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Resumo

Nessa tese são apresentadas análises comparativas de cartas de controle tradicionais

e também novos métodos para o monitoramento dos vetores de médias em processos

multivariados. O trabalho aborda os gráficos de controle multivariados para o monito-

ramento do vetor de médias de processos gaussianos com observações individuais. O

controle estatístico do processo em que apenas uma observação está disponível a cada

instante do tempo é um problema de difícil abordagem, já que não é possível detectar

precisamente o deslocamento do vetor de médias por cartas do tipo Shewhart. Nesse

caso é imprescindível o uso de cartas do tipo não-Shewhart, ou seja, considerar no ins-

tante atual a informação proveniente de observações passadas. Nesse sentido, diversos

experimentos foram inicialmente realizados com o propósito de verificar a robustez dos

métodos tradicionais baseados no parâmetro de não-centralidade. Foram investigadas

alternativas ao método mais utilizado em aplicações práticas, o método MEWMA,

com o uso de janelas deslizantes para a detecção de mudanças no vetor de médias do

processo. Finalmente, foram propostos nesta tese novos gráficos de controle, também

baseados no parâmetro de não-centralidade, contudo utilizando uma transformação

linear mais eficiente que o método Análise de Componentes Principais. Verificou-se

através de simulações de Monte Carlo que a estatística de controle proposta preenche

uma lacuna existente quanto à aplicação dos métodos automáticos para o controle do

vetor de médias de processos multivariados, sendo mais eficiente em termos de rapidez

de detecção das mudanças do que os gráficos tradicionais em diversas situações.

Palavras-chave: Controle de qualidade, gráficos de controle, vetores de médias, pro-

cessos gaussianos, observações individuais, projeções lineares.
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Abstract

In this work we present comparative studies as well as new proposals on methods for

statistical process control. Specifically, multivariate control charts with emphasis on

monitoring the mean vector of Gaussian processes with individual observations. The

statistical process control where only one observation is available at each instant of

time is a difficult problem to approach, since it is not possible to accurately estimate

the current process centre by means of Shewhart-type control charts, in which case

it is essential to utilise non-Shewhart control charts, i.e., to consider at the current

instant also information from past observations. Regard to this, several experiments

were initially carried out in order to verify the robustness of the traditional methods

based on the non-centrality parameter. Next, we investigated alternatives to the most

common method used in practical applications, the MEWMA scheme, such as sliding

window schemes for estimation of the current mean vector of the process. Finally, new

control charts have been proposed, also based on the non-centrality parameter, but

utilising a different criterion to obtain a linear transformation, more efficient than the

known method Principal Component Analysis. It was found through experiments that

the proposed statistics fills a gap regarding to the application of automata schemes

for monitoring the centre of multivariate processes, being more efficient in terms of

speed detection of shifts than the traditional quadratic approaches for a wide range of

distances.

Keywords: Quality control, control charts, mean vectors, gaussian processes, individ-

ual observations, linear projection.
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Capítulo 1

Introdução

1.1 Apresentação

O início da revolução industrial, em torno dos anos 1800, foi marcado principalmente

pela transição entre os lentos processos de produção artesanais para a produção em

série com o uso de máquinas. Sendo um divisor de águas, a manufatura de itens de

consumo em larga escala mudou de forma sem precedentes na história o panorama social

e econômico da humanidade. Com o desenvolvimento tecnológico, surgiram próximo

dos anos 1900 as rápidas máquinas a vapor, e com elas também a necessidade de evitar

desperdícios controlando os processos automatizados de produção.

Sendo o principal nome associado aos estudos da área hoje denominada Controle

Estatístico de Qualidade, Walter A. Shewhart, enquanto trabalhava na empresa Bell

Telephones em 1925, foi pioneiro no uso de métodos estatísticos para decidir quando

uma ação corretiva deveria ser aplicada a um processo. Seu principal trabalho nesse

sentido foi publicado em 1931 no livro Economic Control of Quality of Manufactured

Product (Shewhart, 1931).

Apoiado no alto poder computacional disponível atualmente para o rápido proces-

samento e análise de volumes cada vez maiores de informações, novos métodos para
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o controle estatístico de processos têm sido constantemente desenvolvidos. Da mesma

forma, a presente tese tem como objetivo contribuir com para a melhoria dos métodos

para o controle estatístico de qualidade, enriquecendo de forma global o grande universo

do qual fazemos parte.

1.2 Principais contribuições

A abordagem das contribuições apresentadas nessa tese desenvolveu-se gradual e cres-

centemente. Inicialmente foi investigado os padrões de comportamento dos métodos

tradicionalmente aplicados na indústria para o monitoramento do vetor de médias de

um processo gaussiano. Nesse estudo introdutório foi analisado o comportamento dos

limites de controle dos gráficos multivariate cumulative sum (MCUSUM), multivariate

exponentially weighted moving average (MEWMA) e 𝑇 2 de Hotelling quando são uti-

lizadas amostras de tamanho limitado proveniente da Fase I, e também considerando

parâmetros conhecidos. Nesse sentido, foi observado que para lidar com a maior variação

dos dados, os limites de controle tendem a aumentar à medida que períodos menores

da Fase I são utilizados. A seguir, foi verificado que os gráficos de controle estudados

são afetados de forma diferenciada quando diferentes fontes de variação ocorrem nos

processos. Particularmente, o gráfico de controle de Hotelling apresenta maior sensibili-

dade para a detecção do aumento de variâncias no processo que os demais, enquanto

os gráficos MCUSUM e MEWMA são mais sensíveis ao aumento de autocorrelação

positiva nos processos. Apesar disso, os gráficos MCUSUM e MEWMA não apresentam

nenhuma sensibilidade quanto a detecção da ocorrência de autocorrelação negativa em

qualquer nível, efeito somente detectado pelo gráfico de Hotelling.

