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Resumo

Esse trabalho apresenta um eficiente algoritmo de varredura para bancos de dados
hierárquicos que podem ser representados na forma de árvores. O algoritmo procura
através dos galhos da árvore e é capaz de agregar folhas em diferentes galhos. A
varredura procura por um cluster candidato através da estatística Minimum Descrip-
tion Length (MDL). A estatística de teste combina o logaritmo da razão de verossimil-
hança e a quantidade de informação necessária para representar internamente o cluster.
Esse segundo termo controla os graus de liberdade do algoritmo de busca. Fazendo
isso, a metodologia previne o acréscimo de folhas que desnecessariamente aumentem o
termo do logaritmo da razão de verossimilhança. Resultados mostram que a metodolo-
gia MDL é um algoritmo flexível capaz de detectar clusters em bancos de dados hi-
erárquicos nos quais os elementos do cluster estão distribuídos pela árvore. Dessa
forma, o algoritmo explora grupos de clusters que não são explícitos simplesmente
olhando para cortes nos galhos ou em análises combinatórias dos dados fornecidos.
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Abstract

This work presents an efficient scan algorithm for hierarchical data sets that can be
represented as a tree structure. The algorithm searches through the branches of the tree
and it is able to aggregate leaves located in different branches. The scan search aims
at detecting a cluster candidate with Minimum Description Length (MDL) statistic.
The test statistic combines the log-likelihood and the amount of information necessary
to represent internally the cluster. This second term controls the degree of freedom
of the search algorithm. By doing this, the methodology prevents the algorithm to
add leaves that unnecessarily increase the log-likelihood term. Results show that the
MDL methodology is a flexible algorithm which detects clusters in hierarchical data
sets whose cluster elements are partially scattered in the tree. Therefore, it explores
potential groups of clusters that are not explicit by just looking at cuts of branches or
combinatorial analysis of the given data.

v



Resumo Estendido

Muitas informações biométricas podem ser organizadas de forma hierárquica. O ex-
emplo mais antigo é a classificação de Linnaean para seres vivos. O sistema classifica
todos os organismos de uma forma hierárquica, sucessivamente selecionando domínio,
reino, filo, classe, ordem, família, gênero e espécie para cada organismo vivo. Classifi-
cações hierárquicas também podem ser aplicadas para coisas não vivas, por exemplo,
organizações de saúde podem ser classificadas de acordo com o aumento do nível da
escala geográfica, tais como hospitais classificados por estado, cidade, distritos e bairro.

Profissões também podem ser naturalmente organizadas de uma maneira hierárquica,
agrupando profissões relacionadas por áreas de trabalho. Estas áreas, por sua vez, são
aninhadas em áreas de trabalhos mais gerais, determinando assim, os diversos níveis da
árvore. citeKulldorffFangWalsh desenvolveram um método de vigilância para detecção
de clusters em árvores hierárquicas e aplicaram-no na busca por sub-conjuntos de profis-
sões com evidências incomuns de taxas de mortes por doenças relacionadas à profissão.
Sem idéias preconcebidas sobre qual profissão específica ou grupo de profissões podem
estar relacionadas com o maior risco, eles estavam interessados em decidir qual era o
cluster de profissões onde o número de casos era particularmente freqüente. Ao invés
de procurarem entre todas as possíveis combinações, eles consideraram uma menor
classe de clusters possíveis. De maneira geral, os clusters são formados por apenas
uma profissão ou todas as profissões pertencentes a um determinado galho. Isso reduz
substancialmente o número de clusters a serem procurados. Ao mesmo tempo, essa
classe é grande o suficiente para conter os muitos clusters que naturalmente ocorrem.

