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Abstract

Under the Item Response Theory, the two most common link functions used to model dichoto-

mous data are the symmetric probit and logit. However, some authors have emphasized that

these symmetric links do not always provide the best fit for some data sets. To overcome this

issue, asymmetric links have been proposed. This work aims at introducing a flexible Item

Response Model able to accommodate both symmetric and asymmetric link. The c.d.f. of a

centered skew normal distribution is assumed as the link function and, additionally, we con-

sider a finite mixture of Beta distributions and a point mass distribution at zero to describe

the uncertainty about the skewness parameter, so not all items need to be assumed asymmetric

a priori. Therefore, the proposed model embraces symmetric and asymmetric normal models

in one also performing an intrinsic model selection. We offer the full condition distribution

of ability, discrimination and difficulty parameters. We also introduce efficient algorithms to

sample from the posterior distributions.
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Introduction

Item Response Theory (IRT) is a psychometric theory commonly used in educational assess-

ments and cognitive psychology. It aims to model variables which are by nature unobservable,

such as abilities, intelligence and depression. As these variables are constructs rather than

physical attributes, they are often called latent traits. Although these traits are not directly

measured, an individual’s responses to a test provide information from which traits can be

inferred. In this work, the terms “ability”, “latent traits”, or simply “traits”, are going to be

used indiscriminately with the same meaning. As our focus is on the use of IRT in the educa-

tion field, the main interest is to model the relationship between responses and abilities of J

individuals submitted to a test comprised by I items.

Under the latent theory, it is customary to assume that only one trait influences, or deter-

mines, a person’s performance when taking a test. Although this assumption is not reasonable

in practice, it is enough to assume that a dominant factor influences on a test performance. This

dominant factor is referred to as the ability measured by the item. Models that consider only

one ability are called unidimensional models. However, more complex models are available to

take into account a multidimensional vector of abilities (Van Der Linden & Hambleton, 1997).

In IRT, models are built taking into account that the relationship between an examinee’s2

item performance and the dominant trait is described by a monotonically increasing function

denominated item characteristic curves (ICC). The choice of the ICC and its parameters is a

crucial part of IRT. The well known item response models (IRM) for dichotomous responses,

for instance, adjust response data for item characteristics such as difficulty, discriminating

power and liability to guessing. Some most well known IRM’s are presented and discussed in

Chapter 2.

Early work in the IRT field was first addressed in the works of Richardson (1936), Lawley

(1943) and Tucker (1946). However, most contemporary concepts of IRT were formulated

around the 1950s and 1960s, mainly by Lord (1952), Rasch (1960), Birnbaum (1957, 1958),

Lazarsfeld & Henry (1968) and Wright & Panchapakesan (1969). Also, a major contribution

2examinee is a term commonly used in the literature to refer to the person subjected to a test
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to IRT was given by Samejima (1969, 1972) who introduced a new IRM able to handle both

polychotomous and continuous response data. Samejima (1972) also extended unidimensional

models to the multidimensional ones.

A startup and yet revealing work on IRT can be found in the book by Baker (2001) entitled

The Basics of Item Response Theory. In Portuguese, the reader can resort to de Andrade

et al. (2000) for a brief and comprehensive work on basic concepts. Some more detailed work

can be found in Baker (1977), who provided a comprehensive review of parameter estimation

methods. Van Der Linden & Hambleton (1997) offered a book with a collecting of complex

IRM, such as models for multiple abilities or cognitive components and nonmonotone items, and

nonparametric models. Also, some important estimation methods (EM and Bayesian approach)

for dichotomous and polichotomous items were discussed by Azevedo (2003), and for a more

complete work on the Bayesian approach to modern test theory, the reader can resort to the

book by Fox (2010).

A common assumption in modelling academic ability and other latent traits associated with

human behaviour is to assume that these traits follow a standard normal distribution. Such

an assumption asserts that one believes the abilities population has a normal shape, and the J

students taking the test are a random sample of this population. However, this assumption is

not always observed in psychometric data, as noticed by Micceri (1989). Samejima (1997) also

questioned the indiscriminate use of normality assumption without even checking its adequacy,

and Azevedo et al. (2012) showed data sets where normality and symmetry did not entirely hold.

To overcome this issue and to obtain better estimations for traits, some flexible approaches have

been considered. Mislevy (1984), for instance, considered a mixture of normal distributions and

a nonparametric estimation based on empirical histograms. Bazan (2005) proposed a flexible

item response model by using the skew normal distribution (SN) (Azzalini, 1985) to model

the behaviour of the ability parameter. However, according to Azevedo et al. (2011), Bazan

(2005) did not consider the estimation of the skewness parameter concomitantly with the model

estimation, neither addressed issues concerning to the model identifiability. To overcome the

identifiability problem, Azevedo et al. (2011) considered the Centered Skew Normal distribution

(CSN) introduced by Azzalini (1985). The centered parametrization (CP) approach brings some
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advantages to the model inference and the estimation of item’s parameters. A brief presentation

of the SN and CSN families of distributions is given in Chapter 1.

Another common feature of IRT is the usage of symmetric probit and logit link functions

for ICC. However, it has been emphasized by some authors that these symmetric ICCs are not

always appropriate for describing the relationship between examinee’s ability and the proba-

bility of success (correct answer). According to Chen et al. (2000), the commonly used links

for binary response data do not always fit the dataset properly, which can lead to biased esti-

mation of the model parameters. Many authors have proposed possible solutions to overcome

this issue. For instance, Samejima (2000) proposed a family of models, the so called Logistic

Positive Exponent Family, which provides asymmetric ICCs and has the logistic model as a

special case. In this class of models, the ICC is given by L(·)εi , where L(·) is the cumulative

distribution function (c.d.f.) of the standard logistic distribution, and εi > 0 is the skewness

parameter associated with the ith item. The logistic link is recovered when εi = 1. Santos

(2009) presented an extension of the proposed model by Samejima (2000), allowing the guess-

ing parameter to be different from zero, and using a prior specification to detect asymmetric

items. For the skewness parameter ε, Santos (2009) considered a finite mixture type distribu-

tion with a point mass at one. Additionally, another asymmetric link function was obtained

by Bazán et al. (2006), who considered the Skew Normal (SN) distribution (Azzalini, 1985) to

model the ICC, thus, obtaining an asymmetric IRM that admits asymmetric items. Since the

SN distribution has the normal one as a special case, the probit IRT model is included in the

skew probit class of IRMs. These models are briefly reviewed in Section 2.2.

In this work, we focus on dichotomous unidimensional IRMs and inference is made under

the Bayesian approach. Our main interest is to build a flexible IRT model able to accommo-

date both symmetric and asymmetric ICC. Differently from what is presented in Bazán et al.

(2006), we introduce a skewed ICC based on the CSN distribution. One of the most important

contributions of this work is to consider a finite mixture of Beta distributions and a point mass

at zero to describe the uncertainty about the skewness parameter. Therefore, the proposed

model embraces both probit and skew probit models which, under our approach, have a non

null prior probability of occurrence. Consequently, such a strategy also provides an intrinsic
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methodology for model selection. We offer the full condition distribution of ability, discrimina-

tion and difficulty parameters. We also propose efficient algorithms, based on Markov Chain

Monte Carlo (MCMC) methods, to sample from the posterior distribution.

In regard to its structure, this work is organized as follows. In Chapter 1 we review the SN

and the CSN families of distribution (Azzalini, 1985) and some of their properties, since skewed

distributions with normal kernels play an important role in our approach. We also review

and make some adaptations for the family of distribution with Normal kernel introduced by

Gonçalves & Gamerman (2015), which is based on the unified class of the SN (SUN) distribution

presented by Arellano-Valle et al. (2006). In Chapter 2, we review some of the main adopted

unidimensional symmetric IRM for dichotomous responses, and we also review the asymmetric

IRM proposed by Bazán et al. (2006). Additionally, we briefly present the model by Azevedo

et al. (2011), which is based on adopt the centered parametrization of the SN distribution. In

Chapter 3, the main contributions of this work are presented. The proposed model is introduced

and an algorithm to sample from the posterior distributions is developed. In Chapter 4, we

present some simulation results to evaluate the efficiency of the proposed model. Finally,

Chapter 5 presents the final remarks and some discussions about open problems.

11



Chapter 1

Skew Distributions with Normal

Kernels

In recent years, the construction of new distributions that are able to accommodate skewness,

multimodality and tails that are heavier than the normal distribution has received considerable

attention. It is not feasible to mention all development in the area. Recent surveys of flexible

distributions can be found in Azzalini (2005), Wang et al. (2004) and Arnold et al. (2002).

We are interested in unimodal skew distributions with normal kernels. Several distributions

with these characteristics have been proposed since the introduction of the Skew Normal (SN)

distribution in the seminal paper by Azzalini (1985). Most of such families belongs to the

unified class of SN distributions introduced by Arellano-Valle & Azzalini (2006), the so-called

SUN family of distributions.

In the following, we are going to briefly present the univariate Skew Normal (SN) and the

Centered Skew Normal (CSN) families, both introduced by Azzalini (1985). We also review the

skew distribution with normal kernel proposed by Gonçalves & Gamerman (2015). All these

distributions are going to be considered in Chapter 3 to define a new skew IRT model.
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1.1 Skew Normal Distribution

As defined by Azzalini (1985), a random variable X has a Skew Normal (SN) distribution, with

location parameter ξ ∈ R, scale parameter ω2 ∈ R+, and skewness parameter λ ∈ R, which is

denoted by X ∼ SN(ξ, ω2, λ), if its probability density function (p.d.f.) is given by

fSN(x; ξ, ω2, λ) = 2ω−1φ

(
x− ξ
ω

)
Φ

(
λ

(
x− ξ
ω

))
, x ∈ R, (1.1)

where φ(.) and Φ(.) denote, respectively, the p.d.f. and the cumulative distribution function

(c.d.f.) of the standard normal distribution. The parameter λ controls the degree of skewness

of the distribution. A p.d.f. with negative asymmetry is obtained when λ < 0, and positive

asymmetry when λ > 0. An important characteristic of the SN family is that the normal family

is recovered when λ = 0. Moreover, it preserves some properties of the normal family, such as

linearity.

If X ∼ SN(ξ, ω2, λ), its mean and variance are given, respectively, by

E(X) = µX = ξ + rδω, (1.2)

V ar(X) = σ2
X = ω2

(
1− r2δ2

)
, (1.3)

where r =
√

2/π and δ is an alternative parametrization of the skewness parameter λ given by

δ =
λ√

1 + λ2
, δ ∈ [−1, 1]. (1.4)

The transformation Y = (X − ξ)ω−1 leads to the standard skew normal distribution, denoted

by Y ∼ SN(0, 1, λ), which p.d.f. is

fSN(y; 0, 1, λ) = 2φ(y)Φ(λy), y ∈ R. (1.5)

Figure 1.1 shows the behaviour of λ as a function of δ. It can be noticed that δ approximate

to 1(-1) as λ tends to ∞(−∞).
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Figure 1.1: λ in function of δ.

It follows straightforward from equations (1.2) and (1.3) that the mean and variance of the

standard SN distribution are, respectively,

µY = rδ, (1.6)

σ2
Y = 1− r2δ2 = 1− µ2

Y . (1.7)

The c.d.f. of the standard skew normal is denoted by ΦSN(y;λ), and it is given by

ΦSN(y;λ) =

y∫
−∞

2φ(t)Φ(λt)dt = 2Φ2((y, 0)T ; 0,Ω), (1.8)

where Φ2(.; 0,Ω) denotes the c.d.f. of the bivariate normal distribution with mean vector

0 = (0 0)T , and covariance matrix Ω =

 1 −δ

−δ 1

.

