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Resumo

O mapeamento de crimes e doenças fornece informações sobre o padrão espacial e temporal

de ocorrência dos eventos. É de interesse o monitoramento dos eventos para a detecção precoce

de mudanças no seu padrão espacial. Esta dissertação apresenta um método de vigilância espaço-

temporal prospectiva de dados pontuais, verificando se há um cluster emergente. A cada novo

evento, o escore local de Knox é calculado e suavizado de maneira a formar uma superfı́cie

estocástica. Essas superfı́cies são então acumuladas sequencialmente até que ultrapassem um

limiar estabelecido, quando o alarme soa, identificando a região do provável cluster. As vantagens

estão em exigir pouca informação prévia do usuário e em fornecer uma maneira de identificar a

localização de possı́veis clusters, através da visualização da superfı́cie acumulada. A performance

do método foi avaliada a partir de resultados de simulações em diferentes cenários. O método foi

aplicado a um conjunto de dados de casos de meningite em Belo Horizonte.

Palavras-chaves: Sistema de Vigilância, Dados Pontuais, Espaço-Temporal, Escore de Knox Local, Su-

perfı́cies Acumuladas.
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Abstract

Mapping crime and disease events provides information about the spatial and the temporal

pattern of these events. To guide actions based on such information, it is necessary to use a

statistical method to identify when there is a change in the pattern of events. We developed a

space-time prospective surveillance method when the data are point events, monitoring if there is

an emerging cluster. At each new event, a local Knox score is calculated and spatially spread to

form a stochastic surface. The surfaces are accumulated sequentially until it overcomes a specified

threshold, when an alarm goes off, identifying the region of the probable cluster. The advantages

are to require little prior knowledge from the user and to provide a way to identify the locations

of the possible clusters, through the visualization of the cumulative surface. A simulation study is

presented for different scenarios and a dataset of meningitis cases in Belo Horizonte was monitored.

Keywords: Surveillance, Point Pattern, Space-Time, Local Knox Score, Cumulative Surfaces.
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Capı́tulo 1

Introdução

A consideração simultânea dos padrões espaciais e temporais da ocorrência dos eventos é

importante para identificar clusters ou conglomerados espaço-temporais. Definimos um cluster

espaço-temporal como uma região geograficamente pequena em relação à região em estudo e que

concentra um número excessivo de eventos durante um perı́odo limitado de tempo.

Os métodos de detecção de clusters espaço-temporais são, em sua maioria, retrospectivos.

Esses métodos procuram por evidências da presença de um cluster em um banco de dados de

eventos já ocorridos. O teste de detecção de conglomerados espaço-temporais mais popular foi

desenvolvido por Knox (1964), e ele testa se há interação espaço-temporal. Ou seja, ele testa se

casos próximos no espaço tendem a estar próximos no tempo também. Mantel (1967) estendeu

o teste de Knox, usando as distâncias espaciais e temporais entre os pares de eventos ao invés

dos indicadores binários de proximidade. Jacquez (1996) propôs um teste para interação espaço-

temporal de k vizinhos mais próximos e compara os resultados com os testes de Knox e Mantel,

mostrando que o seu teste tem maior poder que os outros. Esses três testes podem ser viciados se

a população de risco subjacente muda diferencialmente. Kulldorff (1999) propôs uma modificação

para solucionar esse problema, mas ela exige informação da população sob risco.

Ao analisar eventos como crimes e doenças, um objetivo importante é detectar um cluster

emergente, através da vigilância prospectiva. O desafio é desenvolver métodos de vigilância

eficientes e que detectem rapidamente os clusters, além de minimizar o número de alarmes falsos.

O interesse é focado em ações que possam mitigar os efeitos dos clusters se realizadas rapidamente.

Recentemente, pode-se observar um grande desenvolvimento de métodos prospectivos pu-

ramente temporais, especialmente na área epidemiológica. Os métodos mais usados para fazer

vigilância prospectiva epidemiológica foram resumidos e avaliados em Sonesson and Bock (2003).

1



CAPÍTULO 1. INTRODUÇÃO 2

Höhle (2007) desenvolveu um pacote para o software R para fazer a vigilância prospectiva para

dados epidemiológicos.

Poucos métodos para vigilância prospectiva espaço-temporal foram desenvolvidos até o mo-

mento. Um desses métodos foi apresentado por Kulldorff (2001) e calcula uma estatı́stica de

scan espaço-temporal contando o número de eventos dentro de um cilindro de raio e altura pré-

estabelecidos. Neill et al. (2005) também desenvolveram um método de detecção de clusters

emergentes usando a estatı́stica de scan espaço-temporal. Uma extensão do método de scan foi

proposto por Kulldorff et al. (2005), que não precisa de informações sobre a população em risco.

Estes métodos são baseados em idéias de testes de hipóteses, que não são adequados no contexto de

vigilância prospectiva (Woodall et al., 2008). Rodeiro and Lawson (2006) utilizam modelos Baye-

sianos espaço-temporais para detectar um aumento do risco em mapas de doenças com dados de

áreas. Diggle et al. (2005) também apresentam um modelo de vigilância para processos pontuais,

monitorando se probabilidades preditivas, determinadas espacial e temporalmente, ultrapassam

um limiar pré-estabelecido. A principal desvantagem desses métodos é que eles exigem muito

do usuário em termos de modelagem estocástica e podem ter um custo computacional elevado ao

se fazer vigilância espaço-temporal, já que é necessário reajustar o modelo à medida que novos

eventos ocorrem.

Rogerson (2001) combina a estatı́stica de Knox sob uma perspectiva local com somas acumu-

ladas, de forma a detectar onde e quando ocorre uma interação espaço-temporal. Esse método,

usando a estatı́stica de Knox local, foi avaliado por Marshall et al. (2007), comparando os efeitos

dos parâmetros e dos dados nos resultados, e observou-se que o método de Rogerson não teve

um bom desempenho na detecção de clusters. Um método mais recente de vigilância prospectiva

espaço-temporal é proposto por Assunção and Correa (2009), que utilizam martingales para fazer

a vigilância de dados pontuais. Uma desvantagem desse método é assumir um cluster de formato

espacial circular.

O método de superfı́cies acumuladas foi originalmente desenvolvido por Simões and Assunção

(2005) e tem como objetivo a detecção prospectiva de clusters de eventos pontuais no espaço e

no tempo. A cada novo evento que é registrado, calcula-se um escore local de Knox, definido

por Rogerson (2001), que leva em consideração o número de vizinhos próximos no espaço e no

tempo. No entanto, as fórmulas utilizadas no cálculo do escore de Knox local foram redefinidas
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para a abordagem prospectiva e serão apresentadas neste trabalho. O escore local é distribuı́do no

espaço através de uma densidade de kernel, formando uma superfı́cie estocástica. As superfı́cies

são acumuladas sequencialmente à medida que os eventos ocorrem. Os picos dessas superfı́cies

identificam áreas que presenciaram recentemente um número de eventos maior que o esperado.

Se a superfı́cie acumulada ultrapassar um limiar determinado, um alarme é soado e, um ou mais

clusters localizados são identificados.