A motivação do nosso trabalho é propor um método de varredura mais flexível que
nos permita que uma maior classe de clusters seja analisada. Essa classe é maior do
que a proposta por Kulldorff et al. (2003) e inclui casos onde apenas algumas profissões
específicas, pertencentes a dois ou mais galhos, possuem maior risco do que o restante
das profissões. E estas profissões de maior risco, por sua vez, estão aninhadas em difer-
entes galhos da árvore. Nosso método de varredura é capaz de detectar tais clusters
(profissões de maior risco), enquanto o método de Kulldorff et al. (2003) necessaria-
mente terá de incluir todas as profissões dos galhos e não somente as profissões que
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especificamente possuem maior risco.
Em nosso método, utilizamos o princípio de seleção de modelos Minimum Descrip-

tion Length (MDL) (Rissanen (1989)). No nosso caso, o princípio MDL combina o
logaritmo da razão de verossimilhança como uma medida de adequação e a quantidade
de informação necessária para determinar os caminhos na árvore, que especificam o
cluster. Essa quantidade é baseada no número de bits necessários para descrever o
cluster candidato (o que é analisado no momento) na árvore. Esse segundo termo con-
trola os graus de liberdade no algoritmo de busca, prevenindo que o método adicione
profissões desnecessárias que aumentem o logaritmo da razão de verossimilhança.

Resultados mostram que o poder do método aumenta quando os riscos relativos dos
clusters também aumentam. Além disso, os clusters detectados normalmente incluem
elementos pertencentes aos clusters reais (clusters criados para a simulação). À medida
que o risco relativo aumenta, o método detecta uma maior quantidade de elementos
do cluster real. Apesar desse fato, quando o cluster criado está espalhado pela árvore,
a performance do método é comprometida.

Aplicando o método a dados reais(i.é, dados coletados por algum órgão oficial),
usamos, como exemplo, dados onde mortes por silicose eram os casos observados e
divididos por um fator de risco (onde profissão é o fator de risco). O método encontrou
um grupo de profissões que provadamente possuem características de maior risco da
doença.

Dessa forma, esse trabalho mostra que a metodologia MDL é um novo e flexível
método para detectar clusters em bancos de dados hierárquicos, nos quais os elementos
do cluster estão parcialmente espalhados pela árvore. Portanto, o método potencial-
mente explora grupos de clusters que não são explícitos simplesmente observando cortes
nos galhos da árvore em estudo ou em uma análise combinatória dos dados fornecidos.
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Chapter 1

Introduction

Much biometric information can be organized in a hierarchical way. The oldest example
is the Linnaean classification of all living things. The system classify all the organisms
in a hierarchical way by successively selecting a domain, kingdom, phylum, class, order,
family, genus and species for each living organism. Hierarchical classification can also be
applied to non-living things for example health organizations can be classified according
to increasing levels of geographical scale such as the health care providers classified by
their state, county, towns and neighborhood locations.

Occupational is also naturally organized as a hierarchical tree by grouping related
occupations in ever increasing levels of aggregation. For example, one can cluster
together all types of therapists specializations (Respiratory therapists, Occupational
therapists, Physical therapists, Speech therapists, Therapist and Physician Assistant)
into a single class called Therapists. Next, one groups the Therapist class with the
Registered nurses, Pharmacists and Dietitians classes to form the Health Assessment
and Treating Occupations class, and so on into larger groups.

Kulldorff et al. (2003) developed a surveillance method to detect clusters located in a
hierarchical tree and applied it to search for subset of occupations with unusual evidence
of death rates for occupationally related diseases. In each occupation, the number of
deaths in a certain period are separated into two types: those caused by silicosis and
all the other deaths. Without preconceived ideas about what specific occupation or
group of occupations may be related to increased risk, he was interested in deciding if
there was a cluster of occupations where death from silicosis was particularly frequent.
In his work, Kulldorff et al. (2003) used the United States Census Bureau (1982)
classification for occupations as a hierarchical tree in 503 categories. An exhaustive
search of all possible combination of occupation is not computationally feasible. It is
necessary to create a class of combinations that is large enough to contain combinations
substantially interesting and, at the same time, this class must be small enough to be
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1. Introduction 2

scanned in practical terms.
Another difficulty is the multiple testing problem. There is a need to control the

error Type I in a statistical analysis that deals with a large number of comparisons
between different groups. These problems led him to consider a scan statistics method-
ology to detect clusters in the hierarchical tree. The method is adapted from the spatial
scan method proposed by Kulldorff (1997). Rather than scanning all possible combi-
nations, he considers a smaller group of possible clusters. In a broad sense, these
clusters are those formed by single occupations or all occupations belonging to a spe-
cific branch in the hierarchical tree. This reduces substantially the number of clusters
to be searched and, at the same time, is large enough to contain many naturally occur-
ring clusters. To control the error Type I, the statistical inference is based on Monte
Carlo simulation under the hypothesis that there is no cluster present in the tree. The
test statistics null distribution takes into account the multiple testing involved in the
analysis.