Henze (1986) proposed a standard stochastic representation of a SN variable with density

described by equation (1.5) given by

14



Y
d
= δV + (1− δ2)1/2W, (1.9)

where V ∼ HN(0, 1) and W ∼ N(0, 1), for V⊥W , where HN denotes the half normal distribu-

tion. The representation in terms of convolution plays an important role in inference procedures

that involves the SN family.

Figures 1.2a and 1.2b show the p.d.f. of the standard skew normal distribution defined in

(1.5) for different values of the skewness parameter λ. The higher the value of λ, the higher

the asymmetry of the p.d.f.. Also, positive values of λ induce a positive asymmetry in the

p.d.f., and negative values of λ induce a negative asymmetry. It can be noticed that when

λ→ −∞(+∞), the asymmetric distribution tends to put most of its positive mass on negative

(positive) values. In fact, the half normal distribution is a limit case of (1.5) if λ → +∞.

Figures 1.2c and 1.2d show the c.d.f. of the standard skew normal for different values of λ.

Despite its flexibility, inference for the shape parameter based on likelihood methods in the

SN family is not always possible. For instance, the likelihood can have local maximum (besides

the global maximum) and the maximum likelihood estimator can be infinity (Azzalini, 1985).

Figure 1.3 shows the log-likelihood function based on an i.i.d. sample y of size n = 1000, of

Y ∼ SN(0, 1, 1). The log-likelihood exhibits a non-quadratic shape and, as stated by Arellano-

Valle & Azzalini (2008), there is a stationary point at λ = 0. According to Azzalini (1985),

the stationary point occurs for any sample. To overcome such a problem, Azzalini (1985) also

proposed an alternative parametrization of the skew normal family distribution. Such family

is going to be briefly presented in next section.

1.2 Centered Skew Normal Distribution

In order to avoid some of the inference problems discussed in Section 1.1, such as the smooth

behaviour of the likelihood function in the neighbourhood of λ = 0, Azzalini (1985) proposed

a centered parametrization for the SN distribution, the so called Centered Skew Normal family

(CSN). Under this parametrization the Pearson’s skewness coefficient is considered instead of

15
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Figure 1.2: P.d.f. and c.d.f. of the SN(0,1,λ) for negative and positive skewness.

λ. Also, the location and scale parameters are the mean and variance of the distribution,

respectively. Azevedo et al. (2009) presented very helpful results and properties of the CSN.

To obtain the p.d.f. of a random variable Xc with distribution in the CSN family, let us

assume that X ∼ SN(0, 1, λ) and the following transformation

Xc = ψ

(
X − µX
σX

)
+ ς, (1.10)

where ς and ψ2 are the mean and the variance of Xc, respectively, and µX and σX are defined
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Figure 1.3: Skew Normal log Likelihood for λ.

in (1.6) and (1.7), respectively. Assuming the transformation given by (1.10) and considering

the Jacobian method, it follows from equation (1.5) that the p.d.f of Xc is given by

fCSN(xc; ς, ψ2, λ) =
2σX
ψ

φ

(
µX + σX

(
xc − ς
ψ

))
Φ

(
λ

(
µX + σX

(
xc − ς
ψ

)))
, xc ∈ R.

(1.11)

In order to rewrite the p.d.f of Xc as a function of the Pearson’s skewness coefficient of X,

γ, the following results are considered.

The Pearson’s skewness coefficient for a random variable X is defined by:

γ =
E(X − E(X))3

V ar(X)2/3
. (1.12)

Thus, if X ∼ SN(0, 1, λ), Henze (1986) proved that the Pearson’s skewness coefficient of X

is

γ = rδ3(2r2 − 1)(1− r2δ2)−3/2, γ ∈ (−0.99527, 0.99527), (1.13)

where δ is defined in (1.4), r =
√

2/π and s =

(
2

4− π

)1/3

.
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After some algebraic calculations we obtain that

δ =
sγ1/3

r
√

1 + s2γ2/3
, (1.14)

λ =
sγ1/3√

r2 + s2γ2/3(r2 − 1)
. (1.15)

Consequently, it follows that the mean and variance of X can be rewritten as functions of

γ and are given, respectively by

µX =
sγ1/3√

1 + s2γ2/3
, (1.16)

σ2
X =

1

1 + s2γ2/3
. (1.17)

Replacing (1.16) and (1.17) in (1.11) we obtain the p.d.f of Xc ∼ CSN(ς, ψ2, γ) as

fCSN(xc; ς, ψ2, γ) =

(
2√

ψ2(1 + s2γ2/3)

)
φ

(
xc − (ς − sγ1/3)√
ψ2(1 + s2γ2/3)

)
Φ

(
g(γ)

(
xc − (ς − sγ1/3)√
ψ2(1 + s2γ2/3)

))
,

(1.18)

where g(γ) is given by (1.15). To simplify the presentation of the p.d.f. in (1.18), define

ς∗ = ς − sγ1/3,

ψ∗ =
√
ψ2(1 + s2γ2/3).

Thus, (1.18) is rewritten as

fCSN(xc; ς∗, ψ∗2, γ) =
2

ψ∗
φ

(
xc − ς∗

ψ∗

)
Φ

(
g(γ)

(
xc − ς∗

ψ∗

))
. (1.19)

The c.d.f. of a standard CSN variable is obtained by the integration of the density in (1.19)

ΦCSN(xc; γ) =

xc∫
−∞

2

ψ∗
φ

(
t− sγ1/3

ψ

)
Φ

(
g(γ)

(
t− sγ1/3

ψ

))
dt. (1.20)

We can also obtain the c.d.f. of a CSN variable in terms of the standard SN c.d.f.
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ΦCSN(xc; γ) = ΦSN(xσX + µX ; δ),

where µX and σX are defined in expressions (1.6) and (1.7), respectively. This equivalence can

be very convenient, as there is a SN package in R (Azzalini, 2014).

From equations (1.10), (1.16), and (1.17), the stochastic representation forXc ∼ CSN(ς∗, ψ2∗, γ)

becomes

Xc d
= (δV + (1− δ2)1/2W )ψ∗ + ς∗, (1.21)

where V and W are defined in (1.9), and δ is a function of γ as defined in (1.14).

Figure 1.4 shows the relationship of delta as a function of gamma. Notice that a slight

change on γ around zero represents a strong change on δ.
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Figure 1.4: δ as a function of γ.

As stated by Azzalini (1985), Arellano-Valle & Azzalini (2008) and Azevedo et al. (2009),

the p.d.f. defined in (1.19) is more appropriate for inference purposes if compared to the

non centered given in (1.5). According to Azzalini & Capitanio (1999), under the centered

parametrization in (1.19) the shape of the likelihood function well behave around zero, which
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provides better inference.

To observe this, consider a random sample x = (x1, x2, ..., xn) of Xc ∼ CSN(0, 1, γ). For

such sample the log-likelihood function is

f(x|ϕ, γ) = −n ln(ϕ) +
n∑
i=1

(
ln

(
φ

(
xci + sγ1/3

ϕ

))
+ ln

(
Φ

(
g(γ)

(
xci + sγ1/3

ϕ

))))
. (1.22)

Figure 1.5 displays the plot based on the same sample information considered in Figure 1.3.
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Figure 1.5: Centered Skew Normal Log Likelihood for γ.

Compared to the log-likelihood plot displayed in Figure 1.3, it is noticeable that the new plot

exhibits a curve with a regular behaviour, much closer to quadratic functions and without a

stationary point at γ = 0 (λ = 0).

1.3 A General Class of Multivariate skew Normal Dis-

tributions

We now define a more general distribution with Skew Normal kernel which appears in the

derivation of the conditional distributions of the MCMC algorithm proposed in Chapter 3.

This distribution was introduced, in the form presented here, by Gonçalves & Gamerman

(2015), and is based on the Unified Skew Normal (SUN) family of distributions, defined by
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Arellano-Valle & Azzalini (2006). However, to adapt it to our model structure, we introduce a

new parameter to the model proposed by Gonçalves & Gamerman (2015). As we do not use

the parametrization of Arellano-Valle & Azzalini (2006), we call this new distribution Adapted

SUN (ASUN).

Consider a d-dimensional column vector ξ, an m× d matrix W, an m-dimensional column

vector η, and a d × d matrix Σ. Let us also assume column vectors U0 and U1 of dimension

m and d, respectively, such that

U0

U1

 ∼ Nm+d(0,Σ
∗), (1.23)

where Σ∗ =

Γ ∆T

∆ Σ

 ,Γ = Im +WΣW T , Im denotes the identity matrix of order m and

∆T = WΣ. We say that (U1+ξ|U0+ε+η > 0) ∼ ASUNd,m(ξ,Σ,W,η), where ε = ∆TΣ−1ξ.

Lemma 1.3.1. The density of (U1 + ξ|U0 + ε+ η > 0) is given by

f(z) =
1

Φm(ε; Γ)
φd(z − ξ; Σ)Φm(Wz − η; Im), (1.24)

where φk(.;A) and Φk(.;A) are the p.d.f. and the c.d.f., respectively, of the k-dimensional

Gaussian distribution with mean vector zero and covariance matrix A.

The proof of Lemma 1.3.1 can be found in the Appendix in Gonçalves & Gamerman (2015).

Simulation from the density (1.24) is not straightforward. Gonçalves & Gamerman (2015)

propose the following algorithm to efficiently sample from this distribution.

Define U∗0 = A−1U0, where A is obtained from the Cholesky decomposition of Γ, i.e,

Γ = AAT . This implies that U∗0 ∼ Nm(0, IM) and U0 = AU∗0. Let B be the region in the

U0∗ domain where U0 > −(ε+ η). This region defines linear constraints in this domain. The

proposed algorithm is as follows:
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Algorithm 1 GG Algorithm

1: Obtain u∗i from (U∗0i|U∗0 ∈ B);

2: Obtain u = Au∗;

3: Obtain z∗ from (U1|U0 = u) ∼ N(∆Γ−1u,Σ− Γ−1∆T );

4: Obtain z = z∗ + ξ;

5: return z

Step 3 in Algorithm 1 performed via MCMC, more specifically, using the Gibbs sampler,

which means that only Monte Carlo error is involved. For a detailed explanation on this

algorithm, see Gonçalves & Gamerman (2015).
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Chapter 2

Binary Item Response Models

The Item Response Theory assumes that a change in the latent variable leads to a change in

the probability of success (correct answer) in a specified item. This behaviour is described by

the Item Characteristic Curve (ICC), which specifies how the probability of an item response

changes due to changes in the ability level. The ICC is such that the probability of success will

be small for examinees with low ability, and large for examinees with high ability. It is also

important to recall that each item has its own ICC in a test.

A very important assumption on item response models (IRM) is known as Lararsfeld’s as-

sumption of local independence, which states that the examinee’s responses to different items

are independent, given the latent variables. That is, the performance of an examinee in an

item cannot affect his/her performance in any other items in the test, given ability θ. This is

equivalent to say that, given ability θ, two items are uncorrelated. Also, the local independence

assures that the order of presentation of the test items must not affect the examinee’s perfor-

mance. In the case these assumptions are not held, a special model should be considered to

take testlet into account.

There are different mathematical forms of the ICC, and each of them leads to different

IRM. In this chapter some well known and employed IRM are reviewed. We focus on IRM for

binary response, and consequently models presented are meant to be applied to the analyses of

multiple choice items, corrected as right or wrong, or to the analyses of open items, when these

are corrected dichotomously.
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This chapter presents a brief review of some IRM. Section 2.1 describes the most common

IRM for binary data based on symmetric item characteristic curve. The reader more acquainted

can feel comfortable to skip this section. Section 2.2 describes some skew IRM.

2.1 Symmetric IRM

The most used models for dichotomous items are the logistic and the probit models. These

models are symmetric and they can be divided mainly into three types according to the number

of parameters that describe the item. These parameters represent features of the item such as

the discrimination power, difficulty and guessing. Another very important parameter in the

IRT, if not the most important one, is the individual’s ability (or trait), denoted by θ. We start

presenting the most simple IRM, the Rasch model.

