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Introdução

A indústria de jogos virtuais tem crescido nos últimos anos. Em um estudo realizado

pelo Programa infoDev fundado pelo Departamento para Desenvolvimento Internacional

(DFID) do Reino Unido, Lehdonvirta e Ernkvist (2011) mostram que moedas virtuais on-

line e de trabalho digital têm oferecido oportunidades reais de renda para trabalhadores

menos quali�cados dos países em desenvolvimento. Eles descobriram que mais de 100.000

pessoas em países como China e Índia ganham a vida através jogos on-line e sites. Eles

estimaram que o mercado para esses serviços de jogos de aluguel valia cerca de US$ 3

bilhões em 2009. Segundo os autores, World of Warcraft (WoW), publicado pela Blizzard

Entertainment, é atualmente o principal jogo on-line com mais de 12 milhões de jogadores

ativos em 2010. World of Warcraft é um jogo on-line massivo, popularmente conhecido

como MMO (Massively Multiplayer On-line). Um MMO é um tipo de jogo que permite

que milhares de usuários criem personagens em um mundo virtual dinâmico e joguem

simultaneamente através Internet.

Com a popularidade dos jogos virtuais, surgiu o desa�o de manter milhares de person-

agens interagindo no mesmo mundo virtual de modo a que a qualidade da experiência do

usuário não seja comprometida. De acordo com Santos (2010), nos servidores destes jogos

ocorre grande tráfego de uma massa heterogênea de pequenas tarefas em um curto período

de tempo. Isso, juntamente com outras características, gera um desa�o na manutenção

do bom desempenho desses jogos. O estudo do desempenho destes sistemas cria opor-

tunidades de melhoria no jogo a �m de contribuir para a qualidade da experiência do

usuário e reduzir os custos de infra-estrutura. Realizar este tipo de estudo com os servi-

dores do jogo é invasivo, tem um grande impacto sobre a operação e requer o empenho

e colaboração dos mantenedores do sistema. Uma abordagem comumente utilizada para

estudar estes sistemas complexos, sem a utilização do sistema real, é a simulação. Para

implementar um simulador capaz de reproduzir o comportamento da carga gerada pelos

personagens de um jogo on-line no servidor é necessário implementar de um modelo ca-

paz de descrever o movimento dos personagens no jogo. A simulação deve representar de

forma con�ável a movimentação de personagens no jogo usando um modelo adequado.

Neste caso, os parâmetros do modelo devem ser estimados usando dados do jogo.

Devido à di�culdade em coletar dados de jogos on-line, o que pode desestabilizar o

sistema, pouco tem sido estudado sobre a movimentação dos personagens de jogos on-line.
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Existem alguns estudos que analisam outras características destes jogos, como tráfego de

usuários, consumo de banda, tamanho do pacotes e tempo de chegada de pacotes (Chen et

al, 2006 ; . Svoboda et al, 2007 ; . Fang e Wenli , 2006). La e Michiardi (2008) realizaram

uma análise dos dados de mobilidade dos personagens no jogo Second Life , um mundo

virtual on-line, utilizando redes espaciais e temporais eles caracterizam a distribuição

estatística de oportunidades de contato entre os usuários como uma lei de potência trun-

cada e encontram semelhanças entre a distribuição do tempo de contato em ambientes

virtuais e aqueles obtidos em experimentos reais. Santos (2010) comparara a mobilidade

dos personagens do WoW com Second Life e com o modelo de mobilidade aleatória. Ele

identi�ca algumas características que tornam estes ambientes semelhantes uns aos outros

e ao comportamento humano no mundo real. Tan et al (2005) apresentou um modelo de

mobilidade de carga de trabalho , Networked Game Mobility Model (NGMM), para a

representar mobilidade em um jogo Atirador em Primeira Pessoa (First Person Shoter -

FPS), que não é um MMO. O modelo é uma extensão do Caminho de Ponto Aleatório

(Random Way Point - RWP) que consiste em dois estados: �xo e móvel. Quando o des-

tino é atingido, ele faz uma pausa por um período de tempo antes de selecionar um novo

destino. Eles modelam destino, velocidade, direção e tempo de pausa. O modelo NGMM

é aplicável apenas a jogos FPS. Miller e Crowcroft (2009) analisaram algumas medidas

dos movimentos de caracteres em campos de batalha de WoW. Eles constataram que a

maioria dos movimentos dos personagens entre os objetivos é individual e não coletivo.

Neste trabalho, propomos um modelo estatístico para descrever a mobilidade dos per-

sonagens no mapa de um jogo MMO, assim como as estimativas para este modelo. Apre-

sentamos também um simulador para a mobilidade. Analisamos os dados geográ�cos de

posição dos personagens no mapa do jogo WoW coletados por Santos (2010). No WoW,

os jogadores assumem o papel de personagens em um ambiente �ctício povoado por duas

facções inimigas: Aliança e Horda. O mapa do jogo é dividido em várias regiões geogra�-

camente delimitadas, chamadas zonas. O principal objetivo do jogo é avançar através dos

níveis. Os personagens começam no nível um e aumentam o seu nível matando monstros

e realizando missões. Algumas missões exigem viajar para outras zonas, logo, ocorrem

um grande número de transições entre zonas com missões comuns. Cada zona tem mon-

stros de uma determinada faixa de níveis, zonas geogra�camente próximas, normalmente,

têm monstros de níveis consecutivos. Em geral, os personagens �cam em uma zona com

monstros de níveis próximos ao seu, até atingir um certo nível que lhes permite avançar