However, there are situations where a more flexible scan procedure can be impor-
tant. Consider for example the case of latex allergy. This disease became common
among doctors and nurses after the appearance of HIV, when physicians and nurses
started to adopt latex gloves to protect from infection. Another group of occupation
that share the same problem are cleaners, who use the latex gloves to be protected
from the chemical products used in their work. Although both occupations share a
higher risk of the same disease they are not close in the occupational tree structure.
While doctors and nurses have similar job characteristics, cleaners carry out activities
that put them into a different position in the tree structure.

Applying the Kulldorff et al. (2003) scan method, one is likely to miss situations
such as a cluster of latex allergy. This is due to the fact that the class of candidate
clusters proposed by Kulldorff et al. (2003), include groups located in different positions
of the hierarchical tree only by including many other occupations not associated with
high risk. These additional occupations will lower the evidence to detect the clusters
and the final result is a lower power test.

The motivation for our work is to propose a more flexible scan statistics method
that allows for a larger class of possible cluster candidates. The class is larger than
that proposed by Kulldorff et al. (2003) and includes clusters similar to that described
in the latex allergy situation. Another possibility that is covered in our model but not
in Kulldorff et al. (2003) is when only a few occupations within two or more classes
have higher risks than the rest and these classes are nested into a larger class. Our scan
method can detect such a cluster while for the Kulldorff et al. (2003) scan method will
necessarily include all the occupations in the classes, not only the specific occupations
with higher risks.



1. Introduction 3

The spatial cluster detection techniques based on the scan statistic has faced a
similar challenge. Several authors adopt a more flexible cluster definition by considering
non-circular shapes for the candidate clusters (Duczmal and Assunção (2004); Patil
and Taillie (2003); Patil and Taillie (2004); Tango and Takahashi (2005); Assunção
et al. (2006)). In this spatial context, a large problem is the octopus-shaped solutions
the scan method finds. Significant clusters tend to be much larger and oddly shaped
as a result of the test, as pointed out by Tango and Takahashi (2005) Any reasonable
solution requires some kind of penalized likelihood approach where very peculiar shaped
clusters has less interest. Ad hoc solutions has been proposed and no consensus has
been reached yet (see Costa et al. (2008); Costa et al. (2005); Tango and Takahashi
(2005); Duczmal et al. (2006)).

In our hierarchical tree problem there is a natural solution based on the selec-
tion model approach using the minimum description length (MDL) principle (Rissanen
(1989)). In our specific case the MDL principle combines a likelihood-based measure
of fitness with the amount of information to account for the path in the tree, that
specifies the cluster. This amount is based on the number of bits needed to describe a
candidate cluster in the tree.

This paper is organized in the following way. In section 2 we describe the scan
method proposed by Kulldorff et al. (2003). In section 3 we derive an expression for the
MDL in the hierarchical tree approach. In section 4 there is a brief explanation about
Bayesian smoothing rates a necessary preliminary step in our procedure.In section 5 we
describe the use of the MDL scan method in the hierarchical tree problem. In section 6

is presented a detailed algorithm of the MDL scan method. In section 7 we show some
results in different cluster scenarios for the method. Finally, in section 8 we summarize
our findings and discuss the relative merits of the MDL scan method.



Chapter 2

The Tree-Based Scan Statistic Method

To construct a hierarchical tree variable, we start defining the leaves, which each leaf
contain all the information of the data set as the number of death by silicosis, the total
number of death and any co-variates. Each leaf belong to a branch and branches with
related leaves connect to the same node. Each node is also in the end of a branch and
connects it with a higher level node. The process repeats until we reach the highest
level node, the root. A example of a hierarchical tree is presented in Figure 2.1.

The Tree-Based scan statistic is based on a hierarchical structured data such that
all observed data are on the leaves. Each leaf corresponds to an occupation with the
following information: total number of people with that occupation and the number
of silicosis death by occupation. The initial tree is defined a priori and its structure is
fixed, this structure describes the proximity of one occupation to another. In the Tree-

Figure 2.1: Example of Hierarchical tree with definitions of leaves, branches and nodes.

