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Resumo

A modelagem estat́ıstica de dados pontuais é um problema importante e comum em

diversas aplicações. Um importante processo pontual, e uma generalização do processo

de Poisson, é o processo de Cox, em que a sua função intensidade é também estocástica.

O presente trabalho se concentra nos processos de Cox em que sua função intensidade

é uma cadeia de Markov em tempo cont́ınuo com espaço de estados finito. Estes

processos são referidos como processos de Cox com mudanças Markovianas (PCMM).

Algumas propriedades probabiĺısticas desses processos são investigadas, três novos teo-

remas enunciados e é desenvolvida uma metodologia Bayesiana para realizar inferência

exata, baseada em algoritmos MCMC. O desenvolvimento de uma metodologia exata

é facilitado, uma vez que a função de verossimilhança é tratável. São apresentados

estudos simulados a fim de investigar a eficiência da metodologia para estimação da

função intensidade dos PCMM’s e dos parâmetros relacionados a ela. Ao fim, realiza-se

uma análise com dados reais.
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Abstract

Statistical modelling of point patterns is an important and common problem in

several applications. An important point process, and a generalisation of the Poisson

process, is the Cox process, where the intensity function is itself stochastic. We focus

on Cox processes in which the intensity function is driven by a finite state space

continuous-time Markov chain. We refer to these as Markov switching Cox processes

(MSCP). We investigate some probabilistic properties of these processes, three new

theorems for these processes are derived and we develop a Bayesian methodology to

perform exact inference based on MCMC algorithms. Since the likelihood function is

tractable, it facilitates the development of an exact methodology. Simulated studies

are presented in order to investigate the efficiency of the methodology on the estimation

of MSCP’s intensity function and the parameters indexing its law. Finally, an analysis

with real data is performed.
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Chapter 1

Introduction

Statistical modelling of point patterns is an important and common problem in several

applications. In general, one is interested in modelling the occurrences of a given

event of interest in a given region. If this is a region in R, it is commonly interpreted

as time, meaning that one is modelling the occurrences of that event over a period

of (continuous) time. If Rd with d ≥ 2 is considered, it is interpreted as a region

itself. Examples of the first case can be found in Daley and Vere-Jones (2003) and of

the second case in Møller and Waagepetersen (2003). More general approaches also

consider that the pattern is observed in a region of Rd with d ≥ 2 at multiple instants

of time (see Gonçalves and Gamerman). Applications can be found in queueing theory

(Brémaud, 1981), finances (Rolski et al., 1999), medical and biology fields (Tong Zhou

et al., 1998) and many others.

The most widely used point process is the (homogeneous) Poisson process (PP),

in which the number of events in a given region has a Poisson distribution and the

point patterns of non-overlapping regions is independent - this property is referred

to as stochastic independence. This process has constant rate, that is, the expected

number of events in a sub-region is equal for any sub-region with the same size.

A possible generalisation of PP is the non-homogeneous Poisson process (NHPP),

which allows the rate to vary across the considered region. Thus, the expected number

of events can be different for distinct sub-regions with the same size, that is, one sub-

region may be more leaning to the occurrence of events than the others. Further ahead

in the text, the PP and NHPP will be properly defined and we only consider point
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processes on R, therefore, the regions are interpreted as time.

Another generalisation, introduced by Cox (1955), is the doubly stochastic Poisson

process, also known as the Cox process (CP), which is a NHPP where its intensity

function is itself a stochastic process. While the PP has constant rate and the inten-

sity of the NHPP is a deterministic function, the CP is more flexible to model real

data where the intensity function is unknown. The CP has been applied in different

contexts, e.g., bursts of rainfall (Smith and Karr, 1983), neuroscience (Amarasingham

et al., 2006; Cunningham et al., 2008), finances (Lando, 1998; Dassios and Jang, 2003)

and others.

There are many possibilities to describe the dynamics of the intensity function and

a widely used class is the log Gaussian Cox process (Møller et al., 1998; Basu and

Dassios, 2002). Some other classes can be found in the literature. We focus on Cox

processes in which the intensity function is driven by a finite state space continuous-

time Markov chain (CTMC) (Taylor and Karlin, 1998; Serfozo, 1972). We shall refer

to these as Markov switching Cox processes.

The main objectives of this work are to investigate some probabilistic properties of

the proposed process and develop a Bayesian methodology to perform exact inference.

The exact inference does not use numerical approximations based on time discretisa-

tion schemes, which means that only Monte Carlo error is involved. Thus, the exact

approach eliminates the bias introduced by discretisation schemes. Moreover, Monte

Carlo error is easy to be controlled. The proposed inference methodology consists of a

Monte Carlo Markov Chain (MCMC) algorithm that converges to the exact posterior

distribuion of the unknown quantities, which may include: the intensity function, the

states of the CTMC and the parameters indexing the law of the CTMC.

The dissertation is organised as follows: Chapter 2 contains a brief review of Markov

chain theory and Poisson processes. The definitions, properties and theorems presented

provide the required background on Markov chains to understand the work in the

dissertation. Some simulations are also presented. If the reader is comfortable with

this theory, this chapter may be skipped. Chapter 3 presents the Markov switching

Cox processes. Three important results are derived for these processes and some

properties when the intensity is a two-state Markov chain are shown together with
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some simulation examples. In Chapter 4 we propose a Bayesian methodology for

exact inference. Chapter 5 contains some simulation studies for different scenarios and

an analysis with real data is performed. The data are the number of traffic accidents

along a highway. Some conclusions and future work is discussed in Chapter 6.
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Chapter 2

Markov Chains

In this chapter a brief review of Markov chains theory and Poisson process is presented.

Section 2.1 shows discrete-time and continuous-time Markov chains. Some simulation

studies for discrete-time Markov chains are also presented with an algorithm to simu-

late a continuous-time Markov chain. A formal definition and some properties of the

Poisson process are presented in Section 2.2, along with an example and two different

algorithms to simulate a PP. Also, an important result for PP’s simulation is reported.

Section 2.3 presents the non-homogeneous Poisson process and the Poisson thinning

algorithm.

2.1 Markov chain theory

Formally, given a probability space (Ω,F , P ) a univariate stochastic process is a col-

lection {Xt : t ∈ T}, where Xt, t ∈ T , is a random variable on Ω taking values in a

set E ⊂ R. Here T is an index set and denotes the time, which may be discrete or

continuous. Also, E is called the state space and may also be discrete or continuous,

but we will only consider the discrete case.

There are many sorts of stochastic processes and we shall discuss exclusively those

where the future behaviour of the process is independent of its past given its present

state. This memoryless property of a stochastic process is known as the Markov

property. The formal definition is the following.

Definition 2.1. Let 0 ≤ n1 < n2 < · · · < nm < n, xn1 , xn2 , . . . , xnm ∈ E and A ⊂ E.

4



We say that the process satisfies the Markov property if:

P (Xn ∈ A|Xn1 = xn1 , Xn2 = xn2 , . . . , Xnm = xnm) = P (Xn ∈ A|Xnm = xnm).

Let m < n and X = {Xn : n ≥ 0} be a stochastic process, then the process

increment is defined as Xn−Xm. The process X is said to have independent increments

if its increments for any disjoint time intervals are independent. When the distribution

of Xn − Xm depends only on the time interval length the process is said to have

stationary increments.

In the following sections we shall present the main definitions and results for Markov

chains. A detailed presentation of Markov chains theory may be found in Norris (1998)

and Ross (1996).

2.1.1 Discrete-time Markov chains

A discrete-time Markov chain (DTMC) is a Markov process whose index set is finite

or countable, i.e., T ⊂ {0}∪N. Each i ∈ E is called a state and is a possible value for

Xn. It is common to say that Xn is at state i if Xn = i.

Let φ = (φi : i ∈ E) be a vector of probabilities such that φi > 0 and
∑

i∈I φi = 1,

then φ is called the distribution of X0 if φi = P (X0 = i). Also, P = (pi,j : i, j ∈ E) is

a stochastic matrix if every row (pi,j : j ∈ I) is a distribution. Later we will call P a

transition matrix. A DTMC is completely defined once their transition probabilities

and probability distribution of X0 are specified.

Definition 2.2. {Xn : n ≥ 0} is DTMC with initial distribution φ and transition

matrix P if for n ≥ 0 and i, i1, . . . , in+1 ∈ E:

(i) X0 has distribution φ, P (X0 = i) = φi;

(ii) P (Xn+1 = in+1|X0 = i, · · · , Xn = in) = pinin+1.

The matrix P gives the one-step transition probabilities of the chain. It can be

proved that the n-step transition probabilities are given by the n-th power of P. Thus,

P (Xn = j) = (φP n)j, n ≥ 0,
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where (φP n)j is the j-th row of the new matrix formed by the product of vector φ and

P n. Also

Pi(Xn = j) := P (Xm+n = j|Xm = i) = p
(n)
ij , ∀n and m ≥ 0, (2.1)

where p
(n)
ij is the (i, j) entry of P n. If Equation (2.1) holds for all m ≥ 0, the DTMC

is called homogeneous.

State j is said to be accessible from state i (i → j) if p
(n)
ij > 0 for some n ≥ 0. If

both i → j and j → i occur we say that i communicates with j and write i ↔ j. A

chain or transition matrix P is called irreducible when all the states communicate.

A state i is said to be recurrent if it is always possible to return to it, i.e.,

Pi(Xn = i for infinitely many n) = 1.

If in addition the expected return time to state i is finite, then i is said positive

recurrent. A recurrent state which fails to have this stronger property is called null

recurrent. A state i is transient if

Pi(Xn = i for infinitely many n) = 0.

Every state is either recurrent or transient. If the chain or transition matrix P is

irreducible then all states have the same recurrence or transience property. In this

case, the chain is said either recurrent or transient.

Understanding the long-time behaviour of a Markov chain comes down to under-

standing the behaviour of P n for large n. The invariant distribution for P is π if

πP = π and, in this case, it is also called the stationary distribution. This invariant

distribution does not always exist and we will show the conditions for the process to

have it. State i is aperiodic if and only if the set {n ≥ 0 : p
(n)
ii > 0} has no common

divisor other than 1.

If a chain is irreducible, aperiodic and positive recurrent it is said to be an ergodic

chain. This definition will be used for the following theorems.

Theorem 2.3 (Convergence to equilibrium). If {Xn : n ≥ 0} is an ergodic chain,

6



then:

(i) Exist an invariant distribution π and it is unique;

(ii) P (Xn = j)→ πj as n→∞ ∀j.

In particular,

p
(n)
ij → πj as n→∞ ∀i, j.

The following ergodic theorem is a version of the strong law of large numbers for

DTMC.

Theorem 2.4 (Ergodic theorem). Let {Xn : n ≥ 0} be an ergodic chain. Then, for

any bounded function f : E → R we have

P

(
1

n

n−1∑
k=0

f(Xk)→ f as n→∞

)
= 1,

where

f = Eπ(f) =
∑
i∈I

πifi.