para outra zona em que os monstros têm um nível mais avançado e assim por diante. No

decorrer do jogo, os personagens precisarão de suprimentos, tais como armaduras, armas,

comida, entre outros. Estes suprimentos podem ser comprados em zonas em que existem

centros comerciais. Assim, os personagens tendem a mover-se para as zona com centro

comercial mais próxima regularmente. Portanto, acreditamos que a posição atual de um
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personagem no mapa do jogo carrega informação preditiva sobre a sua posição futura. Em

outras palavras, podemos prever probabilisticamente a próxima zona para a qual ele irá

se mover, com base em sua posição atual. Por esta razão, propomos um modelo estocás-

tico para a mobilidade no jogo. Uma vez que o tempo de permanência em uma região do

mapa é uma variável aleatória contínua, modelamos a mobilidade como um processo de

salto. Nós de�nimos os estados do processo como regiões do mapa (zonas) e modelamos

a movimentação entre as regiões de mapa como transições entre os estados do processo.

Portanto, o personagem irá se mover no mapa de jogo de acordo com as transições do

modelo. Utilizando a metodologia proposta, obtivemos um modelo para descrever o movi-

mento dos personagens no jogo. Propusemos duas diferentes abordagens para modelar

o tempo de permanência em cada estado do processo: paramétrica e não paramétrica.

Aplicamos o Teste de Kolmogorov-Smirnov para mostrar que os dados simulados através

da metodologia proposta eram consistentes com os dados observados.

Este artigo está organizado da seguinte forma. A Seção 2 apresenta uma breve de-

scrição do dados. Na Seção 3 apresentamos a metodologia de um processo de salto, o

método utilizado para determinar os estados do processo e a metodologia do estimador

de densidade kernel. A descrição do simulador, o algoritmo de simulação e um exemplo de

conjunto de dados obtidos no �nal da simulação são apresentados na Seção 4. As Seções

5 e 6 apresentam os resultados e as conclusões, respectivamente.
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Abstract

This paper addresses a methodology to model the mobility of the characters in Mas-
sively Multiplayer On-line (MMO) Games. Despite the importance of the virtual
games industry, most studies in this area are super�cial and merely descriptives.
We propose to model the mobility of characters in the map of an MMO game as
a jump process using two approaches to model the times spent in the states of the
process: Parametric and Non-Parametric. Furthermore, a simulator for the mobility
is presented. We analyze geographic position data of the characters in the map of
the game World of Warcraft (WoW) and compare the observed and simulated data.

Keywords: Jump process, on-line games, MMO, character mobility.

1. Introduction1

The virtual games industry has grow in recent years. In a study by the World2

Bank Group's infoDev program, funded by the United Kingdom's Department for3

International Development (DFID), Lehdonvirta and Ernkvist (2011) claim that vir-4

tual on-line currencies and digital work now provide real income opportunities for5

poor and unskilled workers in developing countries. They found that more than6

100,000 people in countries such as China and India earn a living through on-line7

games and websites. They estimated the market for such gaming-for-hire services8

to be worth around $3 billion in 2009. World of Warcraft (WoW), published by9

Email addresses: izabellaa@est.mest.ufmg.br (Izabella A. R. A. Santos),
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Blizzard Entertainment, is currently the leading global on-line game with over 1210

million active player accounts as of 2010 (Lehdonvirta and Ernkvist (2011)). The11

World of Warcraft is a massive on-line game, popularly known as MMO (Massively12

Multiplayer On-line). An MMO is a type of game that allows thousands of users13

to create characters in a dynamic virtual world and play simultaneously through14

Internet.15

With the popularity of virtual games came the challenge of maintaining thousands16

of characters; interacting in the same virtual world so that the quality of the user17

experience is not compromised. According to Santos (2010), the servers of these18

games experience large mass tra�c of heterogeneous small tasks in a short period of19

time. This, together with other characteristics, generates a challenge in maintaining20

good performance of those games. The study of the performance of those systems21

creates opportunities for improvement in the game in order to contribute to the22

quality of the user experience and reduces infrastructure costs. Performing this type23

of study using the game servers is invasive and has a great impact on the operation.24

It requires the commitment and cooperation of the maintainers of the system. One25

commonly used approach to study such complex systems, without the use of the real26

system, is simulation. To implement a simulator able to reproduce the behavior of27

the load which the characters in a game on-line generate on a server is necessary to28

implement a model capable of describing the movement of characters in the game.29

The simulation must represent reliably the movement of characters in the game using30

a proper model. In this case the parameters of the model must be estimated using31

data from the game.32

According Santos (2010), using data simulated from virtual worlds may be pos-33

sible to study some real world events as the spread of diseases or computer virus,34

once there are similarities between the mobilities in these two worlds and, it is easier35

extracting the position data of users in virtual worlds than collect data from people36

in the real world. Furthermore, may be also possible to study, for example, network37

performance delay tolerant (DTNs), mesh networks (mesh) and problems in wireless38

networks related to mobility (eg, Bluetooth and WiFi).39

Due to the expense of providing on-line game data, which may crash the system,40

little studied about the movement of the characters in on-line games has been done.41

There are some studies analyzing other features of these games, such as player tra�c,42

band consumption, packet size, time of packet arrival and number of users (Chen43

et al., 2006; Svoboda et al., 2007; Fang and Wenli, 2006). La and Michiardi (2008)44

performed an analysis of mobility data of the characters in Second Life, an on-line45

virtual world, using metric spatial, and temporal, and complex networks. They46

characterized the statistical distribution of contact opportunities among users as a47
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power-law with cuto� distribution and found similarities between the contact-time48

distributions in virtual environments and those obtained in real-world experiments.49