To establish notation, through all this work, Yij is a dichotomous variable that takes 1, when

the jth examinee answers correctly to the ith item, and 0 otherwise.

2.1.1 The Rasch Model

The simplest item response model is the Rasch model (Rasch, 1960), also known as the one-

parameter logistic model (1-PL). This model involves parameters θj, which denotes the ability of

the jth examinee, and the item difficulty βi of the ith item. On the Rasch model, the parameter

βi is the point on the ability scale in which the probability of a correct response is 0.5. That

is, if the ability of the examinee is higher than the item difficulty, he/she has more chance to

correctly answer the item and vice versa. This parameter can be seen as a location parameter.

An item i with βi, is said to be easier then an item k with βk, when the probability of success

at a fixed ability is higher for i in comparison to k, for βi < βk.

In the 1-PL model, the probability of a correct response in the ith item by the jth examinee

is given by

P (Yij = 1|θj, βi) =
1

1 + e−(θj−βi)
, (2.1)

where −∞ < θj < ∞, for j = 1, . . . , J , and item difficulty parameter −∞ < βi < ∞, for
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i = 1, . . . , I. In Figure 2.1, the ICCs corresponding to model in equation (2.1) are plotted for

different item difficulty levels. Notice that βi has impact only in the location, and not in the

shape of the curve. Also, notice that an examinee j with ability level 0 has P (Yij = 1|θj =

0, βi = −1) = 0.84 (solid line) and the same examinee has P (Yij = 1|θj = 0, βi = 1) = 0.16

(dashed line).
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Figure 2.1: ICC of the Rasch model for β = −1 (solid line), β = 0 (dotted line) and β = 1
(dashed line).

The model presented in (2.1) is not identifiable, since the same probability of success can

be obtained for two different levels of ability and item difficulty parameter. Notice that if

θ∗j = θj + ∆ and β∗i = βi −∆, where ∆ is a constant, we have that

P (Yij = 1|θj, βi) = [1 + e−(θj−βi)]−1

= [1 + e−(θj+∆−βi−∆)]−1

= [1 + e−(θ∗j−β∗
i )]−1 = P (Yij = 1|θ∗j , β∗i ).

Therefore, for different set of parameters β and θ we can obtain the same likelihood, which

brings some inference troubles. This identification problem can be solved, for instance, by

adding a restriction on the sum of the difficulty parameters. Another way to identify the model

is by assuming a prior distribution for the abilities, which solves the identification issue by

setting a metric for θj.
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The Rasch model is very simple, as it does not take into account more complex, but factual

scenarios. In order to turn Rasch’s model more flexible, a two-parameter model was developed

by Lord (1952), and it is presented in the next subsection.

2.1.2 Two-Parameter Models

The two-parameter models (2P) are obtained by including a discrimination parameter to the

model described in expression 2.1. The 2P model was originally developed by psychometrist

Lord (1952), who built the ICC in terms of the normal ogive curve, which is formally defined

by

P (Yij = 1|θj, ai, βi) = Φ(αi(θj − βi)), (2.2)

where Φ(·) denotes the standard normal cumulated density function (c.d.f..), and αi > 0, for

i = 1, . . . , I and j = 1, . . . , J . The constraint on αi > 0 assures that an examinee with a higher

ability has higher probability of success on any item. The discrimination parameter is directly

proportional to the slope of the curve at its maximum inclination point θ = β. Items with high

discrimination parameters are better at differentiating examinees around the location point

(difficulty), such that an small change in the latent trait lead to large changes in probability.

Figure 2.2 shows three items under the 2P model, all curves with the same difficulty pa-

rameter βi = 0, and with different discrimination values. The higher (lower) the discrimi-

nation parameter, the better (less) the item is to discriminate low and high ability around

βi. For instance, when a = 0.2 (solid line) P (Yij = 1|θj = −0.1, βi = 0, αi = 0.2) = 0.49,

and P (Yij = 1|θj = 0.1, βi = 0, αi = 0.2) = 0.51. That is, both probabilities of success

are very close. However, for a = 1 (dotted line), P (Yij = 1|θj = −0.1, βi = 0, αi = 1) = 0.46

P (Yij = 1|θj = 0.1, βi = 0, αi = 1) = 0.54. In an extreme scenario, for instance a = 100 (dashed

line), the item perfectly discriminates students in the neighborhood of β = 0. According to

Baker & Kim (2004), items whose α < 0.65 have low discrimination power; 0.65 ≤ a < 1.34

have moderate discrimination; 1.35 ≤ α < 1.69 have high discrimination, and α > 1.70 have

very high discrimination power.

Birnbaum (1968) modified Lord’s model by using the logistic c.d.f. instead, creating the
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Figure 2.2: ICCs for the 2P IRT model for fixed difficulty parameter β = 0, α = 0.2 (solid
line), α = 1 (dotted line) and α = 100 (dashed line).

two-parameter logit model (2-PL), which is formally defined by

P (Yij = 1|θj, αi, βi) =
1

1 + e−Dαi(θj−βi)
, (2.3)

for i = 1, . . . , I and j = 1, . . . , J , where D is a scale factor. If D = 1.7, this model provides a

reasonable approximation for the probit model defined by equation (2.2).

The quantity αi(θj − βi) is often presented as (aiθj − bi) by many authors. According to

Baker & Kim (2004) and Fox (2010), this parametrization may result in more stable compu-

tational procedures. Furthermore, under the Bayesian approach, this reparametrization leads

to conjugated full conditional distributions for (a b). This latter condition is very attractive

in terms of sampling from the joint posterior distribution, and for this reason, we adopt this

parametrization all through this work.

2.1.3 Three-Parameter Models

It is noteworthy from the model defined in (2.3) and from Figure 2.2 that the probability of a

correct answer goes to zero when the ability goes to −∞. However, it is very plausible that

an examinee simply guesses an item, specially in educational tests. To take this into account,

Birnbaum (1968) extended the 2P model by introducing a new parameter c, the guessing

27



parameter, which is a nonzero lower asymptote for the ICC. In the three-parameter model (3P)

the probability of correct response is explained by this additional factor of guessing. As in the

case of the 2P models, the 3P models are mostly defined using both the logistic (3-PL) and the

probit function (3-PP).

The three-parameter logit model (3-PL) is defined by

P (Yij = 1|θj, ai, bi, ci) = ci +
(1− ci)

1 + e−D(aiθj−bi)
, (2.4)

where 1 < ci < 0, for i = 1, . . . , I, j = 1, . . . , J , and the other quantities are defined as before.

Although c is commonly known as the guessing parameter, it is an item parameter’s. Therefore,

it can also be interpreted as the probability of success of examinees with extremely low ability,

being then the threshold probability of success.

Figure 2.3 shows two ICCs varying according to parameter c, with b = 0 and a = 1 fixed.

Notice that, for c = 0.25 (dotted line), examinees with very low abilities have 0.25 of probability

of success.
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Figure 2.3: ICCs of the 3P logistic model for b = 0, a = 1, c = 0 (solid line) and c = 0.25
(dotted line).

The three-parameter probit model (3-PP) is expressed by

P (Yij = 1|θj, ai, bi, ci) = ci + (1− ci)Φ(aiθj − bi),
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where ai, bi, ci and θj are defined as in model 2.4.

A Bayesian approach for estimation and model selection for the 3PP models can be found

in Sahu (2002).

2.2 Skew IRM

All the previous models presented in Section 2.1 are based on symmetric curves. That is an

appropriated assumption whenever it is reasonable to assume that the probability of a correct

answer to an item approaches zero at the same rate as it approaches one. Under these models,

individuals with low or high abilities are discriminated in a similar way. However, it has been

emphasized by several authors that symmetric ICC’s are not always suitable to describe the

relationship between the abilities and the probability of success. To better fit ICC’s with

asymmetric behaviour, some asymmetric link functions have been proposed.

These new models take into account the skewness parameter δ, which controls the curve

asymmetry. The parameter δ is interpreted by Bazán et al. (2014) as a penalization parameter,

since it can be seen as a penalty or as a reward on the probability of a correct answer. Figure 2.4

shows the ICC for three different values of δ. At a fixed ability level (for instance, θ = 0) when

δ = 0, the probability of a correct answer is equal to 0.5. At the same ability level, however, for

δ = −0.5, the probability of a correct answer is equal to 0.67, and for δ = −0.9, this probability

goes up to 0.86. The same happens for positive values of δ. However, in this scenario the

skewness parameter works as a “penalty”. Again, for δ = 0 and θ = 0, the probability of a

correct answer is equal to 0.5. At the same ability level however, for δ = 0.5, the probability of

a correct answer is equal to 0.33, and for δ = 0.9, this probability goes down to 0.14.

2.2.1 Skew Logit Model

We briefly describe the Logistic Positive Exponent Family proposed by Samejima (2000) and

its extension model proposed by Santos (2009).

Let Yij be a Bernoulli random variable assuming 1 if the answer of the jth examinee to the

ith item is correct, and 0 otherwise. The proposed model by Samejima (2000) is defined as
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Figure 2.4: Cdf of standard skew normal for negative skewness (left) and positive skewness:
δ = ±0 (solide line), δ = ±0.5 (dashed point line) and δ = ±0.9 (pointed line).

follows

P (Yij = 1|θj, ai, bi, εi) =

(
1

1 + e−Dai(θj−bi)

)εi
, (2.5)

for i = 1, ..., I and j = 1, ..., J , with ai > 0,−∞ < bi < ∞, εi > 0, and −∞ < θj < ∞. Notice

that when εi = 1, the symmetric link is obtained. According to Samejima (2000), the skewness

parameters εi represents the item complexity, which is distinct from item difficulty. This item

parameter is related to the number sequential steps to successfully solve the complete problem.

Figure (2.5) shows ICCs with parameters a = 1, b = 0 and different values for ε.

The proposed model by Santos (2009) extended model (2.5) by adding the pseudo-guessing

parameter c. Thus, the proposed model by Santos (2009) is given by

P (Yij = 1|θj, ai, bi, ci, εi) = ci +

(
(1− ci)

1 + e−Dai(θj−bi)

)εi
, (2.6)

for i = 1, ..., I and j = 1, ..., J , with ai > 0,−∞ < bi < ∞, 1 < ci < 0, εi > 0, and −∞ <

θj <∞. As in model (2.5), the symmetric three-parameter logit link is recovered when εi = 1.

Another contribution of Santos (2009) work is the modeling of the skewness parameters εi, by

considering a finite mixture type with a point mass, given by
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Figure 2.5: ICCs with parameters a = 1, b = 0, c = 0, and different values for ε: ε = 0.1 (short
dashed line), ε = 0.5 (dotted line), ε = 1 (solid line), ε = 2 (dotted-dashed line), ε = 3 (long
dashed line).

(εi|πi) ∼ πiδ1 + (1− πi)LN(µεi , σ
2
εi

), (2.7)

where δ1 is a distribution degenerated in 1, and πi denotes the probability of item i be symmetric.

Because of the complexity, the posterior distribution of all parameters are approximated via

MCMC methods, more specifically, via Metropolis-Hastings.

2.2.2 BBB Skew Probit Model

We now define the BBB Skew Probit model proposed in Bazán et al. (2006), with some exten-

sions proposed in Bazán et al. (2014). Let Yij be a Bernoulli random variable assuming 1 if the

answer of the jth examinee to the ith item is correct, and 0 otherwise. The BBB Skew Probit

model is defined as follows

Yij|θj, ai, bi, δi ∼ Bernoulli(pij), (2.8)

pij = ΦSN(mij; δi), (2.9)

mij = aiθj − bi, (2.10)
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for i = 1, ..., I and j = 1, ..., J , with ai > 0,−∞ < bi < ∞,−1 < di < 1, and −∞ < θj < ∞,

and where ΦSN(mij; δi) denotes the c.d.f. of the standard SN distribution defined in 1.8. As in

the usual symmetric IRM, ai and bi denote the discrimination and difficulty item parameters,

respectively.

