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The Beta Truncated Pareto Distribution
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The Pareto distribution is widely used to modelling a diverse range of phenomena. Many
transformations and generalization of the Pareto law distribution have been proposed in
order to get more flexible models. In fact, these generalizations are very common in literature.
Recently a new family of distribution, called Beta Generated distribution, was proposed. This
family presents itself as a very flexible family, capable of modelling symmetric and skewed
data. In this work we apply the beta transformation to the truncated Pareto distribution.
We analyse some of its properties and apply it to real data. For estimation we the minimum
distance method. This new distribution, called Beta truncated Pareto, proved to be a very
flexible.
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1. Introduction

In 1896, Vilfredo Pareto noticed that the income distribution "follows a power law
behavior", i.e., the pdf of income has the form f(x) ∝ x−α−1 [see 1]. Later, it was
found that the power law distribution is present in a diverse range of phenomena,
as for instance, the sizes of earthquakes [2], solar flares [3][also, see 4], the frequency
of use of words in any human language [5], the frequency of occurrence of personal
names in most cultures [6], the numbers of papers that scientists write [7], the
number of citations received by papers [8] and hydrological data [9]. Also, some
recent works about the power law distribution (also known as Pareto distribution)
corroborate with the hypothesis made by Pareto [see 10–12].
Many extensions of the Pareto distribution were proposed in literature. For ex-

ample, the transformed Pareto distribution [13, p. 193], the truncated Pareto dis-
tribution (TPD) [14, 15], the double Pareto distribution [16], the double Pareto-
lognormal distribution [17] and the Generalized Pareto distribution (GPD) [see
18, 19]. The TPD and GPD are ones of the most important extensions of the
Pareto distribution.
In [15], the Pareto and truncated Pareto distributions were applied to astro-

physics data and they concluded that, in general, the truncated Pareto distribution
performs better than the usual Pareto distribution. If the difference between the
maximum and minimum values of the sample is high, then there is no real difference
between the two distributions.
All of those generalizations mentioned above were not exclusive for the Pareto

distribution. It also has been proposed some modifications for the Weibull distri-
bution [20, 21], the gamma distribution [22], the exponencial distribution [23] and
many others. These efforts to modify distributions are attempt to get more flexible
models. When a new family of distributions has simpler families as special cases,
[24] suggests, in order to define which model is appropriate, to adjust the gener-
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alized family of distributions. Then, a statistical analysis of the parameters can
indicate properly whether one of the simpler families is better fitted to the data or
if the new proposed distribution provides a more appropriate solution.
Recently, a new family of distributions, generated from the Beta distribution has

been proposed by [25]. In that proposal the Beta distribution was used to generalize
the Normal family. Later, [26] proposed, in a general fashion, the Beta Generated
family. The Pareto family was generalized through the same methodology by [27].
Many properties of the Beta Generated family are shown in [28]. It is becoming
evident that the Beta Generated family is a very flexible family of distributions.
Motivated by the works of [14, 15] and [27], we propose the Beta truncated Pareto

distribution. We explore some of its characteristics and we compare its performance
to the Beta Pareto distribution and other distributions.
This paper is organized as follows. Section 2 introduces the Beta truncated Pareto

distribution and presents some of its properties. Section 3 provides inferential re-
sults. Section 4 shows an application of BTPD to a real data and Section 5 presents
concluding remarks.

2. The Beta Generated Family and the Beta truncated Pareto

Let Z and Y be two random variables, where Z ∼ Beta(α, β) and Y has cdf FY .
Define X = F−1Y (Z). Then, X has probability density function (pdf) given by

fX(x|α, β,p) =
1

B(α, β)
fY (x) [FY (x)]

α−1 [1− FY (x)]β−1 (1)

and cumulative distribution function (cdf) given by

FX(x|α, β,p) =
BFY (x)(α, β)

B(α, β)
, (2)

where B(a, b) is the beta function, p is a parameter vector associated with FY , and
Bx(a, b) =

∫ x
0 u

a−1(1− u)b−1du, 0 < x < 1, is the incomplete beta function.
In this case, FX represents a beta generated distribution with parent distribu-

tion FY . Note that if α and β are integers then we have the distribution of order
statistics. Furthermore, if α = 1 and β = 1, the Equation 1 becomes the parent
density.
Now make Y ∼ TP (θ, λ, k), where TP means truncated Pareto distribution.