Furthermore it is possible to estimate an unknown transition matrix P on the

basis of observations of the corresponding DTMC. The maximum likelihood estimator

(MLE) for pij is given by

p̂ij =
N−1∑
n=0

I{Xn = i,Xn+1 = j}/
N−1∑
n=0

I{Xn = i},

where N is the total number of observed transitions.

Estimating this probability is analogous to the estimation of a discrete probability

distribution. In the case that the chain is recurrent p̂ij is consistent, i.e., P (p̂ij →

pij when N →∞) = 1.

2.1.2 Continuous-time Markov chains

A continuous-time Markov chain (CTMC) is a Markov process which index set is

uncountable, i.e., T ⊂ {0} ∪ R+. We shall restrict our attention to processes {Xt :

t ≥ 0} which are right-continuous. The theory follows a very similar pattern as the
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DTMC case. When T is uncountable is not possible to define a transition matrix P

as in Section 2.1.1. Therefore, we will define a matrix to make it possible to evaluate

the behaviour of the chain.

Definition 2.5. Let E be a countable set. A Q-matrix on E is a matrix Q = (qij :

i, j ∈ E) satisfying the following conditions:

(i)
∑

j∈I qij = 0, ∀i;

(ii) qij > 0, ∀i 6= j;

(iii) 0 ≤ −qii <∞, ∀i.

For notation, set −qii = qi. Note that, qi =
∑

j∈I and j 6=i qij. We shall later

interpret qi as the rate of leaving state i and qij for i 6= j as the rate of going from i

to j when living i.

For a fixed t and finite state space E, the transition probabilities can be obtained

by

P (t) = etQ =
∞∑
k=0

(tQ)k

k!
, (2.2)

then, P (t) is a stochastic matrix and Pi(Xt = j) := P (Xt = j|X0 = i) = pij(t), where

pij(t) is the entry of the matrix P (t) corresponding to the i-th row and j-th column.

Every path of a CTMC is a right-continuous step-function. The initial distribution

φ (distribution of X0) and Q-matrix Q define a CTMC.

The jump matrix Π = (πij : i, j ∈ I) of Q-matrix Q is defined by

πij =

qij/qi, if j 6= i and qi 6= 0,

0, if j 6= i and qi = 0.

πii =

0, if qi 6= 0,

1, if qi = 0.

Note that Π is a stochastic matrix. The process {Yn : n ≥ 0} with transition matrix

Π is said to be a jump chain.

8



The process dynamics is given by exponential waiting times with parameter qi and

transitions probability according to jump matrix Π.

The notion of accessibility, communicating states and irreducibility in a CTMC are

inherited from the jump chain, thus is the same as in DTMC.

For continuous time, a state i is said to be recurrent if

Pi({t ≥ 0 : Xt = i} is unbounded) = 1.

Moreover, when qi = 0 or the expected return time to i is finite, then i is said to be

positive recurrent. Otherwise, if the expected return time is infinite, the state is null

recurrent. A state i is called transient if

Pi({t ≥ 0 : Xt = i} is unbounded) = 0.

Also, if state i is recurrent (transient) for the jump chain {Yn : n ≥ 0}, then i is

recurrent (transient) for {Xt : t ≥ 0}. If the chain is irreducible, then every state is

either recurrent or transient.

In CTMC, γ is called an invariant distribution if γQ = 0, or equivalently, if γP (s) =

γ for a given s > 0. The next theorem establishes when the invariant distribution

exists.

Theorem 2.6 (Convergence to equilibrium). Let Q be an irreducible and positive

recurrent Q-matrix and P (t) = etQ. Then:

(i) Exist an invariant distribution γ and it is unique;

(ii) pij(t)→ γj as t→∞ ∀i, j ∈ E.

The ergodic theorem for a CTMC is given below. It does not requires the chain to

be aperiodic as in Theorem 2.4.

Theorem 2.7 (Ergodic theorem). Let Q be an irreducible and positive recurrent

Q-matrix. Then, for any bounded function f : E → R we have

P

(
1

t

∫ t

0

f(Xs)ds→ f as t→∞
)

= 1,

9



where

f = Eγ(f) =
∑
i∈I

γifi.

2.1.3 Simulations

A numerical example is done to illustrate some estimates of DTMC’s. We simulate a

DTMC and estimate the invariant distribution π.

Let P be an irreducible and aperiodic matrix, with finite state space E. Let n0

be a number such that P n0 = P n0+1, that is, the chain is stationary from the n0-

step onwards. We proceed in two different ways: firstly, we simulate N DTMC’s

{Xn : 0 ≤ n ≤ n0} and use the sample of Xn0 to estimate π; secondly, we simulate a

DTMC {Xn : 0 ≤ n ≤ n0 +N} and use the sample Xn0+1, · · · , Xn0+N to estimate π.

The first estimator is given by

π̂j(1) =
N∑
n=1

I{X(n)
n0

= j}/N,

where X
(n)
n0 is the state of the n-th chain at time n0. We have that,

E(π̂j(1)) = E

[∑N
n=1 I{X

(n)
n0 = j}

N

]
=
NE

[
I{X(1)

n0 = j}
]

N

= P
(
X(1)
n0

= j
)

= πj

and

V ar(π̂j(1)) = V ar

[∑N
n=1 I{X

(n)
n0 = j}

N

]
=
NV ar

(
I{X(1)

n0 = j}
)

N2

=
P
(
X

(1)
n0 = j

) [
1− P

(
X

(1)
n0 = j

)]
N

=
πj(1− πj)

N
.

Let Xn be the state at time n. Then, the second estimator is given by

π̂j(2) =

n0+N∑
n=n0+1

I{Xn = j}/N.

10



Again, we have,

E(π̂j(2)) = E

[∑n0+N
n=n0+1 I{Xn = j}

N

]
=

∑n0+N
n=n0+1 P (Xn = j)

N

=
NP (Xn0+1 = j)

N
= πj

and

V ar(π̂j(2)) = V ar

[∑n0+N
n=n0+1 I{Xn = j}

N

]

=
πj(1− πj)

N
+ 2πj

∑
n0+1≤n1<n2≤n0+N

(P n2−n1
jj − πj)/N2.

Note that both estimators are unbiased and the variance of the first estimator is

smaller.

For the numerical example, we use a matrix P such that π = (0.083, 0.706, 0.211)

and n0 = 10. Table 2.1 shows the results. Note that π̂(1) converges faster than π̂(2)

due to its smaller variance.

N Estimation 1 (by π̂(1)) Estimation 2 (by π̂(2))
100 (0.050,0.730,0.220) (0.040,0.780,0.180)
1000 (0.076,0.679,0.245) (0.088,0.731,0.181)
5000 (0.080,0.702,0.218) (0.078,0.726,0.196)
15000 (0.083,0.706,0.211) (0.079,0.704,0.217)
20000 (0.083,0.706,0.211) (0.083,0.706,0.211)

Table 2.1: Invariant distribution estimates for DTMC.

In order to simulate a CTMC, the following algorithm can be used. It is used to

simulate a sample path of the CTMC {Xt : 0 ≤ t ≤ T} that begins at state a, i.e.,

X0 = a.

Algorithm 1 (Forward sampling).

1. Generate τ ∼ exponential(qa). If τ ≥ T , stop and Xt = a for all t ∈ [0, T ];

11



2. if τ < T , choose a new state c 6= a from a discrete probability distribution

with probability masses qac/qa. Go back to step 1 with new beginning state

c.

2.2 Poisson process

A Poisson process X = {X(t) : t ≥ 0} is a counting process, that is, X(t) represents

the total number of events that have occurred in a given region. We consider PP’s on

the real line and, therefore, the regions are time intervals and X(t) is the total number

of events in a time interval [0, t]. Note that a PP is a CTMC. The theory described

throughout this section is also presented in Norris (1998).

Definition 2.8. A homogeneous Poisson process of rate λ (PP(λ)) on R+ is a CTMC

with X(0) = 0 and Q-matrix

Q =


−λ λ

−λ λ

. . .
. . .

 ,

with E = {0} ∪ N.

We shall denote each event as a jump of the Markov chain or as a point. Such

jumps are deterministic and equal to 1. Also, the waiting time until a jump is an

exponential random variable with parameter λ.

A PP may also be defined as follows.

Definition 2.9. The process X = {X(t) : t ≥ 0} is a PP(λ) if:

(i) X(0) = 0;

(ii) the process has stationary and independent increments;

(iii) a) P (X(t+ h)−X(t) = 0) = 1− λh+ o(h)

b) P (X(t+ h)−X(t) = 1) = λh+ o(h)

12



c) P (X(t+ h)−X(t) ≥ 2) = o(h)

where lim
h→0

o(h)
h

= 0.

By Definition 2.9 it is possible to find the distribution of X(t). For each t, X(t) has

Poisson distribution with parameter λt. More generally, the distribution of jumps is

Poisson with parameter given by the product of λ and the length of the time interval,

i.e., X(t1)−X(t0) follows Poisson distribution with parameter λ(t1 − t0).

Some important properties of the PP are following:

1. if {X(t) : 0 ≤ t ≤ T} is a PP (λ) in an interval [0, T ], then {X(t) : t0 ≤ t ≤ t1}

is also a PP (λ) in [t0, t1] for 0 ≤ t0 ≤ t1 ≤ T ;

2. if {X(t) : t ≥ 0} and {Y (t) : t ≥ 0} are independents PP of rates λ and µ

respectively, then the sum of processes, {X(t) + Y (t) : t ≥ 0}, is a PP (λ+ µ).

2.2.1 Simulations

There are two main ways to simulate a PP and the algorithms are following.

Let J0, J1, · · · be the jump times of a PP X = {X(t) : t ≥ 0}, S1, S2, · · · be the

waiting times between jumps and n be the number of jumps in an interval [0, T ].

Algorithm 2.

1. Take J0 = S0 = 0 and make n = 1;

2. generate Sn ∼ Exponential(λ);

3. make Jn =
∑n

i=0 Si;

4. if Jn ≥ T , stop and take X(t) = n− 1. Otherwise, n = n+ 1 and go back to

step 2.

13



Algorithm 3.

1. Generate n ∼ Poisson(λT );

2. simulate the n jump times, J1, · · · , Jn, independently from a Uniform(0, T ).

Both algorithms, 2 and 3, are equivalent. Figure 2.1 presents a simulation of a

PP(5) in the time interval [0,10].

0 2 4 6 8 10

0
1

2
3

4
5

t

Figure 2.1: Simulation of a PP(5) in the time interval [0, 10]. The solid line represents
the rate and the points are the jump times.

For a PP(λ) in a time interval [0, T ], the likelihood function is

L(λ;n, J1, · · · , Jn) =
(λT )ne−λT

n!T n

and the MLE for λ is given by

λ̂ =
n

T
.