Em uma segunda etapa, foram propostos gráficos de controle de confiança, os

quais derivam de uma relação probabilística das distâncias tradicionais, não limitadas

superiormente, para o intervalo [0-1]. A utilização dos gráficos de confiança, além de
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propor uma nova interpretação para as distâncias dos gráficos tradicionais, foi também

útil para a análise e criação de uma correspondência o parâmetro de suavização 𝜆,

utilizado no gráfico MEWMA, e o tamanho de janelas deslizantes na estimação do vetor

de médias. Embora útil, o tamanho da janela deslizante é um importante parâmetro até

então de difícil escolha por parte do analista, que influencia diretamente a magnitude

da mudança a ser detectada.

Também com a utilização dos gráficos de confiança, foi analisado o problema do

efeito inercial que ocorre nos gráficos do tipo não-Shewhart. Tal efeito inercial pode ser

compreendido como um retardamento na detecção de mudanças de grande magnitude,

quando comparados à velocidade de detecção do método Shewhart. Nesse sentido, foi

identificado que diferentemente do que podem suspeitar alguns pesquisadores, o uso

de janelas deslizantes não reduz o efeito inercial em métodos não-Shewhart. Embora

as janelas deslizantes sejam amplamente aplicadas em identificação de padrões comuns

em certos processos, como sazonalidade e alternação de sinais, foi averiguado que seu

uso amplifica o efeito inercial, retardando assim a detecção de grandes mudanças nos

processos.

A principal contribuição desta tese recai sobre o problema da redução e seleção de

variáveis do processo através de transformações lineares, geralmente realizado através

da técnica conhecida como Análise de Componentes Principais (ACP). Destaca-se que

com a aplicação da metodologia proposta no final desta tese para os gráficos de controle,

foi possível obter uma redução significativa no efeito inercial. Nesse contexto, sabe-se

que a ACP não fornece uma regra definitiva para o problema sobre quais componentes

principais devem ser selecionadas, geralmente acarretando em perda de desempenho

em termos de velocidade de detecção das mudanças. De acordo com a literatura em

reconhecimento de padrões e processamento de sinais, a transformação linear realizada

pelo método ACP é indicada para a representação de sinais, não sendo eficiente quando

o propósito é classificação. Conforme exposto no trabalho, quando o objetivo é a classi-
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ficação de dados, uma transformação linear utilizando um critério diferenciado produz

uma redução de dimensionalidade mais efetiva. Como a implementação de tal critério

na área de controle de processos era até o momento desconhecida, os experimentos com

os novos gráficos de controle propostos evidenciaram que há de fato uma seleção ótima

da direção a ser monitorada, tornando a redução da dimensão dos processos ótima no

sentido de minimizar o tempo de detecção de mudanças no vetor de médias.

1.3 Organização da Tese

Como destacado anteriormente, o desenvolvimento desta tese deu-se de forma gradual.

A partir do estudo e reconhecimento dos padrões de atuação dos métodos clássicos

no monitoramento da média de processos multivariados, foram sendo estudadas as

possibilidades de modificação desses métodos até o desenvolvimento bem sucedido de

um novo método de controle.

Assim, o trabalho foi elaborado em três etapas, sendo que cada uma delas resultou em

um artigo autônomo, aqui organizado sequencialmente como um único volume. Como

os trabalhos foram elaborados independentemente, alguns conteúdos introdutórios aos

métodos estão apresentados novamente nas três partes principais da tese.

No Capítulo 2 são apresentados os três métodos clássicos no monitoramento do

vetor de médias de processos multivariados. Nesse capítulo é proposto um método de

calibração comum, o estudo dos limites de controle e os padrões de desempenho dos

gráficos de controle tradicionais frente a diferentes fontes de variabilidade.

O Capítulo 3 apresenta os gráficos de controle de confiança e também investiga a

utilização das janelas deslizantes como abordagem alternativa para minimizar o efeito

inercial dos gráficos de controle. Nesse contexto é apresentado de forma clara uma

relação entre o parâmetro de suavização do método MEWMA e o tamanho das janelas

deslizantes. As novas abordagens em gráficos de controle para o monitoramento do vetor
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de médias de processos multivariados, denominadas de Lin-MEWMA e CUSUM-Lin,

são apresentadas no Capítulo 4. Finalmente, o Capítulo 5 faz um resumo do trabalho

realizado e expõe novos objetivos e planejamentos a ser implementados em futuros

projetos.