Then Y has cdf given by

FY (y) =
1− ( θy )

k

1− ( θλ)
k
, 0 < θ < λ, k > 0 and θ < y,< λ (3)

and pdf given by

fY (y) =
kθky−(k+1)

1− ( θλ)
k
, 0 < θ < λ and θ < y < λ. (4)

Define a new variable X as X = F−1Y (Z) = θ
{
1− Z

[
1− (θ/λ)k

]}−1/k
. Then,

by Equation 1, X has pdf given by
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fX(x) =
1

B(α, β)

kθkx−(k+1)

1− ( θλ)
k

[
1− ( θx)

k

1− ( θλ)
k

]α−1 [
1−

1− ( θx)
k

1− ( θλ)
k

]β−1
, θ < x < λ. (5)

In this case, it can be said that X follows a Beta truncated Pareto distribu-
tion (BTPD) with parameters α, β, θ, λ and k, hereafter defined as X ∼
BTP (α, β, θ, λ, k). As shown in Figure 1, the α and β parameters are related to
the shape of the distribution whereas the parameter k is related to the scale of the
distribution, but also has effect on the shape.
The cdf of X is obtained directly from Equation 2, shown as follows,

FX(x) =
BFY (x)(α, β)

B(α, β)

= I(x)(θ,λ) ×
1

B(α, β)

∞∑
i=0

(1− β)i
i!(α+ i)

[
1−

(
θ
x

)k
1−

(
θ
λ

)k
]α+i

+ I(x)[λ,∞)

where (x)n = x(x+ 1)(x+ 2) . . . (x+ n− 1).
Now consider the Pareto distribution. The pdf and cdf are given, respectively, by

h(y) =
k

θ

(
θ

y

)k+1

and H(y) = 1−
(
θ

y

)k
, θ < y <∞.

Let c(k, θ, λ) := c(k) =
[
1−

(
θ
λ

)k]−1. Then we can rewrite (3) and (4) as

fy(y) = c(k)h(y) and FY (y) = c(k)H(y), θ < y < λ.

By Equation 1, the BTPD density is

fX(x) =
1

B(α, β)
fY (x) [FY (x)]

α−1 [1− FY (x)]β−1

=
1

B(α, β)
cα(k)h(x) [H(x)]α−1 [1− c(k)H(x)]β−1 .

As the term |c(k)H(x)| is strictly less than 1 in the interval θ < x < λ, then

fX(x) =

∞∑
i=0

(−1)i
(
β−1
i

)
B(α, β)

[c(k)]α+ih(x) [H(x)]α−1+i .
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But H(x) can be rewritten as H(x) =
∑∞

j=0(−1)j
(
α+i−1
j

) (
θ
x

)kj . Therefrom
fX(x) =

∞∑
i=0

∞∑
j=0

(−1)i+j
(
β−1
i

)(
α+i−1
j

)
B(α, β)

[c(k)]α+i
k

θ

(
θ

x

)k(j+1)+1

=
∞∑
i=0

∞∑
j=0

A(i, j)c(k(j + 1))
k(j + 1)

θ

(
θ

x

)k(j+1)+1

where

A(i, j) =
(−1)i+j

(
β−1
i

)(
α+i−1
j

)
(j + 1)B(α, β)

[c(k)]α+i

c(k(j + 1))
.

