foi assumida para a grade aleatória do MEP.

Uma abordagem Bayesiana objetiva foi proposta considerando-se a distribuição a priori

de Jeffreys para as taxas de falha do MEP. Distribuições a priori subjetivas para as taxas

de falha do MEP foram propostas através de diferentes escolhas de distribuições gama,

incluindo distribuições gama independentes não-informativas, distribuições gama condi-

cionalmente independentes com hiper-parâmetros correlacionados (abordagem dinâmica)

e distribuições gama como aquelas definidas em Ibrahim et al. (2001a), chamadas aqui de

distribuições gamma estruturadas.

O modelo proposto inclui alguns importantes modelos existentes na literatura como

casos particulares, e pode ser facilmente generalizado para acomodar uma classe ainda

mais abrangente de distribuições a priori para as taxas de falha do MEP. Como ilustração

das abordagens propostas neste artigo, o banco de dados referente aos tempos de sobre-

vivência de pacientes diagnosticados com câncer no cérebro no condado de Windham-CT,

EUA, foi novamente considerado para ilustração. Comparações entre os modelos ajusta-

dos considerando-se grades fixas e aleatórias, bem como diferentes especificações a priori

para a taxa de falha, realizadas utilizando-se como medida de comparação a média do log-

aritmo da pseudo-verossimilhança marginal, mostraram que o MEP com grade aleatória,

na maioria dos casos considerados, forneceu melhores ajustes para o conjunto de dados

estudado.

Artigo 3

Neste artigo uma abordagem dinâmica para o MEP com grade aleatória foi apre-

sentada. O modelo proposto combina as abordagens propostas por Gamerman (1991) e

Demarqui et al. (2008). Para a modelagem da grade de tempos do MEP, foi assumida

a distribuição a priori de Bayes Laplace. Dada a grade aleatória, um processo correla-

cionado foi assumido para as taxas de falhas e os coeficientes da regressão associados

aos sucessivos intervalos agrupados induzidos pela grade aleatória. A análise dos tem-
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pos de sobrevivência de pacientes diagnosticados com câncer no cérebro no condado de

Windham-CT, EUA, considerando-se a variável explicativa idade, foi apresentada. Os

resultados obtidos indicaram que a idade dos pacientes é uma variável estatisticamente

significativa para explicar o tempo de vida dos pacientes.

O desempenho da abordagem dinâmica para o MEP com grade aleatória foi avali-

ado através uma análise de sensibilidade realizada com base em diferentes especificações a

priori, utilizando-se medidas como o fator de Bayes e probabilidades a posteriori dos mod-

elos ajustados. Os resultados obtidos também foram comparados aos resultados fornecidos

pelo mesma abordagem dinâmica considerando-se o MEP com grade fixa, e indicaram a

superioridade do modelo com grade aleatória. Também foi observado que, em todos os

cenários considerados, o MEP com grade aleatória forneceu estimativas mais suaves para

os coeficientes da regressão.

O modelo proposto é uma alternativa bastante flexível para situações nas quais a

suposição de riscos proporcionais não pode ser verificada pelos dados, tais como a presença

de covariáveis depedentes do tempo e / ou cujos efeitos das mesmas variam ao longo do

tempo, como foi ilustrado na análise dos tempos de sobrevivência de pacientes com câncer

no cérebro, onde observou-se que o feito da idade dos pacientes diminui ao longo do tempo.

Artigo 4

Foi apresentada neste artigo uma nova abordagem Bayesiana semiparamétrica para

o modelo de tempo de promoção introduzido por Yakovlev et al. (1993) e Chen et al.

(1999). O MEP com grade aleatória foi assumido para modelar a distribuição dos tempos

de promoção. Para a modelagem da grade, a estrutura de agrupamento do MPP foi

utilizada. A distribuição a priori de Bayes-Laplace foi assumida, neste caso, para a grade

aleatória. Dada a grade aleatória, distribuição a priori estrutural originalmente proposta

por Ibrahim et al. (2001a) foi considerada para modelar a incerteza acerca das taxas

de falha do MEP. Uma distribuição a priori uniforme imprópria foi assumida para os

coeficientes da regressão, e condições garantindo que a distribuição a posteriori conjunta

do modelo proposto é própria foram fornecidas. O modelo resultante é uma generalização

do Modelo 4 apresentado no segundo artigo que compõe esta tese (o modelo proposto

reduz-se ao Modelo 4 se P (Ni = 1) = 1, i = 1, ..., n), e inclui como caso particular o

modelo de fração de cura proposto por Ibrahim et al. (2001a), que considera uma grade

fixa de tempo para a modelagem do MEP.
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A nova abordagem foi utilizada para modelar os tempos de sobrevivência de indi-

víduos diagnosticados com melanoma, que fizeram parte do estudo clínico E1673 con-

duzido pela ECOG. Com o objetivo de avaliar o efeito de diferentes especificações a

priori, uma análise de sensibilidade do modelo, considerando-se a soma do logaritmo da

pseudo-verossimilhança marginal como medida de comparação, foi conduzida. Foi ob-

servado que o modelo proposto é sensível à diferentes escolhas a priori. Finalmente,

comparações realizadas entre os ajustes fornecidos pelo modelo proposto e o modelo com-

petidor introduzido, (ver resultados disponíveis em Kim et al. (2006)) indicaram que o

modelo proposto apresentou melhor desempenho quando ajustado ao conjunto de dados

considerado.

Conclusões Gerais

Em linhas gerais, foi observado que modelagem do MEP com grade aleatória proposta

nesta tese fornece estimativas mais suaves para a função risco do que aquelas em que uma

grade fixa é assumida para o MEP. A modelagem proposta também enriquece a análise

ao permitir, por exemplo, que inferências sobre a grade do eixo do tempo e o número de

intervalos que define o MEP, sejam realizadas. Por fim, os resultados obtidos indicam que

as abordagens consideradas fornecem resultados mais satisfatórios para a modelagem de

dados de sobrevivência.

Trabalhos futuros incluem a introdução de fragilidades (efeitos aleatórios) na mod-

elagem de dados de sobrevivência dentro dos contextos aqui considerados. Modelos de

fragilidade tem recebido crescente atenção na literatura estatística, sobretudo nas duas

últimas décadas, com especial destaque às abordagens Bayesianas. Os modelos discutidos

nesta tese podem ser diretamente estendidos para acomodar dados de sobrevivência mul-

tivariados, tais como a modelagem de eventos recorrentes e ou tempos de sobrevivência

espacialmente correlacionados. O tratamento de dados ausentes também pode ser facil-

mente incorporado às abordagens propostas. Outra possível proposta de trabalho é a

elaboração de um artigo de revisão cobrindo as principais abordagens existentes para o

MEP, e o desenvolvimento de um pacote estatístico para ajustar esses modelos, para ser

disponibilizado em R.
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