Santos (2010) compared the mobility of the characters from WoW with Second Life50

and with random mobility model. He identi�ed some features which make these51

environments similar to each other and similar to human behavior in the real world.52

Tan et al. (2005) presented a workload mobility model, Networked Game Mobility53

Model (NGMM), for synthesizing mobility in a First-Person-Shooter (FPS) game54

which is not an MMO. Their model is an extension of Random Way Point (RWP)55

mobility which consists of two states: stationary and moving. When the destination56

is reached, it pauses for a period of time before selecting a new destination. They57

modeled destination, speed, direction and pause time. The NGMM model is only58

applicable to FPS games. Miller and Crowcroft (2009) analyzed a few measures59

of character movements in WoW battlegrounds. They found that the majority of60

character movements between objectives is individual, not collective.61

In this paper, we propose a statistical model to describe the mobility of characters62

in the map of an MMO game, and the estimates for this model. We also present a63

simulator for the mobility. We analyze the geographic position data of the characters64

in the WoW game map collected by Santos (2010). In the game, the players assume65

the roles of characters in a �ctional setting populated by two enemy factions: Alliance66

and Horde. The game map is divided into geographically delimited regions, called67

zones. The main goal of the game is to advance through the levels. The characters68

start at level one and increase their level by killing monsters and performing quests.69

Some quests require travel to other zones. Therefore a large number of transitions70

between zones with common quests will occur. Each zone has monsters of a certain71

range of levels, and geographically proximate zones usually have monsters of consec-72

utive levels. Usually, the characters will stay in a zone with monsters having levels73

close to theirs until attaining a certain level that allows them to advance to another74

zone in which the monsters also have a more advanced level and so on. Through the75

game, the characters will need supplies such as armor, weapons, food, among others.76

Supplies can be bought in zones in which there are merchant centers. Therefore the77

characters tend to move to the closest merchant center zones, regularly. We believe78

that the current position of a character in the game map carries predictive infor-79

mation about his future position. In other words, we can predict probabilistically80

the next zone that he will go to, based in his current position. For this reason, we81

propose a stochastic model for mobility in the game. Since the time spent in a map82

region is a continuous random variable, we model the time as a jump process. We83

de�ne the states of the process as map regions (zones) and we model the movements84

between map regions as transitions between the states of the process. Then, the85
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character will move in the game map according to the transition model.86

Using the proposed methodology, we found a model to describe the movement87

of characters in the game. We propose two di�erent approaches to model the time88

spent in each state of the process: parametric and non-parametric. We applied the89

Kolmogorov-Smirnov test to show that the data simulated through the proposed90

methodology are consistent with the observed data.91

This paper is organized as follows. Section 2 shows a brief description of the92

data. In Section 3 we present the methodology of a jump process, the method93

used to determine the states of the process, and the methodology of the kernel94

density estimator. In Section 4 we give a description of the simulator, the simulation95

algorithm and an example of the data set obtained at the end of the simulation. The96

Sections 5 and 6 present the results and conclusions, respectively.97

2. The Data98

The data were collected from a Brazilian private server of the WoW game for 2499

hours, during a regular weekday. At each 0.3 consecutive seconds (approximately)100

the positions of the characters in the virtual Cartesian coordinate system and the101

time of the day were recorded. Posteriorly the times spent in each geographical102

position were computed. Therefore the data set was compound of four columns,103

the identi�er of the character, the geographical coordinates and the time that the104

character spent in each position.105

The WoW map consists of three continents: Eastern Kingdoms, Kalimdor and106

Northrend. In our study, we considered only the Eastern Kingdoms continent, which107

is the most popular region between the players. Currently, there are four expansions108

of the game. The server in which the data were collected, worked with the Burning109

Crusade expansion. In this version, the Eastern Kingdom continent is divided in 27110

zones. We obtained data from 22 of the 27 zones.111

Because of the great impact caused by the data acquisition, the server went o�-112

line some times. This is one of the reasons why is so di�cult to have the cooperation113

of the maintainers of those games for collect data. There was no records of the times114

when the server went o�-line or the time it stayed o�-line. When the server went on-115

line again the characters returned to the last position registered and the time while116

the server was o�-line was added to the time that the character spent in the position117

where he was when the server went o�-line. We observed a few values of times in118

the data set which were much higher than the most times. We believe that those119

times are the times when the server was o�-line. Therefore we found the quantile120

99% of the times and eliminated the times higher than it. Figures 1a and 1b shows121

the histograms of the times before and after the removal of the extreme times.122
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(a) Before. (b) After.

Figure 1: Histograms of the times before and after we remove the extreme values of
times.

The number of observations collected in the Eastern Kingdoms was 250,417, the123

maximum time observed was 83,710s and the 99% quantile was 129.36s. Table 1124

shows some descriptives statistics of the times spent in the map positions after the125

removal of the values higher than 129.36s. More details about the method of data126

collection and a descriptive analysis of the data can be found at Santos (2010).127

Table 1: Descriptives statistics of the times spent in the map positions - Times in
seconds.