It shows that the Beta truncated Pareto distribution is an infinite linear combina-
tion of truncated Pareto distribution with parameters k(j + 1), θ and λ and with
sum coefficients A(i, j).

2.1. Special Cases

Three different families of distributions are identified as special cases from the
BTPD. These families are already proposed in the literature and they are shown
next.

(1) If α = 1 and β = 1 then the density shown in Equation 5 becomes the
density of a truncated Pareto random variable.

(2) The Beta Pareto family proposed by [27] is also a special case. In this case
its density is given by

f(x) =
k

θ ·B(α, β)

[
1−

(
θ

x

)k]α−1( θ
x

)k·β+1

, where x > θ, (α, β, θ, k) > 0.

(6)
This density represents a limiting density of BTPD when λ→∞.

(3) If α = 1, β = 1 and λ → ∞ then the Pareto family is a limiting family of
BTPD family.

2.2. Limit Behavior

The behavior of BTPD when x→ θ and x→ λ changes according to parameters α
and β. The limits of BTPD in both cases are presented next.

Proposition 2.1:

lim
x→θ

fX(x) =


∞ , 0 < α < 1
βk

θ
[
1−( θλ)

k
] , α = 1

0 , α > 1

(7)
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Figure 1. Density function for θ = 1, λ = 100 and some values de α, β and k.

lim
x→λ

fX(x) =


∞ , 0 < β < 1
αkθk

λk+1

[
1−( θλ)

k
] , β = 1

0 , β > 1

(8)

Proof : Obtained from the pdf presented in Equation 5 �

It is worth noting in Equation 7 that if x→ θ then the parameter α defines the
limit behavior of the density. If x → λ then the parameter β controls the limit
behavior, as shown in Equation 8.
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2.3. Moment Generating function of BTPD

In this section the Moment Generating function for the BTPD is presented. We
will make use of the following result.

Lemma 2.2: The power serie
∑∞

i=0
(r/k)

i

i! ui
[
1−

(
θ
λ

)k]i, is uniformly convergent
in the interval [0, 1].

Proof : The radius of convergence, l, of a power serie,
∑
anx

n, is given by
l−1 = limi→∞ sup i

√
ai. In this case,

l−1 = lim
i→∞

sup
i

√√√√(r/k)i
i!

[
1−

(
θ

λ

)k]i

=

[
1−

(
θ

λ

)k]
lim
i→∞

sup
i

√
(r/k)i
i!

But limi→∞ sup
i

√
(r/k)

i

i! is the radius of convergence of the well known power

serie
∑∞

i=0(−1)i
(
r/k
i

)
ui = (1 − u)r/k. Thus limi→∞ sup

i

√
(r/k)

i

i! = 1. Thereof

l =
[
1−

(
θ
λ

)k]−1. So, since l > 1, the closed interval [0, 1] ⊂ (−l, l). Therefore
the serie is uniformly convergent in the interval [0, 1]. �

The moments of BTPD are presented in the following proposition.

Proposition 2.3: The moments of the BTPD are given by

E[Xr] =
θr

B(α, β)

∞∑
i=0

(r/k)i
i!

[
1−

(
θ

λ

)k]i
B(α+ i, β) (9)

Proof : : Using the transformation u = FY (x), it can be shown that

E[Xr] =

∫ λ

θ

1

B(α, β)

[
1−

(
θ
x

)k
1−

(
θ
λ

)k
]α−1 [

1−
1−

(
θ
x

)k
1−

(
θ
λ

)k
]β−1

kθk

xk+1−r

1−
(
θ
λ

)k dx
=

θr

B(α, β)

∫ 1

0
uα−1 (1− u)β−1

{
1− u

[
1−

(
θ

λ

)k]}−r/k
du

=
θr

B(α, β)

∫ 1

0
uα−1 (1− u)β−1

∞∑
i=0

(r/k)i
i!

ui

[
1−

(
θ

λ

)k]i
du

=
θr

B(α, β)

∞∑
i=0

(r/k)i
i!