To avoid a Bernoulli type likelihood, the authors used the data augmentation strategy

proposed by Albert (1992), which equivalently represents the skew probit IRM defined in (2.8)

by

Yij =

 1, if Xij > 0,

0, if Xij,≤ 0,
(2.11)

where Xij = mij + eij, and eij ∼ SN(0, 1,−δi). For sampling purposes, the authors considered

the stochastic representation of a SN variable (Henze, 1986) assuming

eij
d
= δiVij + (1− δ2

i )
1/2Wij, (2.12)

where V ∼ HN(0, 1), W ∼ N(0, 1), and V⊥W . As priors specification, they elicited ai ∼

N(µa, σ
2
a)I(ai > 0), bi ∼ N(µb, σ

2
b ) and di ∼ Uniform(−1, 1). For θj the authors used

θj ∼ N(0, 1), but also extended the SN IRM by considering asymmetrically distributed la-

tent variables, assuming, θj ∼ SN(µ, σ2, ω), where −∞ < µ < ∞, σ2 > 0, and −1 < ω < 1.

As noticed by Azevedo et al. (2011), the model considering asymmetric distribution for the

latent variable is not identifiable. To overcome this issue, Bazán et al. (2014) assumed priors

distributions for θ hyperparameters.

2.2.3 Skew Normal model IRT under the Centered Parametrization

As mentioned in Section 1.2 of Chapter 1, because of the behaviour of the likelihood function

in the neighborhood of λ = 0 (under the original parametrization), Azzalini (1985) proposed a

centered parametrization for the SN distribution. Under this parametrization, Azevedo et al.

(2011) proposed a model based on the centered skew distribution (CSN). However, it is impor-

tant to notice that the authors did not apply the CSN to the ICC, but only to the latent trait,

that is, they assumed θ ∼ CSN(0, 1, γ). Their proposal comes from the fact that many works in
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literature suggest the lack of normality in the latent traits, although it is questionable if there is

a significant gain in doing so. As cited in Section 1.2, the CSN is parametrized by the Pearson’s

skewness coefficient γ, and it preserves the asymmetric behavior of the SN distribution. An

important contribution in Azevedo et al. (2011) is that the proposed model can take into ac-

count omitted responses. For estimation purpose the authors consider the Metropolis-Hasting

within Gibbs sampling algorithm.

A great advantage of the CSN if compared to the SN in item response theory is the role

of the discrimination and difficulty parameters of the item. Under the CSN distribution, the

parameters “a” and “b” play the same role in the symmetric and in the skewed models, since the

expected value and the variance of the latent distribution are invariant with respect to skewness

parameter γ. Taking into account

Xij = mij + eij, (2.13)

E[Xij] = mij and V ar[Xij] = 1, as E[eij] = 0 and V ar[eij] = 1, for both eij ∼ CSN(0, 1,−γi)

and for eij ∼ N(0, 1). The same does not happen when eij ∼ SN(0, 1,−δi), as E[Xij] =

mij +
√

2
π
δi, and V ar[Xij] = 1− 2

π
δ2
i , since E[eij] =

√
2
π
δi and V ar[eij] = 1− 2

π
δ2
i .

That means that the posterior of a and b will be very similar when considering the symmet-

ric model or the skewed model under the centered parametrization, and significantly different

when considering the skewed model under the non-centered parameter. A consequence of that is

that considering the non-centered parametrization could have a negative impact on the MCMC

due to potential multimodes of the posterior.
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Chapter 3

A Flexible Class of Centered Skew

Probit IRT Model

As noticed by many authors, in many situations it is more appropriated to use an asymmetric

link for the ICC. Bazán et al. (2014) introduced a skewness parameter associated to each item,

in order to build a more flexible model, as it allows the use of the symmetric probit as well

as the use of the asymmetric probit ICC. The authors considered a Uniform(-1,1) prior for

the skewness parameter δ. However, by eliciting this prior, the prior probability of having a

symmetric probit link, that is, δ = 0, is zero. Even more, the choice of this prior assumes

that all items are asymmetric with positive probability. It would be desirable, if not ideal, to

assume the asymmetric structure only for items that require it. Nevertheless, that information

is not available a priori and a naive model selection procedure would require 2I models to be

fitted and compared. A way to overcome this issue is to consider a mixture component for the

skewness parameter γ, so that all items may or may not be asymmetric, and in that way, the

data point out which model is more likely.

In this work, we introduce a new skew probit IRT model, in which a mixture component

on the skewness parameter is introduced, so not all items need to be assumed asymmetric

a priori. This makes the proposed model flexible enough to embrace all possible models in

one (symmetric and asymmetric probit with different degrees of skewness). An advantage of
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the proposed approach is that an intrinsic model selection is performed through the mixture

posterior probabilities. Our asymmetric ICC is built under the Centered Skew Normal (CSN)

distribution since centered parametrization shows some advantages over the direct parametriza-

tion (see Section 1.2). Another contribution of our work is that we present different algorithms

to sample from the posterior distribution (Section 3.4).

3.1 Proposed Model

Let Yij be a dichotomous variable assuming 1, if the answer of the jth, j = 1, . . . , J , examinee

to the ith, i = 1, . . . , I, item is correct and 0 otherwise. The CSN probit model is given by

Yij|pij ∼ Bernoulli(pij),

pij = ΦCSN(mij; γi),

mij = aiθj − bi,

(3.1)

where ai, bi and θj are, respectively, the discriminant, difficulty and ability parameters defined

in Subsection 2.1.2, γi is the skewness parameter defined in 1.13, and ΦCSN(.) is the c.d.f of the

CSN distribution, defined in expression (1.20).

To establish notation hereafter, let θ = (θ1; . . . ; θJ), a = (a1; . . . ; aI)
T , b = (b1; . . . ; bI)

T ,

γ = (γ1; . . . ; γI)
T , and, matrix y = (yij)I×J the observed data.

The likelihood function based on an independent sample of the centered skew probit IRM

in 3.1 is given by

L(θ, a,b,γ|y) =
I∏
i=1

J∏
j=1

[ΦCSN(mij; γi)]
yij [1− ΦCSN(mij; γi)]

1−yij . (3.2)

To avoid working with a Bernoulli type likelihood, it is more convenient to work with the

stochastic representation proposed by Albert (1992), where the model presented in (3.1) can

be rewritten as

Yij =

 1, if Xij > 0,

0, if Xij,≤ 0,
(3.3)
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where Xij = mij + eij, eij ∼ CSN(0, 1,−γi) and, hence, Xij ∼ CSN(mij, 1,−γ). Notice that

the skewness parameter of Xij is the opposite of the skewness parameter of the ICC as

P (Yij = 1) = P (Xij > 0) = P (mij + eij > 0) (3.4)

= P (eij > −mij) = 1− P (eij < −mij) (3.5)

= 1− ΦCSN(−mij; γi) (3.6)

= ΦCSN(mij;−γi), (3.7)

where the last equality is justified by the fact that ΦCSN(−x; γ) = 1 − ΦCSN(x;−γ). It is

important to notice that the representation given by 3.3 preserves the probability model of Yij.

For further notation reference, let X = (Xij)I×J and x = (xij)I×J the observed realization of

X.

3.2 Prior Specifications

In order to build a more robust centered skew probit item response model (IRM) that per-

mits inference about both symmetric and asymmetric items, the following finite mixture prior

distribution for γ′is it is assumed

γi = Zi0Wi0 + Zi1Wi1 + Zi2Wi2,

Zi ∼Mult(1, pi0, pi1, pi2),

Wi0 ∼ δ0,

−Wi1 ∼ Beta(αw, βw, ll, lu),

Wi2 ∼ Beta(αw, βw, ll, lu),

pi ∼ Dirichlet(α0, α1, α2),

(3.8)

where δ0 is a point-mass at zero and Beta(.) stands for the General Beta distribution defined

in Appendix 5.3 with support (-0.99527, 0.99527). The random variables Wi0,Wi1 and Wi2 are
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associated with the symmetric, negative asymmetric and positive asymmetric models, respec-

tively. The vector of probability pi = (pi0, pi1, pi2) is such that
2∑

k=0

pik = 1, and hyperparameters

(α0, α1, α2) are assumed to be known. For further notation reference, let Z = (Zic)I×3, where

c = 0, 1 and 2.

We assume independence among the components θ, a, and b such that the joint prior

distribution is given by

π(θ, a,b) =

[
I∏
i=1

π(ai)π(bi)

][
J∏
j=1

π(θj)

]
, (3.9)

where θj
iid∼ N(µ∗θj , σ

∗2
θj

), ai
iid∼ N(µ∗ai , σ

2∗
ai

)I(ai > 0), and bi
iid∼ N(µ∗bi , σ

∗2
bi

). The hyperparameters

µ∗ai ,m
∗
bi
, σ2∗

ai
and σ2∗

bi
are assumed to be known.

The values for αw and βw need to be carefully chosen. Firstly, the prior density cannot

concentrate too much probability mass around zero, which refers to the symmetric model and,

therefore, could lead to identifiability problems. Secondly, it cannot be strongly informative by

concentrating most of its mass in high values, which could overestimate γ. The shape of the γ

prior is shown in Figure 3.1.

0

2

4

−1.0 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0.0
γ

p.
d.

f.

Figure 3.1: Shape of γ prior.
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3.3 Posterior Distribution

The main goal of the inference process is to obtain the posterior distributions of all unknown

quantities in the model, which in our proposed model is Ψ = (X, a,b,θ,p,Z,γ). Considering

the prior dependence structure given in 3.8, the joint density of (Y,Ψ) may be factorized as

π(Y,Ψ) =

[ I∏
i=1

J∏
j=1

π(Yij|Xij)π(Xij|θj, ai, bi, γi)π(γi|Zi)π(Zi|pi)π(ai)π(bi)π(pi)

][ J∏
j=1

π(θj)

]
.

(3.10)

Considering the prior specifications, the joint distribution is given by

π(Y,Ψ) =

[ I∏
i=1

J∏
j=1

(
I(Yij = 1)I(Xij > 0) + I(Yij = 0)I(Xij ≤ 0)

)
fCSN(Xij;mij, 1,−γi)

×
(
I(Zi0 = 1)I(γi = 0) + I(Zi1 = 1)fB(−γi;αw, βw, ll, lu) + I(Zi2 = 1)fB(γi;αw, βw, ll, lu)

)

× pZi0
i0 pZi1

i1 pZi2
i2

Γ(α0 + α1 + α2)

Γ(α0)Γ(α1)Γ(α2)
pα0−1
i0 pα1−1

i1 pα2−1
i2 fN(ai;µ

∗
ai
, σ∗2ai )I(ai > 0)fN(bi;µ

∗
bi
, σ∗2bi )

]

×
[ J∏
j=1

fN(θj;µ
∗
θj
, σ∗2θj )

]
, (3.11)

where fB(.;αw, βw, ll, lu) denotes the p.d.f. of the Beta distribution defined in Appendix 5.3,

and fN(.;µ, σ2) stands for a Normal density with mean µ and variance σ2.

In the next section we introduce an MCMC algorithm to sample from the posterior (3.11).

3.4 MCMC

The model presented in (3.11) has a complex high dimensional distribution which is very hard

to be explored analytically. Despite the complexity of the proposed model, the full conditional

distributions of X, θ, (a b), p, Z and γ are tractable, which permit us to develop an efficient

algorithm to sample from the posterior distribution. In order to obtain these samples, we
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propose an MCMC scheme based on a Gibbs sampler with Metropolis Hastings steps.

