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Resumo 

 

O desenvolvimento e o estudo de métodos que sejam capazes de detectar 

eficientemente um conjunto de áreas que tenha uma maior ou menor incidência de um 

determinado evento são de extrema importância para a sociedade. Por exemplo, um 

método que indique a existência de um conjunto de bairros que tenha uma maior 

incidência de crimes ou casos de dengue de uma cidade. Nesse contexto nos deparamos 

com os métodos de análises estatísticas de conglomerados espaciais. Carpenter (2011) 

relata que uma das principais razões para o grande uso das análises estatísticas de 

conglomerados espaciais é a disponibilização gratuita de softwares, como o SaTScan. 

Por exemplo, no site do SaTScan (www.satscan.org; acessado em 1 de janeiro de 2011) 

pode ser encontrada uma lista de aplicações nas áreas de doenças infecciosas, 

parasitologia, vigilância síndrômica, câncer, pediatria, geriatria, doenças neurológicas, 

psicologia, demografia, veterinária, botânica, silvicultura, ecologia e meio-ambiente, 

desastres naturais, criminologia, transporte, entre outras. Costa e Kulldorff (2009) 

revisaram algumas dessas aplicações.  

A estatística de varredura espacial é baseada no clássico artigo de Naus (1965) 

que desenvolve expressões matemáticas para calcular a probabilidade de encontrar � 

pontos dentro de uma janela retangular fixa que varre a área de um quadrado unitário. 

Kulldorff (1997), com a estatística de varredura circular, estendeu esta abordagem 

assumindo um processo de Poisson ou Bernoulli que gera eventos ou casos em uma 

região geográfica, também conhecida como região de estudo. A região de estudo pode 

ser dividida em áreas menores onde as populações sob risco e os casos são observados. 

Os candidatos a conglomerados são gerados por círculos com os seus centros 

posicionados nos centroides das áreas e, em seguida, variando os seus raios. Para cada 

círculo, uma estatística da razão da log-verossimilhança é calculada. O círculo com a 

maior estatística observada é a potencial sub-região crítica. A inferência sob a suposição 

de aleatoriedade espacial é realizada por meio de simulações Monte Carlo (Dwass, 

1957; Turnbull et al., 1990). 

Algumas extensões e modificações da estatística de varredura puramente 

espacial são encontradas na literatura. Por exemplo, a estatística de varredura puramente 

espacial foi estendida para três dimensões (Kulldorff et al., 1998; Kulldorff, 2001; 



 

 

Kulldorff et al., 2005), onde o tempo geralmente representa a terceira dimensão. Novos 

modelos de probabilidade também foram propostos (Jung et al., 2010, 2007; Huang et 

al., 2007; Kulldorff et al., 2009; Huang et al., 2009), bem como geometrias diferentes 

para a forma do conglomerado (Duczmal e Assunção, 2004; Patil e Taillie, 2004; 

Assunção et al., 2006; Takahashi et al., 2005, 2008; Costa et al., 2012). No entanto, a 

estatística de varredura circular e elíptica (Kulldorff et al., 2006) são as metodologias 

mais utilizadas. Pode-se argumentar que as estatísticas de varredura circular e elíptica 

são amplamente utilizadas porque estão disponíveis no software SaTScan.  

O usuário da estatística de varredura circular precisa selecionar apenas um 

parâmetro, que é o tamanho máximo da janela de varredura. Este parâmetro é 

normalmente escolhido em termos percentuais da população total na região de estudo. 

Alguns autores, Kulldorff e Nagarwalla (1995), Coulston e Riitters (2003), Forand et al. 

(2002), Donnan et al. (2005) e Chaput et al. (2002), discutem a utilização de alguns 

valores específicos desse parâmetro. Costa e Kulldorff (2009) descrevem algumas 

razões para escolher um tamanho menor de conglomerado. Uma razão é que um 

conglomerado circular menor pode ser um indício de que o conglomerado verdadeiro 

tem uma forma irregular, assim, representa uma análise exploratória para 

conglomerados irregulares, antes da execução de qualquer método de detecção de 

conglomerados irregulares. Outra razão, é que a escolha por um tamanho de 

conglomerado menor pode ser feita com base nos recursos disponíveis para a 

intervenção, que é o caso em estudos epidemiológicos e aplicações de vigilância 

sindrômica. Por exemplo, a detecção de um conglomerado com um tamanho de 50% do 

território nacional dos EUA não é muito informativa. 

Neste trabalho, são estudas as medidas de desempenho dos métodos de detecção 

de conglomerados espaciais para diferentes valores do tamanho máximo do 

conglomerado com base em cenários simulados. Procuramos evidências empíricas sobre 

valor ideal para o parâmetro do tamanho máximo do conglomerado. Simulações 

extensivas foram feitas utilizando a estatística de varredura circular, a estatística de 

varredura elíptica e a estatística de varredura double (Costa et al., 2012). Esta última 

aplica uma regra de parada prematura ao processo de construção do candidato à 

conglomerado, o que pode evitar que o conglomerado detectado alcance o tamanho 

máximo previamente escolhido pelo usuário. Foram investigados conglomerados 

simulados de geometria circular e irregular. Além disso, foram investigados os 



 

 

conglomerados secundários detectados, sob a suposição de que a estatística de varredura 

espacial pode dividir um único conglomerado desconhecido em vários pedaços, ou seja, 

detectar conglomerados primários e secundários. 

Os resultados indicam que existem escolhas ótimas e únicas para cada um dos 

seguintes parâmetros: o tamanho máximo do conglomerado, a geometria, e o critério de 

sobreposição entre os conglomerados primários e secundários. Estas escolhas otimizam 

as medidas de desempenho: sensibilidade, poder, especificidade e erro de classificação. 

Contudo, não há uma escolha única, entre todos os parâmetros, que forneça os melhores 

resultados para todas as medidas de desempenho avaliadas. Os detalhes são 

apresentados a seguir. 
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Abstract

Circular and elliptic spatial scan statistics requires the user to choose a max-
imum cluster size. A common value for this parameter is 50% of the under-
lying population. In addition to the detected primary cluster, the user may
be interested in the analysis of significant secondary clusters. It can also
be argued that if the true cluster is irregular, then choosing a small value
for the maximum cluster size and evaluating significant secondary clusters
may improve cluster detection and avoid the use of irregular cluster meth-
ods. This work explores the performance of the circular, elliptic and double
scan statistics for different values of the maximum cluster size and different
options for the analysis of secondary clusters. Empirical results show that
for hot-spot clusters, the analysis of secondary clusters which are statisti-
cally significant do not improve the detection of the true unknown cluster,
on average. There is evidence that a variable maximum cluster size improves
performance. That is, the double scan statistic applies an early-stopping
procedure which improves positive predictive values.