Chapter 2

On the Hotelling’s 𝑇 2, MCUSUM

and MEWMA Control Charts’

Performance with Different

Variability Sources: A Simulation

Study

Abstract

This work is a simulation study to investigate the sensitivity of multivariate control

charts for monitoring mean vectors in a bivariate Gaussian process with individual

observations. The multivariate cumulative sum (MCUSUM), the multivariate expo-

nentially weighted moving average (MEWMA) and Hotelling’s 𝑇 2 charts are selected

for analysis due to their common dependency on the noncentrality parameter. The

chart performance is evaluated through the average run length (ARL) or the average
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time to signal. The impact of utilising thresholds computed from known parameters

or Phase I sample estimates is considered for mean vector shifts. Although designed

to monitor mean vectors, the sensibility of the control charts is additionally analysed

through different variability sources, including the mixing effect of mean vector shifts

with increasing variances or positive autocorrelation in the out-of-control process.

2.1 Introduction

Developed to study the influence of social castes in India in the early 20th century,

the Mahalanobis (1936) distance is an important example of a dissimilar metric in

various disciplines. Among many existing applications of this distance, in the statistical

process control (SPC) it is known as the noncentrality parameter. With the increase in

computational power over the last century and the growing number of applications, the

Monte Carlo method can help to understand its behaviour under different simulated

scenarios.

In SPC, the noncentrality parameter is frequently used in control charts to detect

process changes, triggering a signal as soon as the underlying process shifts from the

in-control state to the out-of-control state. To evaluate the control chart performance,

the metric typically adopted is the average run length (ARL) or average time to signal

(ATS). The ATS is the process ARL when the time interval between samples is fixed

at one time unit, as during this simulation study.

An important factor for rapid change detection is selecting the correct method, which

depends on the available data and the change to be monitored. Montgomery (2001)

elaboration of the decision schemes is a main reference to correctly choose a control

chart method. Lowry and Montgomery (1995) present an additional review. Although

the multivariate exponentially weighted moving average (MEWMA) of Lowry et al.

(1992) and the multivariate cumulative sum (MCUSUM) charts of Crosier (1988) are
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popular and more suitable to detect small changes, the 𝑇 2 chart is suggested to monitor

the mean vector for large-scale shifts. Mahmoud and Maravelakis (2010; 2011) use

estimates of the parameters for evaluating the performance of two types of MCUSUM

and MEWMA control charts. These charts are based on the noncentrality parameter

and can be applied to a number 𝑝 of variables, where 𝑝 ≥ 1. When 𝑝 = 1, all methods

are reduced to their respective univariate schemes, which are CUSUM, EWMA and X

control charts. Recent work proposes several chart modifications, such as the double

exponentially weighted moving average (dEWMA) method proposed by Alkahtani and

Schaffer (2012).

To monitor the covariance matrix, Montgomery (2001) recommends the moving

range and generalised variance tests, Riaz and Does (2008) suggest utilising supporting

information and Costa and Machado (2008) postulate the VMAX procedure. Quinino

et al. (2012) also propose a single statistic based on the mixture of variances (VMIX)

to monitor the covariance matrix of bivariate processes. Yeh et al. (2006) proposed

modifications of the EWMA method based on the generalised variance.

The approaches for simultaneously monitoring changes in the mean vector and the

covariance matrix are numerous, and we highlight the integration of the exponentially

weighted moving average procedure with the generalised likelihood ratio test of Zhang

et al. (2010) and Khoo et al. (2010), whose statistics are based on the maximum of the

absolute values of the two dEWMA statistics, one of which controls the mean vector

and the other the covariance matrix. The numerous proposals to monitor changes in the

mean vector of autocorrelated data (Montgomery, 2001) include traditional methods

that fit the time series and subsequently implement control techniques on the model

residuals produced by the fit.

Although designed to monitor mean vector shifts, the present study analyses the

sensibility of the MCUSUM, MEWMA and Hotelling’s 𝑇 2 statistics for process changes

in the mean vector with different sources of variation. First, the chart performance
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for mean vector shifts is compared considering known parameters or training on small

samples sizes. The simulated mean vector shifts includes comparisons about the shift’s

direction in correlated and non-correlated processes with known parameters. Increasing

variances and the influence of a vector autoregressive model are additionally measured

and analysed using the ARL value, keeping the mean vector fixed.

The bivariate case is chosen to analyse the multivariate point process for their broad

application in space-time problems and to provide a general example of multivariate data.

Another positive aspect of studying only two variables is the visual potential to identify

the in- and out-of-control observations in their original spaces in three-dimensional

observations to make more direct conclusions and facilitate the understanding of what

occurs in the higher-dimensional spaces. To emphasise this objective, Lowry and

Montgomery (1995) recommends extending additional graphical approaches, including

the Polyplot method (Blazek et al., 1987), beyond the Hotelling’s 𝑇 2 statistic and

including techniques, as the MEMWA chart, that effectively detect small changes.

Although different methodologies for data visualization are employed together with the

control charts, this work presents a tool for continuous data view in the scatter-plots,

estimating confidence ellipses for the current process based on principal component

analysis (PCA).