4



2. The Tree-Based Scan Statistic Method 5

Based Scan statistics the search window is defined as cuts on any branch of the tree. To
analyze the method all possible cuts in any branch of the tree is defined as Simple Cuts.
Since for each cut the number of total death differ, it is not possible to take the number
of silicosis death as a statistic. Instead a likelihood function (Loader (1991), Kulldorff
(1997)) is proposed that estimates the risk inside and outside the cut. The likelihood
function applied for the Tree-Based Scan is the same explained in Section 5. To analyze
the proposed method two more complex cuts are also evaluated. For any node with two
or more branches it is possible to have the Combinatorial and Ordinal Cuts. Suppose
that we have a node with branches A, B, C and D. The Combinatorial Cut is defined
as all possible combinations of the four branches, therefore besides the simple cuts
the additional cuts are also evaluated [A,B] [A,C], [A,D], [B,C], [B,D], [C,D] [A,B,C],
[A,B,D] ,[A,C,D] and [B,C,D]. Now, assume that for some node a previous order is
define, take as examples node with branches teachers in kindergarten (A), elementary
schools (B), high schools (C) and colleges (D). There is an ordered list associated with
the age of the students, therefore it is plausible to believe that for A to be combined
with D all others must be included, in the sense that A has no direct connection with
D. So the Ordinal Cuts are defined as [A,B] [B,C], [C,D], [A,B,C], and [B,C,D], but
not [A,D] for example. One can observed that Simple Cuts are subsets of Ordinal Cuts
that are subsets of Combinatorial Cuts. After defining the three types of cuts analysis
are made using the method for each cut type and results are obtained with the cuts
that return the smallest p-value based on a Monte Carlos simulation.



Chapter 3

Minimum Description Length

The Minimum Description Length (MDL) principle is a general method for inductive
inference, based on the idea that more regularities we find on the data set, more we
are able to compress it and therefore more we can learn from the data. For our study
the MDL principle will be used to select a best fitting model, suppose a class of models
denoted by H and any model belonging H ∈ H. In this context the MDL defines the
best fitting model H ∈ H the one such that the shortest code length is necessary to
describe the data D. The MDL statistics, also known as stochastic complexity of D, is
given as:

MDL = L(ê | Ĥ) + COMP (Ĥ)

where L(ê | Ĥ) is the code length of the lack of fit conditioned on the fitted model
Ĥ, as demonstrated by Rissanen (1989) the lack of fit ê is given by the negative of
the log-likelihood of the fitted model Ĥ. The other parameter, COMP (Ĥ) is the code
length of the fitted model Ĥ, as explained by Grünwald (2005) for counting problems
is the logarithm of distinguishable point hypotheses given to the model. The MDL
principle selects the simplest model, in the sense that it allows the shorter description
of the data given that all models equally fit the data.

6



Chapter 4

The Bayesian Smoothing Rates

Dynamic methods for detecting irregular spatial clusters often produce large and strongly
irregular solutions when compared to the true simulated cluster (Duczmal and As-
sunção (2004), Assunção et al. (2006)). This behavior is due to the dynamic cluster
growth procedure which searches for candidates that maximizes the likelihood statis-
tic. Consequently, the simple aggregation of adjacency areas with high rates might
produce cluster with maximum likelihood. However, areas in rural regions with lower
population might randomly present high rates. Therefore, selecting areas that purely
maximize the likelihood may randomly find a significant irregular cluster consequently
reducing the power of the methodology.

We propose the use of empirical Bayes estimators (Marshall (1991), Santos et al.
(2005)) to smooth the rates in the leaves and to avoid the selection of odd structure but
keeping the likelihood maximization principle as part of the criterion to select branches
and leaves in the tree. In our proposal, the rates are adjusted as a combination of the
leaf rate and the branch rate where that particular leaf is located. Let Bi be the
Bayesian rate estimate for the leaf i, li the observed rate and m the mean rate of the
leaves in a particular branch. The smoothed Bayesian rate is

Bi = Cili + (1− Ci)m

where Ci is a number between 0 and 1 and is given

Ci =
s2 − m

n̄

s2 − m
n̄

+ s2 − m
ni

n̄ is the branch population average in risk, ni is the population in the leaf i, n is the

7



4. The Bayesian Smoothing Rates 8

total population of the branch and

s2 =
∑ ni(li −m)2

n

The Bayesian rate estimate is a weighted average between the leaf rate and the
rate of the particular branch. If the population in the leaf is large, the adjusted rate
is closer to the observed one otherwise, the adjusted rate is closer to the mean rate in
the branch.