To facilitate the MCMC construction, we reparametrize the model (3.10) taking into account

the mixture structure for γi, presented in (3.8), in the following way

γi = Zi00 + Zi1γi− + Zi2γi+, (3.12)

where γi− and γi+ denote, respectively, the negative and positive values generated for γi. By

doing this, we construct a Markov chain in γi− and γi+ instead of constructing a single chain

for γi, that is, we treat the negative and positive parts of γi separately. Expression (3.12) shows

that, given Zi, the model is symmetric when Zi0 = 1, negative asymmetric when Zi1 = 1, and

positive asymmetric when Zi2 = 1. Therefore, model (3.10) is rewritten as

π(Y,Ψ) =

[ I∏
i=1

J∏
j=1

π(Yij|Xij)π(Xij|θj, ai, bi, Zi, γi−, γi+)π(Zi|pi)π(γi−)π(γi+)π(ai)π(bi)π(pi)

][ J∏
j=1

π(θj)

]
,

=

[ I∏
i=1

J∏
j=1

(
I(Yij = 1)I(Xij > 0) + I(Yij = 0)I(Xij ≤ 0)

)

× fCSN(Xij; aiθj − bi, 1,−(Zi00 + Zi1γi− + Zi2γi+))fB(−γi−;αw, βw, ll, lu)fB(γi+;αw, βw, ll, lu)

× Γ(α0 + α2 + α2)

Γ(α0)Γ(α1)Γ(α2)
pα0−1
i0 pα1−1

i1 pα2−1
i2 pZi0

i0 pZi1
i1 pZi2

i2 fN(ai;µ
∗
ai
, σ∗2ai )I(ai > 0)fN(bi;µ

∗
bi
, σ∗2bi )

]
×
[ J∏
j=1

fN(θj;µ
∗
θj
, σ∗2θj )

]
.

To improve the MCMC algorithm, an efficient strategy is to use a blocking scheme, where

strongly correlated parameters must be jointly sampled. For the proposed model, we consider

the following blocking scheme

(X) (θ) (a,b) (p) (Z) (γ−, γ+). (3.13)

The next subsections show the full conditional distribution for blocks in (3.13).
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3.4.1 Full Conditional Distribution for X

Given parameters θ, a, b and γ, it follows from (3.13) that the components of X are independent

and such that

(Xij|θ, a,b,Z,γ,y) ∼

 CSN(mij, 1,−γi)I(xij > 0), if yij = 1,

CSN(mij, 1,−γi)I(xij < 0), if yij = 0.
(3.14)

That is, the full conditional distribution of Xij is a truncated CSN distribution putting

positive mass in positive values, when yij = 1, and a truncated CSN distribution putting

positive mass in negative values, when yij = 0. If γi = 0, then the full conditional distribution

of Xij is equivalent to the Truncated Normal distribution.

It is not possible to sample directly from (3.14). To do so we consider two algorithms: a

Rejection Sampling (RS) and an embedded Gibbs Sampler.

3.4.2 Full Conditional Distribution for θ

For parameter vector θ, the full conditional distribution can be factored for each examinee. Such

strategy does not compromise the algorithm convergence, because given the item parameters,

examinees are independent. Therefore, it is equivalent to simulate jointly all vector θ, which has

a J-dimension distribution, or to simulate each θj separately from its marginal full conditional

distribution, which is unidimensional. The latter is more attractive because of computational

costs.

Each ability parameter θ1, . . . , θJ , given X, a, b, Z and γ, has full conditional density given

by

fN(θj;µ
∗
θ, σ

∗2
θ ) ∝

I∏
i=1

fCSN(xij; aiθj − bi, 1,−γi)fN(θj; 0, σ∗2θ ), (3.15)

where µ∗θ and σ∗2θ are the prior mean and variance of θ, respectively. After some algebraic

manipulation (see details on Appendix 5.1), it follows that the full conditional distribution in
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(3.15) for each θj is

f(θj|X, a,b,γ) ∝
I∏
i=1

φ

(
xij + sγ

1/3
i − (aiθj − bi)
ϕi

+
θj
σ∗2θ

)
Φ

(
g(γi)

(
xij + sγ

1/3
i − (aiθj − bi)
ϕi

))
,

(3.16)

where

g(γi) =
sγ

1/3
i√

r2 + s2γ
2/3
i (r2 − 1)

, (3.17)

and

ϕi =

√
(1 + s2γ

2/3
i ). (3.18)

From expression derived in (3.16), each θj has full conditional distribution of the form

f(θj|X, a,b,Z,γ) ∝ φ(θj − ξθj ; Σθ)ΦI(Wθj − ηj, II), (3.19)

where ΦI(.) is a normal c.d.f of dimension I, that is, given X, a, b, Z, and γ, each θj has an

ASUN distribution, defined in (1.24), denoted by

(θj|X, a,b,Z,γ) ∼ ASUN(ξθj ,Σθ,W,ηj), (3.20)

where Σθ and ξθj are given by

Σθj =
σ2∗
θj

σ2∗
θj

∑I
i=1

a2i
ϕ2
i

+ 1
, (3.21a)

ξθj = Σθj

(
I∑
i=1

ai(xij + bi + sγ
1/3
i )

ϕi
+
µ∗θj
σ∗2θj

)
, (3.21b)

W =
(
−a1

g(γ1)
ϕ1

−a2
g(γ2)
ϕ2

. . . −aI g(γI)
ϕI

)T
,

ηj =
((

g(γ1)
ϕ1

(x1j + b1 + sγ
1/3
1 )
) (

g(γ2)
ϕ2

(x2j + b2 + sγ
1/3
2 )
)

. . .
(
g(γI)
ϕI

(xIj + bI + sγ
1/3
I )
))T

,

where Σθj ∈ R+, ξθj ∈ R, and W and ηj column vectors of order I.

Notice that if γi = 0 (or equivalently if Zi0 = 1), the full conditional distribution in 3.20

becomes
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(θj|X, a,b,γ) ∼ N(ξθj ,Σθj), (3.22)

where Σθ and ξθj are given, respectively, by

Σθj =
σ2∗
θj

σ2∗
θj

∑I
i=1

a2i
ϕ2
i

+ 1
,

ξθj = Σθj

(
I∑
i=1

ai(xij + bi + sγ
1/3
i )

ϕi
+
µ∗θj
σ∗2θj

)
.

Simulation from (3.20) is performed, for each fixed j, by using Algorithm 1. However, this

simulation can be computationally expensive as, at each iteration k of the MCMC, it involves

a Cholesky decomposition and the inversion of a matrix of order I × I. Another possible way

to sample from distribution in (3.16) is to consider the Metropolis-Hastings algorithm.

The target density is given by (3.16), and as the proposal distribution we consider a random

walk given by

q(θ∗j |θ
(k)
j ) = fN(θ∗j ; θ

(k)
j , τ 2

θj
) (3.23)

where θ∗j is the candidate value for θj, θ
(k)
j is the current value of the chain, and τ 2

θj
is the

variance (tuning), which value is chosen such that the acceptance ratio is about 0.44. The

acceptance probability is given by

α(θ∗, θ(k)) = min

{
1,

∏I
i=1 fCSN(xij; aiθ

∗
j − bi, 1,−γi)fN(θ∗j ;µ

∗
θj
, σ∗2θj )∏I

i=1 fCSN(xij; aiθ
(k)
j − bi, 1,−γi)fN(θ

(k)
j ;µ∗θj , σ

∗2
θj

)

}
. (3.24)

3.4.3 Full Conditional Distribution for (a, b)

Since parameters ai and bi are strongly correlated, a good strategy to improve the MCMC per-

formance is to generate ai and bi from the joint full conditional distribution of (a,b). However,

the full conditional distribution of (a,b) can be factored for each item, since the pairs (ai, bi)

are conditionally independent. Therefore, it is equivalent to simulate jointly all vector (a, b),
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which has a distribution of order 2× I or to simulate each pair separately from its marginal full

conditional distribution. The latter option is chosen here as it has lower computational cost.

The joint distribution for each pair (ai, bi) given X, Z, γ and θ, is given by

f(ai, bi|X,Z,θ,γ) ∝
J∏
j=1

fCSN(xij;mij, 1,−γi)fN(ai;µai , σ
∗2
ai

)I(ai > 0)fN(bi;µbi , σ
∗2
bi

)

∝
J∏
j=1

φ

(
xij + sγ

1/3
i −mij

ϕi
+
ai − µ∗ai
σ∗ai

+
bi − µ∗bi
σ∗bi

)
I(ai > 0)×

× Φ

(
g(γi)

(
xij + sγ

1/3
i −mij

ϕi

))
, (3.25)

where σ∗2ai and σ∗2bi are the prior variances of ai and bi, respectively, g(γi) and ϕi are defined in

(3.17) and in (3.18), respectively.

The joint full conditional distribution of (ai, bi|.) is the truncated ASUN distribution given

by

(ai, bi|X,Z,θ,γ) ∼ ASUN(ξi,Σabi ,Wi,ηi)I((ai, bi) ∈ A), (3.26)

where A = {(ai, bi) ∈ R : ai > 0}, ξi = (µai µbi)
T , Σabi =

 σ2
ai

ρσaiσbi

ρσaiσbi σ2
bi

,

ρi =
σ∗aiσ

∗
bi

∑J
j=1 θj[(

σ2∗
ai

∑J
j=1 θ

2
j + ϕ2

i

) (
σ∗2bi J + ϕ2

i

)]1/2
,

σ2
bi

=

(
σ∗2bi ϕ

2
i

σ∗2bi J + ϕ2
i

)
1

(1− ρ2
i )
,

σ2
ai

=

(
σ∗2aiϕ

2
i

σ∗2ai
∑J

j=1 θ
2
j + ϕ2

i

)
1

(1− ρ2
i )
,

µai = σ2
ai

(∑J
j=1 xijθj + sγ

1/3
i

∑J
j=1 θj + ϕ2

iµ
∗
ai
σ∗−2
ai

ϕ2
i

)
− σaiσbiρi

(∑J
j=1 xij + Jsγ

1/3
i − ϕ2

iµ
∗
bi
σ∗−2
bi

ϕ2
i

)
,

µbi = σaiσbiρi

(∑J
j=1 xijθj + sγ

1/3
i

∑J
j=1 θj + ϕ2

iµ
∗
ai
σ∗−2
ai

ϕ2
i

)
− σ2

bi

(∑J
j=1 xij + Jsγ

1/3
i − ϕ2

iµ
∗
bi
σ∗−2
bi

ϕ2
i

)
,

Wi =
γi
ϕi

(
θT 1J

)
,
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ηi =
γi
ϕi

(
xTi + sγ

1/3
i

)
, (3.27)

where 1J is a column vector of ones of order J , and xi =
(
xi1 xi2 . . . xiJ

)
. The algebraic

derivation for distribution (3.26) is given in Appendix 5.2. If γi = 0, it implies that ϕi = 1, and

consequently distribution (3.26) becomes equivalent to a symmetric truncated bivariate normal

distribution. in this case, the full distribution of each pair (ai, bi) is given by

(ai, bi | X,Z,θ) ∼ N2(µabi , σ
2
bai

;A), (3.28)

where A = {(ai, bi) ∈ R : ai > 0}, and

ρi =
σ∗aiσ

∗
bi

∑J
j=1 θj[(

σ∗2ai
∑J

j=1 θ
2
j + 1

) (
σ∗2bi J + 1

)]1/2
, (3.29)

σ2
ai

=

(
σ∗2ai

σ∗2ai
∑J

j=1 θ
2
j + 1

)
1

(1− ρ2
i )
, (3.30)

σ2
bi

=

(
σ∗2bi

σ∗2bi J + 1

)
1

(1− ρ2
i )
, (3.31)

µai = σ2
ai

(
J∑
j=1

xijθj + µ∗aiσ
∗−2
ai

)
− σaiσbiρ

(
J∑
j=1

xij − µ∗biσ
∗−2
bi

)
, (3.32)

µbi = σaiσbiρi

(
J∑
j=1

xijθj + µ∗aiσ
∗−2
ai

)
− σ2

bi

(
J∑
j=1

xij − µ∗biσ
∗−2
bi

)
, (3.33)

where σ2
ai

, σ2
bi
∈ R+, ρi ∈ (−1, 1), and µai , µbi ∈ R.