Keywords: spatial scan statistic, simulation study.

1. Introduction

Carpenter (2011) reports that one of the main reasons why statistical spa-
tial cluster analysis has been widely used is the availability of free spatial soft-
wares, such as SaTScan. For instance, in SaTScan’s web site (www.satscan.
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org; accessed January 1, 2011) one can find a selected list of applications in
the fields of infectious diseases, parasitology, syndromic surveillance, cancer,
cardiology, rheumatology/auto-immune diseases, among others. Costa and
Kulldorff (2009) review some of these applications and find some very inter-
esting patterns among the fields of applications. Among the findings, Costa
and Kulldorff (2009) report the use of a varying maximum cluster size for
the circular scan statistic in order to improve cluster detection.

The purely spatial scan statistic is based on the classical paper of Naus
(1965) which develops mathematical expressions to calculate the probability
of finding k points inside a fixed rectangular window moving along a unit
square. Kulldorff (1997) extended this approach by assuming a Poisson or
Bernoulli process which generates events or cases in a geographical region,
also known as the study region. The study region can be further divided into
smaller disjoint subregions (or areas) where populations at risk and cases are
observed. Circular cluster candidates are created by centering circles at the
centroids of the areas and then varying their radii. For each circle, a log-
likelihood ratio statistic is calculated. The circle with the largest observed
statistic is a potential critical subregion. Inference under the assumption
of spatial randomness is carried out using Monte Carlo simulations (Dwass,
1957; Turnbull et al., 1990).

The circular scan statistic requires the user to select only one parame-
ter, which is the maximum window size. This parameter is usually chosen
in terms of the percentage of the total population in the study region. For
example, a maximum size of 30% means that the radii of the circles will
increase until reaching 30% of the total population inside the circles. Kull-
dorff and Nagarwalla (1995) claim that this value should be chosen as 50%
in order to avoid ‘negative clusters’, which are a few areas with low incidence
rates outside the circle. Nevertheless, many applications use smaller values
for practical reasons. For example, Coulston and Riitters (2003) choose a
maximum cluster size of 20% due to forestland discontinuity, and later they
run the circular scan using the previously detected cluster as the new study
region and report “several small clusters arranged in a linear fashion along
Interstate 95”. Forand et al. (2002) restrict the number of cases inside the
cluster candidate to be no more than 2.5% of all cases to better focus on
geographic areas covered by the participant hospitals where the data were
collected. Donnan et al. (2005) reduce the maximum cluster size to check for
smaller but significant clusters. Chaput et al. (2002) use maximum cluster
sizes of 50% and 25%, arguing that “smaller size allows detecting more com-
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pact cluster, which indeed generated a primary significant cluster with higher
relative risk”. Costa and Kulldorff (2009) describe some reasons for choosing
a smaller cluster size. One reason is that a smaller circular cluster size can
indicate whether the true cluster has an irregular shape. Therefore, choosing
a smaller cluster size represents an exploratory analysis for irregular clusters,
before running any irregular cluster detection method. Another reason is that
a smaller cluster size may be chosen based on available resources for inter-
vention, which is the case in epidemiological studies and disease surveillance
applications. However, the effects of different values of maximum cluster size
on cluster analysis performance have not been properly investigated.

Regarding circular and irregular shapes, the literature shows that for
truly circular clusters, the circular scan statistic achieves better performance
whereas for truly irregular clusters, irregular methods achieves better per-
formance, as expected. These results are usually based only on the analysis
of the significant primary detected clusters. That is, by means of simula-
tions and given the primary detected cluster, the location and population
of the detected cluster are compared to the location and population of the
true cluster. Nevertheless, the circular scan statistic also reports secondary
clusters. Thus, it can be argued that by selecting properly the maximum
cluster size parameter and looking at the secondary clusters, then circular
and irregular clusters are found. If so, then detection results are to be close
to the elliptic (Kulldorff et al., 2006) or irregularly cluster methods (Duczmal
and Assunção, 2004; Patil and Taillie, 2004; Assunção et al., 2006; Takahashi
et al., 2005, 2008; Costa et al., 2012).

In this work we investigate possible choices for the maximum cluster size
parameter. We study performance measures for spatial clustering for different
values of the maximum cluster size using simulated scenarios. We use power,
sensitivity, positive predictive value and misclassification statistics in order to
provide further insights into the effectiveness of different parameterizations
in SaTScan. We search for empirical evidence about the optimum maximum
cluster size. Extensive simulation is provided for the circular scan statistic,
elliptic scan statistic and the novel double connected scan statistic. The
latter applies an early-stopping rule, which may avoid detected clusters with
the maximum size, previously chosen by the user. Simulated irregular and
circular shapes are investigated. In addition, secondary clusters are also
investigated, under the assumption that the spatial scan statistics may split
a unique unknown cluster into detected primary and secondary clusters.

Results indicate that there are optimal and unique choices for each of the
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following parameters: the maximum cluster size, geometry, and the overlap-
ping criterion among primary and secondary clusters. These choices optimize
the following performance measures: power, sensitivity, positive predictive
value, and misclassification. For instance, a maximum cluster size of 50%
provides better power and sensitivity. The double scan statistic provides bet-
ter positive predictive values, although a maximum cluster size of 5% may
also achieve good results. There is no single choice, among all the parame-
ters, that provides the best results for all evaluated performance measures.
In general, the analysis of secondary clusters do not improve cluster analysis,
except for the sensitivity statistic, which is improved.

This paper is organized as follows. The next section describes the circular,
elliptic and double connected scan statistics. Following is a description of
the performance measures (section 3). Section 4 presents the simulation
study. Section 5 presents the results and the discussion, and the conclusion
is provided in section 6.