Chapter 5

The MDL Tree-Based Scan Statistic
Method

Let the hierarchical data be represented as a tree, like shown in Figure 5.1. All the
input attributes are inside the leaves. Each leaf has the data from a specific occupation,
the total number of death and the number of death by silicosis. Figure 1 illustrates
an hierarchical tree structure. The scan window represents the set of braches and
leaves below a cut in any branch of the tree. As the total number of death in each
cut varies, defining the number of death by silicosis doesn’t represent an appropriate
test statistics. Another approach is defining a likelihood function that distinct the risk
inside the group of leaves inside the generated sub-tree, created by the cut in some
branch, and leaves inside the other sub-tree.

Let use a Minimum Description Length (MDL) as our model selection criteria. The
MDL model consists in combine the accuracy of a test statistics and the amount of
necessary information given for the test be capable of get that accuracy level. So the
MDL test statistics will consist in a:

MDL = I − T

where T is the test statistics (log likelihood) and I in the amount of information passed.
Based on that, let ci be the number of death by silicosis in a leaf i. This number

can be approximated by a Poisson (λini) distribution, where ni is the total number of
death in the leaf i, and λi is the probability that the death is caused by silicosis in the
occupation i.

Define C =
∑

i ci and N =
∑

i ni as the total number of deaths by silicosis and the
total number of death respectively in the tree.

Conditional to the total number of cases, the relative distribution among different

9



5. The MDL Tree-Based Scan Statistic Method 10

Figure 5.1: Path for the leaves belonging to the G group.

leaves follows a multinomial distribution, with likelihood:

L(λ, c) =
∏
i

(
λini∑
j λjnj

)ci

The null hypothesis is λi = λ for all leaves i. The alternative hypothesis is defined
as, there is a group G of leaves in which λi = λG and λi = λR < λG to all the remaining
leaves, i /∈ G. It is possible to define a log-likelihood ratio test statistics.

T = maxG

{
cGlog

(
cG
nG

)
− (C − cG)log

(
C − cG
N − nG

)}
I
(
cG
nG

>
C − cG
N − nG

)

where cG =
∑

i∈G ci and nG =
∑

i∈G ni , e I(.) is the indicator function.
After decided which will be our test statistics, it is necessary to define numerically

the amount of information given for the T statistics. Since, we get a tree structure in
our problem it is possible to visualize (Figure 5.1) that the path for all leaves belonging
to the G group as the necessary amount of information that the T statistics needs to
get it results.

However if two or more leaves share some similar path is not necessary to repeat the
information given previously to the T statistics, it is only necessary to count the number
of similar paths we have in the leaves of the candidate cluster. For example assume
we have in our candidate cluster the leaves shown in Figure 5.1, therefore instead of
defining the information as the three full paths: 2→ 3→ 1 + 2→ 2→ 4 + 2→ 2→ 4,
one can count the number of similar path and specify the leaves in the model as:
2→ 3→ 1 + 2→ 2→ {4

4
.

Based in what is said in Grünwald (2005) the maximum amount of information in
a path can be defined as:

I =
k∑
1

log2j +mlog2dt
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Figure 5.2: Hierarchical tree.

where k is the total number of elements in the path, j is the value of each element
(numbers of brothers that the node have), m is the number of similar paths and dt is
the tree depth.

If you path is: 2, 3, 1, 2, 2, 4, 4 + 1 similar path shared by the leaves represented in
the right side of the tree, the transformation to the numerical representation will be:
log22 + log23 + log21 + log22 + log22 + log24 + log24 + 1log23.

With both parameter well defined our cluster information will be the group of leaves
that minimize the MDL statistics.

The created method is a variation of the scan method based in a Tree-based statis-
tics proposed by Kulldorff et al. (2003).The new model consists of making a search in
a more complete way being capable to find relations between occupations even though
these are not related directly.