In Section 2, we present a review of the noncentrality parameter, which is the

common distance used in the Hotelling’s 𝑇 2, MCUSUM and MEWMA control charts

is presented. Additionally we provide a brief explanation of PCA as a tool for data

visualisation in the scatter-plots. Section 3 analyses results of experiments for different

shifts in the mean vector with known parameters or sample estimates. As inertia

problems may occur in non-Shewhart control charts, our recommendation is the use

of simultaneous non-Shewhart and Shewhart-type control charts to avoid detection

delay. Further, the ARLs measure the chart sensibility due to increasing variances,

autocorrelation, and the resulting performance of mixing those effects with mean vector
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shifts. The final section discusses the control charts performance and sensibility in the

proposed scenarios and prospects for future work.

2.2 Control Charts Methodology

In the general case, suppose that vectors x1, x2, x3, . . . of dimension 𝑝 × 1 represent

sequential observations of 𝑝 characteristics over time. The observations x𝑖, 𝑖 = 1, 2, . . . ,

are assumed to be independent random vectors of a multivariate normal distribution

with a mean vector M0 and covariance matrix Σ0. Without loss of generality, consider

that M0 = (0,0,. . . ,0) = 0 and Σ0 = I.

The Hotelling’s 𝑇 2, MCUSUM and MEWMA control charts analysed share the

property that their performances, as measured by ARL, depend on M and Σ expressed

as the noncentrality parameter 𝑑 (Lowry et al., 1992), which is given by

𝑑2 = M′Σ−1M (2.1)

When Σ0 is the identity matrix, 𝑑 is reduced to a Euclidean distance. In his original

formulation, Hotelling suggests the utilisation of 𝑑2 to avoid the labor of extracting the

square root. If the in-control process is not symmetrical around its centre of mass, as

occurs for correlated variables, the Euclidean distance does not consider the process

covariance, thus making it directionally dependent. To quantify the magnitude of

shifts without directional dependence, the shifts should be correctly weighted by the

covariance matrix. The statistical pattern recognition literature (Therrien, 1989) shows

that the noncentrality parameter, also known as the Mahalanobis distance, is related

to other statistical measures as the Divergence (D) and Bhattacharyya (B) distances.

When the covariance matrices of two processes are equal, then 𝑑2 = 𝐷 = 8𝐵.

In classification problems, those distances are present in single and composite tests.
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For the composite problem, each observation is compared within two or more classes

and attributed to the one with the shortest distance. The noncentrality parameter in

a control chart evaluates the relative vector distance to the in-control process mean.

Thus, problems related to the control charts often arise as single hypothesis tests, i.e.,

when the unique known class is the in-control state. The analysis of signals from radar

devices is an example of single hypothesis tests applied in the pattern recognition field,

when the aim is the simple recognition of potential targets.

Note the existence of two implicit assumptions in the performance comparisons

based on the noncentrality parameter. First, any shift, regardless of size, must be

detected as early as possible. Second, a shift from M0 to M1 is detected as quickly as

a shift from M0 to M2 if M′
1Σ−1

0 M1 = M′
2Σ−1

0 M2. As the ARL value is a function

of the noncentrality parameter 𝑑, the comparisons between the methods are simplified

with analysis of the curve ARL vs. 𝑑. Alternatively, if the charts do not share this

property, their relative performance may vary depending on Σ, i.e., even for a given

matrix Σ, a chart may more effectively detect changes in some directions and less

effectively in other directions.

2.2.1 Hotelling’s 𝑇 2 Control Chart

The statistic proposed by Hotelling (1947) triggers a signal when there is a significant

shift in the mean vector, such that

𝑑2
𝑖 = (x𝑖 − M0)′ Σ−1

0 (x𝑖 − M0) > ℎ1 (2.2)

where ℎ1 > 0 is the threshold specified to maintain a desired in-control average run

length (ARL0).

There are three asymptotic distributions in the literature to compute the thresholds
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for the Hotelling’s 𝑇 2 statistics. When we assume that the observations x𝑖 are not

time-dependent and that the process parameters are known, 𝑑2
𝑖 follows a Chi-squared

distribution with 𝑝 degrees of freedom and then ℎ1 = 𝜒2
(𝑝,1−𝛼) (Seber, 1984). This

is a a Phase II control chart called 𝑇 2-chart for individual observations with known

parameters.

If 𝑚 samples are used to compute (x̄0,S0), the estimates of (M0,Σ0) and x𝑖 is an

individual observation that is not independent of the estimators, then the 𝑑2
𝑖 /𝑑0 (𝑚)

statistic follows a Beta distribution with 𝑝/2 and (𝑚 − 𝑝 − 1/2) degrees of freedom,

where 𝑑0(𝑚) = (𝑚 − 1)2 𝑚(−1) and 𝑝 is the data dimension. Thus, the upper control

limit is given by ℎ1 = 𝑑0(𝑚)𝛽(1−𝛼,𝑝/2,(𝑚−𝑝−1)/2). This control chart is called a Phase I

𝑇 2-chart (Tracy et al., 1992).