Com a utilização das superfı́cies é possı́vel identificar os locais dos possı́veis clusters no mo-

mento em que o alarme soa. Também é possı́vel visualizar os nı́veis de interação espaço-temporal

em toda a região, e captar a emergência de clusters de diferentes formatos. Analisando-se os

valores dos escores locais de cada evento, também é possı́vel determinar quais eventos provém do

cluster. Na Figura 1.1, podemos ver o resultado da aplicação do método para dados de meningite

em Belo Horizonte. O gráfico apresenta a superfı́cie acumulada até o momento em que o alarme

soou, com os eventos que foram registrados e a região do possı́vel cluster destacada.

595000 600000 605000 610000 615000 620000

79
00

00
79

50
00

80
00

00
80

50
00

81
00

00

x

y

Figura 1.1: Visualização da superfı́cie acumulada em nı́veis de contorno, para os casos de meningite

Outra vantagem muito importante da metodologia apresentada é que ela não exige uma

modelagem a priori dos padrões espacial e temporal dos dados, o que torna o método acessı́vel

para usuários com pouco conhecimento estatı́stico, podendo ser utilizado diretamente por órgãos

responsáveis por tomar medidas necessárias na ocorrência de um cluster.
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1.1 Objetivos

O objetivo desta dissertação é a apresentação do método desenvolvido de vigilância espaço-

temporal com superfı́cies acumuladas, juntamente com as fórmulas corrigidas para a abordagem

prospectiva, bem como avaliar a performance do método a partir de resultados de simulações e a

aplicação a um banco de dados.

1.2 Organização do Trabalho

Esta dissertação está organizada da seguinte maneira: o Capı́tulo 2 concentra a descrição

da metodologia e os resultados obtidos, no formato de um artigo a ser submetido para uma

revista internacional. Na Seção 2.2, o escore local de Knox, originalmente definido por Rogerson

(2001), é descrito e as fórmulas são corrigidas para uma vigilância prospectiva. A metodologia de

Superfı́cies Acumuladas é apresentada na Seção 2.3 e os resultados para as simulações estão na

Seção 2.4. O método foi aplicado a um banco de dados reais e os resultados obtidos estão na Seção

2.5. Finalmente, na Seção 2.6, nós discutimos os resultados e conclusões encontrados.



Capı́tulo 2

Prospective space-time surveillance with geographical iden-

tification of the emerging cluster

2.1 Introduction

The simultaneous consideration of spatial and temporal patterns of occurrence of events is

important to identify spatial-temporal clusters. We define a spatial-temporal cluster as a region

geographically small in relation to the study area and concentrating an excessive number of events

in a limited period of time.

The methods for detecting spatial-temporal clusters are mostly retrospective. These methods

look for evidence of the presence of a cluster in a database of events that have already occurred.

The interest is to understand the process that generated the events, and identify potential risk

factors. The most popular test to detect spatial-temporal clusters was developed by Knox (1964).

It tests if there is space-time interaction. That is, it tests whether cases near each other in space

tend to be close in time as well. The Knox test is based on the number of pairs of events that

are simultaneously close in space and time, with proximity being defined as a binary indicator

variable based on numerical thresholds. Mantel (1967) extended the Knox test, using the spatial

and temporal distances between pairs of events instead of binary indicators of proximity. Jacquez

(1996) proposed a test for space-time interaction of the k nearest neighbors and compared the

results with the Knox and Mantel tests, showing that his test had a greater power. The problem

is that these three tests can be biased if the underlying population at risk changes differentially.

Kulldorff (1999) proposed a modification to the Knox test to fix this problem, with a drawback of

requiring information about the underlying population.

5



CAPÍTULO 2. PROSPECTIVE SPACE-TIME SURVEILLANCE 6

When dealing with events such as crimes and diseases, an important goal is to detect an emerg-

ing cluster through prospective surveillance. The challenge is to develop efficient surveillance

methods that rapidly detect clusters as soon as possible after their emergence, while controlling

the number of false alarms. The interest is focused on actions that can mitigate the effects of the

clusters if they are performed quickly enough.

There is a large number of purely temporal prospective methods, especially in epidemiol-

ogy. The methods most used to make epidemiological prospective surveillance are summarized

and evaluated in Sonesson and Bock (2003). Höhle (2007) developed a package for R to make

epidemiological prospective surveillance.

Very few spatial-temporal prospective surveillance methods have been developed so far. One

method was presented by Kulldorff (2001) and it calculates a space-time scan statistic counting the

number of events within a cylinder of radius and height pre-established. Neill et al. (2005) also

developed a method to detect emerging clusters using a space-time scan statistic. An extension for

the scan method was proposed by Kulldorff et al. (2005), which does not require information about

the population at risk. However, these methods are based on ideas of hypothesis testing, which

are not appropriate in the context of prospective surveillance (Woodall et al., 2008). Rodeiro and

Lawson (2006) used spatial-temporal Bayesian models to detect an increase in disease risk on maps

with data areas. Diggle et al. (2005) also present a model to monitor point process, predicting spa-

tially and temporally localised excursions over a pre-specified threshold. The main disadvantage

of these methods is that they require a lot from the user regarding stochastic modelling and they

can have a high computational cost when making space-time surveillance, since it is necessary to

refit the model when new data arrive.

Rogerson (2001) combines the Knox statistic under a local perspective with accumulated sums

in order to detect when a space-time cluster is emerging. This method, using the local Knox statistic

defined by Rogerson (2001), was evaluated by Marshall et al. (2007). They compared the effects

of parameters and data on the results, and concluded that the method of Rogerson did not have

a satisfactory performance. A more recent prospective spatial-temporal surveillance method is

proposed by Assunção and Correa (2009), using a martingale approach to monitor point patterns.

The disadvantage of this method is that it assumes a spatially circular shaped cluster.

The Cumulative Surface method was developed by Simões and Assunção (2005) and aims at
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the prospective detection of clusters of space-time point patterns. For every new event that occurs,

it is calculated a local Knox score, with the definition from Rogerson (2001) modified. This local

score takes into account the number of events close in space and time. This local score is distributed

in the space through a kernel density, forming a stochastic surface. The surfaces are accumulated

sequentially as the events occur. The peaks of these surfaces identify areas where a number of

events greater than expected recently happened. If the surface exceeds a certain threshold, an

alarm is sounded, and one or more localized clusters are identified.

There are several advantages of using surfaces. In contrast with other methods of surveillance,

it is possible to identify the locations of probable clusters, not only to signal its emergence. Using

surfaces also enables to visualize the levels of space-time interaction all over the study region, and

capture the emergence of clusters with different shapes. Analyzing the scores for each event, it is

also possible to determine which events comes from the cluster.

Furthermore, the methodology is based on sequential inferencial procedures, unlike other

methods, such as Kulldorff (2001) based on hypothesis testing. With this we avoid the problem of

controlling multiple successive tests.

Another very important advantage of our methodology is that it does not require prior mod-

eling of the spatial and temporal patterns of data. This makes the method accessible to users

with little statistical knowledge, so it can be used directly by public agencies responsible to take

necessary actions in the occurrence of a cluster.

2.2 Review of the local Knox method

Rogerson (2001) defined a local Knox statistic, decomposing the global measure of space-time

interaction developed by Knox (1964) into local scores associated with each individual event. For

each pair of events, we will define a dummy variable indicating if the two events are at a distance

smaller than a critical space radius rs. Following the notation of Rogerson (2001), let ns be the total

number of pairs of events close in space. Similarly, we will define a binary variable indicating that

the waiting time between two events is smaller than a critical time rt and let nt be the total number

of such pairs. We will denote by nst the total number of pairs of events that are close in space and

time. The test of Knox (1964) is based on this statistic.