From a database, it is possible to define a hierarchical tree, that mean, each node
has 1 to n branches. So the objective is to detect any pattern or correlation between
the leaves of this tree by some stipulated factor.

The proposed model makes a scan, based on the MDL criteria to find the group of
occupations that has the greater discrepancies compared to the null hypothesis, without
making an exhausting search. To do the scan capable of finding this group of leaves
inside the tree we proposed an algorithm that uses the lesser number of assumptions a
priori, being capable to be executed with efficiency and producing a satisfactory result.

The execution of the algorithm consists in the following steps, given a tree, are
created the groupsG1i related to the Ai group, where the Ai is the group of all neighbors
leaves. After find the group with maximum likelihood (G1i) for each Ai the branches
are populated with the number of cases occurred by silicosis and the total number
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Figure 5.3: Filling the branches with population and cases.

Figure 5.4: Returned group with the elements G11 e G15 .

of cases inside of each group G1i inside the sub-tree below this branch, like shown in
Figure 5.3.

After filling the leaves of the tree with the data, the algorithm is executed identifying
the way in the tree that return the group of leaves with the minimum MDL among all
the options, like show in Figure 5.4.

To find the p-value associated to the test statistics on the null hypothesis, a Monte
Carlo procedure is executed.



Chapter 6

The MDL Tree Scan algorithm

The MDL Tree Scan algorithm starts by using a Bayesian smoothing to the leaves in
the same branch and selects the leaves with higher rates as initial cluster candidates. In
sequence, the algorithm gradually scans the nodes of the tree using the information of
the leaves aggregated to the node level. Succinctly, each node stores the information of
the total population and the total number of cases of the leaves below. The algorithm
compares de MDL statistic of the candidate cluster with the statistics when an entire
node is aggregated. If the MDL statistic decreases then the algorithm searches for the
group of leaves inside of the node which contributes to minimize the MDL. By doing
this, the algorithm avoids searching in leaves whose nodes do not indicate that the test
statistic will be minimized and therefore saves computing time and improve power.
The outline of the algorithm is shown below.

MDL Hierarchical Scan Algorithm
1. Create a Tree from the Hierarchical database
2. Fulfill the Tree leaves with the given attributes, cases
and population.

3. Fulfill the nodes of the Tree with the total number of
cases and population of the leaves below.

4. Define Ai as the group of leaves in the same final
branch.

For each group Ai do
(a) Smooth the rates of each leaf using the bayesian
estimator.
(b) Select the leaf with the highest smoothing rate
and create Gi.
(c) Add new leaves from Ai to Gi if they increase
the likelihood.

13
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End For
For each group Gi do

(a) Start the cluster candidate G with Gi

(b) Go to the immediate higher node
For each group Gj, j 6= i below the node do

( i) Test if the MDL from G + Gj decreases.
(ii) If yes, update G with Gj

End For
Repeat

(c) Go to the next higher node.
(d) Select the nodes below that do not contain
the cluster G.
If there is one or mode nodes capable of reducing
the MDL do

(i) Explore the lower levels of the nodes that
minimizes the MDL.
(ii) Select the groups G∗ of the nodes that
minimizes the MDL.
(iii) Update cluster candidate G with the new
groups.

End If
Stop if the root node is reached

End Repeat
End For
5. Store the cluster candidate with the minimum MDL.



Chapter 7

Results

A simulated example was created to evaluate the performance of the algorithm in
different conditions for the cluster. Figure 7.1 show the corresponding tree. A cluster
with three leaves was defined so that the number of cases in these leaves were much
higher than the remaining leaves.

Using this example, Figure 7.2 shows the detected cluster. In this particular exam-
ple, the method was able to find the exact true cluster.

In sequence, we used the structure proposed by The United States Bureau of Census
for occupations classifications to create the hierarchical tree. Similarly, we generate
synthetic data by fixing the number of deaths in each leaf and we randomly distributed
the total number of deaths by silicosis selecting some leaves with a higher relative risk
than the remaining leaves. Since we assumed a Poisson distribution for our model and
conditioning to the total number of silicosis deaths, the distribution of the cases among
the occupations follows a multinomial distribution. We simulated 5 different clusters,
these clusters were created in order to cover the most important types to analyze.