N Min Q1 Median Mean Q3 Max
247911 1.02 1.58 2.67 6.352 5.36 129.3

In this paper we will use the following terminology:128

• Character: Avatar in the virtual world controlled by a player in the real world;129

• Zone: Region in the game map de�ned by the game publisher. These regions130

have borders like a state or country;131

• Session time: Time in which the character remained logged.132

3. Model133
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Given the current zone of the character, it is expected that the next zone is the134

closest merchant center or a zone with monsters of higher level or a zone related135

to its by quest. In all three cases, the zone change will occur after a certain time.136

When the character needs supplies it goes to a merchant center, buys what it needs,137

and returns to its previous zone or goes to another one. Eventually, it will need new138

supplies. When the character moves to a zone with higher level monsters, the next139

time when he will look for a zone with monsters of a higher level will occur after140

he reach a higher level, what will happen after a certain time. The quests also take141

time to be performed. If he moves to other zone because of a quest, he will spend142

some time performing the quest before moving again. Therefore we are working with143

a temporal process, the zone transitions occurs over time which led us to model144

the mobility of the characters as a stochastic process. In this case, the time is a145

continuous random variable, then we modeled it as a jump process. The following146

will be presented the methodology of a jump process.147

3.1. Jump Processes148

Let Γ be the set of all states of a dynamical system and x, y ∈ Γ the states of149

the system. A jump process is de�ned by a random variable X(t), t ∈ [0,∞), which150

starts in a state x0 at time t = 0 and stays in x0 until some time t1 when the process151

jumps to another state x1. The process stays in x1 until reaching some time t2 > t1152

in which it jumps to another state x2 and so forth. If the process is in a state y, it153

will make a transition to another state x according to r(y, x), such that r(y, y) = 0154

and
∑

x

r(y, x) = 1. Once the process is in x, the time spent in this state is a random155

variable which follows some distribution function Fx(t).156

Let τ be the random variable time spent in a state. Each state can have a di�erent157

distribution Fx(t). The time spent in a state y and the choice of the next state x are158

assumed independent random variables, so then159

P (τ ≤ t,X(τ) = x,X(0) = y) = r(y, x)Fy(t). (1)

The jump process is called Markov jump process if, and only if, Fy(t) is the160

Exponential distribution. In this case, the process presents the Markov property:161

Given times 0 < t1, t2 < ... < tn < s and t > 0,162

P (X(t+ s) = x|X(s) = y,X(tn) = xn, ..., X(t1) = x1) = P (X(t+ s) = x|X(s) = y). (2)

According to Equation 2, given a set of previous states at earlier times, the163

Markov jump process forgets all but the state at the most recent time. In this case,164
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Equation 1 gives the conditional transition probability that the jump process is in165

state x at time t given that it was in state y at any time, and not only in time 0.166

In other words, the jump process starts all over again at this most recent time. For167

more details about jump process see Ferrari and Galves (2000) and Feng (2004).168

3.2. Clustering169

The �rst step to implement the jump process model is to �nd the state space170

since it is unknown. The logical choice seemed de�ne it as the zone set of game map.171

Unfortunately the boundaries of the game zones were not available, then we used172

the clustering k-means method, see Hartigan and Wong (1979), with the clusters173

number equal to the number of map zones (22) and the clusters centers given by the174

geographic centers of map zones. The �gures 2a and 2b shows the Eastern Kingdoms175

map and the clustering result, respectively. Nearby points with the same color belong176

to the same cluster. Visually, the boundaries K-means boundaries were very close to177

the boundaries of the map zones.178

(a) Eastern Kingdoms map. (b) Clustering results.

Figure 2: Eastern Kingdoms map and clustering result over the map.

During the analysis, we observed that the time spent in one of the 23 states179

behaved di�erent from others. We found that this state was the Duskwood zone.180

In the middle of this zone, there is a region called Twilight Grove. Twilight Grove181

is home to a portal to a region outside the boundaries of the physical world of the182

game, in other words, this region does not exists in the game map, and we did not183
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have data in this area. Therefore we decided to treat Duskwood as two states, one184

at the east side of the Twilight Grove and other at the west side. The Figures 3a185

and 3b shows the map of Duskwood and the division of the data of this zone in two186

new states. Therefore the process went on to have 23 states. After clustering we187

obtained a total of 2667 observations of times spent in the map zones, in which the188

larger number of observations per zone was 760 and the minimum was 21.189

(a) Duskwood map. (b) Division of the Duskwood data.

Figure 3: Duskwood map and division of the Duskwood data in two states.

3.3. Estimation190

Let ny,x be the number of transitions from state y to x. Using the Equation 1 we
can write the likelihood of the process as:

L(y, x; t) =
∏

x∈Γ

∏

y∈Γ,
y 6=x

[r(y, x)Fy(t)]
ny,x ,

then taking the logarithm we have:

l(y, x; t) =
∑

x∈Γ

∑

y∈Γ,
y 6=x

ny,x [log(r(y, x)) + log(Fy(t))] ,

l(y, x; t) =
∑

x∈Γ

∑

y∈Γ,
y 6=x

ny,xlog(r(y, x)) +
∑

x∈Γ

∑

y∈Γ,
y 6=x

ny,xlog(Fy(t)). (3)

We can see that the estimation by maximum likelihood can be done in two inde-191

pendent parts, discrete, the �rst part of the Equation 3, and continues, the second192

part.193

For reasons of computational cost, and for being a reasonable choice, we consider194

that the process which governs the character movement changes its state by an195
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order one process, then the transition probabilities were estimated by the maximum196

likelihood estimator,197

r̂(y, x) =
ny,x
ny

,

where ny is the number of times when the process was in y, then knowing the198

distribution that governs the times spend in the states of the process, Equation 1199

can be estimated by:200

P̂ (τ ≤ t,X(τ) = x,X(0) = y) =
ny,x
ny

Fy(t),

3.3.1. Non Parametric Estimation201

If it is not possible to determine the distribution of the times spent in the states202

of the process, it can be estimated by kernel density estimation. Let Y1, Y2, ..., Yn203

be a sample of size n from a random variable with density f . The kernel density204

estimator of f at the point y is given by205

206

f̂(y) =
1

nh

n∑

i=1

K

(
y − Yi
h

)
, (4)

where the kernel K is a function satisfying
∫
K(y)dy = 1 and h is the smoothing pa-

rameter known as bandwidth. The function K is generally chosen to be a unimodal
probability density symmetric about zero, a common choice is the Gaussian kernel,

K(y) =
1√
2π
exp−y

2

2
.