2. Spatial Scan statistics

2.1. The circular scan statistic

The spatial scan statistic proposed by Kulldorff (1997) uses a circular
window to scan a geographical region. The methodology is presented as
follows: let A be the geographical region, also named as the study region,
partitioned into K disjoint subregions (or areas), for example, counties or
states. Let ci and ni be the number of cases and populations at risk of area
i. Under the null hypothesis of spatial randomness, the cases are uniformly
distributed in the population. Therefore, the number of cases in the ith area
is Poisson distributed with the expected number of cases, µi, proportional to
its population,

H0 : ci ∼ Poisson(µi = λni)

Under the null hypothesis λ̂ = C/N , where C is the total number of cases
and N is the total population. Under the alternative hypothesis, there is one
spatial cluster at an unknown location. Define Z as the set of all possible
circular clusters z. For each cluster z let cz and nz be the number of cases
and populations inside cluster z. Using a Poisson model, the likelihood ratio
test statistic associated with the most likely cluster is given by:
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L(ẑ, p̂, r̂)

L0

= sup
z

(
cz
µz

)cz (C − cz
C − µz

)C−cz

(1)

where µz is the expected number of cases under the null hypothesis, µz =
C · nz/N .

In sequence, Monte Carlo simulations (Dwass, 1957) are applied to ad-
dress the statistical significance of the most likely cluster. Under the null
hypothesis, C simulated cases are assigned to areas using a multinomial dis-
tribution and the likelihood ratio test statistic is computed. This procedure
is repeated many times to generate an empirical distribution of the likelihood
test statistic under the null hypothesis. Finally, the p-value is produced by
comparing the observed likelihood ratio test statistic to its empirical distri-
bution. Further details can be found in Kulldorff (1997) or in Costa et al.
(2012).

2.2. The elliptic scan statistic

The first difference between the circular scan statistic and the elliptic scan
statistic (Kulldorff et al., 2006) is the replacement of the set Z of circular
clusters by a set of elliptical clusters. An ellipse is uniquely defined by the
coordinates of its centroid, shape, angle and size. “The shape is the ratio
of the longest to the shortest axis of the ellipse and the angle θ is the angle
between the horizontal line and the semimajor axis of the ellipse” (Kulldorff
et al., 2006). Circles are ellipses with shapes equal to one. For mostly
computational reasons, restricted values are used for shape and angle. For
instance, SaTScan default values for the number of angles are 4, 6, 9, 12 and
15, and for the shapes are 1.5, 2, 3, 4 and 5. Values for the angles are evenly
chosen around the circle, and θ = π

2
is always included.

The second difference is a non-compactness penalty parameter of the form
[4s/(s+1)2]a which multiplies the log likelihood ratio statistic. s is the shape
parameter and a is the non-compactness penalty parameter. Standard values
for the parameter a are: a = 1 (strong penalty), a = 1

2
(medium penalty)

and a = 0 (no penalty). Medium to strong penalty values are generally
used to penalize long and narrow ellipses, because these clusters might have
geographically disconnected areas and large values of the likelihood ratio test
statistic.
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2.3. The double connected scan statistic
The double connected scan statistic, hereafter named double scan statis-

tic (Costa et al., 2012), belongs to the group of scan statistics with irregular
geometry (Patil and Taillie, 2004; Duczmal and Assunção, 2004; Takahashi
et al., 2005; Assunção et al., 2006; Duczmal et al., 2007; Takahashi et al.,
2008). It uses the geographical adjacency information to create an intercon-
nected graph structure among the areas. From this graph structure, can-
didate clusters are created. Initially, the algorithm starts the cluster with
one area and evaluates the likelihood ratio statistic for the neighboring ar-
eas which are directly connected to the first one. The neighboring area that
increases the likelihood ratio statistic the most is definitely aggregated into
the cluster. Otherwise, if there is no neighboring area that increases the like-
lihood ratio statistic, then the neighboring area that decreases the least the
likelihood ratio statistic is definitely aggregated into the cluster. Therefore,
the cluster now has two areas. From this point forward, the algorithm selects
only the neighboring areas of the cluster which are connected to al least two
areas inside the cluster. Among these areas, the area that most increases
the likelihood ratio statistic is aggregated into the cluster. If the neighboring
areas do not increase the likelihood ratio statistic, then the algorithm stops
and starts a new cluster from a new area. Otherwise, the growing process
continues to evaluate the likelihood ratio statistic of neighboring areas that
are connected to at least two areas already inside the cluster. The grow-
ing process stops when the maximum cluster size is reached, or if there are
no neighboring areas either double connected or incapable of increasing the
current likelihood ratio statistic of the cluster. See Costa et al. (2012) for
further details.

Different from the elliptic scan statistic, which requires the user to se-
lect shape, angle and penalty parameters, the double scan statistic requires
only the maximum cluster size. Therefore, it requires the same parameter as
the standard circular scan statistic. Moreover, by applying the graph struc-
ture to create cluster candidates, the method provides more flexibility to the
cluster shape. The double connected criterion provides a subtle but effective
non-parametric penalty to the shape of the cluster and to the likelihood ra-
tio statistic. Therefore, it avoids finding non-informative clusters which are
extremely large, too irregularly shaped and have high relative risk and high
value of the likelihood ratio statistic.

The double scan statistic also requires a maximum cluster size parame-
ter. Nevertheless, created clusters may not reach the maximum size. This is
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because the double scan statistic applies an early-stopping procedure, that
is, the growing process stops if there are no neighboring areas able to in-
crease the likelihood ratio statistic of the current cluster. This procedure
creates new dynamics in cluster set Z. Basically, this approach is more data
driven and it usually generates smaller clusters. This characteristic improves
some statistical performances of the method and it is further explored in the
simulation study.

3. Performance Measures

As stated by Read et al. (2011), in order to quantify spatial accuracy
of the spatial scan statistic, “the literature presents a patchwork of differ-
ent measures and nomenclatures”. The statistical power is a very common
performance measure, see for instance Kulldorff et al. (2003, 2004, 2006);
Duczmal et al. (2006); Song and Kulldorff (2003); Costa et al. (2012), among
others. In order to measure the differences between true and detected clus-
ters, the sensitivity (Huang et al., 2007; Que et al., 2008; Costa and As-
sunção, 2005; Costa et al., 2012) and positive predictive values (Takahashi
et al., 2005; Jung et al., 2010; Que et al., 2008; Costa et al., 2012) are also
commonly used.

Following Costa et al. (2012) we use four evaluation metrics: estimated
power, sensitivity, positive predictive value (PPV) and misclassification. The
sensitivity, PPV and misclassification statistics are estimated in terms of the
proportion of the true cluster population,the detected cluster population, and
the total population, respectively. Previous studies use the number of areas
as the basis for calculating the performance measures. Costa et al. (2012)
claim that using the population as the basis provides more robust estimates.