1. A cluster with only 1 leaf with fixed and known position.

Figure 7.1: Generated tree. The three gray leaves represent the cluster.

15
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Figure 7.2: Returned tree, where the three gray leaves is the candidate cluster.

2. A cluster with 11 leaves located in the same final node.

3. A cluster with 23 leaves spread in different locations of the tree.

4. A cluster with 22 leaves and it represents a sub-tree.

5. A cluster with 9 leaves and it represents a mixture of models 3 and 4.

For each cluster type described before we simulated 7 distinct scenarios where for
each scenarios the relative risk of the cluster was set to 2, 3, 4, 5, 10, 20 and 100,
respectively. A data set of 10, 000 trees for each scenario was created in order to test
the efficiency of the proposed algorithm. Tables 7.1, 7.2, 7.3, 7.4 and 7.5 present the
results for power detection for each value of the relative risk and each cluster type.

Table 7.1: Power results for cluster type 1

RR p ≤ 0.05 p ≤ 0.01 Cluster Size Intersection
Median Median

1 0.0478 0.0088 2 −
2 0.1868 0.1171 2 1
3 0.9917 0.9875 2 1
4 1 1 2 1
5 1 1 2 1
10 1 1 2 1
20 1 1 2 1
100 1 1 2 1

From Tables 7.1 to 7.5, it is possible to see that with a relative risk equal to one
(null hypothesis) the proportion of significant cluster for a 5% level of significance is
4.78% and for a significant level of 1% the proportion is about 0.88%, as expected.



7. Results 17

Table 7.2: Power results for cluster type 2

RR p ≤ 0.05 p ≤ 0.01 Cluster Size Intersection
Median Median

1 0.0478 0.0088 2 −
2 0.5753 0.4931 7 7
3 0.8799 0.8765 8 8
4 0.9248 0.9235 9 9
5 0.9528 0.9524 10 10
10 0.9921 0.9920 11 11
20 0.9996 0.9996 11 11
100 1 1 11 11

Table 7.3: Power results for cluster type 3

RR p ≤ 0.05 p ≤ 0.01 Cluster Size Intersection
Median Median

1 0.0478 0.0088 2 −
2 0.1960 0.0794 2 1
3 0.5134 0.3459 2 1
4 0.7638 0.6362 2 1
5 0.8902 0.8124 2 1
10 0.9937 0.9877 5 5
20 0.9999 0.9995 8 8
100 1 1 10 10

As the relative risk increases, the detected cluster converges to the true cluster, as
expected. Particularly, results for cluster type 1 achieved higher power and in all of
the simulated cases, the algorithm was able to include at least one of the true leaves.
Results also show that when the cluster is located in the same sub-tree (cluster type
2), the algorithm achieves better detection and power results than the situation where
the cluster is spread in the tree (clusters type 3).

For cluster type 3, results get improved if the relative risk is higher than 5. In this
particular scenario the cluster is randomly spread in the tree with no association with
the leaves in the same branch. Consequently, the method is capable to select leaves in
different branches only if the relative risk of the leaves is extremely higher.

Figure 7.3 aims at providing a visual analysis of the sensitivity/specificity in terms
of the number of leaves in both detect and true clusters. It also displays the number
of leaves in the intersection of the detected and true cluster. The figure show that as
the relative risk increases the candidate cluster converges to the exact real cluster.

Table 7.6 presents the proportion of the population of the true cluster inside the
detected cluster. Results show that when the cluster is scattered in the tree, the ability
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Table 7.4: Power results for cluster type 4

RR p ≤ 0.05 p ≤ 0.01 Cluster Size Intersection
Median Median

1 0.0478 0.0088 2 −
2 0.0466 0.0089 2 0
3 0.0337 0.0086 2 0
4 0.1911 0.1547 9 6
5 0.6697 0.6273 11 9
10 1 1 19 17
20 1 1 21 19
100 1 1 22 20

Table 7.5: Power results for cluster type 5

RR p ≤ 0.05 p ≤ 0.01 Cluster Size Intersection
Median Median

1 0.0478 0.0088 2 −
2 0.0482 0.0099 2 0
3 0.0389 0.0105 2 0
4 0.2222 0.1726 7 4
5 0.7213 0.6792 8 6
10 1 1 11 9
20 1 1 11 9
100 1 1 10 9

Table 7.6: Proportion of the real population in the detected cluster.