If the estimators are utilised instead of the parameters and if x𝑓 is a future individual

observation that is independent of (x̄0,S0), then 𝑑2
𝑓 /𝑑1(𝑚,𝑝) follows an F -distribution

with 𝑝 and (𝑚 − 𝑝) degrees of freedom, where 𝑑1(𝑚,𝑝) = 𝑝 (𝑚 + 1) (𝑚 − 1) [𝑚 (𝑚 − 𝑝)]−1.

Thus, the upper control limit of this multivariate Shewhart control chart is 𝑑1(𝑚,𝑝)F(1−𝛼,𝑝,𝑚−𝑝).

This control chart is called a Phase II 𝑇 2-chart with unknown parameters.

Because the multivariate Shewhart control charts only consider the information

given by the current observation, they are insensitive to small and moderate shifts in

the mean vector. To overcome this problem, we concisely describe the multivariate

CUSUM and EWMA schemes proposed in the literature.

2.2.2 Multivariate Cumulative Sum Chart

Among the multivariate CUSUM methods proposed by Crosier (1988), the method

with the best properties in terms of performance triggers an alarm when the statistic

𝛾2
𝑖 =

(︁
Ψ′

𝑖Σ−1
0 Ψ𝑖

)︁
> ℎ2 (2.3)
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where Ψ𝑖 = 0, if 𝐶𝑖 ≤ 𝑘, Ψ𝑖 = (Ψ𝑖−1 + x𝑖 − M0) (1 − 𝑘/𝐶𝑖) if 𝐶𝑖 > 𝑘, Ψ0 = 0,

𝑘 > 0 and 𝐶𝑖 =
[︁
(Ψ𝑖−1 + x𝑖 − M0)′ Σ−1

0 (Ψ𝑖−1 + x𝑖 − M0)
]︁1/2

, 𝑖 = 1,2,. . . . The upper

control limit ℎ2 is determined to provide a predefined in-control ARL by simulation.

Because the ARL performance of this chart depends on the noncentrality parameter,

Crosier recommends 𝑘 = 𝑑/2 for a shift detection of 𝑑 units.

2.2.3 Multivariate Exponentially Weighted Moving Average Chart

The MEWMA method proposed by Lowry et al. (1992) is a natural extension of the

EWMA chart. Its multivariate formulation defines the EWMA vector as z𝑖 = 𝜆x𝑖 +

(I − 𝜆) z𝑖−1 = ∑︀𝑖
𝑗=1 𝜆 (I − 𝜆)𝑖−𝑗 x𝑗 , 𝑖 = 1,2,. . . , where z0 = 0, the initial in-control

mean vector of the process, and 𝜆 = 𝑑𝑖𝑎𝑔 (𝜆1,𝜆2,. . . ,𝜆𝑝), 0 ≤ 𝜆𝑗 ≤ 1, 𝑗 = 1,2,. . . ,𝑝.

When 𝜆 = I, the MEWMA control chart is equivalent to the 𝑇 2-chart. Similar to other

methods, this procedure triggers an out-of-control signal when

𝑧2
𝑖 =

(︁
z′

𝑖Σ−1
0 z𝑖

)︁
> ℎ3 (2.4)

where ℎ3 > 0 is chosen by simulation to obtain a predefined value of ARL0 and

Σ(z𝑖) is the covariance matrix of z𝑖. If there is no reason to differentially weight the his-

torical observations in the 𝑝 characteristics, then 𝜆1,𝜆2,. . . ,𝜆𝑝 = 𝜆 is utilised, but when

unequal weighting constants are considered, the ARL depends on the direction of the

shift. The covariance matrix of z𝑖 is calculated as Σ(z𝑖) = ∑︀𝑖
𝑗=1 Var

[︁
𝜆 (I − 𝜆)𝑖−𝑗 x𝑗

]︁
=∑︀𝑖

𝑗=1 𝜆 (I − 𝜆)𝑖−𝑗′
Σ (I − 𝜆)𝑖−𝑗 𝜆; when 𝜆1 = 𝜆2 = ... = 𝜆, Σ(z𝑖) =

(︁
1 − (1 − 𝜆)2𝑖

)︁
(𝜆/ (2 − 𝜆)) Σ. An approximation of the variance-covariance matrix Σ(z𝑖) as 𝑖 ap-

proaches +∞ is given as Σ(z𝑖) = 𝜆/ ((2 − 𝜆) Σ0); however, the appliance of exact

variance-covariance matrix leads to a natural fast initial response (FIR) for the MEWMA
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chart.

2.2.4 Confidence Ellipse Estimation by Principal Component Analy-

sis

The principal components method is a common multivariate procedure for projecting

the original variable space into an orthogonal space, so less transformed variables that

represent different sources of variation can be monitored together with multivariate

control charts or individually with univariate control charts (Bersemis et al., 2007).

Among the applications of this very useful method in multivariate quality control, Jack-

son (1991) studied three types of control charts based on PCA. The first type is a

𝑇 2-control chart obtained from principal scores components, the second is a control

chart for principal component residuals and the third is a control chart for each inde-

pendent principal component’s scores. Thus, further analysis could be made to monitor

individual observations using their projections into the principal components. Bersemis

et al. (2007) offer a detailed description of multivariate process control via PCA and

other projection techniques. Making a distinction between signal classification and

signal representation as exposed by Fukunaga (1990), the authors applies PCA as a

descriptive tool, establishing in- and out-of-control regions for the current process and

then visualization helps to an understand the process in conjunction with the control

charts.