We have,

E(λ̂) = E

(
N

T

)
=
λT

T
= λ (2.3)

and

V ar(λ̂) = V ar

(
N

T

)
=
λT

T 2
=
λ

T
. (2.4)
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To have a numerical example, we simulated one sample of PP(5) for different

intervals and estimate the rate λ. Results are presented in Table 2.2 and shows that

the estimates are improved as the time interval increases, this is due to the variance

of the estimator, given by equation (2.4).

Interval Estimation
[0, 10] 4.50000
[0, 50] 4.82000
[0, 100] 4.79000
[0, 1000] 5.06000
[0, 10000] 4.97260
[0, 50000] 5.00318
[0, 100000] 5.00048

Table 2.2: PP rate estimates.

2.2.2 Important results

Consider a PP(λ) where in addition to observing a jump, the jump can be classified

as belonging to n different categories according to a probability distribution π. It

is possible to construct the processes separately by category. This is referred to as

splitting a Poisson process. The algorithm is given below.

Algorithm 4.

Let π = (π1, · · · , πn) be a probability distribution and X be a PP (λ) in the

interval [0, T ]. Make i = 1.

1. Generate a PP(λ): τ1, τ2, · · · , τk, are the points of the process in the time

interval [0, T ];

2. generate Y ∼ multinomial(1, π). If the j-th entry of the vector Y is equal to

1, then τi is a realisation of X(j). Make i = i + 1 and repeat this step until

i = k.

Proposition 2.10. Algorithm 4 returns the n PP’s separately

X(1) = (τ11 , · · · , τ1m1
) ∼ PP (π1λ),

15



...

X(n) = (τn1 , · · · , τnmn ) ∼ PP (πnλ)

and X(j)’s are all independent.

Proof. LetX(T ) be the number of points in [0, T ]. GivenX(T ) = k, events τ1, τ2, · · · , τk
are independent and uniformly distributed, thus

f(τ1, · · · , τk) = f(τ1) · · · f(τk) =
1

T k
.

Let Y1, · · · , Yk independent random variables that will indicate if τj belongs X(i).

Yj ∼ Bernoulli(πi).

First, we will show that X(i)(T ) ∼ Poisson(πiλT ).

P (X(i)(T ) = n) =
∞∑
k=n

P (X(i)(T ) = n|X(T ) = k)P (X(T ) = k)

=
∞∑
k=n

P

(
k∑
j=1

Yj = n

)
P (X(T ) = k)

=
∞∑
k=n

(
k

n

)
πi
n(1− πi)k−n

(λT )ke−λT

k!

=
∞∑
k=n

k!

n!(k − n)!
πi
n(1− πi)k−n

(λT )ke−λT

k!

=
e−λTπni
n!

∞∑
j=0

(λT )j+n(1− πi)j

j!

=
e−λT (πiλT )n

n!

∞∑
j=0

(λT − λTπi)j

j!

=
e−λT (πiλT )n

n!
eλT−λTπi

=
(πiλT )ne−πiλT

n!
∼ Poisson(πiλT ).
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Finally, we have to prove that the processes are independent.

fX(1),··· ,X(n)((τ11 , · · · , τ1m1
), · · · , (τn1 , · · · , τnmn )) =

= fX(1),··· ,X(n)|YT

(
(τ11 , · · · , τ1m1

), · · · , (τn1 , · · · , τnmn )

∣∣∣∣∣
n∑
i=1

mi

)
P

(
YT =

n∑
i=1

mi

)

= P

(
X(1) = (τ11 , · · · , τ1m1

), · · · , X(n) = (τn1 , · · · , τnmn ), X(T1) = m1, · · · , X(Tn) = mn

∣∣∣∣∣YT =
n∑
i=1

mi

)

P

(
YT =

n∑
i=1

mi

)

= fX(1),··· ,X(n)|X(T1),··· ,X(Tn),YT

(
(τ11 , · · · , τ1m1

), · · · , (τn1 , · · · , τnmn )

∣∣∣∣∣m1, · · · ,mn,

n∑
i=1

mi

)

P

(
X(T1) = m1, · · · , X(Tn) = mn

∣∣∣∣∣YT =
n∑
i=1

mi

)
P

(
YT =

n∑
i=1

mi

)

=
1

T
∑n
i=1mi

(
∑n

i=1mi)!
∏n
i=1 π

mi
i∏n

i=1mi!

e−λT (λT )
∑n
i=1mi

(
∑n

i=1mi)!

=
1

T
∑n
i=1mi

e−λT (λT )
∑n
i=1mi

∏n
i=1 π

mi
i∏n

i=1mi!

= fX(1)(τ11 , · · · , τ1m1
) · · · fX(n)(τn1 , · · · , τnmn ).

2.3 Non-homogeneous Poisson process

A non-homogeneous Poisson process is a PP where the rate is a deterministic function

of time. In NHPP, the rate is called intensity function. This process is more flexible

than the PP due to the behaviour of its rate, that changes over time.

Definition 2.11. The process {X(t) : t ≥ 0} is a NHPP with intensity function

λ(t), t ≥ 0 if:

(i) X(0) = 0;

(ii) the process has independent increments;
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(iii) a) P (X(t+ h)−X(t) = 0) = 1− λ(t)h+ o(h)

b) P (X(t+ h)−X(t) = 1) = λ(t)h+ o(h)

c) P (X(t+ h)−X(t) ≥ 2) = o(h)

where lim
h→0

o(h)
h

= 0.

The increment X(t) − X(s) gives the number of points on the interval (s, t] and

has Poisson distribution with parameter
∫ t
s
λ(y)dy (Ross, 1996). The distribution of

the waiting times is conditioned in the last time that an event has occurred. Let Tn

be the waiting time between occurrences of the (n− 1)-th and n-th jump. Then,

P (Tn > t|Tn−1 = s) = P (N(t)−N(s) = 0) = e−
∫ t
s λ(y)dy,

thus,

FTn|Tn−1=s(t) = P (Tn ≤ t|Tn−1 = s) = 1− e−
∫ t
s λ(y)dy.

Note that, for a given interval, as the intensity function increases the expected number

of points increases and the expected waiting time decreases.

2.3.1 The Poisson thinning

To generate a NHPP we use the method called the Poisson thinning introduced by

Lewis and Shedler (1979). It is an acceptance-rejection method and the algorithm is

given below.

Algorithm 5.

Let X a NHPP with rate function λ(t), in a fixed interval [0, T ].

Take λ0 = supt∈[0,T ](λ(t)).

1. Generate a homogeneous PP with rate λ0: τ1, τ2, · · · , τk, are the points of

this process in the interval [0, T ];

2. Keep each τi with probability λ(τi)/λ0.
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Proposition 2.12. Algorithm 5 returns an exact simulation of a PP(λ(t)).

Proof. We have to show that (X(t2)−X(t1)) ∼ Poisson
(∫ t2

t1
λ(s)ds

)
for 0 ≤ t1 < t2 ≤

T and (X(t2)−X(t1)) is independent of (X(t4)−X(t3)) for 0 ≤ t1 < t2 ≤ t3 < t4 ≤ T .

Let Y be the number of realisations of the PP(λ0) in the time interval [t1, t2].

Given Y = k, events τ1, · · · , τk are the jump times in [t1, t2] which are independent

and uniformly distributed in [t1, t2]. Thus,

f(τ1, · · · , τk) = f(τ1) · · · f(τk) =
1

(t2 − t1)k
.

Let Z1, · · · , Zk independent random variables that indicate if each τi is kept or not as

a realisation of the PP(λ(t)) in [t1, t2]. Then

Zi ∼ Bernoulli

(∫ t2

t1

λ(y)

λ0(t2 − t1)
dy

)
and

k∑
i=1

Zi ∼ binomial

(
k,

∫ t2

t1

λ(y)

λ0(t2 − t1)
dy

)
,

where
∫ t2
t1
λ(y)dy is the acceptance rate under all possible values of λ in the time

interval [t1, t2].

Furthermore,

P (X(t2)−X(t1) = n) =
∞∑
k=n

P (X(t2)−X(t1) = n|Y = k)P (Y = k)

=
∞∑
k=n

P

(
k∑
i=1

Zi = n

)
P (Y = k)

=
∞∑
k=n

(
k

n

)(∫ t2

t1

λ(y)

λ0(t2 − t1)
dy

)n(
1−

∫ t2

t1

λ(y)

λ0(t2 − t1)
dy

)k−n
[λ0(t2 − t1)]ke−λ0(t2−t1)

k!

=
e−λ0(t2−t1)

(∫ t2
t1
λ(y)dy

)n
n!

∞∑
k=n

[
λ0(t2 − t1)−

∫ t2
t1
λ(y)dy)

]k−n
(k − n)!

=
e−λ0(t2−t1)

(∫ t2
t1
λ(y)dy

)n
n!

∞∑
j=0

[
λ0(t2 − t1)−

∫ t2
t1
λ(y)dy

]j
j!
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=
e−λ0(t2−t1)

(∫ t2
t1
λ(y)dy

)n
n!

exp

{
λ0(t2 − t1)−

(∫ t2

t1

λ(y)dy

)}

=

(∫ t2
t1
λ(y)dy

)n
e−

∫ t2
t1
λ(y)dy

n!
∼ Poisson

(∫ t2

t1

λ(y)dy

)
.

To simplify the notation, define (X(t2)−X(t1)) = X1, (X(t4)−X(t3)) = X2, and let

Y1 be a PP (λ0) in [t1, t2] and Y2 be a PP (λ0) in [t3, t4]. Then,

P (X1 = k,X2 = n) =
∑
l1

∑
l2

P (X1 = k,X2 = n, Y1 = l1, Y2 = l2)

=
∑
l1

∑
l2

P (Y1 = l1, Y2 = l2)P (X1 = k,X2 = n|Y1 = l1, Y2 = l2)

=
∑
l1

∑
l2

P (Y1 = l1)P (Y2 = l2)P (X1 = k|Y1 = l1)P (X2 = n|Y2 = l2)

=
∑
l1

∑
l2

P (X1 = k, Y1 = l1)P (X2 = n, Y2 = l2)

=
∑
l1

P (X1 = k, Y1 = l1)
∑
l2

P (X2 = n, Y2 = l2)

= P (X1 = k)P (X2 = n).

To illustrate the thinning method we simulate two examples which are shown in

Figure 2.2. The results are consistent, as the rate increases (decreases) the number of

events increases (decreases).
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Figure 2.2: NHPP is simulated via thinning. The solid line represents the rate and
the points are the jump times. Left: λ(t) = 10− t, right: λ(t) = (t− 5)2.
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Chapter 3

Markov switching Cox processes

A Cox process is a generalisation of NHPP, where its intensity function is itself stochas-

tic. There are many possibilities to describe the dynamics of the intensity function

and we focus in a class which we refer as Markov switching Cox process (MSCP). This

class of processes is defined following.

Definition 3.1. Let X = {X(t) : t ≥ 0} be a Non-homogeneous Poisson process such

that the intensity function λ = {λ(t) : t ≥ 0} is a continuous-time Markov chain.