Cluster Size

Relative Risk 1 leaf (%) 11 leaf (%) 23 leaf (%) 22 leaf (%) 9 leaf (%)
2 100.00 47.39 1.43 0.00 0.00
3 100.00 81.47 6.06 0.44 0.51
4 100.00 87.46 13.24 12.74 15.57
5 100.00 91.84 20.59 48.97 56.95
10 100.00 98.14 49.08 93.45 96.82
20 100.00 99.52 68.60 98.21 99.77
100 100.00 99.87 79.30 99.51 99.99

of the method to correctly identify the true population is low, as mentioned before.
Furthermore, the method detects more than 50% of the true population when the
relative risk is above 5.

After evaluating the algorithm performance for synthetic data, we applied our ap-
proach to the real data set supplied by NCHS. Table 7.7 shows the occupation code
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Figure 7.3: Intersection between the cluster type 2 and the candidate cluster.

Table 7.7: Results of occupations in the candidate cluster by the data of the real data set.

Id#a Occupation Category
043 Architect
615 Explosives workers
616 Mining machine operators
617 Mining occupations, n.e.c b

703 Lathe and turning machine set-up operators
707 Rolling machine operators
709 Rolling machine operators
719 Molding and casting machine operators
725 Miscellaneous metal and plastic processing machine operators

Woodworking Machine Operators
768 Crushing and grinding machine operators

aId# = occupational identification code.
bn.e.c = not elsewhere classified.

and category for the leaves in the significant primary detected cluster (p = 0.001).
The silicosis disease is associated with work environments where there is dust of

silica in the air. When inhaled, the dust of silica cause damage to the lungs, compro-
mising the ability to absorb oxygen. This disease is commonly related to people who
are machine operators in mines or who work with heavy equipments or occupations
that deal with dust such as constructions, woodworking, etc. Table 7.7 shows that the
detected cluster found leaves whose professions are in fact a critical group with higher
chance to develop the disease.

The computing time to run this test was 2 minutes and 20 seconds for a tree with
6 levels and 503 leaves using a Pentium IV 1.6 GHz, 512 Mb RAM and 20 Gb Hard
disk.



Chapter 8

Conclusions

This work presents an efficient scan algorithm for hierarchical data sets organized in a
tree structure. The algorithm searches through the branches of the tree and it is able
to aggregate leaves located in different branches of the tree. The scan search aims at
minimizing the minimum description length statistic which combines the log-likelihood
and the amount of information necessary to represent internally the cluster. This
second term controls the degree of freedom of the search algorithm. The methodology
prevents the algorithm to add leaves that unnecessarily increase the log-likelihood term.

Results show that the power of the algorithm is improved when the relative risk
of the true clusters increases. Furthermore, the detected cluster normally includes
elements of the true cluster and as the relative risk increases the algorithm detects
more elements of the true cluster. Nevertheless, if the cluster is scattered in the tree,
the performance of the algorithm is compromised.

The method found one significant cluster when it was applied to the silicosis data
set. The detected group has occupations that are proven to have higher risks for the
silicosis disease. Comparing our results with those obtained by Kulldorff et al. (2003)
8 professional occupations were common in both results. The MDL method found 2

distinct professions that were located in different branches of the tree. The Architect
occupation, detected by MDL is compatible with the silicosis hazard environment
but it is located in a different branch of the tree. Although the Explosives workers
occupation has a higher rate its population is quite small (385 deaths), this occupation
was included in the cluster due to the bayesian smoothing process.

An important issue was to compare both methods, the MDL tree scan statistics
and the one proposed by Kulldorff et al. (2003), however we tried to reach the authors
and could not get their algorithm to run our data. Because of that was not possible to
compare the results obtained by our method and the one proposed by Kulldorff et al.
(2003).

20
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This work shows that the MDL methodology is a novel and flexible algorithm that
detects clusters in hierarchical data sets whose elements are partially scattered in the
tree. Therefore, it explores potential groups of clusters that are not explicit by just
looking at cuts of branches or combinatorial analysis of the given data. Furthermore,
it provides an important impact in the final analysis.
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