Rogerson (2001) also defines ns(i), nt(i) e nst(i) as the number of events close in space, close
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in time and close in space and time from the i-th event, respectively, with i = 1, . . . ,n. The Knox

statistic nst can be decomposed in terms of local statistics nst(i), since nst = 1/2
∑n

i=1 nst(i).

The local Knox score defined by Rogerson (2001) is:

zi =
nst(i) − E{Nst(i)} − 0.5√

Var{Nst(i)}
(2.1)

where Nst(i) is the random variable associated with the observed value nst(i). To determine the

null distribution of Nst(i), Rogerson (2001) assumes that each random permutation of the times,

keeping the spatial coordinates fixed, is equally likely. He also considers that the i-th event can be

any of the n events observed, and his time is also permuted. So, the location i can be assigned to

any of the times from j = 1, . . . ,n. The resulting distribution is a weighted sum of hypergeometric

distributions, each one corresponding to the times that can be assigned to location i. With this, he

obtained:

E{Nst(i)} = 2ntns(i)
n(n − 1)

(2.2)

Var{Nst(i)} =
[
2(n − 1)nt −

∑n
j=1 nt( j)2

]
ns(i) (n − 1 − ns(i))

n(n − 1)2(n − 2)
(2.3)

Simões and Assunção (2005) and Marshall et al. (2007) found that (2.3), the variance proposed

by Rogerson, was inaccurate and corrected it:

Var{Nst(i)} =


n∑

j=1

nt( j)2


ns(i)

n(n − 1)2

[
− (n − 1 − ns(i))

n − 2
+ ns(i)

]

+


2ntns(i)
n(n − 1)

n − 1 − ns(i)
n − 2

−
(

2ntns(i)
n(n − 1)

)2

=

2(n − 1)nt −
n∑

j=1
nt( j)2

 ns(i) (n − 1 − ns(i))

n(n − 1)2(n − 2)
+

ns(i)2
n∑

j=1

[
nt( j) − 2nt

n

]2

n(n − 1)2 (2.4)

Marshall et al. (2007) notes that the variance (2.3) proposed by Rogerson is an approximation

for (2.4) but it will be always less or equal than the correct formula, since (2.4) is the sum of (2.3)

with a non-negative term.
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However, there is a serious problem in using these local scores in a prospective method. Since

the goal is to make prospective surveillance, we are interested in measuring the local space-time

interaction as each new event occurs. The statistic nst(i) is calculated for each new event that arises

and, at this moment, there are only those events that happened before the event in question. Future

events have not occurred yet and can not be used in the calculation of nst(i).

As defined by Rogerson (2001), the local scores are suitable for detection of clusters in retro-

spective analysis, but are not appropriate for a prospective use. The computation of nst(i) in (2.2)

considers as possible neighbors of the i-th event both the events that occurred before the i-th, and

those that occurred later. Consequently, the calculation of moments is not done correctly. This

explains the disappointing results of the prospective Rogerson method found by Marshall et al.

(2007). If the local score is defined appropriately under the prospective context, as explained

ahead, the Rogerson method presents a very good performance (Piroutek, Assunção, and Paiva,

2010).

To correct the Rogerson method, we consider that the i-th event is the last one, so there are no

events with times greater than it. We will define N∗st(i) as the random variable of the number of

events close in space and time of the i-th event, considering only the events that happened before

it. It is also necessary to define:

n∗s(i) number of events that are close in space of the i-th event, considering only those events that

happened before it;

n∗t(i) number of events that are close in time of the i-th event, considering only those events that

happened before it;

n∗st(i) number of events that are close simultaneously in space and time of the i-th event, considering

only those events that happened before it;

To find the null distribution of N∗st(i), we permute the observed times across the spatial coor-

dinates, but now we will keep the i-th event fixed. The resulting distribution will be only one

hypergeometric distribution, instead of the weigthed sum of Rogerson (2001).

The distribution can be visualized considering the drawing of arrows corresponding to the

times of events. The arrows are divided into two types: type A are the ones that are close in time
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of the i-th event, and the remaining ones are of type B. So we will have a total of (i − 1) arrows, of

which n∗t(i) are of type A. We take a sample of size n∗s(i) from the (i− 1) arrows to distribute among

the events that happened close in the space of the i-th event. Figure 2.1 is an example of a set of

points, with the spatial coordinates represented in the horizontal axis and the times of occurrence

of the events represented on the vertical axis, with the time of the i-th event highlighted. The

dotted arrows represent the events of type A, those who are close in time of the i-th event. The

events with the locations within the circle are those who are neighbors in space of the i-th event.

y

x

t
i

Figure 2.1: View of the neighborhood of i-th event

Hence, N∗st(i) follows a hypergeometric distribution with parameters (i−1), n∗t(i) e n∗s(i). That is,

P
{
N∗st(i) = k

}
=

(n∗t (i)
k

)(i−1−n∗t (i)
n∗s(i)−k

)
( i−1
n∗s(i)

)

The mean and the variance of N∗st(i) are given by:

E
{
N∗st(i)

}
=

n∗s(i)n∗t(i)
i − 1

(2.5)

Var
{
N∗st(i)

}
=

n∗s(i)n∗t(i)(i − 1 − n∗s(i))(i − 1 − n∗t(i))
(i − 2)(i − 1)2 (2.6)

It is not possible to compare the variances (2.4) and (2.6), since they are based in nst(i) e n∗st(i),

respectively, amounts defined in different ways.
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2.3 Methodology

2.3.1 Cumulative Surfaces

The Cumulative Surface method is based on the local Knox scores defined in (2.1), with mean

and variance given by (2.5) and (2.6), respectively. For each event, it is counted the number of

events that are close to him in space and that happened a little earlier in time. The local Knox score

is then calculated by standardizing this number according to (2.1).

The score is spread around the position of the i-th event through a two-dimensional kernel

function. The function used in the method is the bivariate Gaussian density function defined as:

K∗(x, y) =
1

2π
exp

{
−1

2
(x2 + y2)

}
(2.7)

The kernel functions modify the functions K∗(x, y), transferring them to a new center and

changing its concavity with the bandwidth parameter τ. Namely, the positive zi scores are spread

around the coordinates (xi, yi) of the i-th event, forming surfaces wi(x, y) given by:

wi(x, y) = z+
i Ki(x, y) =

z+
i

τ2 K∗
(x − xi

τ
,

y − yi

τ

)
(2.8)

where z+
i = max{0, zi}.

Note that
x

wi(x, y)dxdy = z+
i

To form the surface of the i-th event denoted by wi, the region is divided into a grid with size

specified. This grid is determined by dividing the range of the events on the axis x and y in the

size established. Coordinates (x, y) are then the points of the grid where the surface is calculated.

At the point (xi, yi) the surface has its maximum values equal to wi(xi, yi) = z+
i K∗(0, 0)/τ2 =

z+
i /2πτ

2. As the distance between the grid point (x, y) and the event coordinates (xi, yi) increase,

K∗(x, y) becomes 1/2π multiplied by a value between 0 and 1 getting smaller. The value of the

surface goes to zero for locations away from the event.