[
1−

(
θ

λ

)k]i
B(α+ i, β)

�

Note that
∫ λ
θ x

rf(x)dx ≤
∫ λ
θ λ

rf(x)dx ≤ λr. So all the moments of the BTPD
are finite.
Considering the above result we have the following.
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Lemma 2.4: The moment generating function of BTPD is

M(t) =
1

B(α, β)

∞∑
r=0

∞∑
j=0

(tθ)r

r!

(r/k)j
j!

[
1−

(
θ

λ

)k]j
B(α+ j, β)

Proof : Since
∑∞

r=0
tr

r!x
rf(x) converges and each term is integrable for all t close to

0, then we can rewrite the moment generating function as M(t) =
∑∞

r=0
tr

r!E[Xr].
By replacing E [Xr] by the right side of Equation 9 the desired result is obtained.
�

2.4. Mean Deviations

Consider the two following mean deviation:

i) Mean Deviation from the mean: D(µ) = E[|X − E(X)|].
ii) Mean Deviation from the median: D(M) = E[|X−M |], where M is the median.

In general, the mean deviation from the mean is used for symmetric distributions
while the mean deviation from the median is used for skewed distributions. For the
BTPD density we have the following property.

Proposition 2.5: The mean deviation from the mean and the mean deviation
from the median for the Beta truncated Pareto density are given, respectively, by

i) D(µ) = 2µF (µ)− 2 θ
B(α,β)

∑∞
i=0

(1/k)
i

i!

[
1−

(
θ
λ

)k]i
BFY (E[X])(α+ i, β).

ii) D(M) = µ− 2 θ
B(α,β)

∑∞
i=0

(1/k)
i

i!

[
1−

(
θ
λ

)k]i
BFY (M)(α+ i, β).

Proof : Consider that

D(µ) =

∫ λ

θ
|x− µ|f(x)dx

= 2

∫ µ

θ
(µ− x)f(x)dx+

∫ λ

θ
(x− µ)f(x)dx

= 2µF (µ)− 2

∫ µ

θ
xf(x)dx,

and, in a similar way,

D(M) = µ− 2

∫ M

θ
xf(x)dx.

Using the transformation u = FY (x) and Lemma 2.2, then

∫ c

θ
xf(x)dx =

θ

B(α, β)

∫ FY (c)

0
uα−1 (1− u)β−1

∞∑
i=0

(1/k)i
i!

ui

[
1−

(
θ

λ

)k]i
du

=
θ

B(α, β)

∞∑
i=0

(1/k)i
i!

[
1−

(
θ

λ

)k]i ∫ FY (c)

0
uα+i−1 (1− u)β−1 du

=
θ

B(α, β)

∞∑
i=0

(1/k)i
i!

[
1−

(
θ

λ

)k]i
BFY (c)(α+ i, β) (10)
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Assuming that c = µ and c =M , the desired results are obtained. �

2.5. Lorenz’s Curve

The Lorenz’s curve was proposed by [29] to study the distribution of income and
wealth within the population. The Lorenz’s curve was used to describe the propor-
tion of population risk that falls below the p-th quantile of risk in [30].
The Lorenz’s curve is defined as,

L(p) =
1

E[X]

∫ F−1
X (p)

0
tf(t)dt, 0 ≤ p ≤ 1 (11)

In the BTPD case we have the following.

Lemma 2.6: The Lorenz’s curve for the BTPD is given by

L(p) =
θ

E[X]B(α, β)

∞∑
i=0

(1/k)i
i!

[
1−

(
θ

λ

)k]i
BFY (F−1

X (p))(α+ i, β) (12)

Proof : Result obtained by making c = F−1X (p) in Equation 10. �

2.6. Entropies

In this section we present two entropy measures: the Renyi entropy and the Shan-
non’s entropy.