In this work, the estimated power is the proportion of p-values smaller
or equal to 0.05 in 10, 000 simulations for each cluster model. The cluster
models are shown in section 4.1.

Let ẑ be the population inside the detected cluster and z be the popu-
lation inside the true cluster. The sensitivity represents the proportion of
the population in the true cluster that is part of the detected cluster, or
n(z ∩ ẑ)/n(z). If the sensitivity is one, then the detected cluster completely
contains the true cluster. Nevertheless, a large detected cluster may contain
a smaller true cluster and, in this situation, the sensitivity statistic is also
unitary.
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The PPV is the proportion of the detected cluster population that is part
of the true cluster population, or n(z ∩ ẑ)/n(ẑ). If the PPV is one, then the
detected cluster contains only elements of the true cluster. That is, a smaller
detected cluster that contains only areas of a large true cluster has PPV equal
to one. The optimal detected cluster has sensitivity and specificity equal to
one.

The misclassification is the percentage of the total population that be-
longs to either the detected or true cluster but does not lie in the intersection
between the two, or n[(z ∪ ẑ) ∩ (z ∩ ẑ)c]/N . Therefore, it accounts for both
the detected cluster populations which do not belong to the true cluster, and
for the true cluster populations which do not lie in the detected cluster. The
optimal value for misclassification is zero, therefore spatial scan statistics
present good performance if they achieve misclassification results as close to
zero as possible.

4. Simulation study

4.1. Cluster Models

Two benchmark data sets were used to compare the circular, elliptic and
double scan statistics. The first data set comprises circular cluster models
(Kulldorff et al., 2003). The underlying population is the female population
in the Northeastern USA from the 1990 census. The region under study
has 245 counties in Maine, New Hampshire, Vermont, Massachusetts, Rhode
Island, Connecticut, New York, New Jersey, Pennsylvania, Delaware, Mary-
land, and the District of Columbia. The total population is 29,535,210 in-
dividuals. The map of the population is shown in Figure 1. We used nine
different circular cluster models with 1, 4 and 16 counties located in mixed,
rural and urban areas, as shown in Figure 2 (a). Figure 2 (a) shows the rural,
mixed and urban cluster models with size 16. Circular cluster models with
size 1 use only the county in the center of the circle, whereas cluster models
with size 4 use the counties closer to the center of the circles. This data set
has previously been used to evaluate spatial scan statistics such as the circu-
lar scan (Kulldorff et al., 2003, 2004; Costa and Assunção, 2005), elliptic scan
(Kulldorff et al., 2006) and irregularly-shaped scan statistics (Duczmal et al.,
2006; Costa et al., 2012), and it is available at http://www.satscan.org/.
The circular cluster models are shown in Figure 2 (a).

The second data set comprises irregular cluster models (Duczmal et al.,
2006) and it uses the same geographical region, underlying population and
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Figure 1: Underlying population in the Northeastern U.S. data set.

number of cases as in the circular cluster models. We use seven different clus-
ter models, containing between 7 and 78 counties, as shown in Figures 2 (b)
and 2 (c). Some of the irregular shapes are based on landscape features (Con-
necticut river, Hudson river, Lake Ontario Coast, among others), while others
are based on political boundaries (Pennsylvania Internal/External Border,
Pennsylvania Sub-Internal/Internal/External Border).

For both circular and irregular cluster models, 600 cases are randomly
distributed across the region in proportion to the population, except within
the cluster areas that have a higher relative risk. Relative risks were chosen
so that the null hypothesis would be rejected with probability 0.999 when
using a standard test for the difference between two binomial proportions
and assuming that the cluster location is known. The relative risks in the
cluster models are shown in Table 1. Table 1 also shows the number of
counties in each cluster model, the populations inside the cluster models and
the percentage of the population in the cluster models compared to the total
population in the study region. For each one of the circular and irregular
cluster models, a total of 10,000 simulated replicas were available. 9,999
Monte Carlo runs for each test statistic were used to estimate the associated
p-value.

4.2. The spatial scan parameters

We evaluated the circular and elliptical scan statistics with maximum
cluster sizes of 2%, 5%, 10%, 15%, 25% and 50% of the total population.
SaTScan also stores significant secondary clusters “as if there were no other
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(a) (b)

(c)

Figure 2: Circular cluster models in rural, mixed and urban regions (a). Irregular cluster
models A, B, C, D and E (b). Irregular cluster models J and K (c). Cluster K includes
the elements of cluster J
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clusters in the data set” (Kulldorff, 2010). The user can set to what ex-
tent overlapping clusters are reported in the results files. Six different op-
tions are available: (1) secondary clusters do not overlap with a previously
reported cluster; (2) secondary clusters are not centered in a previously re-
ported cluster and do not contain the center of a previously reported cluster;
(3) secondary clusters are not centered in a previously reported cluster; (4)
secondary clusters do not contain the center of a previously reported cluster;
(5) secondary clusters are not centered in a previously reported cluster that
contains the center of a previously reported cluster; and (6) no restrictions.
See Kulldorff (2010) for further details. We include analyses of secondary
clusters using options (1) and (6), along with no consideration of secondary
clusters. We do so because these are the common options explored in the
literature. We include the areas of the secondary cluster into the primary
cluster as if only one cluster were detected. The overlapping areas were in-
cluded into the primary cluster only one time. We choose an α-level of 0.05
(5%) to report statistically significant secondary clusters.

For the elliptic scan statistics we apply SaTScan’s default values for the
shape parameter and for the angle parameter, as previously described. We
choose the non-compactness penalty parameter as a = 0 because a strong
penalty (a = 1) generates clusters which are very similar to the circular
clusters, and a medium penalty (a = 1

2
) does not improve cluster detection

performances, as reported in Costa et al. (2012).

4.3. Averaged performance measures

Different from Costa et al. (2012), that calculates the sensitivity, speci-
ficity and misclassification for all simulated cluster, despite their significance,
we first test whether each detected cluster is significant. If the detected clus-
ter is not significant then the detected population is set as zero, otherwise the
detected population is not changed. The performance measures are calcu-
lated for both cases, whether there is a significant cluster or not; but, in the
latter case, the detected population is zero. We report the mean values over
the 10,000 replicas for each cluster model, for each value of the maximum
cluster size, and for the circular, elliptic and double scan statistics.