Figure 2.2 shows, for a random set of points, how the score z+
i is spread around its position,

forming the surface corresponding to the i-th event.
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Figure 2.2: Three-dimensional visualization of the score zi and its respective surface, for a random set of
points

The bandwidth τ affects mainly the concavity of the surface. Small values for this parameter

make the surface decays rapidly and abruptly, while higher values make the surface decays more

slowly.

The bandwidth can be specified as a fixed value in order to get an specific view of the surfaces,

if there is knowledge about the range and scale of the data coordinates. Otherwise, the bandwidth

value can be estimated automatically. This is done through simulations, generating coordinates

uniformly distributed between the minimum and maximum coordinates of the events. At each

simulation, it is calculated a value of τ using the following formula, suggested by Härdle (1990)

for a random variable Z and sample size n:

τ =
1.06
n1/5

min
{

sd(Z),
iqr(Z)
1.34

}
(2.9)

where sd(Z) is the standard deviation and iqr(Z) is the interquartile range of the variable Z. In our

case, the variable Z will be replaced by the events’ coordinates (x, y), the value of sd(Z) will be

the average between sd(x) and sd(y) and the interquartile range iqr(Z) will be the average between

iqr(x) and iqr(y). At the end of the simulations, the estimated bandwidth will be the average of the

values obtained at each simulation.

As the scores zi take into account the information about the neighbors in space and time, we

define the window m as the number of events that is necessary to wait until the scores are stabilized.

The reason is that in the first events there is little information about the pattern of occurrence of

the other events. In Figure 2.3, we can see an example of a time series plot of z+
i scores. This

scores were calculated for 500 events with spatial coordinates uniformly distributed in the region
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[0, 10]× [0, 10] and times also uniformly distributed in [0, 10]. In this case, a value of the m∗window

equal to or greater than 100 would be enough for the escores to stabilize.

events

zi

0 100 200 300 400 500

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Figure 2.3: Time series of the scores z+
i obtained in an illustrative example

We also define another window m∗ as the number of surfaces of events prior to the i-th event

that are going to be accumulated. This window is defined because the oldest events do not help

to detect an emerging cluster, causing only a noise in the variance.

At each i-th event, we accumulated iteratively the last m∗ surfaces w j(x, y):

Si(x, y) =

i∑

j=i−m∗+1

w j

= Si−1(x, y) − wi−m∗(x, y) + z+
i Ki(x, y) with i = 1, 2, . . . ,n. (2.10)

2.3.2 Determining the threshold h

The threshold h must be determined as a value of the distribution of the maxima of the

cumulative surfaces, such that it is under control the false alarm probability. As we are looking at

the maxima of stochastic surfaces that are accumulated over time, it is not immediate how to find

a theoretical distribution to determine the threshold h. However, we use two approaches to find

this value, using in both the maxima of the maxima of the surfaces maxi{max(x,y) Si(x, y)} obtained

by permutations of the events’ times.

Let us define one more window m∗∗ as the number of successive accumulated surfaces Si(x, y),

that will be used to control the probability of false alarms under the assumption that there is no

cluster. So, the maximum of the maxima of the surfaces will be searched only in the cumulative
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surfaces corresponding to the last m∗∗ events, that is i = n −m∗∗ + 1, . . . ,n.

Controlling the probability of false alarms with the window m∗∗ corresponds to determine the

ARL, Average Run Length. It is the expected number of events to happen until the alarm goes off

falsely, used in other surveillance methods like Rogerson (2001) and Assunção and Correa (2009).

The first step in the method is to test if the number of events in a training dataset is greater

than or equal to the sum of the three windows, i.e.

n ≥ m + m∗ + m∗∗

If this condition is met, then the data set is large enough so that the scores zi are stable and we

can use the windows m∗ and m∗∗.

At each permutation, the spatial positions are kept fixed and times are permuted. That is, we

generate new configurations of events under the assumption that there is no space-time interaction.

These simulated configurations follow the purely spatial and purely temporal pattern of the data.

The surfaces are then accumulated and the maxima of the maxima of the surfaces of the last m∗∗

events are stored. From now on, we will refer to the these values as the maxima of the surfaces.

In the first approach, we fit a Gumbel distribution to the maxima of the surfaces, and the

threshold hteo is the value obtained through its distribution function. The reason for this is a

theorem of Piterbarg (1996). In the second approach, the threshold hemp is obtained as the percentile

of the empirical distribution function of the maxima. We detail below the two approaches.

Theoretical threshold

The stochastic process {S(x), x ∈ T}, where T ⊂ Rk and x ∈ T represents a location, is a Gaussian

field if, for any k ≥ 1 and any locations x1, . . . , xk ∈ T, the vector (S(x1), . . . ,S(xk))T is normally

distributed (Rue and Held, 2005). Let S(x), with x ∈ Rn, be a homogeneous Gaussian field - i.e.,

with constant moments over the region - with zero mean, covariance function ρ(x) =
∫

k eikxΨ(k)dk,

ρ(0) = σ2, and spectrum Ψ(k).

When n = 2 and x = (x, y), we can view the Gaussian field as a surface, with oscillations forming

peaks, or waves, throughout the region. The wavelength is the distance between the points where

the wave begins and where it ends, in the propagation direction. The crest length of the wave is

the distance between the points where the crest begins and where it ends, in the perpendicular
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direction of the propagation. In this case, let the unit volume be |V| = λ0λc, where λ0 is the mean

wavelength and λc the mean crest length. That is, the unit volume is the mean volume that a wave

occupies.

Piterbarg’s theorem (1996, Theorem 14.1) determines the asymptotic extreme value distribution

for the maximum of a Gaussian homogeneous field inRn. Let T be the subset T ⊂ Rn with volume

|T|, or with size N = |T|/|V|, where |V| is the unit volume defined above. According to the theorem,

we have:

P
(
max
x∈T

S(x) ≤ σu
)
∼ exp

[
−(2π)

n−1
2 e−u2/2Hn−1(u)N

]
(2.11)

where Hn are Hermite polynomials with respect to the standard Gaussian density (H0(u) = 1,

H1(u) = u, H2(u) = u2 − 1, . . . ). When N increases, i.e. the number of waves within the subset T

increases, the distribution tends asymptotically to a Gumbel distribution:

G(u) = exp
(− exp (−a(u − u0))

)
(2.12)

where u0 ≈ x0 +
(n − 1) log(x0)

x0
, a = u0 − (n − 1)

u0
, and x0 =

√
2 log N + (n − 1) log(2π).

In our case, we are considering the cumulative surface as the homogeneous Gaussian field as of

the i-th event. To apply the approximation (2.12), we need N, the expected number of waves in the

subset T, which is not simple to calculate in our method. Thus, we use a theoretical approximation

to the distribution of the maxima of the surfaces to determine the threshold h.