Then, X is a Markov switching Cox process.

In Section 3.1 we report some important results for MSCP’s where the intensity is

a two-state CTMC. Section 3.2 presents three important results derived for MSCP’s.

Section 3.3 contains two different algorithms to simulate a MSCP and some simulation

examples.

3.1 Two-state Markov switching Cox processes

Taylor and Karlin (1998) present some properties for MSCP’s in which the intensity

function is a two-state CTMC, some results are reported following.

Let X = {X(t) : t ≥ 0} be a MSCP with intensity function λ = {λ(t) : t ≥ 0}

a two-state CTMC, with state space E = {0, γ}. For notation, we say that X is a

MSCP(0, γ) and X
(
(a, b]

)
:= {X(t) : t ∈ (a, b]}.

It can be shown that
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f(t; γ) := P
(
X
(
(0, t]

)
= 0
)

= E
[
e−Λ(t)

]
= f0(t) + f1(t),

where

Λ(t) =

∫ t

0

λ(s)ds,

f0(t) = P
(
X
(
(0, t]

)
= 0 and λ(t) = 0

)
and f1(t) = P

(
X
(
(0, t]

)
= 0 and λ(t) = γ

)
.

This result is valid only when the CTMC has one state equal to zero and the other

equal to a positive constant γ. It is possible to generalise these results for any two-

state CTMC. Let E = {γ0, γ1} and assume 0 < γ0 < γ1. Now, X is a MSCP(γ1, γ2).

In order to evaluate P
(
X
(
(0, t]

)
= 0

)
, we write X as the sum X = X1 + X2 of two

independent processes, where X1 is a PP(γ0) and X2 is a MSCP(0, γ1 − γ0). Thus,

P
(
X
(
(0, t]

)
= 0
)

= P
(
X1

(
(0, t]

)
= 0
)
P
(
X2

(
(0, t]

)
= 0
)

= e−γ0tf(t; γ1 − γ0).

To find the probability distribution of X
(
(0, t]

)
, let X be a MSCP(0, γ), suppose

that we have evaluated

f
(
t; (1− θ)γ

)
= E

[
e−(1−θ)Λ(t)

]
, 0 < θ < 1. (3.1)

Expanding the equation (3.1) as a power series in θ we get

f
(
t; (1− θ)γ

)
=
∞∑
k=0

P
(
X
(
(0, t]

)
= k
)
θk,

hence, the coefficient of θk in the power series is the P
(
X
(
(0, t]

)
= k
)

.

3.2 Some probabilistic properties

Other important results obtained for general MSCP’s led to three new theorems. The-

orem 3.2 concerns the MSCP’s increments, Theorem 3.3 and Theorem 3.4 establishes

the Markov property and asymptotic behaviour, respectively.
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Theorem 3.2. Let X = {X(t) : t ≥ 0} be a Markov switching Cox process with

intensity function λ = {λ(t) : t ≥ 0}. Then, the process has independent increments.

Proof. Let t1 < t2 ≤ t3 < t4 and Y1 := {X(t) : t ∈ [t1, t2]}, Y2 := {X(t) : t ∈ [t3, t4]},

λ1 := {λ(t) : t ∈ [t1, t2]} and λ2 := {λ(t) : t ∈ [t3, t4]}.

P (Y1 = k1, Y2 = k2) = Eλ1,λ2
[
EY1,Y2

[
I{Y1=k1}I{Y2=k2}|λ1, λ2

] ]

= Eλ1,λ2
[
EY1

[
I{Y1=k1}|λ1

]
EY2

[
I{Y2=k2}|λ2

] ]

= Eλ1

[
Eλ2
[
EY1

[
I{Y1=k1}|λ1

]
EY2

[
I{Y2=k2}|λ2

] ∣∣∣∣λ1

]]

= Eλ1

[
EY1

[
I{Y1=k1}|λ1

]
Eλ2
[
EY2

[
I{Y2=k2}|λ2

] ∣∣∣∣λ(t2)

]]

= Eλ1
[
EY1

[
I{Y1=k1}|λ1

]
EY2

[
I{Y2=k2}|λ(t2)

] ]

= Eλ1
[
EY1

[
I{Y1=k1}|λ1

] ]
Eλ1
[
EY2

[
I{Y2=k2}|λ(t2)

] ]

= EY1
[
I{Y1=k1}

]
EY2

[
I{Y2=k2}

]
= P (Y1 = k1)P (Y2 = k2).

Theorem 3.3. Let X = {X(t) : t ≥ 0} be a Markov switching Cox process with

intensity λ = {λ(t) : t ≥ 0}. Let 0 ≤ t1 < t2 < · · · < tm < t and n1 ≤ n2 ≤ · · · ≤

nm ≤ n. Then,

P
(
X(t) = n

∣∣X(t1) = n1, X(t2) = n2, · · · , X(tm) = nm
)

= P
(
X(t) = n

∣∣X(tm) = nm
)
.

Proof. P
(
X(t) = n

∣∣X(t1) = n1, · · · , X(tm) = nm
)

=

=

∫
Λ
P
(
X(t) = n

∣∣∣X(t1) = n1, · · · , X(tm) = nm, λ
(
[0, t]

))
dP (λ([0, t]))
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=

∫
Λ
P
(
X(t) = n

∣∣∣X(tm) = nm, λ
(
[0, t]

))
dP (λ([0, t]))

= P
(
X(t) = n

∣∣X(tm) = nm
)
.

Theorem 3.4. Let X = {X(t) : t ≥ 0} be a Markov switching Cox process with

intensity λ = {λ(t) : t ≥ 0}. Suppose that ∃ a random variable λ∗ such that λ(t)
d−−−→

t→∞

λ∗. Then, exist a discrete random variable Yh, ∀h > 0, such that

P
(
X
(
(t, t+ h]

)
= k
)
→ P (Yh = k).

Proof. λ(t)
d−−−→

t→∞
λ∗ implies that P

(
λ(t) = ε

)
−−−→
t→∞

p∗λ(ε),∀ε ∈ E, for some p.m.f.

p∗λ(·) on E.

Define It,h =
∫ t+h
t

λ(s)ds and consider the joint density of
(
λ(t), It,h

)
, which can

be factorised as

π
(
λ(t), It,h

)
= π

(
λ(t)

)
π
(
It,h
∣∣λ(t)

)
.

Now note that the first term converges to p∗λ(·) and the second term is the same for

all t, given the same value of λ(t), by the time-homogeneity property of λ. Therefore,

∃ Ih such that It,h
d−→ Ih (Scheffé’s Theorem).

Finally, note that

P
(
X
(
(t, t+ h]

)
= k
)

= E
[
I{X((t,t+h])=k}

]
= EIt,h

[
E[I{X((t,t+h])=k}|It,h]

]
= EIt,h

[
e−It,h(It,h)

k

k!

]
−−−→
t→∞

EIh

[
e−Ih(Ih)

k

k!

]
= ph(k),

the convergence of the expectation is due to the fact that E[I{X((t,t+h])=k}|It,h] is a

continuous and bounded function of It,h. The result is established by defining Yh as

the discrete random variable with probability mass function given by ph(·).
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3.3 Simulations

In order to simulate a MSCP in an interval [0, T ] the following algorithm can be used:

Algorithm 6.

1. simulate λ(t) in [0, T ];

2. perform the Poisson thinning.

Algorithm 6 can be improved in terms of computation by reversing the two steps.

The new algorithm is given below.

Algorithm 7.

Take λ∗ = supt∈[0,T ](λ(t)).

1. Simulate λ(0);

2. make i = 1;

3. generate ∆t ∼ exponetial(λ∗), and make τi = τi−1 + ∆t;

4. simulate λ(τi);

5. keep τi with probability λ(τi)
λ∗

;

6. if
∑n

i=1 τi > T , stop and output the kept τi’s. Otherwise, i = i + 1 and go

back to step 3.

To illustrate a MSCP, we simulate two examples using Algorithm 6. Note that the

algorithms 6 and 7 are equivalent, but only Algorithm 6 allow us to know the real

intensity function in the whole interval. The results are displayed in Figures 3.1 and

3.2.
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The first simulation, in Figure 3.1, the CTMC of the MSCP has state space E =

{1, 4, 8} and Q-matrix

Q =


−1 0.5 0.5

0.5 −2 1.5

1 2 −3

 .
The second simulation, in Figure 3.2, the CTMC of the MSCP has state space

E = {0, 3, 5, 10} and Q-matrix

Q =


−1 1 0 0

1 −2 1 0

0 1 −2 1

0 0 1 −1

 .

In both simulated processes, for higher rate were observed more events, that is, the

waiting time until the next occurrence is lower. With respect to the process presented

in Figure 3.2, no events occurred for time intervals with zero rate.
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t

 

Figure 3.1: Realisation of a three-state MSCP
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Figure 3.2: Realisation of a four-state MSCP.
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Chapter 4

Bayesian Inference for Markov

switching Cox processes

In this chapter we discuss the inference problem for a Markov switching Cox processes

with finite state space. Section 4.1 is an introduction to the inference problem and

presents all the notation used in this chapter. The likelihood function is presented

in Section 4.2 and in Section 4.3 we define the prior distributions. The full condi-

tional distributions and the respective algorithm to sample from them are presented

in Sections 4.6 to 4.5. Section 4.7 discusses some identifiability issues.

4.1 The inference problem

Let Y = {Y (t) : 0 ≤ t ≤ T} be a non-homogeneous Poisson process with intensity

function λ and λ = {λ(t) : 0 ≤ t ≤ T} a CTMC with Q-matrix Qθ, initial distribution

πθ0 and state space E, where θ and θ0 are parameter vectors associated to the entries

of the Q-matrix and initial distribution, respectively.

Based on a realisation of Y in [0, T ], we want to estimate:

1. (λ, θ, E);

2. E(f(Y, λ, θ, E)), for suitable f ′s.

The size of E, denoted by |E|, is fixed and we estimate only the values of the state

space.
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Inference is performed under the Bayesian paradigm which means that inference

should be based on the posterior distribution π(λ, θ, E|y) where y is the realisation of

Y.

By Bayes Theorem (see Shao, 2003)

π(λ, θ, E|y) ∝ π(y|λ, θ, E)π(λ|θ, E)π(E)π(θ), (4.1)

where the π’s are densities with respect to suitable dominating measures.

The posterior distribution in (4.1) is quite complex due to the infinite-dimensional

nature of λ. For that reason, the use of Monte Carlo methods is the best way to explore

this distribution. In particular, we devise a Markov chain Monte Carlo (MCMC)

algorithm to sample from the joint posterior distribution in (4.1).

The MCMC consists of generating samples from a Markov chain which has the

joint posterior distribution in (4.1) as its invariant distribution. Thus, after a suffi-

cient number of iterations of the chain we have an approximate sample from the joint

posterior distribution which is good enough to provide reasonable estimates.