5. Results

To provide a visual comparison of the results, the maximum values of
power, sensitivity and PPV for each cluster model, i.e., for each row, are
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written in boldface (see Tables 2, 3 and 4). For misclassification, the mini-
mum values are also in boldface (see Table 5). For each row, the cells whose
values are no greater than of 0.01 (1%) distance from the boldface value are
shaded in dark gray. The cells whose values are within 0.01 and 0.02 (1%
- 2%) distance from the boldface value, are shaded in light gray. By doing
so, it becomes easier to compare values which are closer to the best result.
The results for the double scan statistic are replicated for both circular and
elliptic scan statistics.

Table 2 shows the power results. In general, best values of power (in
boldface) are achieved for any maximum cluster size except for 15%. Com-
pared to Table 1, those best power results are achieved using values for the
maximum cluster size parameter greater than the true cluster size (see ‘Pop-
ulation size in percentage (%)’ in Table 1). Therefore, there is no evidence
that values of the maximum cluster size parameter close to the real cluster
size would improve power performance. This fact is also evident from the
patterns of the dark gray cells. In general, choosing a maximum cluster size
parameter of 50% generates power estimates very close to the best results.

A comparison of power for circular and elliptic scan statistics is shown in
Figure 3. The horizontal axis represents all values of power for the circular
scan statistic, whereas the vertical axis represents values of power for the
elliptic scan statistic. The straight line represents the situation where the
power of the elliptic and circular scan statistics is the same. Values above the
straight line represent results where the elliptic scan statistic performs better
than the circular scan statistic. Values below the straight line represents
results where the circular scan statistic performs better than the elliptic scan
statistic. It can be seen that the results for the irregular cluster models are
above the straight lines, whereas circular results for the mixed, rural and
urban cluster models are below the straight line, and close to one for both
horizontal and vertical axes. Figure 3 shows that, for irregular cluster models,
best results are achieved using the elliptic scan statistic, as expected. For
circular cluster models, the circular scan statistic achieves better results, as
expected. For the circular cluster models, power results are higher and close
to one for both circular and elliptic scan statistics, although the circular scan
statistic results are slightly better.

Sensitivity results are presented in Table 3. The results are very similar
to the power results. It can be seen that, choosing a value of 50% for the
maximum cluster size parameter, the results are very close to the best results.
This is because of the detected cluster size. Having chosen a maximum
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Figure 3: Comparison of the statistical power results for circular and elliptic scan statistics.
Mixed, Rural and Urban represent the circular cluster models. The straight line represents
the situation where the power of the elliptic and circular scan statistics is the same. In
general, circular clusters are better detected using the circular scan statistic (results below
the straight line), whereas irregular clusters are better detected using the elliptic scan
statistic (results above the straight line).

cluster size of 50%, small values of PPV (see Table 4) and large values of
misclassification (see Table 5) are generated. This means that the detected
clusters are large. The chance that a large detected cluster contains elements
of the true unknown cluster is high. Since the sensitivity statistic does not
account for the detected cluster size, as long as the detected cluster size is
large, values of sensitivity will be large too.

Figure 4 shows maximum values of sensitivity for both circular and elliptic
scan statistics, accounting for secondary clusters in the cluster analysis. On
the horizontal axis the circular and irregular cluster models are shown. It can
be seen that there is a subtle difference between the results of the circular and
elliptic scan statistics. As previously mentioned, the circular scan statistic
provides better results for truly circular clusters. The same applies to the
elliptic scan statistics if the true clusters are irregular. However, results show
that if secondary clusters are included in the cluster analysis, the sensitivity
results are improved, on average. These results are very intuitive: the more
areas included in the detected cluster, the greater the chances that the areas
of the true cluster are in the detected cluster. Nevertheless, accounting for
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Figure 4: Best sensitivity results for circular and elliptic scan statistics, for different cluster
models and accounting for the analysis of: primary cluster only; secondary clusters with no
overlap with the primary cluster; and secondary clusters with no restrictions (full overlap)

secondary clusters with full overlap may generate detected clusters which are
larger than the maximum cluster size parameter, i.e., if the maximum cluster
size parameter is set as 50%, the detected cluster may be greater than this
value.

PPV results are shown in Table 4. For the circular cluster models, the
circular scan statistic most frequently achieves best results for maximum
cluster size values smaller or equal to 5%. It can be argued that, for these
scenarios, small values for the maximum cluster size parameter allow the
method to detect small pieces of the true cluster. However, this pattern is
not observed for the irregular cluster models nor for the elliptic scan statistic.
Remarkably, in general, the double scan statistic achieves best PPV results.
This is because, on average, the double scan statistic detects pieces of the
true cluster better than either the circular scan statistic or the elliptic scan
statistic. It is worth noting that for the irregular cluster models A and C
the double scan statistic did not achieve good results. This is because these
cluster models are very narrow and the counties of the clusters are usually

14



Figure 5: Best PPV results for circular and elliptic scan statistics, for different cluster
models and accounting for the analysis of: primary cluster only; secondary clusters with
no overlap with the primary cluster; and secondary clusters with no restrictions (full
overlap)

not double connected.
Figure 5 shows best PPV results, accounting for the analysis of secondary

clusters. Different from the sensitivity results, PPV values are not improved
if secondary clusters are included into the cluster analysis. If the cluster
analysis includes only secondary clusters with no overlap with the primary
cluster, then there is a slight difference between the results. However, when
primary and secondary clusters with full overlap are evaluated, then PPV
results are even worse. These results suggest that if only one true cluster
is present, secondary clusters, on average, will not detect pieces of the true
cluster. Among all evaluated cluster models, the PPV statistic where slightly
improved for the circular urban cluster models with size of 16 counties, and
using the circular scan statistic.

Finally, misclassification results are shown in Table 5. Two distinct pat-
terns are visualized. First, minimum values of misclassification are achieved
for maximum cluster sizes of 2% and 5%. This is because of the misclassifica-
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tion statistic which accounts for both the true cluster populations which were
not detected, and the detected populations which do not belong to the true
cluster. Recall that PPV results show that for small values of the maximum
cluster size, circular and elliptic scan statistics do not perform well. There-
fore, for large values of the maximum cluster size, the sum of the mistakenly
detected or mistakenly missing populations is much larger than the sum of
the mistakenly detected or mistakenly missing populations using smaller val-
ues of the maximum cluster size. Second, the double scan statistic achieves
best results, or closer to the minimum values for both circular and irregular
cluster models, on average.