Let us consider a Gumbel distribution with parameters α and β, with the following density and

distribution functions:

f (x) =
1
β

exp
{
− (x − µ)

β

}
exp

{
− exp

[
− (x − µ)

β

]}
(2.13)

F(x) = exp
{
− exp

[
− (x − µ)

β

]}
(2.14)

To verify the adequacy of our assumption about the Gumbel distribution, we analyzed the

maxima of the maxima of the cumulative surfaces maxi{max(x,y) Si(x, y)}, obtained from 1000 per-

mutations of data generated under the null hypothesis of no clusters. Figure 2.4 is the QQ-Plot of

the observed quantiles of the maxima found. In this figure, we plot in the vertical axis the order
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statistics of the maxima of the maxima of the surfaces, obtained from 1000 permutations, and in

the horizontal axis the theoretical quantiles of a standard Gumbel distribution, with parameters

µ = 0 and β = 1.
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Figure 2.4: QQ-Plot of the theoretical quantiles
of the Gumbel distribution versus the observed
quantiles of the maxima of the surfaces, in an
illustrative example
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Figure 2.5: Histogram of the maxima of the sur-
faces, with the Gumbel density and the thresh-
olds highlighted, in an illustrative example

Since the points plotted in the QQ-Plot of Figure 2.4 are very close to a straight line, one can

consider that the observed and theoretical quantiles are linearly related. This suggests that, in the

scenario where there is no space-time interaction, the observed values seems to follow a Gumbel

distribution with different parameters of location and scale. As we will use this distribution of the

maxima of the surfaces to find a threshold hteo under the null hypothesis, it is sufficient to check

that this approximation is valid in this scenario.

The maximum likelihood estimators of the parametersµ and β of the maxima’s distribution can

not be found analytically. We find them numerically, with initial values obtained by the method

of moments. With µ̂ and β̂, we can determine, from the distribution function (2.14), the threshold

hteo as the value such that the probability that at least one of the last m∗∗ cumulative surfaces

overcome it is equal to one minus the distribution function at the point htheo, which is equal to α,
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the probability of false alarm.

P
(
max

x,y
{Sn−m∗∗+1(x, y)} > hteo or max

x,y
{Sn−m∗∗+2(x, y)} > hteo or

. . . or max
x,y
{Sn(x, y)} > hteo

)
= 1 − F(hteo) = 1 − exp

{
− exp

[
− (hteo − µ̂)

β̂

]}
= α (2.15)

In Figure 2.5, we see how the density of a Gumbel distribution with parameters µ̂ and β̂ fits

well the histogram of the maxima of the cumulative surfaces found in 1000 permutations under

the assumption that there are no clusters. Moreover, we can see that the threshold values hteo and

hemp, which will be described in the next section, are very close.

Empirical threshold

To determine the threshold hemp, we will use again the window m∗∗ to control the probability

of false alarm. A threshold h is determined in order that the probability that at least one of the last

m∗∗ surfaces’ maxima is higher than h is equal to α. This is the probability of a false alarm, given

by

P
(
max

x,y
{Sn−m∗∗+1(x, y)} > hemp or max

x,y
{Sn−m∗∗+2(x, y)} > hemp or

. . . or max
x,y
{Sn(x, y)} > hemp

)
= α (2.16)

At the end of B random permutations of the events’ times, we have B maxima of surfaces’

maxima. The threshold hemp is the (1 − α)-th percentile of the maxima distribution.

It is important to note that, since that we are observing maxima of surfaces, we are dealing

with a very asymmetric distribution with heavy tail. Because of that, a sample percentile may not

be adequate to estimate a theoretical percentile, if the sample size is not large enough.

2.3.3 Overview of the surveillance method

The cumulative surface method was implemented in C language, divided in two parts. The

first part uses a training dataset to make the times’ permutations and determine the threshold

value. Then, this value is used in the second part, where the surveillance is made.

For the first part, the necessary input is a training dataset, as well as the values for the windows

m, m∗ and m∗∗, the critical distance rs and the critical time rt, the false alarm probability α, the
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bandwidth τ, and the grid size of the surface. The output is the value of the thresholds hteo e hemp.

For a dataset of 500 events, the average running time of this part is 3.5 minutes, in a machine with

2.80 GHz and 2 Gb RAM.

After the threshold h is determined, it is not necessary to repeat this step when new events are

added to the database. Permutations must be done again only if its judged that the overall events’

incidence pattern has changed.

In the second part of the method, the necessary input is the dataset, along with the parameters

already fixed m, m∗, m∗∗, rs, rt, α, τ and the grid size. In our software, we allow the surveillance

to be run only for the last events in the input dataset. For that, the user specifies the number a of

new events to be monitored. At each new event, the method accumulates the surfaces taking into

account the window of m∗ previous events.

Si(x, y) =

i∑

j=i−m∗+1

w j

= Si−1(x, y) − wi−m∗(x, y) + z+
i Ki(x, y)

with i = n − a + 1, . . . ,n. (2.17)

The alarm goes off immediately after the i-th event if Si(x, y) > h for some position (x, y). If

this happens, the method outputs the surface accumulated until this moment and the zi values.

With the view of the surface, it is possible to visualize other areas that may also have high levels

of space-time interaction. We identify as the locations of possible clusters the regions where the

surface was above the threshold h. With the same computer configuration and 500 events, the

average running time of the second part is less than one minute.

The plan for the future is to implement the two parts as an surveillance method in an R package,

to allow that it becomes acessible to different users.

2.4 Simulations

To evaluate the quality of the Cumulative Surface method, we analyzed simulation results in

different scenarios. First, it is generated a database of 500 events, with the spatial coordinates x

and y in the region [0, 10] × [0, 10] and the time coordinates between [0, 10], distributed according

to the scenario in question. These events are then used to determine the thresholds hemp and hteo,
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permuting the temporal coordinates 1000 times, keeping the spatial coordinates fixed, as described

in Section 2.3.2.

In all scenarios, we use the critical space radius rs equal to 2 and critical time rt equal to 1. Thus,

when data follow a uniform distribution in [0, 10]3, the expected number of events in the critical

region is equal to 6.28. The windows m and m∗∗ are set equal to 100. These values were determined

proportionally to the total number of events, such that the scores are stabilized and the probability

of false alarm is controlled as 0.05 for the last m∗∗ events. The window m∗, which corresponds to

how many previous events are accumulated to build the surface associated to the i-th event, took

the values 10, 25 and 50. In this way, we can analyze its impact on the proportion of false alarms.

The grid size to evaluate the continuous surface was set as 50× 50. To obtain a better visualization

of the surfaces, with distinguishable peaks, the bandwidth was fixed as 0.25.

After determining the threshold value h, we can proceed to the second part of the surveillance.

For each scenario, we ran 1000 simulations. At each simulation, data are generated according to

the scenario pattern and the surveillance was carried out.

Let s be the number of total simulations and sA be the number of simulations in which the

alarm went off. Let IC( j) be the indicator variable signing whether the alarm went off correctly on

the j-th simulation. It only makes sense when there are clusters, and it indicates if the alarm went

off for a event that belongs to the cluster or occurred near it. Similarly, let IF( j) be the indicator

variable of a false alarm in the j-th simulation. In the scenario without clusters, it indicates the

simulations in which the alarm went off. When there are clusters, it indicates the simulations in

which the alarm went off for events before the cluster’s emergence or for events that are far from

the cluster’s location. Finally, let d j be the delay of events that belong to the cluster that occurred

until the alarm went off, in the j-th simulation. With the results of simulations, we will analyze

the following measures:

• FAR - False Alarm Rate:

FAR =

∑s
j=1 IF( j)

sA

When there is no cluster, it will be equal to one, since all the alarms are false.
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• AR - Alarm Rate:

AR =
sA

s

It is the proportion of simulations in which the alarm went off. When there are no clusters,

it corresponds to α, the false alarm probability.