PCA aims to find a matrix Σ* with a linear transformation of Σ, which rotates the

original axes in the directions of decreasing (or increasing) variability. In the bivariate

case, the eigenvector e1 = (e11,e12) associated with the first principal component (𝑃𝐶1)

in the rotation matrix Σ* indicates the direction of maximum process variability, and the

first eigenvalue v1 indicates the normalised size of variation in that direction. Similarly,

the second principal component (𝑃𝐶2) indicates the direction and magnitude of the

axis with the second most significant variability, which is orthogonal to the first one.
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To plot the in- and out-of-control ellipses in the scatter-plots showed in the present

work, take the rotation angle of the estimated ellipse (in radians) with respect to the

original coordinate system from the trigonometric rules, such as the arctangent of the

first eigenvector, which points in the direction of greatest variability. Similarly, the

second eigenvector provides the direction of the second most significant variation. The

estimated axis sizes in the directions of the major and minor variability are normalised,

and the eigenvalues are multiplied by the quantile of a multivariate normal distribution

to establish the confidence region of (1 − 𝛼) 100%, where 𝛼 is the error probability.

Assuming that the subjacent process is Gaussian, we adopt 𝑧(1−𝛼) = 3.023, which

corresponds to an error 𝛼 = 0.005 for the estimated axis size. The in-control ellipses

are drawn in blue and the out-of-control ellipse in red.

2.3 Experiments and results

As described above, the calibration of the MCUSUM and MEWMA charts to obtain

a predefined value for ARL0 involves defining the 𝑘-factor in the MCUSUM and 𝜆

in the MEWMA. For the MCUSUM chart, Crosier (1988) notes that one should

choose 𝑘 = 𝑑/2 to detect a shift with a magnitude 𝑑 corresponding to the noncentrality

parameter. For the MEWMA method, Lowry et al. (1992) illustrate optimal schemes

to choose the weighting factor 𝜆, which generally must be in the [0.05; 0.25] range.

According to the authors, the optimum suggested value of 𝜆 to detect a unitary change

in the noncentrality parameter is 0.16. In the present work, 𝜆 = 0.1 is selected for the

MEWMA chart as this value is a common choice in several papers to compare with

the MCUSUM chart utilising 𝑘 = 0.5 (which corresponds to a target shift detection of

noncentrality value 𝑑 = 1).

Set the 𝑘 and 𝜆 values, the control limits ℎ𝑖 are estimated for the control charts to

obtain the same ARL. To standardise the analysis with other studies, the charts are
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calibrated to an ARL0 of 200, which is an intermediate value for the mean time, after

which a false alarm may be triggered. Defining in-control thresholds for each chart

using the same ARL0 ensures an equivalent type I error for the tests under the null

hypothesis of no change in the process.

As the calibration procedure is complete, we compare the chart ARL1 values, i.e.,

the chart performance with a shift in the process. When the underlying process is

actually out-of-control with a mean vector shift, a smaller ARL1 value corresponds to

better chart performance. Conversely, the chart may trigger a signal for a different

variation source, indicating that the chart is not robust for different causes of variation.

Thus, the ARL1 computed for other sources of variation and different mean vector

shifts can be viewed as a disadvantage or lack of robustness of the chart and treated as

a scale of sensibility. The ARL empirical computation is described in the next section.

All routines for the experiments are elaborated using the R language (Development

Core Team, 2008).

As previously stated, the Hotelling’s 𝑇 2-control chart calibration is achieved using

the process sample estimates or the known parameters to compute the thresholds by

means of asymptotic distributions. An additional Hotelling’s 𝑇 2-control chart calibra-

tion observes the false alarm rate and computes the probability of a signal, but we

do not apply this procedure because the non-Shewhart control charts do not share

this signal independence property. To compare the performance of non-Shewhart and

Shewhart-type control chart, we choose the method described below in lieu of the tra-

ditional Markov Chain or integral equations approach for the MCUSUM and MEWMA

threshold estimation.

2.3.1 Control chart calibration

In this work, the control chart calibration is computed by specifying a sequence of

approximate thresholds for each control chart and recording the resulting in-control
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average run length (ARL0). Then, a linear regression model in the form ln (𝐴𝑅𝐿) =

𝑎 + 𝑏 × ℎ𝑖 is fitted to estimate the target threshold for a predefined ARL0 = 200.

(a) (b) (c)

Figure 2.1: Fitted linear regressions for control chart’s calibration utilising known
parameters

To access the ARL0 estimation for each threshold value, the number of samples 𝑚

is set equals 2,000. This quantity of observations show high probability (> 99.9% for

ARL0 = 200) of triggering a false alarm when the process is actually in-control. When

observed, the position N of the first alarm occurrence is recorded as the run length, and

the mean value of N, computed from B Monte Carlo simulations, is the ARL0 for that

threshold. In the experiments performed with known parameters and 20,000 Monte

Carlo simulations, the maximum observed run length is 1,844. To avoid missing values

when the signal does not occur, 𝑚 is set to a maximum of 2,000. The experiments

are performed with B = 2,000 Monte Carlo simulations to speed up the regression

adjustment step, and B = 20,000 are performed with the estimated in-control limit for

the final ARL0 and ARL1 computation.