The algorithm is a Gibbs sampler, that breaks the vector (λ, θ, E) in blocks which

are sampled from their respective full conditional distributions at each iteration of the

chain. We adopt the following blocking scheme:

{λ} , {θ} , {E},

with respective full conditional distributions

(λ|θ, E, y), (θ|λ,E, y), (E|λ, θ, y).

Before presenting the full conditional distributions, will establish some notation to

be used throughout this chapter. The process Y is characterized by the times when

the Poisson events occur, then Y = (τ1, · · · , τN), where N is the total events in the

observed time interval. Conditioned on λ, N has a Poisson distribution with parameter∫ T
0
λ(s)ds. The state space is E = {ε1, · · · , ε|E|}, ME and mE are the max{E} and

the min{E}, respectively. We denote n as the number of observed events.

The process λ is characterized by jump times (S0, S1, · · · , Sm) and the trajectory
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of the states (λ(S0), λ(S1), · · · , λ(Sm)), where λ(Si) is the state of the Markov chain

in the time interval [Si, Si+1). Note that, if the process is in the time interval [0, T ],

Sm+1 = T . For inference purposes, we construct a second representation of a trajectory

of λ. For this, it will not be considered the real value of state but an enumeration of

E. We use t1· = (t1i1 : i1 = 0, · · · ,m1) to denote the waiting times in state 1, that

is, t1i1 is the time that the chain remains in state 1 in its i-th visit. Note that, if the

chain does not visit state 1, t1· = 0. In general, we have tj· = (tjij : ij = 0, · · · ,mj)

for j = 1, · · · , |E| and t·· is the vector obtained from the concatenation of all the tj·
vectors. Furthermore, mj is the number of times that the Markov chain visits state

j so that
∑|E|

j=1mj − 1 = m. Also, mi· = (mij : j = 1, · · · , |E|) is the vector of the

number of jumps from state i to state j, for example, m12 is the number of transitions

from state 1 to state 2. Note that when i = j the entry of the vector is equal to 0.

Finally, m·· = [mij], for i = 1, · · · , |E| and j = 1, · · · , |E|, is the matrix with the

number of jumps which has null diagonal. We define the statistic λ· = (m··, t··) of λ

which, as we will demonstrate, is a sufficient statistic for θ.

The parameter vector θ is associated to all entries of the Q-matrix. We define θj as

the rates of the waiting times and θji, for j 6= i, as the transition probabilities. Thus,

θ = (θ1, · · · , θ|E|, θ12, · · · , θ1|E|, θ21, · · · , θ2|E|, · · · , θ|E|1, · · · , θ|E|(|E|−1))

and the Q-matrix is given by

Q =


−θ1 θ1θ12 · · · θ1θ1|E|

. . .

−θ|E|

 .

Note that each row of the Q-matrix, without the diagonal term, upon normalisation,

is a probability distribution. Let θj· be the transition probability vector starting from

state j, that is, the probability distribution given in the j-th row.

For inference reasons which will be clarified further ahead in the text, we need to

define a partition of the intensity function λ. We define this partition by splitting the

interval [0, T ] into B sub-intervals. Let [tk−1, tk] be the k-th sub-interval and λ(k) the

process λ in this interval. Let also λ(−k) be the process λ in [0, T ] r (tk−1, tk) and λ∗(k)
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the end points of λ(k). Furthermore, n(k) and m(k) are the number of observed events

and the number of jumps of the Markov chain, respectively, in the k-th interval.

4.2 Likelihood function

The likelihood function L(λ, θ, E) is the density π(Y |λ, θ, E) evaluated at the observed

y. This density is the Radon-Nikodym derivate dP
dP0

(Y ), where P is the probability

measure of Y and P0 is the probability measure of a homogeneous PP with known

rate, e.g., PP(1). These two measures are defined on the same measurable space and

are equivalent (P � P0 and P0 � P , � means absolute continuous with respect to).

Then, we have (Cox and Lewis, 1966)

π(Y |λ, θ, E) := L(λ, θ, E) =
dP

dP0

(Y ) ∝

[
e−

∫ T
0 λ(s)ds

n∏
i=1

λ(τi)

]

∝

[
e−

∑m
j=0(Sj+1−Sj)λ(Sj)

n∏
i=1

λ(τi)

]
,

where the proportionality sign refers to λ.

4.3 Prior distributions

The Bayesian approach requires the assignment of prior distributions to the parameter

vector. Firstly, we take θ = {θ·, θ··}, where θ· is the vector of all θj’s and θ·· is the

vector of all θj·’s. We assume independence among θ·, θ·· and E. We also, assume

prior independence of all θj’s and θj·’s. The prior distribution is given by

π(θ, E) =

 |E|∏
j=1

π(θj)π(θj·)
π(E)

=

 |E|∏
j=1

fG(θj;αj, βj)fD(θj·; γj1, · · · , γj(|E|−1))fG(εj;αεj , βεj)

 I(ε1 < · · · < ε|E|),

where fG is the probability density function of a Gamma distribution and fD is the

probability density function of a Dirichlet distribution. Therefore, θj ∼ Gamma(αj, βj),
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θj· ∼ Dirichlet(γj1, · · · , γj(|E|−1)), εj ∼ Gamma(αεj , βεj) and the indicator function

gives the dependence structure of the εj’s.

4.4 The full conditional distribution of θ

In order to sample θ, we break this vector into two blocks: θ· and θ··. Now, note that

π(λ|θ·, θ··, E) = π(t··,m··|θ·, θ··) = π(t··|θ·)π(m··|θ··).

Thus, the full conditional distribution for θ· is given by

π(θ·|λ,E, Y ) ∝ π(t··|θ·)π(θ·)

=

|E|∏
j=1

mj∏
ij=1

π(tjij |θj)
|E|∏
j=1

fG(θj;αj, βj)

∝

 ∏
j∈(E\e)

θ
mj
j e−θj∆(εj)θ

αj−1
j e−θjβj

 θmee e−θe∆(εe)θαe−1
e e−θeβe

∝
∏

j∈(E\e)

fG(θj;αj +mj, βj + ∆(εj)) + fG(θe;αe +me − 1, βe + ∆(εe)),

where ∆(εj) =
∑mj

ij=0 tjij is the total time that the Markov chain λ remained in state εj

and e is the last visited state in the CTMC. Note that each tjij |θj ∼ Exponential(θj).

Set te as the last time spent in e. This event is equivalent to an Exponential(θe)

random variable being greater or equal to te and, therefore, has probability e−θete .

Therefore, the full conditional distribution for each θj, for j 6= e, is Gamma(αj +mj, βj + ∆(εj)),

for θe is Gamma(αe +me − 1, βe + ∆(εe)) and they are all independent.

The full conditional distribution for θ·· is given by

π(θ··|λ,E, Y ) ∝ π(m··|θ··)π(θ··)

∝
|E|∏
j=1

π(mj·|θj·)
|E|∏
j=1

fD(θj·; γj1, · · · , γj(|E|−1))

33



∝
|E|∏
j=1

|E|−1∏
i 6=j,i=1

θ
mji
ji θ

γji−1
ji ∝

|E|∏
j=1

fD(θj·;mj1 + γj1, · · · ,mj(|E|−1) + γj(|E|−1)).

Therefore, the full conditional distribution for each θj· is

Dirichlet
(
mj1 + γj1, · · · ,mj(|E|−1) + γj(|E|−1)

)
and they are all independent.

4.5 The full conditional distribution of E

The full conditional of E is given by

π(E|λ, θ, Y ) ∝ L(λ, θ, E)π(λ|θ, E)π(E).

However, the following proposition shows that π(λ|θ, E) is constant with respect

to E.

Proposition 4.1. Consider two state spaces E = (ε1, · · · , ε|E|) and E ′ = (ε′1, · · · , ε′|E|),

both with size |E|. Then, π(λ|θ, E) = π(λ|θ, E ′).

Proof.

π(λ|θ, E) = π(S0, S1, · · · , Sm, λ(0), λ(S0), · · · , λ(Sm)|θ, E)

= π(λ(0)|θ, E)π(S0|λ(0), θ, E)π(λ(S0)|λ(0), θ, E)π(S1|S0, λ(S0), θ, E)

π(λ(S1)|λ(S0), θ, E) · · · π(Sm|Sm−1, λ(Sm−1), θ, E)

π(λ(Sm)|λ(Sm−1), θ, E)

= πθ0(λ(0))πexp(S0|qλ(0))pλ(0)λ(S0)(S0)πexp(S1 − S0|qλ(S0))pλ(S0)λ(S1)(S1 − S0)

· · · πexp(Sm − Sm−1|qλ(Sm−1))pλ(Sm−1)λ(Sm)(Sm − Sm−1), (4.2)

where qλ(Si) and pλ(Si−1)λ(Si)(Si − Si−1) are defined in Section 2.1.2. Equation (4.2)

shows that π(λ|θ, E) does not depend on the actual value of E, but its enumeration.

Then, by Proposition 4.1,

π(E|λ, θ, Y ) ∝ L(λ, θ, E)π(E)
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∝ exp

{
−

m∑
j=0

(Sj+1 − Sj)λ(Sj)

}
n∏
i=1

λ(τi)

|E|∏
j=1

fG(εj;αεj , βεj)I(ε1 < · · · < ε|E|).

Let n(εj) be the number of Poisson events occurring during the time period where

the intensity function is εj. Thus

π(E|λ, θ, Y ) ∝ exp

−
|E|∑
j=1

∆(εj)εj


|E|∏
j=1

ε
n(εj)

j

|E|∏
j=1

ε
αεj−1

j e−βεj εjI(ε1 < · · · < ε|E|)

∝
|E|∏
j=1

ε
αεj+n(εj)

−1

j e−(βεj+∆(εj))εjI(ε1 < · · · < ε|E|)

∝
|E|∏
j=1

fG(εj;αεj + n(εj), βεj + ∆(εj))I(ε1 < · · · < ε|E|).

We sample from this distribution via RS by proposing from the independent Gamma

distribution for each state and accepting if I(ε1 < · · · < ε|E|) = 1.

4.6 The full conditional distribution of λ

The most challenging step of the MCMC algorithm is the one where λ is sampled from

its full conditional distribution, we have that

π(λ|θ, E, Y ) ∝ L(λ, θ, E)π(λ|θ, E) ∝

[
e−

∫ T
0 λ(s)ds

n∏
i=1

λ(τi)

]
π(λ|θ, E).

It is very hard to construct an efficient algorithm to sample from the full condi-

tional of λ in the whole observed interval [0, T ]. Two (inefficient) possibilities are a

Rejection Sampling (RS) and a Metropolis-Hastings (MH) algorithm, both proposing

from π(λ|θ, E). The acceptance probability of the RS is given by

exp

{
−
∫ T

0

(λ(s)−mE)ds

} n∏
i=1

(
λ(τi)

ME

)
,
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which decreases exponentially in T. The acceptance probability of the MH is given by

min

{
1,
L(λ“new”, θ, E)

L(λ“old”, θ, E)

}
.