• CED - Conditional Expected Delay:

CED =

∑s
j=1 d j IC( j)
∑s

j=1 IC( j)

It is the mean number of events from the cluster that happened before the alarm goes off

correctly. When there is no cluster, it is equal to zero.

2.4.1 Scenario without clusters

This is the scenario under the null hypothesis, where there is no cluster. Events are generated

with the coordinates uniformly distributed in the region [0, 10]3. The typical data used to perform

the permutations can be seen in Figure 2.6.
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Figure 2.6: View of the coordinates of events generated in the scenario without cluster

The thresholds hemp and hteo are given in Table 2.1(a) and were calculated by using the permuta-

tions and the maxima distribution, respectively. We can also see them in Figure 2.7. The threshold

values do not differ much, which means that the results of simulations should be similar for hemp

and hteo.

Afterwards, the simulations were performed, generating new data sets, also uniformly dis-

tributed in [0, 10]3, and all the possible events were monitored. That is, we monitor all events after
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Figure 2.7: Comparative graphs of empirical and theoretical thresholds, for the scenario without clusters

the first m, the window of events needed for the scores’ stabilization. Table 2.1(a) shows the results

of the simulations for each value of m∗. As we are in the scenario without cluster, FAR is equal to

1.0 and CED is equal to 0.0.

Scenario without cluster
Window m∗ 10 25 50

hemp 60.943 93.612 130.735

FAR 1.000 1.000 1.000
AR 0.111 0.108 0.134

CED 0.000 0.000 0.000
hteo 58.649 90.655 129.327

FAR 1.000 1.000 1.000
AR 0.140 0.134 0.143

CED 0.000 0.000 0.000

(a) Surveillance for all events

Scenario without cluster
Window m∗ 10 25 50

hemp 60.943 93.612 130.735

FAR 1.000 1.000 1.000
AR 0.036 0.046 0.054

CED 0.000 0.000 0.000
hteo 58.649 90.655 129.327

FAR 1.000 1.000 1.000
AR 0.047 0.054 0.059

CED 0.000 0.000 0.000

(b) Surveillance for the last 100 events

Table 2.1: Results of the scenario without cluster: (a) surveillance for all events; (b) surveillance for the last
100 events

Even under the assumption that there are no clusters, the proportions AR in Table 2.1(a) are

larger than α fixed. This is due to the fact that in this case, the surveillance was made for all

possible events, i.e. the last 400 events, and the empirical threshold was determined using the last

m∗∗ = 100 events.

To check if the proportions AR are according to the expectations, the surveillance was carried

out only for the last m∗∗ events, choosing the number of new events to be monitored a equal to 100.
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In the results in Table 2.1(b), we see that the proportions are very close to the value set of α = 0.05.

Thus, even increasing from 100 to 400 the number of events to be analyzed, the proportion of

times the alarm went off did not increase in the same proportion, staying within the tolerance level

α determined by user.

2.4.2 Scenario with clusters

In the scenarios with clusters, we generated 500 events. A cluster is formed generating a fixed

number of events in a small region of space and a short time interval. The remaining events are

generated uniformly distributed in the region [0, 10]3. The values of the input parameters were

the same as in the previous scenario.

For each scenario with cluster, we analyze the results for three different values of window m∗ =

10, 25 and 50, in order to measure the impact of the choice of this parameter in the results. The

simulations were made with the thresholds hemp and hteo. In each simulation, the surveillance was

made for all possible events, excluding only the initial window m for the scores’ stabilization.

The performance of the method was evaluated for different scenarios varying the intensity of

the cluster, its size and its format.

Clusters with different intensities

To see the impacts of different cluster intensities, we fixed the cluster region as [5, 6]2 × [9, 10],

adding 10, 25 or 50 events besides the underlying uniform intensity. An example of a dataset with

the three cluster intensities can be viewed in Figure 2.8.

In Table 2.2 we see the thresholds hemp and hteo found for each of the values of m∗. The thresholds

found were very close, as we can see in the graphs of Figure 2.9 confirming the adequacy of the

theoretical approach of the maxima distribution described in Section 2.3.2. Therefore, the results

with the empirical and the theoretical threshold did not differ much.

Moreover, the thresholds are on the same level for the different intensities of the cluster. This

behavior is acoording to the expectations, considering that the presence of a cluster with a different

intensity should not change the threshold value.

In Table 2.2(a), we can see that in the scenario with a cluster of 10 events, the false alarm rates

FAR were high, around 27%. The proportions of times the alarm sounded AR were low, around

60%, since that there are clusters in all simulations. The mean time to detect the cluster CED
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Figure 2.8: View of the events’ coordinates generated in the scenario with clusters with different intensities
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Figure 2.9: Comparative graphs of empirical and theoretical thresholds, for the clusters with different
intensities

did not change with the window m∗, remaining around eight events. Since we are in a cluster

originally consisted of only 10 events, the alarm sounded around 60% of the time, many of those

times falsely.

For the cluster with 25 events, the results were better, according to Table 2.2(b). The values of
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Scenario with cluster
Window m∗ 10 25 50

hemp 59.669 92.043 131.408

FAR 0.273 0.243 0.282
AR 0.556 0.600 0.577

CED 7.953 7.956 8.145
hteo 57.693 91.297 131.655

FAR 0.300 0.257 0.275
AR 0.603 0.607 0.574

CED 7.502 7.707 8.036

(a) Cluster with 10 events

Scenario with cluster
Window m∗ 10 25 50

hemp 57.219 97.391 137.832

FAR 0.170 0.115 0.103
AR 1.000 1.000 1.000

CED 8.997 9.964 11.205
hteo 56.204 92.029 135.511

FAR 0.187 0.137 0.107
AR 1.000 1.000 1.000

CED 8.877 9.644 11.113

(b) Cluster with 25 events

Scenario with cluster
Window m∗ 10 25 50

hemp 59.969 94.217 138.982

FAR 0.122 0.099 0.078
AR 1.000 1.000 1.000

CED 8.641 9.889 11.607
hteo 58.278 92.839 140.562

FAR 0.121 0.114 0.079
AR 1.000 1.000 1.000

CED 8.498 9.842 11.661

(c) Cluster with 50 events

Table 2.2: Results in the scenario with cluster, with different intensities: (a) cluster with 10 events; (b) cluster
with 25 events; (c) cluster with 50 events

AR were equal to one, indicating that the alarm sounded in all simulations. As the window m∗

increases, the false alarm rate decreased, which means that the more information is accumulated,

the more the alarm sounds correctly. The mean time expected until the cluster is detected has

increased in about one event, with respect to the cluster with 10 events, which means that, pro-

portionally, the alarm sounded more quickly. But there is a trade-off between FAR and CED, since

the CED increased directly with the window m∗. This is due to the fact that accumulating more

information, the threshold h will increase, decreasing the number of surfaces that would overcome

it before the cluster actually starts. Thus, the surface corresponding to the cluster will also take

slightly longer to overcome the threshold.