There are many rules to choose the bandwidth, in this paper we will use the
method of cross-validation proposed by Hall (1983) Hall, P. (1983), the direct plug-
in approach proposed by Sheather and Jones (1991) and the method proposed by
Silverman (1986), known as rule of thumb. Basically, the three methods consist of
minimizing the asymptotic mean squared error (AMISE) of the kernel estimator for
the density. The di�erence between the methods is the form of estimating the part
of the AMISE which depends on the density function of the data which is unknown.
Therefore we can estimate the equation that characterizes the movement process in
the game map, by the nonparametric approach, using Equation 1 with the kernel
density estimator, the Gaussian kernel and integrating Equation 4 from 0 to t. Then
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we �nd:

P̂ (τ ≤ t,X(τ) = x,X(0) = y) =

(
ny,x
ny

)
1

ny

ny∑

i=1

[
Φ

(
t− Yi
hy

)
− 0.5

]
,

where hy is the bandwidth in the state y, ny is the number of times that the pro-207

cess was in y and Φ is the cumulative distribution function of the standard normal208

distribution.209

4. Simulator210

The simulator was implemented in R software language. Despite that R does211

not has a very good performance compared to others languages, the software is free212

and its language is easy to learn and to extend with functions written by the user.213

Also, most of the statistics methods used in this paper were already implemented in214

R. The simulator was built in way that the user must specify the number of char-215

acters, the minimal time spent in a state, the session time which can be di�erent216

for each character, and the method of density estimation for the time spend in the217

process:parametric or nonparametric. subprocess. If the user choses the parametric218

method, he needs to specify the distribution, Weibull, Gamma or Exponential. He219

can speci�es the distribution parameters or let them be estimated by the maximum220

likelihood estimator using a sample data. If he choses the nonparametric method,221

he needs to specify the rule to choose the bandwidth. The options are those imple-222

mented in the density function of the R software, Sheather and Jones (1991), Scott223

(1992), Silverman (1986), biased and unbiased cross-validation (Sheather (2004)).224

The simulation was executed in a notebook computer with a Intel core i5-3317U225

CPU @ 1.70GHz and 4 GB of RAM.226

227

Algorithm:228

1. Estimate the transitions matrix between states from the sample (also can be229

pre-speci�ed by the user).230

2. Estimate the probability of the character starts the game in each state.231

3. Generate a data set containing the initial states of the characters and the times232

they will remain in these states.233

4. Generate new observations for each character with the states to which they234

moved, and the new times spent in those states.235

5. Repeat the previous step until the sum of the times of each character is equal236

to the total time of game speci�ed.237
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At the end of the simulation, the user will obtain a data set with three columns:238

the identi�er of the character, the state in which he is and the time spent in this239

state. Figure 4 shows an example of the �rst ten observations of the data set obtained240

at the end of a simulation with �ve characters, 12 hours of game for each one and241

time simulated by the Weibull distribution.242

Figure 4: Example of the data set obtained at the end of the simulation.

The simulator code and help material can be downloaded from243

http://www.est.ufmg.br/ftp/denise/MOGMS/.244

5. Results and Discussion245

Once we had de�ned the states space of the process we need to estimate the distri-246

bution that governs the times spent in these states. Table 2 shows some descriptives247

measures of the times spent in each state.248

The most visited zone during the data collection was Elwynn Forest (14). It is249

the most popular zone between the characters of the Aliance faction, which is the250

most popular faction. Elwynn Forest has a large commercial center located at the251

Stormwind castle. In mean, it is the third zone where the characters spent more252

time. The �rst one is Stranglethorn Vale (19). Stranglethorn Vale also has a large253

commercial center located at the Booty Bay city. It is a neutral city, in other words,254

in this city the characters of the two enemy factions coexist peacefully. The zone255

less visited was Searing Gorge (21). For the Alliance characters, the entrance to this256

zone is locked until the key is obtained via a quest. Once not all characters complete257

the quests, this is probably the reason for the low number of visitations.258
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Table 2: Descriptives measures of the times (seconds) spent in the process states.