Simulation from (3.26) is performed for each item i by Algorithm 1. The simulation from

(3.26) can be computationally expensive as, at each iteration k of the MCMC, it involves the
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Cholesky decomposition and the inversion of a matrix of order J × J . Hence, we consider as

well the Metropolis-Hastings algorithm to sample each pair (ai, bi).

The target density is given by (3.25), and the proposal distribution considered is a random

walk which is given by

q((ai bi)
∗T |(ai bi)

(k)T ) = fN2((ai bi)
∗T ; (ai bi)

(k)T ,Ωabi), (3.34)

where fN2(.; (µa µb)
T ,Ω) stands for the bivariate normal density with mean vector (µ1 µ2)T

and covariance matrix Ω =

 τ 2
ai

ρiτaiτbi

ρiτaiτbi τ 2
bi

. The quantities τ 2
ai

, τ 2
bi

and ρi are chosen such

that the acceptance ratio is about 0.44.

The acceptance probability is given by

α((ai, bi)
∗, (ai, bi)

(k)) =

min

{
1,

∏J
j=1 fCSN(x; a∗i θj − b∗i , 1,−γi)fN(ai;µ

∗
ai
, σ∗2ai )I{a∗i > 0}fN(b∗i ;µ

∗
bi
, σ∗2b )∏J

j=1 fCSN(x; a
(k)
i θj − b(k)

i , 1,−γi)fN(a
(k)
i ;µ∗ai , σ

∗2
a )I{a(k)

i > 0}fN(b
(k)
i ;µ∗bi , σ

∗2
b )

}
.

(3.35)

Although the proposal distribution given in (3.34) will eventually draw negative values for ai,

these candidates are not going to be accepted, as the prior specification for ai puts probability

mass zero on negative values.

3.4.4 Full Conditional Distribution for p

The full conditional distribution of pi = (pi0, pi1, pi2) is given by

f(pi|X, a,θ,γ,Z) ∝
I∏
i=1

pα0−1
i0 pα1−1

i1 pα2−1
i2 pZ0i

0i p
Z1i
1i p

Z2i
2i ,

∝
I∏
i=1

pZ0i+α0−1
0i pZ1i+α1−1

1i pZ2i+α2−1
2i .

(3.36)
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Therefore, pi ∼ Dirichlet(αi), where αi = (Z0i + α0, Z1i + α1, Z2i + α2), and (α0, α1, α2) are

hyperparameters assumed to be known.

3.5 Full Conditional Distribution for Z

As discussed in the introduction of Section 3.4, for computational advantages, we treat γi as two

separate Markov chains, one related to its negative values, γi−, and one related to its positive

values, γi+. Under this approach, the full conditional distribution of each Zi is proportional to

f(Zi|X, a,θ,γ) ∝ fZ0i
i0 fZ1i

i1 fZ2i
i2 pZ0i

0i p
Z1i
1i p

Z2i
2i , (3.37)

where fi0, fi1, and fi2 are defined as

J∏
j=1

fCSN(xij;mij, 1,−γi) =


fi0, for γi = 0,

fi1, for γi = γi−,

fi2, for γi = γi+.

(3.38)

Rewriting expression (3.37) we obtain

f(Zi|X, a,θ,γ) ∝
(
fi0pi0
fs

)Z0i
(
fi1pi1
fs

)Z1i
(
fi2pi2
fs

)Z2i

, (3.39)

where fs = fi0pi0 + fi1pi1 + fi2pi2. Therefore, the full conditional distribution of Zi is

Zi|. ∼Multinomial(1, p∗i0, p
∗
i1, p

∗
i2), (3.40)

where

p∗ik =
fikpik
fs

, for k = 0, 1, 2.

The computational issues related to the sampling of Z are dealt in Section 3.7.
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3.6 Full Conditional Distribution for γ− and γ+

We consider a mixture model with for γi such

γi = Zi00 + Zi1γi− + Zi2γi+, (3.41)

where γi− and γi+ represent, respectively, negative and positive values for γi. Thus, we construct

a Markov chain for γi− and for γi+ instead of a single chain for γi. Since the algebraic calculation

for γi− and for γi+ are suchlike, we define γi± to represent both quantities.

It is important to note that by using such sampling scheme, if at iteration k of the MCMC,

the model points to, say, a positive value γi+, the full conditional distribution for γi− is pro-

portional to its prior distribution. For this reason, it is reasonable to update only the skewness

parameter corresponding to the current model, that is, we update γi− if Zi1 = 1, and we update

γi+ if Zi2 = 1. If Zi0 = 1, we update the chain by assuming the symmetric model (γi = 0).

The full conditional distribution of γi± is given by

π(γi±|.) =



J∏
j=1

fCSN(xij;mij, 1, 0)fB(−γi−;αw, βw, ll, lu)fB(γi+;αw, βw, ll, lu), if Zi0 = 1,

J∏
j=1

fCSN(xij;mij, 1,−γi−)fB(−γi−;αw, βw, ll, lu)fB(γi+;αw, βw, ll, lu), if Zi1 = 1,

J∏
j=1

fCSN(xij;mij, 1,−γi+)fB(−γi−;αw, βw, ll, lu)fB(γi+;αw, βw, ll, lu), if Zi2 = 1.

(3.42)

Since it is difficult to sample directly from this distribution, we use a MH step with Gaussian

distribution for the proposal distribution with tuning parameters τ− (for γi−) and τ+ (for γi+).

Thus, the proposal distribution for γi± is given by

q(γ∗i±|γ
(k)
i± ) =

 fN(γ∗i−; γ
(k)
i− , τ

2
−), if Z

(k)
i1 = 1,

fN(γ∗i+; γ
(k)
i+ , τ

2
+), if Z

(k)
i2 = 1.

(3.43)
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In equation 3.43, γ
(k)
i− and γ

(k)
i+ denote, respectively, the current values of the chain of γi− and

of γi−, and γ∗i− and γ∗i+ denote the proposed values for γi− and γi+, respectively.

Thus, the acceptance probability for γi± is given by

α(γ∗i±, γ
(k)
i± ) = min

{
1,

∏J
j=1 fCSN(x; aiθj − bi, 1,−γ∗i±)π(γ∗i±)∏J
j=1 fCSN(x; aiθj − bi, 1,−γ(k)

i± )π(γ
(k)
i± )

}
. (3.44)

3.7 Computational Aspects

We now discuss some relevant computational aspects related to the implementation of the

proposed algorithms.

3.7.1 Sampling of X

As described in Section 3.4.1, the full conditional distribution of Xij is a truncated CSN, and

it is not possible to sample directly from it. We consider two algorithms to sample from this

distribution: a rejection sampling (RS) and an embedded Gibbs Sampler.

Notice that, when γi = 0, sampling from distribution 3.4.1 is equivalent to sample from a

truncated normal distribution. This can be done effortless by the inverse c.d.f. method, unless

the distribution is restricted to the tail of the density (outside µ− 6σ, µ+ 6σ). In that case, we

use the following accept-reject algorithm, derived by Robert (1995).

Let us denote by N(µ, σ2; a−) the normal distribution with left truncation point a−, from

which we wish to obtain samples from. Also, let Exponential(α, a−) be a translated exponential

distribution with density

g(z|α, a−) = α exp−α(z − a−)I(z > a−). (3.45)

The algorithm is given by

To sample from a CSN distribution, we use the stochastic representation by Henze (1986)

given by
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Algorithm 2 Truncated Normal Distribution Sampling

1: do
2: Generate α = (a− + (a2− + 4)1/2)/2;
3: while u > p
4: Generate p = exp(−(z − α)2/2);
5: Generate z ∼ Exponential(α, a−);
6: Generate u ∼ Uniform(0, 1);
7: return z;

Xij = mij + ψidijVij + ψi(1− d2
ij)

1/2Wij − sγ1/3
i . (3.46)

The RS algorithm to sample from a truncated CSN consists of proposing a candidate from

the non-truncated distribution and accepting the candidate if it falls into the region specified

by the truncation.

This method may be inefficient as its computational cost depends on the probability of the

region of interest, which is the global acceptance probability of the algorithm. It is likely that,

for some Xij, at some point of the MCMC, this probability will be very small due to a disparity

between the parameter values and the data. For this reason, we also consider an embedded

Gibbs Sampler. This method suggests a Gibbs sampler that alternates between the simulation

of V and W given the truncation restrictions. The fact that this has dimension 2 and W and V

are independent assures very fast convergence of the algorithm. The initial values are sampled

from Vij ∼ HN(0, 1) and then Wij|Vij = vij ∼ N(0, 1)I(wij > maij) which guarantees that we

already start in the region of interest. After a few iterations, say 10, the last simulated value is

taken.

3.7.2 Sampling of θ and (a, b)

As noticed in Section 3.4.2, we can sample from the full conditional distribution of (θj|.) and of

(ai, bi|.), which results in a fast convergence of the Markov chains. However, these simulations

can be computationally expensive. For instance, the sampling of (θj|.), as at each iteration k,

involves a Cholesky decomposition and the inversion a matrix of order I× I. And the sampling
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of (ai, bi) involves a Cholesky decomposition and the inversion of a matrix of order J × J .

Hence, the cost of the sampling from the full conditional distribution depends on the number

of items and students. A solution to optimize time is to resort to a Metropolis-Hastings step,

which is very fast, although it demands more Monte Carlo iterations to converge.

To avoid numeric problems on the Metropolis-Hastings step, it is convenient to work with

the sum of the logarithm of the densities on the product of the CSN p.d.f.

An important aspect when sampling (ai, bi) is the restriction ai > 0 ∀ i. To do so, we use

a RS algorithm, that accepts the proposed value if ai > 0. However, it is important to derive

the exact conditional full distribution of (ai, bi) since nowadays parallel computing could easily

overcome this timing issue.

3.7.3 Sampling of Z

The sampling from the full conditional distribution of Z can result in many numeric errors. The

most important problem occurs on the product in J in the expression

J∏
j=1

fCSN(xij;mij, 1,−γi) =


fi0, for γi = 0,

fi1, for γi = γi−,

fi2, for γi = γi+.

(3.47)

To relieve notation, let us denote, without loss of generality, fi0 = f0, fi1 = f1, and fi2 = f2.

Notice that we have a product of J densities. Thus, the values fc, c = 0, 1, 2 go to zero

quickly. The directly application of the logarithm function does not help, as we need that

1 =
f0

f0 + f1 + f2

+
f1

f0 + f1 + f2

+
f2

f0 + f1 + f2

, (3.48)

in order to the full conditional distribution of Z be a Multinomial.

To solve this numeric issue, we use the identity

a

a+ b+ c
=

1

1 + b
a

+ c
a

, (3.49)
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which implies that

f0

f0 + f1 + f2

=
1

1 + f1
f0

+ f2
f0

=
1

1 +
exp{f∗1 }
exp{f∗0 }

+
exp{f∗2 }
exp{f∗0 }

=
1

1 + exp{f ∗1 − f ∗0}+ exp{f ∗2 − f ∗0}
.

(3.50)

We then calculate each parcel fc, c = 0, 1, 2 of (3.48) using the result in (3.50), and the numeric

problem with (3.47) is solved for high values of J .
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Chapter 4

Simulations

In this chapter we investigate the efficiency of the proposed MCMC methodology to estimate the

parameters of the CSN-probit model. The simulated data sets vary according to the number of

students and items, and also according to the skewness of the item. The abilities were generated

from a standard Normal distribution, the discrimination parameters from a Uniform(0.7, 2),

and the difficulty parameters from a Uniform(-3, 3). All the MCMC chains run for 20.000

iterations with a burn-in of 5.000. All codes were developed in the OX language.