In the scenario with the cluster of greater intensity, as we see in Table 2.2(c), values of FAR

decreased even more, since the greater the intensity of the cluster, the greater its discrepancy with

respect to the rest of the region, and the easier it is to detect it. Again, the alarm sounded in all
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simulations. The values of CED have not changed with respect to the scenario with 25 events,

again, meaning that the cluster is detected more quickly. We must consider whether the gain in

reducing FAR is better than the delay of some events when detecting a cluster, according to the

type of event and the actions to be taken facing an alarm.

Clusters with different extents

To evaluate the detection power for different cluster extents, we fixed the number of events

belonging to the cluster as 25 and vary the spatial region of the cluster as [5, 5.5]2, [5, 6]2 and [4, 7]2,

while maintaining the temporal coordinates uniformly distributed between [9, 10]. The spatial

and temporal coordinates of a typical dataset can be viewed in Figure 2.10.
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Figure 2.10: View of the events’ coordinates generated in the scenario with clusters with different extents

The threshold values hemp and hteo are given in Table 2.3. Observing the graph comparing the

thresholds in Figure 2.11, we see that the threshold values did not change when we are considering

clusters spread in a narrower or wider area. These values are also very close to the thresholds

found for the previous scenarios.

Comparing the more concentrated and the medium clusters in Table 2.3(a) and 2.3(b), we see

that the method took on average the same time to detect the cluster properly. The false alarm rates
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Figure 2.11: Comparative graphs of empirical and theoretical thresholds, for the clusters with different
extents

FAR of the small cluster were slightly larger than the ones of the medium cluster.

When we are dealing with a widespread cluster, the mean time to detect it increased, according

to Table 2.3(c). This is expected since it is more difficult to identify that a cluster is emerging

in such extent area. The false alarm rates increased with respect to the scenario with a medium

cluster, when we look at the window m∗ equal to 10, but did not change significantly for the other

windows. With this, we can conclude that the method is efficient to detect a cluster even in a large

region. It is only necessary to choose a reasonable value for the window m∗. For the three cluster

sizes the alarm went off in all simulations.
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Scenario with cluster
Window m∗ 10 25 50

hemp 56.499 90.914 138.472

FAR 0.181 0.157 0.130
AR 1.000 1.000 1.000

CED 8.921 8.535 11.246
hteo 56.884 89.900 134.782

FAR 0.174 0.168 0.131
AR 1.000 1.000 1.000

CED 8.965 9.488 11.069

(a) Small cluster

Scenario with cluster
Window m∗ 10 25 50

hemp 57.219 97.391 137.832

FAR 0.170 0.115 0.103
AR 1.000 1.000 1.000

CED 8.997 9.964 11.205
hteo 56.204 92.029 135.511

FAR 0.187 0.137 0.107
AR 1.000 1.000 1.000

CED 8.877 9.644 11.113

(b) Medium cluster

Scenario with cluster
Window m∗ 10 25 50

hemp 54.650 91.582 137.312

FAR 0.212 0.129 0.094
AR 1.000 1.000 1.000

CED 12.024 12.846 14.468
hteo 54.614 90.705 134.889

FAR 0.212 0.133 0.101
AR 1.000 1.000 1.000

CED 12.019 12.753 14.354

(c) Large cluster

Table 2.3: Results in the scenario with cluster, with different cluster extents: (a) cluster in region [5, 5.5]2 ×
[9, 10]; (b) cluster in region [5, 6]2 × [9, 10]; (c) cluster in region [4, 7]2 × [9, 10]
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Clusters with different shapes

As the method uses a cylinder to determine the proximity between events, it is important to

examine how the shape of the cluster influences its detection. For this, we compared the results

of square-shaped cluster with 25 events in the region [5, 6]2 with the results of a cluster also with

25 events, but rectangular, in the region [5, 5.25] × [3, 7]. In both clusters, times are uniformly

distributed in [9, 10]. The typical dataset can be seen in Figure 2.12.
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Figure 2.12: View of the events’ coordinates generated in the scenario with clusters with different shapes

The threshold values are in Tables 2.4(a) and 2.4(b), together with the results obtained for the

two different clusters’ shapes. Again, there was not great difference between the threshold values

found, empirically and theoretically, as can be seen in Figure 2.13.

Comparing the values of FAR for different cluster shapes, there are no major differences between

the two shapes, which means that the method is also able to identify correctly non-square clusters.

The values of CED were greater for the rectangular cluster, as we see in Table 2.4(b). This

represents a small increase in detection time when the cluster has a shape different from the

cylinder.
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Figure 2.13: Comparative graphs of empirical and theoretical thresholds, for the clusters with different
shapes

Scenario with cluster
Window m∗ 10 25 50

hemp 57.219 97.391 137.832

FAR 0.170 0.115 0.103
AR 1.000 1.000 1.000

CED 8.997 9.964 11.205
hteo 56.204 92.029 135.511

FAR 0.187 0.137 0.107
AR 1.000 1.000 1.000

CED 8.877 9.644 11.113

(a) Square cluster

Scenario with cluster
Window m∗ 10 25 50

hemp 57.246 88.808 138.006

FAR 0.194 0.195 0.115
AR 0.999 1.000 1.000

CED 11.559 11.800 13.787
hteo 57.912 90.012 137.947

FAR 0.173 0.175 0.115
AR 0.999 1.000 1.000

CED 11.691 11.886 13.778

(b) Rectangular cluster

Table 2.4: Results in the scenario with cluster, with different shapes: (a) square cluster in region [5, 6]2; (b)
rectangular cluster in region [5, 5.25] × [3, 7]

2.4.3 Scenario with cluster - Non-homogeneous Poisson Process

To assess if the method is able to identify a true cluster, even if there are different spatial

patterns, for example due to the populational density, we generated events with different patterns

of occurrence.

With the number of events belonging to the cluster fixed, the other events are generated

according to a Non-homogeneous Poisson Process with intensity given by (2.18).

λ(x, y) = φ(x, y;µ1,Σ) + φ(x, y;µ2,Σ) (2.18)
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where φ(x, y;µ,Σ) is the density function of a bivariate normal distribution at the point (x, y), with

mean µ = (µx, µy) and correlation matrix Σ. In this case, we assumed that µ1 = (3; 7), µ2 = (8; 3),

σ2
x = σ2

y = 2 and ρ = 0.

To form the cluster, we generated 25 events uniformly distributed in the region [5, 6] × [5, 6]

and time between [9, 10]. The temporal and spatial coordinates of a typical dataset can be viewed

in Figures 2.14(b) and 2.14(d).
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Figure 2.14: View of the events’ coordinates generated in the scenario with clusters, with the events
distributed according to a homogeneous and a non-homogeneous Poisson process

The parameters assumed the same values as in the previous scenarios, including the window

m∗. To evaluate the results of the scenario with NHPP, they were compared to results obtained in

the scenario with the square cluster with 25 events in the region [5, 6]2 × [9, 10], where other events

are randomly distributed in the rest of region. Thus, events that do not belong to the cluster follow

a Homogeneous Poisson Process with intensity λ constant and equal to 0.475.