State Zone N Min Q1 Q2 Mean Q3 Max

1 Alterac Mountains 38 1.75 30.86 128.8 488 512 2949
2 The Hinterlands 33 1.02 8.05 98.2 410 263 5941
3 Arathi Highlands 29 4.38 18.98 161.1 336 401 2398
4 Badlands 23 2.58 21.26 134.1 355 554 1808
5 Blasted Lands 141 1.22 54.92 134.1 342 445 3567
6 Burning Steppes 50 3.03 64.62 407.9 998 1307 8967
7 Wetlands 37 5.91 39.13 235.0 653 935 4589
8 Deadwind Pass 53 1.14 36.69 117.9 203 230 1879
9 Dun Morogh 174 1.03 33.64 108.5 390 356 4727
10 Westfall 84 1.73 82.49 285.2 735 1083 6542
11 Duskwood1 190 1.02 29.02 127.3 383 314 5625
12 Western Plaguelands 27 3.25 37.57 146.2 333 300 1594
13 Eastern Plaguelands 26 3.78 87.62 219.1 511 474 3600
14 Elwynn Forest 760 1.08 111.90 352.4 783 923 8914
15 Tirisfal Glades 151 1.95 98.77 255.9 654 697 6242
16 Hillsbrad Foothills 82 1.08 31.13 113.9 514 397 8009
17 Swamp of Sorrows 156 1.12 35.42 95.0 239 223 2382
18 Loch Modan 33 1.09 8.09 61.4 361 254 4677
19 Stranglethorn Vale 261 1.14 133.90 414.7 1002 1263 11410
20 Redridge Mountains 78 1.44 71.30 241.9 510 759 4494
21 Searing Gorge 13 2.67 24.03 79.4 427 893 2288
22 Silverpine Forest 40 6.17 41.58 188.0 399 565 1871
23 Duskwood2 188 1.02 20.69 85.6 314 303 3106
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To evaluate the goodness of �t of the proposed models for the time spent in259

the states of the process we plotted the QQ-plots and computed the Kolmogorov-260

Smirnov test (Conover (1971) ). The Kolmogorov-Smirnov statistic quanti�es the261

distance between the distribution functions of two samples or one sample and a262

reference probability distribution. As the process has a high number of states, and263

all of them showed a similar behavior, we will present in this paper the QQ-plots of264

only a few selected states.265

The �gures from A.5 to A.7 shows the QQ-plots with the 95% con�dence limits266

for the �t of the parametric models in three of the 23 the states of the process and the267

Table 3 shows the Kolmogorov-Smirnov test results in all states. The null hypotheses268

of the test is that the sample times are drawn from the proposed distribution. In269

parentheses are the p-values of the tests. We will reject the null hypothesis, if the270

p-value of the test is less than 0.05.271

Table 3: Kolmogorv-Smirnov test for the parametric models.

State Zone Exponential Gamma Pareto Log-Normal Weibull

1 Alterac Mountains 0.323(0.000) 0.141(0.396) 0.974(0.000) 0.103(0.774) 0.101(0.799)
2 The Hinterlands 0.207(0.000) 0.091(0.026) 0.996(0.000) 0.053(0.466) 0.072(0.130)
3 Arathi Highlands 0.337(0.001) 0.147(0.433) 0.970(0.000) 0.101(0.858) 0.088(0.941)
4 Badlands 0.246(0.050) 0.129(0.673) 0.966(0.000) 0.144(0.540) 0.128(0.685)
5 Blasted Lands 0.327(0.011) 0.152(0.608) 0.957(0.000) 0.134(0.751) 0.132(0.768)
6 Burning Steppes 0.191(0.000) 0.104(0.093) 0.986(0.000) 0.056(0.761) 0.076(0.397)
7 Wetlands 0.298(0.000) 0.128(0.004) 0.988(0.000) 0.055(0.631) 0.083(0.148)
8 Deadwind Pass 0.288(0.000) 0.109(0.551) 0.980(0.000) 0.140(0.257) 0.102(0.642)
9 Dun Morogh 0.273(0.006) 0.114(0.676) 0.973(0.000) 0.095(0.864) 0.104(0.776)
10 Westfall 0.170(0.176) 0.080(0.944) 0.975(0.000) 0.105(0.726) 0.080(0.941)
11 Duskwood1 0.117(0.432) 0.109(0.520) 0.981(0.000) 0.193(0.033) 0.130(0.308)
12 Western Plaguelands 0.445(0.007) 0.219(0.495) 0.923(0.000) 0.176(0.753) 0.177(0.749)
13 Eastern Plaguelands 0.224(0.000) 0.091(0.467) 0.988(0.000) 0.066(0.836) 0.073(0.733)
14 Elwynn Forest 0.269(0.000) 0.134(0.002) 0.984(0.000) 0.098(0.051) 0.081(0.168)
15 Tirisfal Glades 0.148(0.058) 0.078(0.699) 0.987(0.000) 0.141(0.082) 0.095(0.456)
16 Hillsbrad Foothills 0.222(0.120) 0.150(0.530) 0.963(0.000) 0.098(0.934) 0.117(0.814)
17 Swamp of Sorrows 0.372(0.000) 0.151(0.403) 0.969(0.000) 0.101(0.855) 0.095(0.896)
18 Loch Modan 0.215(0.156) 0.129(0.729) 0.962(0.000) 0.110(0.881) 0.116(0.837)
19 Stranglethorn Vale 0.215(0.000) 0.135(0.007) 0.994(0.000) 0.062(0.586) 0.100(0.090)
20 blackridge Mountains 0.158(0.000) 0.057(0.014) 0.999(0.000) 0.054(0.025) 0.035(0.311)
21 Searing Gorge 0.187(0.000) 0.104(0.077) 0.993(0.000) 0.081(0.269) 0.072(0.420)
22 Silverpine Forest 0.339(0.000) 0.146(0.055) 0.988(0.000) 0.057(0.940) 0.074(0.729)
23 Duskwood2 0.281(0.000) 0.129(0.006) 0.994(0.000) 0.032(0.995) 0.087(0.145)

As we can see, the sample times did not �t to the Pareto distribution in any of272

the states. The exponential, gamma and log-normal distributions did not �tted to273
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all states. The Weibull distribution was the only one capable of �t to spent times274

in all states. Therefore we used the Weibull distribution in the simulations. The275

parameterization of the Weibull distribution used was the following:276

f(x) =
k

λ

(x
λ

)k−1
e−(x/λ)

k

, x ≥ 0,

where k > 0 and λ > 0 are the shape and scale parameters, respectively. To esti-277

mate the parameters, we used the maximum likelihood estimators. Di�erentiating278

the logarithm of the likelihood function with respect to k and λ, and subsequently279

eliminating λ, the following equation can be found:280

n∑

i=1

xki ln(xi)

n∑

i=1

xki

− 1

k
− 1

n

n∑

i=1

ln(xi) = 0. (5)

The MLE of k can be found by solving the Equation 5 using a numerical procedure281

as Newton-Raphson. Then the MLE of λ can be calculated by:282

λ̂ =

n∑

i=1

xki

n
.