To sample from the full conditional distribution of X, we use the embedded Gibbs sampler

described in Section 3.4.1. The sampling of θ, (a,b), γ− and γ+ were performed via Metropolis-

Hastings. Each Zi is sampled from its full conditional distribution given by (3.40). For this

work, we set p fixed at (1/3 , 1/3 , 1/3). Simulations indicate that the posterior of Zi is very

sensitive to the choice of p.

Also, for all cases in which we sample from the full conditional distribution of γ− and γ+,

we set the prior Beta(4, 1.2), which puts significant probability mass for values outside the

interval (-0.20, 0.20).

We first present simulation results for a set of symmetric items. The sample consists of 10.000

students and 30 items. For the initial values of vector θ, we use the standard score of each

student, which consists of calculating the raw score (mean score) of each student, subtracting

it by the group average mean, and then dividing it by the group standard deviation. For the

initial values of vectors a and b, we sampled from a Uniform(0.5, 2.5) and from a Uniform(-3,3)
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distribution, respectively. For prior distributions, we considered θ ∼ N(0, 1), a ∼ N(0, 2)I(a >

0) and b ∼ N(0, 2).

Figure 4.1 shows the real values of parameters versus the estimated values (posterior mean).

As expected, the symmetric model estimates well ability, discrimination and difficulty parame-

ters. Notice that there is some loss on the precision of estimation on extreme values of ability.

This is expected as it would be needed many easy (difficult) items to better estimate these

extreme values.

(a) Ability
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(b) Discrimination

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.75

1.00

1.25

1.50

1.75

2.00

0.8 1.2 1.6 2.0
Estimated Value

R
ea

l V
al

ue
 D

is
cr

im
in

an
t

(c) Difficulty
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Figure 4.1: Real values versus estimated values (posterior mean). Black lines are x = y

Figure 4.2 shows the tracing plots of two items and one examinee. Most chains show fast

convergence. Figure 4.3 shows interval estimation (credibility interval) for parameters “a” and

“b”. Notice that the model was very efficient in the estimation of the item parameters with all

credible intervals containing the true value of the parameters, although the credibility interval

of the discrimination parameter has higher variability.

Figure 4.4 shows three estimated (solid line) and real (dashed line) ICC. The estimated

curves were very close to the real ones. Table 4.1 shows the real and estimated values for

discrimination and difficulty parameters for these three ICCs.
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Figure 4.2: Trace Plots for some chains.
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Figure 4.3: Interval estimation (credibility interval) for parameters “a”(left) and “b” (right).
Points represent real parameter values and horizontal lines represent the interval estimation.
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Figure 4.4: Estimated symmetric ICC from some items.
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Discrimination Difficulty

Item Real Estimated Real Estimated
1 1.43 1.42 2.47 2.42
8 1.27 1.34 -2.57 -2.60
29 1.99 2.16 -1.85 -1.93

Table 4.1: Real and estimated values for discrimination and difficulty parameters

Next results show the simulation outcome for a sample of 5.000 examinees and 50 items

among which three are asymmetric a prior, such that items 1 (γ1 = 0.92), item 2 (γ2 = 0.85)

and item 3 (γ1 = −0.78). The parameters θ, a and b were fixed. Figure 4.5 shows the posterior

distribution of Z. The y-axis represents the posterior mean of γ+ and of γ−, and the size of

each bubble represents the mixture posterior probability of Z (only probabilities higher then

0.5). The x-axis represents each item. For illustration purposes, let us take item 30. The

item was generated as its skewness parameter being 0 (prior skewness). The negative mixture

component had a posterior probability of 0.68, and the estimated value for the negative gamma

was -0,23. Notice that the model detects the asymmetric items correctly. The results also

indicate skewness behaviour in four other items. Table 4.2 shows the posterior probability of

Z and posterior means of γ for the detected skew items.

Item Posterior Probability Posterior Mean Prior Skewness

1 1.00 0.99 0.92
2 1.00 0.96 0.85
3 1.00 -0.99 -0.71
6 0.86 0.25 0
7 0.63 0.21 0
30 0.68 -0.23 0
45 0.89 -0.27 0

Table 4.2: Posterior distribution of Z and posterior mean of γ for detected asymmetric items.

Although some items (symmetric a priori) were estimated as asymmetric, the observed

data set were better fitted by the asymmetric link, which is supported by the fact that the

likelihood of the asymmetric model was higher than the likelihood of the symmetric model when

evaluated with the posterior mean of the parameters. It is worthy noticing that the symmetric
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Figure 4.5: Posterior distribution of Z and posterior mean for γ. Items asymmetric are: 1
(γ1 = 0.92), 2 (γ2 = 0.85) and 3 (γ1 = −0.78).

and asymmetric probit ICC are similar even for moderated levels of skewness. Additionally,

the skewness parameter is known to be hard to be estimated (Arellano-Valle & Azzalini, 2008,

see), which is even worse in our case since the SN variables are not observed.

Because of timing issue, the simulation results considering the estimation of all parameter

are going to be presented in future works. We acknowledge, however, that a more extensive

analysis should be done in order to evaluate possible fragilities and advantages of the proposed

methodology.
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Chapter 5

Final Remarks

This work proposes a flexible item response model able to accommodate both symmetric and

asymmetric item characteristic curves based on the centered skew normal distribution. One

of the most important contributions of this work is to consider a finite mixture of Beta distri-

butions and a point mass at zero to describe the uncertainty about the skewness parameter.

Consequently, such a strategy also provides an intrinsic methodology for model selection. We

offer the full condition distribution of ability, discrimination and difficulty parameters. We also

propose efficient algorithms, based on MCMC methods, to sample from the posterior distribu-

tion. The presented methodology is as general as the one proposed in Bazán et al. (2006), as

both cover symmetric and asymmetric links. However, our model is more parsimonious because

items are not all assumed asymmetric a priori, which also leads to lower computational cost.

Simulation studies performed well in situations where some parameters were fixed. A more

general study where all the parameters are estimated will be reported in future work. We

acknowledge that reasonable results rely on properly choices for the prior distributions.

For future work, we intent to do a sensitive analysis of prior specifications of skewness

parameter and p. Also, we intent to do a sensitive analysis on the estimation impact of different

levels of skewness based on different sample sizes (for both number of examinees and items).

Additionally, we intent to sample θ and (a, b) directly from its full condition distribution,

which could be done by parallel computation.
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5.1 Full Conditional Distribution for θ

The full model from which we wish to sample is given by expression (3.16) in Chapter 3. From

this later expression, the full conditional distribution for each θj, conditional on X,Z,γ, a and

b is

f(θj|X,Z, a,b,γ) ∝

[
I∏
i=1

fCSN(xij;mij, 1,−γi)

]
fN(θj;µ

∗
θ, σ

∗2
θ ), (5.1)

where mij = aiθj − bi, µ∗θ and σ∗2θ are the hyperparameters of the prior of θ, and

fCSN(xij; aiθj − bi, 1,−γi) ∝ φ

(
xij + sγ

1/3
i −mij

ϕi

)
Φ

(
g(γi)

(
xij + sγ

1/3
i −mij

ϕi

))
. (5.2)

where g(γi) =
sγ

1/3
i√

r2 + s2γ
2/3
i (r2 − 1)

, s =

(
2

4− π

)1/3

, r =
√

2/π, and ϕi =

√
1 + s2γ

2/3
i .

In order to make the algebraic manipulations of (5.1) easier, let us first solve the product

given by

I∏
i=1

φ

(
xij + sγ

1/3
i −mij

ϕi

)
φ

(
θj − µθ∗
σ∗2θ

)
∝

∝ exp

−1

2

I∑
i=1

(
xij −mij + sγ

1/3
i

ϕi

)2
 exp

{
−1

2

(θj − µ∗θ)2

σ∗2θ

}

∝ exp

{
−1

2

I∑
i=1

1

ϕ2
i

(
(xij − aiθj)2 + 2(xij − aiθj)(bi + sγ

1/3
i ) + (bi + sγ

1/3
i )2 +

(θj − µ∗θ)2

σ∗2θ
ϕ2
i

)}

∝ exp

{
−1

2

I∑
i=1

1

ϕ2
i

(
−2aiθjxij + a2

i θ
2
j + 2(−aibiθj + aiθjsγ

1/3
i ) +

θ2
j

σ∗2θ
ϕ2
i −

2θjµ
∗
θ

σ∗2θ
ϕ2
i

)}

∝ exp

{
−1

2

(
θ2
j

I∑
i=1

a2
i

ϕ2
i

+
θ2
j

σ∗2θ
− 2θj

I∑
i=1

aixij
ϕ2
i

− 2θj

I∑
i=1

aibi
ϕ2
i

− 2θj

I∑
i=1

aisγ
1/3
i

ϕ2
i

− 2θjµ
∗
θ

σ∗2θ

)}
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∝ exp

{
−1

2

(
θ2
j

(
I∑
i=1

a2
i

ϕ2
i

+
1

σ∗2θ

)
− 2θj

(
I∑
i=1

aixij + aibi + aisγ
1/3
i

ϕ2
i

+
µ∗θ
σ∗2θ

))}
(5.3)

Equation (5.3) is proportional to the univariate normal distribution given by

f(θ|µθ, σ2
θ) ∝ exp

{
−1

2

(
θ2

σ2
θ

− 2θµθ
σ2
θ

+
µ2
θ

σ2
θ

)}
. (5.4)

Now, we equate quantities (5.3) and (5.4) such as

θ2
j

σ2
θj

= θ2
j

(
I∑
i=1

a2
i

ϕ2
i

+
1

σ∗2θ

)
,

σ2
θj

=
σ2∗
θ

σ2∗
θ

∑I
i=1

a2i
ϕ2
i

+ 1
. (5.5)

To derive µθ, we equate equations

−2θ
µθj
σ2
θ

= −2θj

(
I∑
i=1

ai(xij + bi + sγ
1/3
i )

ϕ2
i

+
µ∗θ
σ∗2θ

)
,

µθj = σ2
θ

(
I∑
i=1

ai(xij + bi + sγ
1/3
i )

ϕ2
i

+
µ∗θ
σ∗2θ

)
. (5.6)

Now, for the product of the I c.d.f. in (5.3) we have

I∏
i=1

Φ

(
g(γi)

(
xij + sγ

1/3
i − aiθj + bi
ϕi

))
=

I∏
i=1

Φ

(
−θjai

g(γi)

ϕi
+ (xij + sγ

1/3
i + bi)

g(γi)

ϕi

)
= ΦI(Wθj − ηj ; 1I). (5.7)

Column vectors W and ηj are
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W =


−a1c1

−a2c2

...

−aIcI

 ,ηj =


ci(x1j + sγ

1/3
1 + b1)

c2(x2j + sγ
1/3
1 + b2)

...

cI(xIj + sγ
1/3
I + bI)

 , (5.8)

where c =
g(γi)

ϕi
.

Remark: When γi = 0, it follows that ϕ2
i = 1+s2γ2/3 = 1, and we go back in the symmetric

case. In this case, the full conditional distribution of each θj is

θj|X,Z, a,b ∼ N(µθj , σ
2
θ), (5.9)

where

σ2
θ =

σ2∗
θ

σ2∗
θ

∑I
i=1 a

2
i + 1

,

µθj = σ2
θ

(
I∑
i=1

ai(xij + bi) +
µ∗θ
σ∗2θ

)
.

5.2 Full Conditional Distribution for (a, b)

To obtain the full conditional distribution for (a, b), we must notice that, given X, γ, and θ,

the pairs (ai, bi) are independent. Therefore, we can simulate from each pair (ai, bi) separately,

and it is equivalent of simulate from the whole vector (a, b).