To illustrate the threshold sensitivity in the Hotelling’s 𝑇 2-control chart, Table 2.1

contains the asymptotic values for a Phase II control chart, based on the F distribution,

and respective standard errors obtained in 100,000 Monte Carlo simulations, where

𝑚 = 100 observations of the in-control process were simulated each step for parameter

estimation. The highest threshold (ℎ0.999 = 15.13) corresponds to an ARL0 value of

1,000 observations. Similarly, the confidence level of 99.5% (ℎ0.995 = 11.42) shows an

average run length that is five times less (200.7) than the first one.
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Table 2.1: Confidence level, estimated thresholds, ARL0 and standard errors for a
Phase II 𝑇 2-control chart

(1 − 𝛼) 100% ℎ1 ARL0 SE
99.9 15.13 1000.1 3.127
99.5 11.42 200.7 0.625
99.0 9.85 99.7 0.316
95.0 6.30 19.9 0.063

With the asymptotic values of Table 2.2 for the Hotelling’s 𝑇 2-chart and the refer-

ence values in the original papers for the MEWMA and MCUSUM charts, the linear

regressions displayed in the Figure 2.1 are fitted with known parameters for all charts’

calibrations. The minimum number of threshold values for the regression estimation is

10, and the maximum is 18. The values along the vertical axes are ARL0 values in a

logarithmic scale, and the values along the horizontal axes are the in-control limits. The

parameter estimation is carried out with 𝑚 = 25, 50 and 100 for the number of Phase I

samples of individual observations. The thresholds value sequences for estimating the

regression model of each control chart are set to approximate the ARL0 between 100

and 300. All fitted regressions, goodness-of-fit and estimated thresholds for a target

ARL0 = 200 are shown in Table 2.3.

Table 2.2: Asymptotic thresholds of Hotelling’s 𝑇 2 Phases I and II

Asymptotic distribution
m 𝜒2-distribution Beta-distribution F -distribution
25 - 8.81 14.61
50 - 9.69 12.34
100 - 10.14 11.42

(M0,Σ0) 10.60 - -

We first compare the estimated thresholds with the asymptotic values of Hotelling’s

𝑇 2 control charts presented in Table 2.2. In Table 2.3, we notice that the linear

regression approach shows a tendency of larger thresholds for smaller sample sizes, as
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expected, and the estimate for known parameters (10.61) is very close to the asymptotic

value (10.60). Second, for sample estimates, the regression adjusted thresholds are close

to the asymptotic average between the two distributions. For 𝑚 = 25, the asymptotic

threshold average is 11.71, while the regression estimate is 11.26. For 𝑚 = 50 and 100,

the asymptotic threshold averages are 11.02 and 10.78, respectively, while the regression

estimates are 10.93 and 10.60. Thus, the linear regression approach is effective for

calibrating Hotelling’s 𝑇 2-control chart.

Table 2.3: Adjusted linear regression models with sample estimates and known param-
eters

Control Chart m Fitted model 𝑟2 ℎ̂𝑖 = (𝐴𝑅𝐿0)
𝑇 2 25 𝑙𝑛 (ARL0) = 0.3710 * ℎ1 + 1.1206 0.956 11.26

50 𝑙𝑛 (ARL0) = 0.4628 * ℎ1 + 0.2414 0.971 10.93
100 𝑙𝑛 (ARL0) = 0.4954 * ℎ1 + 0.0463 0.985 10.60

(M0,Σ0) 𝑙𝑛 (ARL0) = 0.4773 * ℎ1 + 0.2351 0.992 10.61
MCUSUM 25 𝑙𝑛 (ARL0) = 0.5138 * ℎ2 + 1.7467 0.974 6.91

50 𝑙𝑛 (ARL0) = 0.6589 * ℎ2 + 1.1829 0.993 6.25
100 𝑙𝑛 (ARL0) = 0.7343 * ℎ2 + 0.9318 0.997 5.95

(M0,Σ0) 𝑙𝑛 (ARL0) = 0.8611 * ℎ2 + 0.5451 0.986 5.52
MEWMA 25 𝑙𝑛 (ARL0) = 0.2811 * ℎ3 + 2.0399 0.963 11.59

50 𝑙𝑛 (ARL0) = 0.3628 * ℎ3 + 1.5648 0.974 10.29
100 𝑙𝑛 (ARL0) = 0.3892 * ℎ3 + 1.5511 0.994 9.63

(M0,Σ0) 𝑙𝑛 (ARL0) = 0.4348 * ℎ3 + 1.4904 0.993 8.76

2.3.2 In-control and out-of-control run length distributions

To compare the run length distributions calibrated with known parameters, Figure 2.2

presents a sequence of density histograms based on the resulting run length values for

20,000 Monte Carlo simulations. Figure 2.2(a) shows the run length distributions for

the three control charts and the first moment of each distribution are the ARL0 values

of the last group in Table 2.4, which is based on the known parameters (M0,Σ0).