Using the Weibull distribution, Equation 1 can be written as:283

P̂ (τ ≤ t,X(τ) = x,X(0) = y) =

(
ny,x
ny

)(
1− e−(t/λy)ky

)
,

where ky and λy are the Weibull parameters in the state y.284

Once the times did not follow the Exponential distribution, they do not present285

the Markov property. Therefore the conditional probability that the process will be286

in the state y at time t given the states at previous times can be dependent on all287

the past states, not just the most recent as in the Markov jump process. In this case,288

Equation 2 does not apply to the process.289

sTable 4 shows the values of the parameters in each state and the p-value of290

the Kolmogorov-Smirnov test for the hypothesis that the times follow the Weibull291

distribution with the parameters speci�ed in the table.292

Furthermore, we tried to �nd a relationship between the values of the parameters293

and some characteristics of the states, like level, existence of commercial center, size294
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Table 4: Parameters of the Weibull in the states process.

States Zones k lambda

1 Alterac Mountains 0.567 302
2 Arathi Highlands 0.497 181
3 Badlands 0.664 250
4 Blasted Lands 0.600 242
5 Burning Steppes 0.734 277
6 Deadwind Pass 0.594 664
7 Dun Morogh 0.603 434
8 Duskwood1 0.771 172
9 Duskwood2 0.628 261
10 Eastern Plaguelands 0.680 566
11 Elwynn Forest 0.593 235
12 Hillsbrad Foothills 0.680 252
13 Loch Modan 0.736 412
14 Redridge Mountains 0.724 628
15 Searing Gorge 0.702 508
16 Silverpine Forest 0.541 258
17 Stranglethorn Vale 0.722 188
18 Swamp of Sorrows 0.488 154
19 The Hinterlands 0.711 793
20 Tirisfal Glades 0.699 406
21 Western Plaguelands 0.517 230
22 Westfall 0.735 330
23 Wetlands 0.584 196
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of the region, among others. Unfortunately we could not �nd any relationship.295

The Figure A.8 shows the transition probability matrix between the 23 states of296

the process. The columns with major number of positive probabilities are 9, 14 and297

19, which are the larger merchant zones in Eastern Kingdom. In other words, there298

are a high number of displacements for these zones. Suppose a character is in Elwynn299

Forest, a merchant zone with level range from one to ten. The most likely zones for300

which he will advance are Dun Morog (level 1-10), Stranglethorn Vale (level 25-35)301

and Duskwood (level 20-25). Suppose he advances to Dun Morog, also a merchant302

zone with same level range. The most likely zones for advance are Elwynn Forest,303

Loch Modan (level 10-20) and Wetlands (level 20-25). If he moves for Loch Modan,304

there is a high probability that his next advance will be for Badlands (level 45-48)305

or Dun Morog. Observing Figure 2a, we can see that Dun Morog, Loch Modan,306

Wetlands and Badlands are geographically proximate. Repeating this analysis in307

another zones, we �nd that the majority of character movement in Eastern Kingdom308

map occurs between zones geographically proximate and zones with proximate level309

range. Unfortunately, we did not have information about which zones are related310

through quests, and we can not analysis the probabilities between these zones.311

Table 5 presents an estimate for the invariant distribution of the process. The312

invariant distribution can be interpreted as the probability of the process be in each313

state, after its reach the equilibrium. So then, zones with higher probability generate314

more load in the game server. The highest probability, 0.202, was observed in Elwynn315

Forest. This is the zone with the major merchant center of Eastern Kingdoms, and316

also is the most popular zone between players. The other three major merchant zone317

in Eastern Kingdom, Stranglethorn Vale, Trisfall Glades and Dun Morog, showed the318

second, third and �fth highest probabilities, respectively. The lowest one, 0.006, was319

observed in Searing Gorge, which is the locked zone for Aliance characters. According320

these results, the load generate in the game server by Elwynn Forest is much higher321

than in other zones.322

5.1. Simulation Results323

In the following analysis, we simulated 100 data sets with 178 simultaneous play-324

ers, the average number of simultaneous players in the sample, and 24 hours of game325

for all of them. The density of the time spent in the states was estimated by the326

Weibull distribution with the MLE estimators and by Kernel with the bandwidth327

given by the methods of Sheather and Jones (1991), Silverman (1986) and unbiased328

cross-validation.329

Table 6 shows the Kolmogorov-Smirnov test results for the times simulated by330

kernel with Silverman, Cross-Validation and Sheather & Jones bandwidth and by the331
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Table 5: Estimate for the invariant distribution of the process.