It follows from (3.25), in Chapter 3, that the full conditional distribution for each (ai, bi),

conditional on X,Z,γ, θ is

f(ai, bi|X,θ,γ) ∝
J∏
j=1

fCSN(xij;mij, 1,−γi)fN(ai;µ
∗
a, σ

∗2
a )I{ai > 0}fN(bi;µ

∗
b , σ

2∗
b ), (5.10)
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where the CSN density is given by

fCSN(xij;mij, 1,−γi) ∝ φ

(
xij + sγ

1/3
i −mij

ϕi

)
Φ

(
g(γi)

(
xij + sγ1/3 −mij

ϕi

))
, (5.11)

where (γi) =
sγ

1/3
i√

r2 + s2γ
2/3
i (r2 − 1)

, s =

(
2

4− π

)1/3

, r =
√

2/π, and ϕi =

√
1 + s2γ

2/3
i .

We first derive the product of the J normal p.d.f. in equation (5.10) which is given by

I∏
i=1

φ

(
xij + sγ

1/3
i −mij

ϕi

)
φ

(
ai − µ∗a
σ∗2a

)
φ

(
bi − µ∗b
σ∗2b

)
∝

∝ exp

{
−1

2ϕ2
i

(
J∑
j=1

(xij + sγ
1/3
i − (aiθj − bi))2

)}
exp

{
−1

2

(
(ai − µ∗a)2

σ∗2a
+

(bi − µ∗b)2

σ2∗
b

)}
I{ai > 0}

∝ exp

{
−1

2ϕ2
i

(
J∑
j=1

((xij − aiθj) + (bi + sγ
1/3
i ))2 +

(ai − µ∗a)2

σ∗2a
ϕ2
i +

(bi − µ∗b)2

σ2∗
b

ϕ2
i

)}
I{ai > 0},

∝ exp

{
−1

2ϕ2
i

(
J∑
j=1

(−2xijaiθj + 2xijbi + a2
i θ

2
j − 2aibiθj − 2aisγ

1/3
i θj + b2

i + 2bisγ
1/3
i )

+
(ai − µ∗a)2

σ∗2a
ϕ2
i +

(bi − µ∗b)2

σ2∗
b

ϕ2
i

)}
I{ai > 0}.

(5.12)

After some arrangements, equation (5.12) becomes

∝ exp

{
−1

2

(
a2
i

(∑J
j=1 θ

2
j + ϕ2

iσ
−2∗
a

ϕ2
i

)
+ b2

i

(
J + ϕ2

iσ
−2∗
b

ϕ2
i

)

− 2ai

(∑J
j=1 xijθj + sγ

1/3
i

∑J
j=1 θj + ϕ2

iµ
∗
aσ
∗−2
a

ϕ2
i

)
− 2bi

(−∑J
j=1 xij − Jsγ

1/3
i + ϕ2

iµ
∗
bσ
∗−2
b

ϕ2
i

)
− 2aibi

(∑J
j=1 θj

ϕ2
i

))}
I{ai > 0}. (5.13)
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Equation (5.13) is proportional to a bivariate normal distribution of the form

f(ai, bi) ∝ exp

{
−1

2

(
a2

(
1

σ2
a(1− ρ2)

)
+ b2

(
1

σ2
b (1− ρ2)

)
− 2a

(
µa

σ2
a(1− ρ2)

− ρµb
σaσb(1− ρ2)

)

− 2b

(
µb

σ2
b (1− ρ2)

− ρµa
σaσb(1− ρ2)

)
− 2ab

(
ρ

σaσb(1− ρ2)

))}
, (5.14)

From expressions and (5.13) and (5.14) and equating the proper parts we can derive the quan-

tities ρ, σai , σbi , µai , µbi

a2
i

σ2
ai

(1− ρ2)
= a2

i

(∑J
j=1 θ

2
j + ϕ2

iσ
−2∗
a

ϕ2
i

)

σ2
ai

=

(
σ∗2a ϕ

2
i

σ∗2a
∑J

j=1 θ
2
j + ϕ2

i

)
1

(1− ρ2)
, (5.15)

b2
i

σ2
bi

(1− ρ2)
= b2

i

(
J + ϕ2

iσ
−2∗
b

ϕ2
i

)
σ2
bi

=

(
σ2∗
b ϕ

2
i

σ2∗
b J + ϕ2

i

)
1

(1− ρ2)
, (5.16)

−2aibi
ρ

(1− ρ2)σaiσbi
= −2aibi

∑J
j=1 θj

ϕ2
i

. (5.17)

Solving the system of equations (5.15), (5.16), and (5.17) we have that

ρ =
σ∗aiσ

∗
bi

∑J
j=1 θj[(

σ∗2a
∑J

j=1 θ
2
j + ϕ2

i

)
(σ2∗

b J + ϕ2
i )
]1/2

. (5.18)

The means µai and µbi are obtained by solving the following equations:
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−2ai

(
µai

σ2
ai

(1− ρ2)
− ρ

(1− ρ2)

µbi
σaiσbi

)
= −2ai

(∑J
j=1 xijθj + sγ

1/3
i

∑J
j=1 θj + ϕ2

iµ
∗
aσ
∗−2
a

ϕ2
i

)
(5.19)

−2bi

(
µbi

σ2
bi

(1− ρ2)
− ρ

(1− ρ2)

µai
σbiσai

)
= −2bi

(
−
∑J

j=1 xij − Jsγ
1/3
i + ϕ2

iµ
∗
bσ
∗−2
b

ϕ2
i

)
(5.20)

Equation (5.19) leads to

µai =
σai
σbi

ρµbi + σ2
ai

(1− ρ2)

(∑J
j=1 xijθj + sγ

1/3
i

∑J
j=1 θj + ϕ2

iµ
∗
aσ
∗−2
a

ϕ2
i

)
. (5.21)

Replacing (5.21) in (5.20), we obtain

µbi =
σbi
σai

ρµai − σ2
bi

(1− ρ2)

(∑J
j=1 xij + Jsγ

1/3
i − ϕ2

iµ
∗
bσ
∗−2
b

ϕ2
i

)

=
σbi
σai

ρ

(
σai
σbi

ρµbi + σ2
ai

(1− ρ2)

(∑J
j=1 xijθj + sγ

1/3
i

∑J
j=1 θj + ϕ2

iµ
∗
aσ
∗−2
a

ϕ2
i

))

− σ2
bi

(1− ρ2)

(∑J
j=1 xij + Jsγ

1/3
i − ϕ2

iµ
∗
bσ
∗−2
b

ϕ2
i

)

= ρ2µbi + σaiσbiρ(1− ρ2)

(∑J
j=1 xijθj + sγ

1/3
i

∑J
j=1 θj + ϕ2

iµ
∗
aσ
∗−2
a

ϕ2
i

)

− σ2
bi

(1− ρ2)

(∑J
j=1 xij + Jsγ

1/3
i − ϕ2

iµ
∗
bσ
∗−2
b

ϕ2
i

)

= σaiσbiρ

(∑J
j=1 xijθj + sγ

1/3
i

∑J
j=1 θj + ϕ2

iµ
∗
aσ
∗−2
a

ϕ2
i

)
− σ2

bi

(∑J
j=1 xij + Jsγ

1/3
i − ϕ2

iµ
∗
bσ
∗−2
b

ϕ2
i

)
.

(5.22)

Finally, replacing (5.22) in (5.21), we obtain the final expression for µai , which is given by
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µai =
σai
σbi

ρ

(
σaiσbiρ

(∑J
j=1 xijθj − sγ

1/3
i

∑J
j=1 θj + ϕ2

iµ
∗
aσ
∗−2
a

ϕ2
i

)
−σ2

bi

(∑J
j=1 xij + Jsγ

1/3
i − ϕ2

iµ
∗
bσ
∗−2
b

ϕ2
i

))
+σ2

ai
(1−ρ2)

(∑J
j=1 xijθj + sγ

1/3
i

∑J
j=1 θj + ϕ2

iµ
∗
aσ
∗−2
a

ϕ2
i

)

= σ2
ai

(∑J
j=1 xijθj + sγ

1/3
i

∑J
j=1 θj + ϕ2

iµ
∗
aσ
∗−2
a

ϕ2
i

)
− σaiσbiρ

(∑J
j=1 xij + Jsγ

1/3
i − ϕ2

iµ
∗
bσ
∗−2
b

ϕ2
i

)
.

(5.23)

Now, for the product of the J c.d.f. in (5.10) we have

J∏
i=1

Φ

(
g(γi)

(
xij + sγ

1/3
i − aiθj + bi
ϕi

))
=

J∏
i=1

Φ

(
−aiθj

g(γi)

ϕi
+ bi

g(γi)

ϕi
+ (xij + sγ

1/3
i )

g(γi)

ϕi

)
= ΦJ((ai bi)Wi − ηi). (5.24)

The matrix Wi of order 2× J and column vector ηi are then

Wi =


−θ1ci ci

−θ2ci ci
...

...

−θJci ci

 ,ηi =


ci(xi1 + sγ

1/3
i )

c2(xi2 + sγ
1/3
i )

...

ci(xiJ + sγ
1/3
i )

 , (5.25)

where ci =
g(γi)

ϕi
.

Remark: When γi = 0, it follows that ϕ2
i = 1+s2γ

2/3
i = 1, and we turn back to the symmetric

case. In this case, the full conditional distribution of each pair (ai, bi) is the truncated bivariate

normal distribution given by

(ai, bi) | X,Z,θ ∼ N2((ai bi)
T ; (µai µbi)

T ,Σi;A), (5.26)
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where A = (ai, bi) ∈ R : ai > 0,

ρ =
σ∗aσ

∗
b

∑J
j=1 θj[(

σ∗2a
∑J

j=1 θ
2
j + 1

)
(σ2∗

b J + 1)
]1/2

,

σ2
a =

(
σ∗2a

σ∗2a
∑J

j=1 θ
2
j + 1

)
1

(1− ρ2)
,

σ2
b =

(
σ2∗
b

σ2∗
b J + 1

)
1

(1− ρ2)
,

µai = σ2
ai

(
J∑
j=1

xijθj + µ∗aσ
∗−2
a

)
− σaiσbiρ

(
J∑
j=1

xij − µ∗bσ∗−2
b

)
,

µbi = σaσbρ

(
J∑
j=1

xijθj + µ∗aσ
∗−2
a

)
− σ2

b

(
J∑
j=1

xij − µ∗bσ∗−2
b

)
.

5.3 Generalized Beta Distribution

The skewness parameter γ has its support on (-0.99527, 0.99527). Therefore, we define a more

general Beta distribution, which does not restrict its support to the interval (0, 1).

The probability density function of the beta distribution, for a ≤ x ≤ b, and shape param-

eters α, β > 0,is given by

f(x) =
(x− a)α−1(b− x)β−1

B(α, β)(b− a)α+β−1
, α, β > 0, (5.27)

where B(p,q) is the beta function defined by

B(α, β) =

∫ 1

0

tα−1(1− t)β−1dt. (5.28)

The variance of X is given by
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V ar[X] = (b− a)2 αβ

(α + β)2(α + β + 1)
, (5.29)

and the mean is given by

E[X] = a+ (b− a)
α

(α + β)
. (5.30)

The case where a = 0 and b = 1 is called the standard beta distribution. The equation for

the standard beta distribution is

f(x) =
xα−1(1− x)β−1

B(α, β)
0 ≤ x ≤ 1; α, β > 0. (5.31)

For α, β > 1 it is valid:

f(x;α, β) = f(1− x; β, α). (5.32)

Simulation of a generalized beta distribution can be done in terms of the standard beta

distribution F (x). First, we generate x from the standard beta distribution. Then we do

the linear transformation y = x(b − a) + a, where a and b are the lower and upper bounds,

respectively, as before.
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