2.6.1. Rényi’s entropy

Consider the Rényi’s entropy, defined as

IR(ε, f) =
1

1− ε
log

(∫
R

f ε(x)dx

)
. (13)

then, for the BTPD, we have the following proposition

Proposition 2.7 Rényi’s entropy: The Rényi’s entropy for the BTPD is given by

IR(ε, f) = log

(
θ

k

)
− ε

1− ε
logB(α, β) +

+
1

1− ε
log


∞∑
i=0

(
(ε−1)(k+1)

k

)
i

i!

[
1−

(
θ

λ

)k]i+1−ε

B(α1, β1)

 (14)

where α1 = ε(α− 1) + i+ 1 and β1 = ε(β − 1) + 1.
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Proof : Applying the transformation u = FY (x), it can be shown that

∫
R

f ε(x)xdx =

∫ λ

θ

1

Bε(α, β)

[
1−

(
θ
x

)k
1−

(
θ
λ

)k
]ε(α−1) [

1−
1−

(
θ
x

)k
1−

(
θ
λ

)k
]ε(β−1) [

kθk

xk+1

1−
(
θ
λ

)k
]ε
dx

=

∫ 1

0

1

Bε(α, β)
uε(α−1) (1− u)ε(β−1)

[
kθk

xk+1

1−
(
θ
λ

)k
]ε−1

du

=
kε−1θ1−ε

Bε(α, β)
[
1−

(
θ
λ

)k]ε−1 ×
×
∫ 1

0
uε(α−1) (1− u)ε(β−1)

{
1− u

[
1−

(
θ

λ

)k]}(k+1)(ε−1)/k

du

=
kε−1θ1−ε

Bε(α, β)
[
1−

(
θ
λ

)k]ε−1 ×
×
∞∑
i=0

(−1)i
( (ε−1)(k+1)

k

i

)[
1−

(
θ

λ

)k]i
B(α1, β1)

then applying Equation 13, Equation 14 is obtained. Note that we made use of the
Lemma 2.2 here. �

2.6.2. Shannon’s entropy

The Shannon’s entropy [see 28, and references therein] is defined as

ISh (f) = −
∫
R

f(x) log f(x)dx.

Was proved by [28] that for the Beta generated family the Shannon’s entropy is
given by

ISh(f) = logB(α, β)− (α− 1) [ψ(α)− ψ(α+ β)]− (β − 1) [ψ(β)− ψ(α+ β)]−

−E
[
log fY

(
F−1Y (Z)

)]
. (15)

We present the following result for BTPD.

Lemma 2.8: For the BTPD and following Equation 15, it can be shown that

E
[
log fY

(
F−1Y (Y )

)]
= log

k

θ
− log

[
1− (θ/λ)k

]
−
∞∑
i=1

[
1− (θ/λ)k

]i
iB(α, β)

B(α+ i, β).

Proof :

E
[
log fY

(
F−1Y (Y )

)]
= log k + k log θ − log

[
1− (θ/λ)k

]
− (k + 1) log θ +

+
k + 1

k
E
[
log
{
1− Y

[
1− (θ/λ)k

]}]
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and

E
[
log
{
1− Y

[
1− (θ/λ)k

]}]
=

∫ 1

0
log
{
1− Y

[
1− (θ/λ)k

]} 1

B(α, β)
yα−1(1− y)β−1dy

=

∫ 1

0

∞∑
i=1

yi
[
1− (θ/λ)k

]i
i

1

B(α, β)
yα−1(1− y)β−1dy

= −
∞∑
i=1

[
1− (θ/λ)k

]i
iB(α, β)

B(α+ i, β)

�

2.7. Hazard Rate Function

It was showed in Figure 1 some of different forms that the density of BTPD is
capable to assume. It is not different for the Hazard Rate function as it is shown
here.