State Zone Probability
1 Alterac Mountains 0.012
2 The Hinterlands 0.009
3 Arathi Highlands 0.006
4 Badlands 0.005
5 Blasted Lands 0.031
6 Burning Steppes 0.032
7 Wetlands 0.015
8 Deadwind Pass 0.007
9 Dun Morogh 0.043
10 Westfall 0.039
11 Duskwood1 0.046
12 Western Plaguelands 0.006
13 Eastern Plaguelands 0.008
14 Elwynn Forest 0.378
15 Tirisfal Glades 0.063
16 Hillsbrad Foothills 0.027
17 Swamp of Sorrows 0.024
18 Loch Modan 0.008
19 Stranglethorn Vale 0.166
20 Redridge Mountains 0.025
21 Searing Gorge 0.004
22 Silverpine Forest 0.010
23 Duskwood2 0.037
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Weibull distribution. The presented values are the mean of the 100 values obtained332

from each simulated data set. Here, the null hypotheses of the test says that the333

sample and simulated times are drawn from the same distribution. In parentheses334

are the p-values of the tests. As we can see, the only method showing p-value lower335

than 0.05 in all states was the Sheather & Jones method. Therefore the Sheather336

& Jones method returns bandwidth values more suitable to our data. Comparing337

the parametric and nonparametric approaches, we found that the parametric shows338

lower statistics in 14 of the 23 states.339

Table 6: Kolmogorv-Smirnov test for the simulated times.

State Zone Silverman Cross-Validation Sheather & Jones Weibull

1 Alterac Mountains 0.228(0.052) 0.133(0.567) 0.164(0.312) 0.127(0.618)
2 The Hinterlands 0.308(0.007) 0.264(0.033) 0.216(0.126) 0.156(0.463)
3 Arathi Highlands 0.238(0.098) 0.155(0.538) 0.213(0.177) 0.124(0.785)
4 Badlands 0.315(0.022) 0.153(0.651) 0.243(0.145) 0.135(0.796)
5 Blasted Lands 0.109(0.088) 0.044(0.948) 0.050(0.884) 0.072(0.503)
6 Burning Steppes 0.269(0.003) 0.126(0.467) 0.166(0.169) 0.140(0.335)
7 Wetlands 0.286(0.008) 0.143(0.494) 0.204(0.127) 0.132(0.596)
8 Deadwind Pass 0.127(0.400) 0.071(0.953) 0.116(0.517) 0.137(0.329)
9 Dun Morogh 0.119(0.024) 0.069(0.462) 0.063(0.561) 0.091(0.161)
10 Westfall 0.175(0.019) 0.058(0.932) 0.069(0.837) 0.102(0.411)
11 Duskwood1 0.135(0.003) 0.100(0.064) 0.085(0.166) 0.077(0.254)
12 Western Plaguelands 0.184(0.324) 0.111(0.878) 0.161(0.513) 0.130(0.774)
13 Eastern Plaguelands 0.150(0.617) 0.100(0.928) 0.094(0.946) 0.152(0.603)
14 Elwynn Forest 0.071(0.002) 0.029(0.628) 0.028(0.669) 0.055(0.053)
15 Tirisfal Glades 0.068(0.614) 0.060(0.753) 0.063(0.693) 0.079(0.441)
16 Hillsbrad Foothills 0.205(0.003) 0.159(0.049) 0.096(0.496) 0.064(0.899)
17 Swamp of Sorrows 0.095(0.141) 0.039(0.970) 0.045(0.912) 0.083(0.274)
18 Loch Modan 0.269(0.023) 0.261(0.031) 0.240(0.061) 0.179(0.290)
19 Stranglethorn Vale 0.132(0.001) 0.037(0.871) 0.036(0.876) 0.075(0.167)
20 blackridge Mountains 0.151(0.078) 0.095(0.539) 0.119(0.269) 0.099(0.492)
21 Searing Gorge 0.490(0.004) 0.221(0.536) 0.287(0.250) 0.215(0.578)
22 Silverpine Forest 0.201(0.112) 0.088(0.918) 0.144(0.447) 0.109(0.759)
23 Duskwood2 0.178(0.000) 0.099(0.063) 0.094(0.088) 0.068(0.397)

Table 7 shows the times spent to simulate the movement dataset for 75, 150,340

300 and 600 simultaneous players in di�erent game times using Weibull distribution341

to simulate the times spent in the states of the process. We used the parametric342

approach considering not everyone have a sample available.343
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Table 7: Time spent in the simulations.

Session time (h)
12 24 36

Number of
75 19s 21s 26s

players
150 22s 31s 39s
300 28s 55s 84s
600 53s 123s 221s

6. Conclusion344

We proposed to model the character movement in the game map as a jump pro-345

cess. We found that for our data the time spent in the map zones was better modeled346

by the Weibull distribution with parameters estimated by the MLE. Furthermore,347

we showed that is possible to model the time spent in the zones by Kernel Density348

Estimation.Through the proposed methodology, we could generate new samples of349

the mobility game, with di�erent numbers of players and session times, showing be-350

havior similar to the observed data. Therefore, we conclude that the jump process351

can represent reliably the movement of characters in the game. Furthermore, the352

data showed that some zones have charge tra�c much higher than others. That353

information can be used to improve the game servers architecture. As future work,354

would be interesting de�ning the states of the process as smaller regions inside the355

zones, as cities, farms, campings, castles, among others regions de�ned in the game.356

This would allow to accomplish a more detailed analysis of the mobility.357
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Appendix A. Figures400

Figure A.5: QQ-plot of the times spent in the state 5.
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Figure A.6: QQ-plot of the times spent in the state 8.
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Figure A.7: QQ-plot of the times spent in the state 19.
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