Figure 6 shows that the more secondary clusters are included into the
cluster analysis, the worse is the misclassification performance. This is be-
cause of the increase of the population in the detected cluster, if secondary
clusters are included. Therefore, the misclassification statistics increases due
to the increase of the detected populations which do not belong to the true
cluster.

6. Discussion and Conclusion

The analysis of clusters through simulation studies is widely explored in
the literature. In general, these simulation studies evaluate only primary
clusters and generally apply a fixed value for the maximum cluster size. In
this work, we compare the performance of different spatial scan statistics,
using different values for the maximum cluster size, and considering different
options for the analysis of secondary clusters. Results do suggest that per-
formance measures are sensitive to the maximum cluster size chosen by the
user.

Based on the simulation study, major findings are: first, there is evidence
that the estimated power is, on average, insensitive to the maximum clus-
ter parameter, although smaller values do compromise the estimated power.
Therefore, empirical results suggest a maximum cluster size of 50%; Second,
best sensitivity results are also achieve choosing a maximum cluster size
of 50%, and evaluating significant secondary clusters with no restrictions
regarding to overlapping. This is particularly tricky because the sensitiv-
ity statistic is generally improved when the detected cluster size increases.
Therefore, as mentioned previously, the greater the detected cluster size the
higher the chance to contain a piece of the true unknown cluster; Third,
the PPV statistic measures the performance of the scan statistic to detect
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Figure 6: Best misclassification results for circular and elliptic scan statistics, for different
cluster models and accounting for the analysis of: primary cluster only; secondary clusters
with no overlap with the primary cluster; and secondary clusters with no restrictions (full
overlap)
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the totality of the real cluster, and the results suggest that a small cluster
size parameter must be chosen, such as 5% or, alternatively, the double scan
statistic may be applied. In this case, secondary clusters may not be included
into the cluster analysis. Finally, the misclassification results also suggest the
double scan statistic with no analysis of secondary clusters.

Overall, there is evidence that the analysis of secondary clusters do not
improve cluster detection performances, on average. Furthermore, there is
no evidence that for truly irregular clusters the analysis of secondary clusters
improves clustering performance.

We also apply different performance measures. In general, there is not
a consensus in the literature about a unique performance measure. There-
fore, the most appropriate performance measure is related to the goal of the
cluster analysis, that is, before running the cluster analysis the user might
be conscious about what he or she wants to find. Alternatively, it can be
argued that the results provided in this work can be used to draw guidelines
for practical use of scan statistics. That is, given a study region, the user may
concern first about the power statistic. In this case, the circular scan statistic
or the elliptical scan statistic can be applied with a maximum cluster size of
50%. If the detected cluster is significant and small then the cluster analysis
is complete. Otherwise, if the detected cluster is significant and large then
the user may be interested in detecting a small group of areas more likely to
belong to the true cluster. To do so, the user may re-run the scan statistic
or the elliptical scan statistic with a maximum cluster size of 5%, or run the
double scan statistic.

Regarding the elliptic scan statistic, it has been shown in the literature
that the elliptic scan statistic performs better for irregular cluster models
than the circular scan statistic. Likewise, the circular scan statistics performs
better for circular cluster models than scan statistics with irregular shape.
In practice, the true cluster is unknown and the user has to decide whether
using circular or elliptic scan statistics, or both.

It is worth noting that presented results are conditioned to the simulated
data set that was used. Therefore, this work has limitations but also provides
guidelines for simulation studies using different data sets. Simulation studies
do give support to cluster analysis with real data sets. The underlying pop-
ulation and the total number of cases in real data sets can be used to design
the simulation study and then provide empirical evidence about the optimal
choice for the scan statistic parameters and shapes.

In conclusion, we believe that the presented simulation study provides
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insights for epidemiologists to properly select among the circular, elliptic and
double scan statistics, as well as to choose the parameter of the maximum
size in order to improve cluster detection performance.
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Table 1: Simulated cluster models.
Type Region Number of Population size Population size in Relative risk

counties percentage (%)
Circular clusters Mixed 1 710,196 2.40% 2.85

4 1,108,440 3.75% 2.4
16 1,684,327 5.70% 2.1

Rural 1 2,675 0.01% 192.89
4 132,343 0.45% 7.05
16 360,275 1.22% 3.90

Urban 1 786,178 2.66% 2.73
4 2,953,077 10.00% 1.81
16 7,627,173 25.82% 1.53

Irregular clusters A 14 1,057,407 3.58% 2.32
B 16 1,672,387 5.66% 1.97
C 7 709,519 2.40% 2.71
D 15 1,119,235 3.79% 2.29
E 21 1,483,995 5.02% 2.06
J 55 3,198,049 10.83% 1.63
k 78 7,775,129 26.32% 1.34
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Table 2: Statistical power for circular, elliptic and double scan statistics. Boldface values
indicate results with highest power for each row. The cells whose values are no greater
than of 0.01 (1%) distance from the boldface value are shaded in dark gray. The cells
whose values are within 0.01 and 0.02 (1% – 2%) distance from the boldface value, are
shaded in light gray.

Cluster model Maximum cluster size Double
2% 5% 10% 15% 25% 50%

Circular scan statistic

Circular clusters #counties
Mixed 1 0.0364 0.9404 0.9392 0.9386 0.9383 0.9357 0.9154

4 0.2205 0.9429 0.9445 0.9394 0.9389 0.9375 0.9293
16 0.4730 0.9340 0.9539 0.9531 0.9518 0.9492 0.9166

Rural 1 0.9981 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984
4 0.9849 0.9777 0.9745 0.9744 0.9736 0.9725 0.9694
16 0.9802 0.9778 0.9746 0.9730 0.9717 0.9695 0.9197

Urban 1 0.0340 0.9189 0.9219 0.9204 0.9210 0.9226 0.9004
4 0.0454 0.5680 0.8820 0.8889 0.8976 0.8947 0.8487
16 0.0569 0.1872 0.5271 0.7017 0.9004 0.9266 0.8120

Irregularly shaped
clusters
A 14 0.6856 0.8636 0.8688 0.8682 0.8676 0.8530 0.8146
B 16 0.5878 0.7583 0.7828 0.7893 0.7859 0.7878 0.8002
C 7 0.8641 0.8879 0.8908 0.8863 0.8808 0.8808 0.7868
D 15 0.7627 0.8418 0.8646 0.8671 0.8639 0.8605 0.8922
E 21 0.6713 0.7620 0.8082 0.8146 0.8139 0.8068 0.7770
J 55 0.2271 0.3621 0.4901 0.5642 0.6428 0.6875 0.5940
K 78 0.2186 0.3731 0.5204 0.6205 0.7172 0.7978 0.5259