Lemma 2.9: For BTPD, the Hazard Rate function has the form

h(x) =
f(x)

1− F (x)

=

[
1−( θx)

k

1−( θλ)
k

]α−1 [
1− 1−( θx)

k

1−( θλ)
k

]β−1
kθkx−k−1

1−( θλ)
k

B(α, β)−BFY (x)(α, β)
(16)

The limit of the Hazard Rate function is given by

lim
x→θ

h(x) =


∞ , 0 < α < 1
βk

θ
[
1−( θλ)

k
] , α = 1

0 , α > 1

(17)

lim
x→λ

h(x) = ∞ (18)

Some forms of Hazard Rate function of BTPD are shown in Figure 2.

3. Inference Issues About the BTPD

The maximum likelihood method for point estimation is the most used method
in literature. Alternatively, estimates for the parameters can be found using the
method of moments. In this case, estimates are obtained by solving the following
non-linear equations

1

n

n∑
i=1

Xr =
θr

B(α, β)

∞∑
i=0

(r/k)i
i!

[
1−

(
θ

λ

)k]i
B(α+ i, β), r = 1, . . . , 5 (19)
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Figure 2. Hazard Hate function for θ = 0.01, λ = 30 and some values de α, β and k.

A modified method of moments was proposed by [28]. Nevertheless, the method
of moments is not a very reliable approach and it is usually used as initial estimative
for the maximum likelihood approach. The main advantage of maximum likelihood
estimators is that, under some regularity conditions, they have desirable properties.
However, these conditions are not satisfied here.
The empirical cdf is generally used in the literature to test whether a parametric

distribution fits the data. But also, there are some works in literature which use a
empirical distribution function in order to estimate the parameters. Because the idea



12

behind the method is minimizing the distance between the empirical cdf and the
theoritical cdf, this method was called estimation by the minimum distance method
(MDM) [see 31, and references therein]. Also, [32] shows the consistency and found
the asymptotic distribution of the estimator of minimum distance (MDE). Through
a simulation study of many different MDM statistics, [33] analysed the perform of
MDE for generalized Pareto distribution and concluded that MDE had a very good
performance. Thus, we also apply this method to estimate the parameters of the
BTPD.
The BTPD has fX(x) > 0, only if θ < x < λ. Estimates for θ and λ are: θ̂ = X(1)

and λ̂ = X(n), where X(1) is the first order statistic and X(n) is the last one.
The estimates for α, β and k are chosen so that the maximum distance between
the empirical cdf and the BTPD cdf (called by Kolmogorov distance in [33]) is
minimized, i.e.,

(α̂, β̂, k̂) = arg min
α,β,k

max
1≤i≤n

∣∣∣Fn(xi)− FX (xi ∣∣∣θ̂, λ̂)∣∣∣ (20)

where Fn(x) = 1
n

∑n
i=1 I(Xi≤x).

Proposition 3.1: The estimators θ̂ = X(1) and λ̂ = X(n) are consistent.

Proof : For any ε > 0 we have

P
[∣∣∣θ̂ − θ∣∣∣ < ε

]
= P

[
θ − ε < X(1) < θ + ε

]
= FX(1)

(θ + ε)− FX(1)
(θ − ε)

= [1− FX(θ − ε)]n − [1− FX(θ + ε)]n

Since the support of fX is in the interval (θ, λ), we have that FX(θ − ε) = 0 and
FX(θ + ε) > 0. Thus limn→∞ P

[∣∣∣θ̂ − θ∣∣∣ < ε
]
= 1.

In an analogous way we have,

lim
n→∞

P
[∣∣∣λ̂− λ∣∣∣ < ε

]
= lim

n→∞
{[FX(λ+ ε)]n − [FX(λ− ε)]n}

= 1

�

4. Applications

In order to illustrate the use and the performance of the BTPD proposal, we ap-
plied the proposed distribution to real data and we compared the results with the
following distributions:

(i) The truncated Pareto distribution (TPD).
The density of this distribution is presented in Equation 4.