In the graph in Figure 2.15, we see that the values of empirical and theoretical thresholds were

very similar for the different values of m∗. However, compared with the thresholds of the scenario

with HPP, we see that they had a small increase, reflecting the greater heterogeneity in the events’

distribution.
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Figure 2.15: Comparative graphs of empirical and theoretical thresholds, in the scenarios with homogeneous
and non-homogeneous Poisson process

In Table 2.5, we can see the difference in the results of different scenarios. In both scenarios, the

alarm sounded in all simulations. The false alarm rates of NHPP were slightly higher than the rates

of HPP, again as expected, since the heterogeneous distribution of the events increase the chance

of a random occurrence of a conglomerate of events, not featuring a true cluster. Moreover, the

values of CED also increased for the non-homoegeneous scenario, but again it was not a significant

change with respect to the performance of the method.

Scenario with cluster
With m∗ 10 25 50

hemp 57.219 97.391 137.832

FAR 0.170 0.115 0.103
AR 1.000 1.000 1.000

CED 8.997 9.964 11.205
hteo 56.204 92.029 135.511

FAR 0.187 0.137 0.107
AR 1.000 1.000 1.000

CED 8.877 9.644 11.113

(a) HPP Cluster

Scenario with cluster
Window m∗ 10 25 50

hemp 61.128 105.788 149.908

FAR 0.180 0.128 0.160
AR 1.000 1.000 1.000

CED 9.785 10.647 12.021
hteo 61.439 100.608 148.726

FAR 0.176 0.159 0.167
AR 1.000 1.000 1.000

CED 9.797 10.357 11.955

(b) NHPP Cluster

Table 2.5: Results in the scenario with cluster: (a) events distributed according to a homogeneous Poisson
process, (b) events distributed according to a non-homogeneous Poisson process
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2.5 Application

To apply the method of cumulative surface surveillance to a real dataset, we used a dataset

of meningitis cases occurred in Belo Horizonte, MG, Brazil, from 2001 to 2005. The data are the

spatial coordinates of occurrence of the meningitis cases, and time is the number of days since the

first event, recorded on 01/01/2001. The coordinates of the 1001 events are shown in Figure 2.16.

Parameters were used with the following values: m = 200, m∗ = 50, m∗∗ = 500, chosen according

to the total number of events. The false alarm probability α = 0.05 was maintained, as well as the

grid size 50 × 50. The critical distance is 2 km and the critical time is 30 days.

In Figure 2.17, we see a surface wi(x, y), with bandwidth τ equals to 1 km, and the spatial coordi-

nates of the events plotted. It is observed that, when spreading the zi score, the bandwidth chosen

causes the surface to assume higher values only in a region very near the critical neighborhood,

highlighted by the circle in black.
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Figure 2.16: Spatial coordinates of the meningitis cases in Belo Horizonte

To determine the threshold h, we made 1000 permutations of the times, keeping the spatial

coordinates fixed. In Figure 2.18, we see the histogram of the values of the maxima of the

cumulative surface from each permutation, with the density of the Gumbel distribution and the

threshold values obtained empirically and theoretically. Since the threshold values hemp and hteo

are very close, the results of monitoring won’t change, as discussed in Section 2.4. Thus, we chose

the threshold value hemp = 88.344 to do the surveillance.
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Figure 2.18: Histogram of the maxima of the cumulative surfaces obtained in the permutations, for the
meningitis cases

The surveillance was made for all possible events, excluding only the first m = 200 events for

the sake of scores’ stabilization. The alarm sounded when the event 609 was being monitored,

with coordinates (x, y) = (603374.45, 798618.15) on 11/10/2003.

In Figure 2.19, we see the cumulative surface when the alarm sounded, with the time corre-

sponding to the threshold highlight in red. In Figure 2.20, we see the cumulative surface in contour

levels, where the surface value increases as the colors go from yellow to red, with the events that

occurred before the 609-th event (highlighted in blue), and the threshold height corresponding to

the highlighted green line, delimiting the region of a possible cluster.

One way to identify, at the time the alarm sounds, which events belong to the cluster is

to analyze the value of the zi scores. In Figure 2.21 we can see the time series of the scores.

Highlighted in red is the score corresponding to the 609th event.



CAPÍTULO 2. PROSPECTIVE SPACE-TIME SURVEILLANCE 34

x

600000

605000

610000

615000

y

790000

795000

800000

805000

810000

surface

20

40

60

80

Figure 2.19: Cumulative surface at the moment that the alarm sounded, for the meningitis cases
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Figure 2.20: View of the cumulative surface in contour levels, for the meningitis cases

In Figure 2.22 we can see again the surface contour levels with the region of the possible cluster

highlighted in green. The symbols of the events are plotted with radii proportional to the scores

zi, as well as their colors, ranging from the lowest values in gray to the largest ones in dark blue.

In Figure 2.22(a) we see all the events that happened before the alarm went off. In Figure 2.22(b)

we see only the 50 last events that happened before the 609-th event. With this second graphic it is

possible to identify those events that contributed to raise the surface level at this moment, without

the oldest events. Looking at Figure 2.22(b), we can identify a possible emerging cluster on the

northwest region of the city, near its left border.
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Figure 2.21: Time series of the zi scores, of the meningitis cases
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(a) Plotting of events from the first to the 609-th
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(b) Plotting of the 50 events prior to the 609-th

Figure 2.22: View of the events according with the zi values, for the meningitis cases

We can observe that the alarm didn’t sound when there is only a high score, but when the

high score was observed in a region where the surface was already at a high level. However,

identifying the cluster just as the region where the value of the surface is above the threshold h is

not appropriate. It is necessary to analyze simultaneously the zi scores to identify which events

actually led to an increase in the surface level and made the alarm sound, and thus formed a

cluster.
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2.6 Discussion

To apply the cumulative surface method, it is only necessary to determine the values of some

parameters according to the size of the database and range of the study area, requiring no infor-

mation about the population at risk. This makes the method useful for users with little knowledge

of statistics, such as departments of public health and security, with great interest in monitoring

spatial-temporal events prospectively, in order to guide actions to combat clusters as they occur.

The simulation results under different scenarios were satisfactory. The false alarm probability

stayed within the limit set and the mean time until the cluster is detected correctly was reasonable.

This shows that the method detects clusters even with different intensities, extents and shapes. We

also had great results for the scenario in which the events have a heterogeneous distribution, like

the non-homogeneous poisson process.

The application to a real database shows that the visualization of the cumulative surface,

together with the local scores, identifies the region of the cluster and the events that belong to him.

However, it is not enough to look for a conglomerate of high values of zi scores to identify a cluster,

since they can be separated by a large time interval. Therefore, the advantage of the method is to

accumulate information over time using a window set by the user to localize a large number of

events that are happening close in space and in a short interval of time.

Another advantage of the method is to identify the space-time interaction levels all over the

study area. For example, assume that the combined surface area exceeds the threshold h in a small

region and the alarm goes off, signing this location as a cluster. However, there may be other

clusters about to emerge in the map, with high surface values. With the view of the surface, the

user is also able to identify these other clusters and take appropriate action. Furthermore, the

visualization in contour levels allows a completely flexible shape for the cluster region, it is just

necessary to choose an appropriate value for the bandwidth. In the results presented in this paper,

we have chosen bandwidth values according to the critical distance. This is due to the fact that we

obtained high values estimating the bandwidth automatically, so the surfaces would decay very

softly and the peaks corresponding to localized clusters wouldn’t be distinguishable. Therefore,

determining a better way to estimate an optimal bandwidth is a future research topic.



Referências Bibliográficas
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