The RS would have a high computational cost and the MH a small acceptance rate

leading to slow convergence of the chain.

A possible solution for this problem is to adopt a partition λ(1), · · · , λ(B) of λ, as

defined previously, and update λ interval-wise. The problem with this approach is that

λ would never be updated at the end points of each interval. To overcome this issue, we

introduce an auxiliary variable U in the Markov chain such that U ∼ uniform(0, L), for

a suitable choice of L and define the partition [0, U ], (U,U+L], (U+L,U+2L], · · · , (U+

(B − 2)L, T ]. The fact that U changes in every iteration of the chain guarantees its

irreducibility. We call this the overlapping Gibbs sampling.

Naturally, the efficiency of the algorithm relies heavily on the choice of L. Small

values of L lead to high acceptance probability/rate but increases the number of blocks

and, consequently, the autocorrelation of the chain which, in turn, affects its conver-

gence. For a large L we have the opposite problem.

After breaking λ in blocks, the new full conditional distribution of each block is

given by

π(λ(k)|θ, E, λ(−k), Y ) ∝ L(λ, θ, E)π(λ(k)|θ, E, λ(−k))

∝

[
e−

∑m(k)
j=0 (Sk,j+1−Sk,j)λ(Sk,j)

n(k)∏
i=1

λ(τk,i)

]
π(λ(k)|θ, E, λ∗(k)), (4.3)

where Sk,j is the j-th jump time of the Markov chain and τk,i is the i-th realisation of

Y, both in the k-th interval.

Also, we partition λ(k) as {λ(τk,i), i = 1, · · · , n(k)} and {λ(k,i), i = 1, · · · , n(k) +

1}, where λ(τk,i) is the intensity function at the time instance τk,i and λ(k,i) is the

intensity function between the (i− 1)-th and the i-th event of the PP. Set τk,0 = ti−1

and τk,n(k)+1 = ti. Note that λ(k,i) is infinite-dimensional. We have the following
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factorisation for the equation (4.3)

π(λ(k)|θ, E, λ(−k), Y ) ∝

[
e−

∑m(k)
j=0 (Sk,j+1−Sk,j)λ(Sk,j)

n(k)∏
i=1

λ(τk,i)

]
n(k)+1∏
i=1

π
(
λ(k,i)|·) n(k)∏

i=1

π (λ(τk,i)|·)︸ ︷︷ ︸, (4.4)

where,

π
(
λ(k,i)|·) = π

(
λ(k,i)|θ, E, λ(τk,i−1), λ(τk,i)

)
and

π (λ(τk,i)|·) = π
(
λ(τk,i)|θ, E, λ(τk,i−1), λ(τk,n(k)+1)

)
.

Considering both RS and MH alternatives, the first possibility we consider is to

propose from the prior, given by the underbraced term in (4.4). In this case, the

acceptance probability of the RS is proportional to the likelihood and the acceptance

probability of a move in the MH is the minimum of 1 and the ration of likelihoods at

new and old values.

This proposal may be improved by using information from the data. We shall

devise a decomposition family of the full conditional distribution such that there is a

part where a new λ(k) is proposed from and one that defines the acceptance probability

of both algorithms. Consider the following decomposition

π(λ(k)|θ, E, λ(−k), Y ) ∝

[
e−

∑m(k)
j=0 (Sk,j+1−Sk,j)λ(Sk,j)

n(k)∏
i=1

λ(τk,i)
1−r

]
︸ ︷︷ ︸

n(k)+1∏
i=1

π
(
λ(k,i)|·)︸ ︷︷ ︸

n(k)∏
i=1

λ(τk,i)
rπ (λ(τk,i)|·)︸ ︷︷ ︸, (4.5)

where r ≥ 0. The idea of using this r function is due to the fact that for each case the

algorithm’s convergence may be faster for a suitable choice of r.

To obtain a sample from the full conditional distribution given in (4.5), first we

sample λ(τk,i)’s from the density given by the third underbraced term. Then, the

simulated λ(τk,i)’s are used to sample the bridges from the density in the second

37



underbraced term. Finally, the first underbraced term is used to define the acceptance

probability of the algorithms.

The distribution of λ(τk,i) defined by the third underbraced term in (4.5) is a

discrete distribution in E, for which the probability vector is obtained as follows.

Firstly, it is necessary to obtain the probability vector (p1, · · · , p|E|) where,

pl = P
(
λ(τk,i) = l|λ(τk,i−1) = e1, λ(τk,n(k)+1) = e2

)
∝ P

(
λ(τk,i−1) = e1, λ(τk,i) = l, λ(τk,n(k)+1) = e2

)
∝ P (λ(τk,i) = l|λ(τk,i−1) = e1)P

(
λ(τk,n(k)+1) = e2|λ(τk,i) = l

)
. (4.6)

These transition probabilities are obtained from the matrix given by equation (2.2).

Therefore, the distribution of λ(τk,i) is proportional to (εr1p1, · · · , εr|E|p|E|). The actual

probability vector is obtained upon normalisation of this.

In order to sample the trajectories λ(k,i), we need to sample a Markov chain con-

ditioned on initial and ending states, that is, a bridge of a CTMC. We present three

possible algorithms to do this in Section 4.6.3.

For the proposal in equation (4.5) we have that the acceptance probability of the

RS is given by


exp

{
−
∑m(k)

j=0 (Sk,j+1 − Sk,j)λ(Sk,j) + (tk − tk−1)mE

}∏n(k)

i=1

(
λ(τk,i)
ME

)1−r
, if r ≤ 1,

exp
{
−
∑m(k)

j=0 (Sk,j+1 − Sk,j)λ(Sk,j) + (tk − tk−1)mE

}∏n(k)

i=1

(
λ(τk,i)
mE

)1−r
, if r > 1.

(4.7)

The acceptance probability α(λ, λ∗) of the MH is given by

α(λ, λ∗) = min

1,
exp

{
−
∑m∗

(k)

j=0 (S∗k,j+1 − S∗k,j)λ∗(S∗k,j)
}∏n(k)

i=1 (λ∗(τk,i))
1−r

exp
{
−
∑m(k)

j=0 (Sk,j+1 − Sk,j)λ(Sk,j)
}∏n(k)

i=1 (λ(τk,i))
1−r

 , (4.8)

where all terms marked by an asterisk refer to the proposal trajectory and the other

ones refer to the current state of the chain.
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4.6.1 Comparing the algorithms

We now compare the RS and MH alternatives described above. The former has the

advantage of outputing and exact draw from the full conditional distribution. However,

its use requires smaller intervals to provide reasonable computational cost. That is

because the acceptance probability of the RS decreases faster then the acceptance

probability of the MH as the time interval increases. Small values of L, however, lead

to two main problems. Firstly, it increases the correlation among the blocks of the

Gibbs sampler, as smaller L’s lead to more blocks. Secondly, it deteriorates the mixing

of the chain if the waiting times are large w.r.t. L. Basically, the algorithm will take

too long to sample a jump.

The MH allows us to work with larger values of L. Although larger values of L

lead to lower acceptance rates, we can mitigate the problem by perform several MH

updates at each iteration of the Gibbs sampler.

Therefore, the general strategy for the RS is to choose the largest possible L that

still provides a reasonable computational cost. In the case of MH, we should con-

sider the largest L that leads to reasonable acceptance rate, considering multiple MH

updates per iteration.

Note that our MH algorithm is an independent Metropolis as the proposal does

not depend on the previous iteration of the chain. This implies that the MH chains

are either uniformly ergodic or not geometrically ergodic. Fortunately, the former is

true in our case as it is established in the following Lemma.

Lemma 4.2. The Metropolis-Hastings chain defined in (4.5) and (4.8) is uniformly

ergodic.

Proof. To establish uniform ergodicity it is enough to show that the spectral gap q
π

is uniformly bounded below by a positive constant β (see Mengersen and Tweedie,

1996), where q(λ(k)) is the proposal distribution. We have that

q

π
(λ(k)) =

exp
{∑m(k)

j=0 (Sk,j+1 − Sk,j)λ(Sk,j)
}∏n(k)

i=1 (λ(τk,i))
1−r
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≥


exp{mE(tk−tk−1)}∏n(k)

i=1 M1−r
E

, if r ≤ 1

exp{mE(tk−tk−1)}∏n(k)
i=1 m1−r

E

, if r > 1

> 0.

4.6.2 Sampling λ in the first and last intervals

Sampling λ in the first and last sub-interval is different since the initial and final states

need to be updated at each MCMC iteration.

For the first interval it is necessary to do a backward sampling for the λ(τ1,i)
′s,

conditional on λ(t1) and then to sample the bridge(s). The probability vector of

λ(τ1,i) is obtained as follow

pl = P
(
λ(τ1,i) = l|λ(τ1,n(1)+1) = e

)
∝ P

(
λ(τ1,n(1)+1) = e|λ(τ1,i) = l

)
P (λ(τ1,i) = l)

= P
(
λ(τ1,n(1)+1) = e|λ(τ1,i) = l

) |E|∑
j=1

P (λ(τ1,i) = l|λ(t0) = εj)P (λ(t0) = εj) , (4.9)

where P (λ(t0) = εj) is obtained by the initial distribution of the CTMC. The actual

distribution is obtained upon normalisation of these values.

Finally, the last interval is only conditioned on the initial state and, therefore,

consists of a forward sampling of the λ(τB,i)
′s. We remain with the bridges and the

last trajectory in (τB,n(B)
, T ] is only conditioned on λ(τB,n(B)

).

4.6.3 Sampling bridges from CTMC’s

Hobolth and Stone (2009) present three algorithms to simulate a realisation of a finite-

state CTMC X = {X(t) : 0 ≤ t ≤ T} endpoint-conditioned, that is, conditional on its

initial state X(0) = a and ending state X(T ) = b.

Before presenting these algorithms, note that the simplest (but extremely expen-

sive) way to sample a conditioned CTMC is by simulating it unconditionally on the

end point and accepting as a realisation if it hits the correct end point. This is a RS

algorithm and has a very high cost due to its small acceptance probability. Moreover,

40



this cost increases with the length of the time interval.

The first method proposed in Hobolth and Stone (2009) is the modified rejection

sampling. Conditioned that at least one state change occurs before T and X(0) = a,

the time τ to the first state change has density

f(τ) =
qae
−τqa

1− e−Tqa
, 0 ≤ τ ≤ T, (4.10)

where qa is given in Section 2.1.2. Based on this result, we have the following algorithm.

Algorithm 8 (Modified rejection sampling).

If a = b:

1. Simulate from {X(t) : 0 ≤ t ≤ T} using the Algorithm 1;

2. accept the simulated path if X(T ) = a; otherwise, return to step 1.