Elliptic scan statistic

Circular clusters #counties
Mixed 1 0.0314 0.9275 0.9258 0.9232 0.9191 0.9164 0.9154

4 0.2463 0.9239 0.9282 0.9258 0.9228 0.9181 0.9293
16 0.5558 0.9199 0.9394 0.9378 0.9355 0.9337 0.9166

Rural 1 0.9981 0.9922 0.9923 0.9923 0.9923 0.9923 0.9984
4 0.9768 0.9686 0.9656 0.9647 0.9637 0.9623 0.9694
16 0.9780 0.9717 0.9677 0.9664 0.9644 0.9626 0.9197

Urban 1 0.0319 0.8737 0.8687 0.8666 0.8649 0.8647 0.9004
4 0.0267 0.3937 0.8067 0.8416 0.8557 0.8572 0.8487
16 0.0375 0.1864 0.5305 0.7265 0.8706 0.9136 0.8120

Irregularly shaped
clusters
A 14 0.7333 0.9080 0.9098 0.9065 0.9026 0.8998 0.8146
B 16 0.5996 0.8179 0.8430 0.8414 0.8392 0.8360 0.8002
C 7 0.8780 0.9214 0.9174 0.9136 0.9106 0.9087 0.7868
D 15 0.8447 0.9097 0.9127 0.9125 0.9080 0.9024 0.8922
E 21 0.7690 0.8599 0.8707 0.8720 0.8647 0.8583 0.7770
J 55 0.2736 0.4491 0.6169 0.6776 0.7108 0.7260 0.5940
K 78 0.2700 0.4616 0.6259 0.7151 0.7908 0.8242 0.525924



Table 3: Sensitivity results for circular, elliptic and double scan statistics. Boldface values
indicate results with the highest sensitivity for each row. The cells whose values are no
greater than of 0.01 (1%) distance from the boldface value are shaded in dark gray. The
cells whose values are within 0.01 and 0.02 (1% – 2%) distance from the boldface value,
are shaded in light gray.

Cluster model Maximum cluster size double
2% 5% 10% 15% 25% 50%

Circular scan statistic

Circular clusters #counties
Mixed 1 0.0000 0.9369 0.9363 0.9358 0.9358 0.9335 0.9115

4 0.0364 0.8836 0.8890 0.8847 0.8847 0.8835 0.8657
16 0.0885 0.7151 0.8513 0.8526 0.8523 0.8504 0.7103

Rural 1 0.9980 0.9980 0.9980 0.9980 0.9980 0.9980 0.9979
4 0.9506 0.9435 0.9409 0.9405 0.9398 0.9392 0.9019
16 0.8477 0.8484 0.8466 0.8453 0.8445 0.8430 0.5656

Urban 1 0.0000 0.9147 0.9183 0.9166 0.9174 0.9194 0.8963
4 0.0019 0.2391 0.8202 0.8281 0.8433 0.8424 0.7473
16 0.0019 0.0247 0.1638 0.3280 0.7570 0.8353 0.5582

Irregularly shaped
clusters
A 14 0.2299 0.5810 0.6013 0.6074 0.6118 0.6044 0.5018
B 16 0.1282 0.3122 0.4338 0.4602 0.4678 0.4783 0.4274
C 7 0.5427 0.6384 0.6630 0.6617 0.6594 0.6610 0.4781
D 15 0.2333 0.4607 0.5802 0.5904 0.5941 0.5947 0.5487
E 21 0.1511 0.3168 0.4842 0.5088 0.5196 0.5206 0.3291
J 55 0.0114 0.0539 0.1282 0.2102 0.3166 0.4194 0.1907
K 78 0.0088 0.0417 0.1110 0.2008 0.3411 0.5605 0.1168

Elliptic scan statistic

Circular clusters #counties
Mixed 1 0.0000 0.9242 0.9230 0.9209 0.9173 0.9147 0.9115

4 0.0511 0.8526 0.8662 0.8645 0.8621 0.8581 0.8657
16 0.1285 0.6850 0.8021 0.8051 0.8052 0.8041 0.7103

Rural 1 0.9980 0.9921 0.9922 0.9922 0.9922 0.9922 0.9979
4 0.9236 0.9165 0.9135 0.9130 0.9122 0.9112 0.9019
16 0.7712 0.7736 0.7713 0.7709 0.7693 0.7681 0.5656

Urban 1 0.0000 0.8672 0.8624 0.8608 0.8599 0.8601 0.8963
4 0.0005 0.1608 0.7047 0.7749 0.7997 0.8046 0.7473
16 0.0013 0.0279 0.1711 0.3558 0.6851 0.8043 0.5582

Irregularly shaped
clusters
A 14 0.2948 0.7504 0.7615 0.7602 0.7580 0.7565 0.5018
B 16 0.1423 0.4731 0.5733 0.5786 0.5830 0.5854 0.4274
C 7 0.6021 0.7689 0.7710 0.7688 0.7674 0.7663 0.4781
D 15 0.3129 0.6167 0.6519 0.6566 0.6562 0.6543 0.5487
E 21 0.2031 0.4238 0.4943 0.5119 0.5174 0.5172 0.3291
J 55 0.0165 0.0717 0.1917 0.2771 0.3572 0.4113 0.1907
K 78 0.0130 0.0569 0.1492 0.2533 0.4386 0.5576 0.116825



Table 4: PPV results for circular, elliptic and double scan statistics. Boldface values
indicate results with the highest PPV values for each row. The cells whose values are no
greater than of 0.01 (1%) distance from the boldface value are shaded in dark gray. The
cells whose values are within 0.01 and 0.02 (1% – 2%) distance from the boldface value,
are shaded in light gray.