(ii) The Generalized Pareto distribution (GPD).
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The GP distribution has the following pdf

f(x) =
1

a

(
1− kx

a

)(1−k)/k
0 < x if k ≤ 0

0 < x < a/k if k > 0

(iii) The Weibull distribution with three parameters (TPWD).
The density of this distribution is given by

f(x) = γb−γ(x− a)−γ−1 exp
{
−
(
x− a
b

)γ}
, x > a γ, b > 0.

(iv) The Beta Pareto distribution (BPD). The density of this distribution is
presented in Equation 6.

In order to compare the models we will use the K-S statistic given by

KS (Fest) = max
1≤i≤n

|Fn(xi)− Fest (xi)| , (21)

where Fest is the model’s c.d.f using the estimated parameters. We will also provide
the absolute mean distance statistic given by

D (Fest) =
1

n

n∑
i=1

|Fn(xi)− Fest (xi)| (22)

4.1. Castelo River

The data consist of 684 maximum values of monthly flood rates of the Castelo
River, in Brazil, and it is available online (hidroweb.ana.gov.br). Table 1 shows
summary statistics of the data. The Figure 3 shows the histogram and box plot of
the data. It is worth noticing the strong asymmetry of the distribution of the data
to the right. This behavior is quite common in hydrology data.

Table 1. Descriptive statistics of maximum monthly flood rate of Castelo River.

Min. 1st Qu. Median Mean 3rd Qu. Max. Std. Dev.
0.740 4.602 6.555 7.704 9.678 33.4 4.6178

The Table 2 and Figure 4 present the results obtained by the MDE. The K-S and
D statistics present very high values for TPD and GPD, suggesting a quite poor
adjust to the data. Despite this improvement, the KS-statistic remained very high.
The K-S test rejected both, TPD and GPD distributions, as appropriate models.
For the TPWD, the D and K-S statistics are better than for the TPD and GPD.
The K-S test now does not reject the TPWD as an appropriate model at 5% of
significance.
For the Beta Pareto distribution and BTPD the K-S test does not reject either

models, even at 10% of significance. The Figure 4 shows the empirical cdf and fitted
cdf for all models.
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Figure 3. Castelo River flood: (a) Histogram (b) Box-Plot.

Table 2. KS Estimative of parameters and KS and D statistics.

TPD GPD TPWD BPD BTPD
k̂ = 3

1012 ; â = 12.0612; â = 0.74; α̂ = 15.79; α̂ = 9.8228;

Estimatives k̂ = 0.3397; b̂ = 7.4360; β̂ = 64.14; β̂ = 3.9035;

γ̂ = 1.8658; k̂ = 0.1; k̂ = 0.347;
KS 0.3005 0.1586 0.0399 0.0276 0.0182
D 0.1438 0.0995 0.0207 0.0116 0.0082

5. Conclusion

In this work a new family of distribution called Beta truncated Pareto distribution
was introduced and some of its properties were analysed. The BTPD proved to be
a very flexible model with many different forms for its density (as it can be seen in
Figure 1). Also, the BTPD includes some other families that were already proposed
in literature. For the parameters estimation we used the minimum distance method.
In order to evaluate the BTPD performance we applied the BTPD to real data.

The TPD and GPD a very poor fit. The TPWD had a good fit was not rejected
by the KS test. The BTPD and BPD have the best fit to the data with a small
advantage for BTPD. They both followed the empirical distribution very closely
when the MDE were applied.
Due to the fact that the BTPD has two more paramaters than the TPWD,

one could be favorable to TPWD arguing that the difference between the adjust
obtained by the TPWD and the adjust obtained by the BTPD is small. That is
not so clear. Despite the KS test does not reject either, we have a sample size of
684 which makes the cost of the two additional parameters not so high. Beyond
that the K-S statistic for the BTPD is less than a half of the KS statistic for the
TPWD.
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