If a 6= b:

1. Sample τ from the density (4.10) using the inverse transformation method,

and choose a new state c 6= a from a discrete probability distribution with

probability masses qac/qa;

2. simulate the remainder {X(t) : τ ≤ t ≤ T} using the Algorithm 1 from the

beginning state X(τ) = c;

3. accept the simulated path if X(T ) = b; otherwise, return to step 1.

The second algorithm is the direct sampling procedure. It requires that the Q-

matrix admits an eigenvalue decomposition, i.e., Q = UDζU
−1 where ζ are the cor-

responding eigenvalues. Then, the transition probability matrix of the CTMC can be

obtained by

P (t) = etQ = UetDζU−1 and (P (t))ab =
∑
j

UajU
−1
jb e

tζj .

Conditioned on X(0) = a and X(T ) = a the probability that there are no state
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changes in the time interval [0, T ] is given by

pa =
e−qaT

(P (T ))aa
. (4.11)

On the other hand, if X(T ) = b 6= a, the probability that the first state change is

to i is

pi =

∫ T

0

fi(t)dt, i 6= a.

The integrand can be written as

fi(t) =
qai

(P (T ))ab

∑
j

UijU
−1
jb e

Tζje−t(ζj+qa), (4.12)

thus,

pi =
qai

(P (T ))ab

∑
j

UijU
−1
jb Jaj, (4.13)

where

Jaj =

Te
Tζj , if ζj + qa = 0,

eTζj−e
−qaT

ζj+qa
, if ζj + qa 6= 0.

Algorithm 9 (Direct sampling).

1. If a = b, sample Z ∼ Bernoulli(pa), where pa is given by equation (4.11). If

Z = 1, we are done: X(t) = a, 0 ≤ t ≤ T ;

2. if a 6= b or Z = 0, then at least one state change occurs. Calculate pi for

all i 6= a from equation (4.13). Sample i 6= a from the discrete probability

distribution with probability masses pi/p−a, i 6= a, where p−a =
∑

j 6=a pj;

3. sample the waiting time τ in state a according to the continuous density

fi(t)/pi, 0 ≤ t ≤ T , where fi(t) is given by equation (4.12) and simulate

from this density using the inverse transformation method. Set X(t) = a,

0 ≤ t < τ ;
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4. repeat procedure with new starting value i and new time interval of length

T − τ .

The drawback from this algorithm is that the inversion on step 3 cannot be per-

formed analytically.

The last algorithm allows to sample fromX through the construction of an auxiliary

stochastic process Y = {Y (t) : 0 ≤ t ≤ T}. Let µ = max{qi, i = 1, · · · , |E|} and

suppose that the state changes of the process Y are determined by a DTMC with

transition matrix

R = I +
1

µ
Q.

By construction, it is allowed virtual state changes in which a jump occurs but the

state does not change. The stochastic process Y is equivalent to the original CTMC

X.

Conditioned on X(0) = a and X(T ) = b the number of state changes M, including

the virtual changes, is given by

P (M = m|X(0) = a,X(T ) = b) = e−Tµ
(Tµ)m

m!
Rm
ab/(P (T ))ab. (4.14)

Algorithm 10 (Uniformization).

1. Simulate the number of state changes m from the distribution (4.14);

2. if the number of state changes is 0, we are done: X(t) = a, 0 ≤ t ≤ T ;

3. if the number of state changes is 1 and a = b, we are done: X(t) = a,

0 ≤ t ≤ T ;

4. if the number of state changes is 1 and a 6= b simulate t1 uniformly in [0, T ],

we are done: X(t) = a, t < t1, and X(t) = b, t1 ≤ t ≤ T ;

5. when the number of state changes m is at least 2, simulate m independent

uniform random numbers in [0, T ] and sort the numbers in increasing order

43



to obtain the times of state changes 0 < t1 < · · · < tm < T . Simulate

X(t1), · · · , X(tm−1) from a DTMC with transition matrix R and conditional

on starting state X(0) = a and ending state X(tm) = b. Determine which

state changes are virtual and return the remaining changes and corresponding

times of change.

Hobolth and Stone (2009) show that no algorithm is globally better then the other.

The endpoint-conditioned sample paths can be simulated using one of the three algo-

rithms described above. Because of the numerical approximation required by Algo-

rithm 9, we consider only the other two algorithms.

Algorithm 8 is more efficient when: i) the ending state b is very likely, in a given

interval; ii) the endpoints are the same and the time interval is shorter then the

expected jump time. Otherwise, Algorithm 10 performs better.

4.7 Some important identifiability issues

Identifiability is an intrinsic issue when performing inference for Poisson processes.

Reliable estimates require a minimum amount of information which is positively related

to the number of events observed from the PP. For example, to estimate a constant

rate 1, observing the process for only one time unit would not provide information good

enough, whereas observing it for five time units certainly would. Also, one or two time

units are sufficient to estimate well a constant rate 10. Therefore, good estimates rely

on a minimum amount of information scaled with the rate and observed times.

Consider the general case where all the possible components of the model are

unknown and we just assume that the rate is driven by a CTMC. There are a myriad

of settings of the CTMC which fit the data reasonably well. For example, consider a

trajectory with short waiting time in a given state, but if this state is very recurrent, it

can be as well fitted as a trajectory with long waiting time. If the data does not have

enought information, we have to provide some prior information for the Q-matrix and

the state space E.

If we believe that the data do not have enough information to estimate the Q-
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matrix reasonably well, we choose the prior densities for the diagonal parameters of

the Q-matrix such that the waiting times in the states are not too small neither too

large, according to the time scale. It is not interesting to have a CTMC with short

waiting times with respect to the scale of the data set as the data will not contain

enough information for the all the changes to be captured. On the other hand, the

waiting time in a given state can not be too large such that the average time spent

in the remaining states is not large enough to estimate their values. One reasonable

strategy is to assume the same prior for each element in the diagonal of the Q-matrix.

Adopting an uniform distribution (on the simplex) for the transition probabilities

(i.e. a Dirichlet(1, 1, · · · , 1)) is a reasonable strategy. To estimate these transition

probabilities, all sorts of transitions in the CTMC and many of them are necessary.

Otherwise, it is advisable to fix these parameters.

The state space values ought to be significantly different with respect to the Poisson

distribution variance. For example, if the data have ten events in a two time units

interval, it is similarly likely that the rate is 4, 5 or 6.
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Chapter 5

Simulations and Application

In this chapter we present an analysis with simulated and real data to investigate the

Bayesian methodology devised in the previous chapter. In section 5.1 we compare

the sampling methods of the full conditional distribution of λ. The most efficient is

chosen for the further analysis. Section 5.2 contains three different scenarios to perform

inference using our methodology. In section 5.3 an analysis with real data is performed.

The studies are performed using the Ox language. The reported computational time

is using a CPU Intel Core i7-3770, 3.40GHz x 8.

5.1 Comparing RS and MH

To compare the sampling methods of the full conditional distribution of λ, we use a

simulated example of MSCP in the time interval [0, 200], where the CTMC has state

space E = {1, 4, 7} and Q-matrix

Q =


− 1

60
1

120
1

120

1
60
− 1

30
1
60

1
40

1
40
− 1

20

 .

Therefore, the average waiting times are 60, 30 and 20, in the states 1, 4 and 7,

respectively. As the aim is to compare the RS and MH alternatives, we fix the Q-

matrix and the state space and estimate only the intensity function λ. Note that both

algorithms are sampling from the same distribution. Therefore, the choice of a suitable
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algorithm is in the sense of the faster convergence and, hence, lower computational

cost.

Each chain runs for 50k iterations, with a burn-in of 20k. Thus, the intensity

function estimation is performed by a sample of size 30k. To obtain the estimated

trajectory, we set a grid in the interval, with length 1 and the posterior mean and

mode are computed for each time.

For the MH, defined in (4.5) and (4.8), we investigate the sampling method with

several values for L and r. A good estimation was obtained with L = 10 and r =

0 (which proposes from the prior CTMC), as shown in Figure 5.1. The estimated

trajectory followed the true trajectory. Only in the initial interval [0, 50] the estimated

λ differs a bit from the true rate, this is due to the data information in this region.

A way to evaluate the convergence is by taking the empirical probability distribution

of λ(t) for each time of the grid. Two plots of these empirical distributions along the

chain can be seen in Figures A.1 and A.2 in Appendix A. Some estimates via MH

with different specifications for L and r are also in Appendix A. All the studies were

done with 10 MH updates for each Gibbs iteration.
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Figure 5.1: Estimation of λ via MH: L = 10 and r = 0. The lines are the intensity
functions, true and estimated, and the points are the observed data.

For the RS, defined in (4.5) and (4.7), the L was fixed equal to 0.5. We tested
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other values but larger L leads with a high computational cost. The choice of L = 0.5

is plausible for the data, which provides a minimum acceptance probability


0.0498

∏n(k)

i=1

(
mE
ME

)1−r
, if r ≤ 1,

0.0498
∏n(k)

i=1

(
ME

mE

)1−r
, if r > 1.

The 50k MCMC iterations were still not sufficient for a reasonable estimation of λ

via RS, independent of the r value. Figure 5.2 presents the estimates with r = 1.8.

This scenario was the one that presented the estimated trajectory closer to the true

one, however, convergence was not yet achieved. This can be seen in Figure B.1 in

Appendix B. The RS convergence has a high computational cost and the algorithm

needs to run a long time to converge.
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Figure 5.2: Estimation of λ via RS: L = 0.5 and r = 1.8. The lines are the intensity
functions, true and estimated, and the points are the observed data.

Inference with other r values are in Appendix B. Note that as the value of r in-

creases, the greater is the chance to propose a trajectory of the CTMC with large state

values. However, the acceptance probability is greatly penalised when the proposed

trajectory is at the higher states. Choosing an appropriate value for r in the RS algo-

rithm is a challenging problem. Therefore, the Metropolis-Hastings algorithm will be
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chosen to sample from the full conditional distribution of λ for the next analysis.

5.2 Simulated studies

We construct three scenarios to perform inference by sampling from the posterior

distribution given in (4.1). Table 5.1 contains the specifications of the simulated data

to be used and the algorithm’s specifications to perform inference.

Time interval E Q-matrix L r MH updates

Scenario 1 [0, 100] {0, 1}

[
−1

5
1
5

1
10
− 1

10

]
20 0 10

Scenario 2 [0, 100] {1, 5}

[
− 1

20
1
20

1
10
− 1

10

]
20 0 10

Scenario 3 [0, 200] {1, 4, 7}

 −
1
60

1
120

1
120

1
60
− 1

30
1
60

1
40

1
40
− 1

20

 10 0 10

Table 5.1: Scenario’s specifications to perform inference.

In the cases where the process has a state zero, this state is fixed. Scenario 1 is

an example of this, where the aim is to estimate the positive state. The results for

scenario 1 are for a 20k MCMC iterations and a burn-in of 5k. A previous study to

investigate prior sensitivity indicated that reasonable results are obtained without the

need of very informative priors. Then, we set Gamma(1,1) as the prior distribution

for the state ε2 and Gamma(1, 2) as the prior distribution for θ1 and θ2. Table 5.2

contains the estimates for θ and E.