Cluster model Maximum cluster size double
2% 5% 10% 15% 25% 50%

Circular scan statistic

Circular clusters #counties
Mixed 1 0.0000 0.8250 0.8131 0.8112 0.8097 0.8072 0.8167

4 0.1472 0.8613 0.8323 0.8240 0.8211 0.8183 0.8514
16 0.4113 0.9092 0.8791 0.8701 0.8650 0.8606 0.8904

Rural 1 0.9979 0.9979 0.9979 0.9979 0.9979 0.9979 0.9978
4 0.9030 0.8939 0.8911 0.8908 0.8902 0.8891 0.9110
16 0.9035 0.8882 0.8831 0.8812 0.8794 0.8773 0.8343

Urban 1 0.0000 0.8882 0.8738 0.8689 0.8660 0.8638 0.8356
4 0.0200 0.5555 0.8648 0.8426 0.8153 0.7955 0.6911
16 0.0367 0.1709 0.5058 0.6693 0.8698 0.8302 0.7853

Irregularly shaped
clusters
A 14 0.6183 0.7171 0.6800 0.6666 0.6570 0.6413 0.6401
B 16 0.5057 0.6309 0.5811 0.5588 0.5423 0.5319 0.6717
C 7 0.7812 0.7130 0.6835 0.6746 0.6668 0.6639 0.6912
D 15 0.6116 0.5884 0.5402 0.5290 0.5186 0.5124 0.7466
E 21 0.5292 0.5213 0.4834 0.4681 0.4554 0.4460 0.6257
J 55 0.1895 0.3079 0.3927 0.4267 0.4473 0.4288 0.5041
K 78 0.1951 0.3342 0.4438 0.5179 0.5669 0.5608 0.4669

Elliptic scan statistic

Circular clusters #counties
Mixed 1 0.0000 0.7343 0.7080 0.7021 0.6975 0.6942 0.8167

4 0.1642 0.7957 0.7402 0.7310 0.7256 0.7205 0.8514
16 0.4834 0.8677 0.8024 0.7869 0.7792 0.7753 0.8904

Rural 1 0.9974 0.9915 0.9915 0.9915 0.9915 0.9915 0.9978
4 0.8025 0.7931 0.7899 0.7892 0.7885 0.7878 0.9110
16 0.8523 0.8267 0.8209 0.8191 0.8172 0.8153 0.8343

Urban 1 0.0000 0.7670 0.7227 0.7123 0.7064 0.7013 0.8356
4 0.0045 0.3651 0.7595 0.7161 0.6774 0.6595 0.6911
16 0.0207 0.1681 0.5051 0.6915 0.8064 0.7567 0.7853

Irregularly shaped
clusters
A 14 0.6417 0.7708 0.7320 0.7226 0.7162 0.7120 0.6401
B 16 0.4998 0.6812 0.6372 0.6187 0.6067 0.5973 0.6717
C 7 0.8074 0.7456 0.7195 0.7127 0.7085 0.7058 0.6912
D 15 0.7151 0.7059 0.6550 0.6450 0.6362 0.6303 0.7466
E 21 0.6287 0.6287 0.5677 0.5501 0.5358 0.5287 0.6257
J 55 0.2246 0.3780 0.5060 0.5283 0.5110 0.4928 0.5041
K 78 0.2372 0.4100 0.5393 0.6033 0.6438 0.6288 0.466926



Table 5: Misclassification results for circular, elliptic and double scan statistics. Boldface
values indicate results with the lowest misclassification results for each line. The cells
whose values are no greater than of 0.01 (1%) distance from the boldface value are shaded
in dark gray. The cells whose values are within 0.01 and 0.02 (1% – 2%) distance from
the boldface value, are shaded in light gray.

Cluster model Maximum cluster size double
2% 5% 10% 15% 25% 50%

Circular scan statistic

Circular clusters #counties
Mixed 1 2.4289 0.5599 0.6702 0.7053 0.7506 0.8022 0.5368

4 3.7019 0.7770 1.0026 1.0746 1.1492 1.2344 0.8292
16 5.2755 1.7200 1.3589 1.4831 1.5883 1.6919 1.7669

Rural 1 0.0002 0.0002 0.0010 0.0010 0.0028 0.0075 0.0027
4 0.0787 0.0918 0.0988 0.1069 0.1137 0.1263 0.0882
16 0.2941 0.3396 0.3670 0.3793 0.3934 0.4088 0.6444

Urban 1 2.6845 0.3406 0.4881 0.5529 0.6447 0.8362 0.6665
4 9.9982 7.6259 1.9200 2.2687 2.9055 3.7327 4.6231
16 25.7861 25.2098 21.6991 17.6919 6.8770 7.4745 11.8296

Irregularly shaped
clusters
A 14 2.8384 2.0149 2.3562 2.5974 2.8893 3.1146 2.5378
B 16 5.0516 4.3054 4.3728 4.8073 5.2454 6.0270 3.9263
C 7 1.2356 1.4143 1.6948 1.8063 1.9339 2.1132 1.4734
D 15 3.1286 2.8992 3.3469 3.6402 3.9819 4.2657 2.2701
E 21 4.4774 4.2709 4.6417 5.0490 5.5493 5.9663 3.9152
J 55 18.7500 18.0507 17.1200 16.3677 16.1608 17.9380 15.9780
K 78 26.1171 25.3493 23.9545 22.1722 20.0801 19.3198 23.6712

Elliptic scan statistic

Circular clusters #counties
Mixed 1 2.4339 0.8567 1.1157 1.2020 1.2778 1.3927 0.5368

4 3.6653 1.0995 1.5740 1.7211 1.8414 1.9682 0.8292
16 5.0752 2.0126 2.0930 2.3146 2.4931 2.6290 1.7669

Rural 1 0.0005 0.0005 0.0016 0.0016 0.0016 0.0016 0.0027
4 0.1687 0.1889 0.2068 0.2126 0.2237 0.2316 0.0882
16 0.4554 0.5351 0.5696 0.5926 0.6071 0.6349 0.6444

Urban 1 2.6938 0.7773 1.1508 1.3390 1.5452 1.9047 0.6665
4 10.0147 8.4792 3.3235 3.7587 4.8421 5.8690 4.6231
16 25.8035 25.1526 21.5832 17.0508 9.5175 10.3266 11.8296

Irregularly shaped
clusters
A 14 2.6667 1.4296 1.7813 1.9205 2.0547 2.2120 2.5378
B 16 5.0086 3.5139 3.6970 4.0224 4.3894 4.8844 3.9263
C 7 1.0717 1.1269 1.3600 1.4490 1.5286 1.6318 1.4734
D 15 2.8136 2.2086 2.6801 2.8942 3.0989 3.2981 2.2701
E 21 4.2279 3.7589 4.3066 4.6906 5.0834 5.3575 3.9152
J 55 18.6789 17.8018 16.0660 15.2659 15.4534 16.5002 15.9780
K 78 26.0271 25.0076 23.0448 20.9364 17.5590 17.1875 23.671227