Parameter True value Estimated value Interval
−θ1 −0.2 −0.179 (−0.350,−0.064)
−θ2 −0.1 −0.124 (−0.245,−0.046)
ε2 1 0.988 (0.720, 1.300)

Table 5.2: Results for scenario 1: posterior mean and a 95% credibility interval.

Table 5.2 shows that all the parameters were well estimated. The point estimates

are close to the true values and the credibility interval includes them. The trace plots

are in Appendix C.
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Figure 5.3: Estimation of λ in scenario 1.

Note that in each MCMC iteration we have a different value for the states. To

obtain an estimated trajectory of λ by posterior mode, we compute, in each iteration,

the position of the current λ(t) in the vector E, i.e., if the λ(t) is the first or second

state in E. Then, we get the posterior mode, by positions. Figure 5.3 shows that the

estimations of λ are in agreement with the true λ and, mainly, with the data.

For scenario 2, a 20k MCMC iterations were run and a burn-in of 5k. We chose

Gamma(1, 1) as the prior distribution for each state and Gamma(1, 2) as the prior

distribution for θ1 and θ2. Table 5.3 shows that these parameters were well estimated.

The trace plots for each parameter are in Appendix C.

Parameter True value Estimated value Interval
−θ1 −0.05 −0.066 (−0.149,−0.017)
−θ2 −0.1 −0.128 (−0.278,−0.034)
ε1 1 0.929 (0.696, 1.191)
ε2 5 4.920 (4.164, 5.751)

Table 5.3: Results for scenario 2: posterior mean and a 95% credibility interval.

Also, for this scenario, we obtain good estimations of λ. They are in agreement

with the true λ and with the data, as it can be seen in Figure 5.4.
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Figure 5.4: Estimation of λ in scenario 2.

Scenario 3 is the same that is in section 5.1. However, to generate from the posterior

distribution with all unknown parameters, 30k MCMC iterations were run and a burn-

in of 10k. We used Gamma(1, 1) as the prior distribution for each state, Gamma(1, 2)

as the prior distribution for each diagonal parameter of the Q-matrix and Beta(1, 1)

for each probability distribution of the Q-matrix. Note that for a 3-state CTMC,

the probability vector of the transition distribution has size 2, thus, it is sufficient to

estimate only one probability p and the other is (1− p).

We observed that the point estimates of θ· were not as good as in the other scenar-

ios, by Table 5.4. All θi’s were overestimated, consequently, after the transformation,

the diagonal parameters of the Q-matrix were underestimated. Although, all the cred-

ibility intervals contain their true values. By the credibility intervals in Table 5.4 and

Figure C.6 in Appendix C, the θj·’s were estimated with too large variance.

All the E parameters were well estimated. The pontual estimates are close to the

true values and the credibility intervals include them. The trace plots are in Appendix

C.
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Parameter True value Estimated value Interval
−θ1 −0.017 −0.030 (−0.081,−0.005)
θ12 0.5 0.388 (0.017, 0.907)
θ13 0.5 0.612 −
θ21 0.5 0.437 (0.060, 0.877)
−θ2 −0.033 −0.047 (−0.112,−0.010)
θ23 0.5 0.563 −
θ31 0.5 0.434 (0.060, 0.881)
θ32 0.5 0.566 −
−θ3 −0.050 −0.164 (−0.383,−0.040)
ε1 1 1.044 (0.823, 1.293)
ε2 4 3.946 (3.360, 4.473)
ε3 7 6.755 (5.367, 8.303)

Table 5.4: Results for scenario 3: posterior mean and a 95% credibility interval.
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Figure 5.5: Estimation of λ in scenario 3.

Although the Q-matrix parameters were not precisely estimated, it did not affect

the λ estimate. The estimations in Figure 5.5 are good as in Figure 5.1, where all

parameters were fixed and only the intensity function was estimated.

We did many simulations for the three scenarios, where we fixed θ and E, or only E,

or only θ. But there was no significant difference from when we treated all parameters

as unknown.

In addition to estimating the parameters involved in the proposed process, we may
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do other estimates. It is possible, for example, to estimate the expected number of

events in an interval. Let Y ((t1, t2]) be the number of events in the interval [t1, t2],

then

E (E (Y ((t1, t2])|λ, y)) = E
(∫ t2

t1

λ(s)ds

∣∣∣∣y) .
The Monte Carlo estimator can be obtained by

1

M

M∑
i=1

∫ t2

t1

λ(i)(s)ds,

where M is the number of MCMC iterations (after burn-in) and λ(i) is the intensity

function generated at iteration i, according to the current E and θ. Table 5.5 presents

the Monte Carlo estimates for the expected number of events in a given interval for

the three scenarios discussed above.

Time interval Estimate
Scenario 1 [100, 125] 22.672
Scenario 2 [100, 125] 140.662
Scenario 3 [200, 250] 380.661

Table 5.5: Monte Carlo estimates for the expected number of events in a given interval.

According to Table 5.5, for scenario 1, if we observe the process in the time interval

[100, 125] we expect 22.672 event occurrences. For this prediction, we observe the

process at time interval [0, T ] and assume that λ will have the same distribution after

T .

The computational time for the simulated studies was about 10 minutes, 30 minutes

and 2 hours for scenarios 1, 2 and 3, respectively.

5.3 Application

We are interested in modelling the occurrences of traffic accidents along the BR-381

highway. Figure 5.6 presents the highway map. This Brazilian highway goes through

the states of Esṕırito Santo, Minas Gerais and São Paulo and is approximatly 1,180

kilometers long. We do not have information on the highway in Esṕırito Santo, there-

fore, the initial kilometer mark considered is 136.0 (in Mantena city, Minas Gerais).
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The data refers to all the 11,324 accidents in 2011. This data is available in the

Brazilian traffic department (DNIT) website (http://www.dnit.gov.br/).

Figure 5.6: BR-381 highway map.

We adopt the scale of 100 meters per unit and consider a four state space for the

intensity function. Table 5.6 shows the parameter estimates. The estimated values of

the intensity function are: 0.012, 0.506, 1.678 and 14.320. The trace plots for each

parameter are in Appendix D. The computational time for this analysis was about 50

hours.

Figure 5.7 shows the intensity function estimation, by posterior mode and mean.

The colorful rectangles are to identify the stretches that present high estimated levels

of accidents. The first rectangle is the Mantena stretch, the second is the stretch

between João Monlevade and Sabará, the third is the stretch in Belo Horizonte (state

capital), Contagem and Betim, and the other ones are Itatiaiuçu, Santo Antônio do

Amparo, Camanducaia and São Paulo city, respectively.

54



Parameter Estimated value Interval
−θ1 −0.031 [−0.039;−0.024]
θ12 0.366 [0.242; 0.506]
θ13 0.292 [0.178; 0.421]
θ14 0.341 −
θ21 0.154 [0.099; 0.216]
−θ2 −0.040 [−0.046;−0.034]
θ23 0.323 [0.252; 0.397]
θ24 0.524 −
θ31 0.110 [0.056; 0.176]
θ32 0.446 [0.356; 0.533]
−θ3 −0.093 [−0.111;−0.077]
θ34 0.443 −
θ41 0.132 [0.087; 0.183]
θ42 0.496 [0.422; 0.571]
θ43 0.372 −
−θ4 −0.608 [−0.696;−0.524]
ε1 0.012 [0.006; 0.020]
ε2 0.506 [0.479; 0.533]
ε3 1.678 [1.586; 1.783]
ε4 14.320 [13.857; 14.819]

Table 5.6: Results for traffic accidents: posterior mean and a 95% credibility interval.
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Figure 5.7: Estimation of λ for traffic accidents.
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Chapter 6

Conclusions and future work

Statistical modelling of point patterns is an important and common problem in several

applications. An important point process, and a generalisation of the Poisson process,

is the Cox process, where its intensity function is itself stochastic. There are many

possibilities to describe the dynamics of the intensity function and we chose a class

in which it is a continuous-time Markov chain, which we refer these processes as a

Markov switching Cox process. Also, the use of this dynamics means that the process

alternates between different homogeneous Poisson processes.

Some probabilistic properties for the MSCP’s were investigated and three new

theorems were derived.

We developed a Bayesian methodology, in which the inference is based on the

posterior distribution. The great advantage to use a CTMC as the intensity function

is that the likelihood function is tractable which facilitates the development of an exact

methodology.

From simulated studies, we had good estimates using our methodology, therefore,

our sampling method is effective to perform exact inference for the MSCP’s intensity

function and the parameters indexing its law. Also, the simulated studies allowed

us to evaluate two different algorithms for the full conditional distribution of the

intensity function, they are: rejection sampler and Metropolis-Hastings. According to

the simulations, in both, the choice of their specifications are crucial for the timely

algorithm’s convergence and this is not easy to do. For this work, we opted for the

MH as the better choice.
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For future work, we intend to improve the sampling methods of the full conditional

distribution of λ, the ideal block sizes and number of Metropolis-Hastings updates will

be investigated. Also, we intend to find new alternatives to describe the dynamics of

the MSCP’s intensity function.
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Appendix A

In this appendix we show some λ sampling results via MH defined in (4.5) and (4.8).
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Figure A.1: Empirical probability distribution for λ(10). Via MH: L = 10 and r = 0.
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Figure A.2: Empirical probability distribution for λ(150). Via MH: L = 10 and r = 0.
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Figure A.3: Estimations of λ via MH: L = 10 and r = 0.3.
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Figure A.4: Estimations of λ via MH: L = 10 and r = 0.5.
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Figure A.5: Estimations of λ via MH: L = 10 and r = 1.
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Figure A.6: Estimations of λ via MH: L = 30 and r = 0.
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Figure A.7: Estimations of λ via MH: L = 50 and r = 0.
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Figure A.8: Estimations of λ via MH: L = 50 and r = 0.2.
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Appendix B

In this appendix we show some λ sampling results via RS defined in (4.5) and (4.7).
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Figure B.1: Empirical probability distribution for λ(170). Via RS: L = 0.5 and r = 1.8.
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Figure B.2: Estimations of λ via RS: L = 0.5 and r = 0.
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Figure B.3: Estimations of λ via RS: L = 0.5 and r = 1.
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Figure B.4: Estimations of λ via RS: L = 0.5 and r = 2.3.
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Appendix C
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Figure C.1: Trace plot for ε2 in scenario 1.
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Figure C.2: Trace plots for θ in scenario 1.
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Figure C.3: Trace plots for E in scenario 2.
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Figure C.4: Trace plots for θ in scenario 2.
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Figure C.5: Trace plots for E in scenario 3.
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Figure C.6: Trace plots for θ in scenario 3.
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Appendix D
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Figure D.1: Trace plots for θ in traffic accidents.
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Figure D.2: Trace plots for E in traffic accidents.
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