Some large observations are not displayed in the histograms because the horizontal

axes were set to not lose scale definition. When the shift is large as in Figure 2.3(c),
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(a) 𝑑 = 0

(b) 𝑑 = 0.71

(c) 𝑑 = 1.41

Figure 2.2: Empirical in- and out-of-control run length distributions

the Hotelling’s 𝑇 2 is clearly the most favourable to change detection. The run length

distribution of the MEWMA control chart as seen Figure 2.2(b)-(c) confirm that this

control chart with 𝜆 = 0.1 tends to perform better than the MCUSUM with 𝑘 = 0.5.

This result is also confirmed by the ARL1 values produced in the experiments with

known parameters of Table 2.4.

It is observed that simulating long runs is not necessary for defining the out-of-control
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(a) 𝑑 = 2.12

(b) 𝑑 = 2.82

(c) 𝑑 = 3.54

Figure 2.3: Empirical in- and out-of-control run length distributions

run length distributions. For the ARL1 estimation, the total number of simulated sample

observations (𝑚) utilised for each mean vector shift was 1,500, 1,000, 500, 200 and 100,

which considerably reduced the computing time costs.
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2.3.3 Performance comparison for mean vector shifts

Excluding the specific mean vector shifts to test the MCUSUM method, Crosier (1988)

evaluates 𝑑 unitary increments in the 0 to 5 range for several dimensions. Lowry and

Montgomery (1995) in the MEWMA method evaluate shifts through 𝑑 increments in

the 0 to 3 range. The present work simulates changes in equal increments for both

dimensions, and the centre of the process is shifted diagonally from (0.0, 0.0) to (2.5,

2.5) by increments of 0.5 in both dimensions, representing 𝑑 values in the 0 to 3.54 range.

The probability inside the area defined by three standard deviations in a non-correlated

process is 0.995.

Figure 2.4 illustrates the proposed mean vector shifts for correlated and non-correlated

processes. The non-correlated scheme in Figure 2.4 is calibrated with estimated and

known parameters. The correlated variable schemes of Figure 2.4 are compared only

for the case of known parameters. The experienced reader should argue why to do

comparisons with correlated variables since the charts performance does not depends

on the shifts direction. For that reasoning, the authors intend to emphasize that a shift

of magnitude 𝑑 is different when it occurs in the process directions of major and minor

variability.
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Figure 2.4: Diagram of the proposed mean vector shifts for non-correlated and correlated
processes
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For non-correlated processes shown in Figure 2.4, the in-control limits are delimited

with known parameters and sample estimates of three different sizes (𝑚 = 25; 50; 100)

in Phase I. Table 2.4 presents the resulting in- and out-of-control ARLs. Although

the standard error (SE) of the estimate is relatively large for the ARL0 due to the

regular number of Monte Carlo simulations (𝐵 = 20,000), the ARL1 values show little

variation.

The main observed effect due to the utilisation of small sample sizes to train the

control chart in Table 2.4 is an increasing delay in the change detection as the sample

size decreases. The MCUSUM and MEWMA charts perform very similarly for all shifts,

with faster performance than the Hotelling’s 𝑇 2-chart for the shifts (2.0, 2.0) that are

situated around the target noncentrality value (𝑑 = 1). To this point, the inertia effect

begins to delay the change detection for the non-Shewhart charts, and the shift for the

point (2.5, 2.5) is more likely to be detected with the Shewhart-type control chart.

Table 2.4: Average run length for mean vector shifts with sample estimates and known
parameters

d 0 0.71 1.41 2.12 2.82 3.54
m Chart ARL0 ARL1 ARL1 ARL1 ARL1 ARL1

MCUSUM 199.4 26.3 7.3 4.5 3.3 2.6
25 MEWMA 201.1 28.1 7.8 4.7 3.4 2.7

𝑇 2 199.3 91.7 26.5 7.7 3.1 1.7
MCUSUM 197.3 20.2 6.8 4.2 3.1 2.5

50 MEWMA 199.1 20.9 7.1 4.4 3.3 2.6
𝑇 2 199.9 87.3 21.9 6.6 2.8 1.6

MCUSUM 203.1 18.2 6.4 4.0 3.0 2.4
100 MEWMA 200.3 18.4 6.8 4.2 3.1 2.5

𝑇 2 200.6 84.2 20.5 6.3 2.7 1.5
MCUSUM 198.6 16.0 6.0 3.7 2.8 2.3

(M0,Σ0) MEWMA 197.2 15.2 5.8 3.6 2.7 2.1
𝑇 2 201.0 76.9 18.6 5.7 2.5 1.5

The simulations with modified correlation structures shown in Figure 2.4 determine
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the changes only in the first quadrant, thus allowing changes to represent both large

and small shifts respective to the noncentrality parameter. Figure 2.5 demonstrates how

much those different structures allow the same shift in the mean vector to represent

a relatively different shift in the noncentrality parameter. Compared with the non-

correlated process represented by the solid line, the mean vector shifts measured by the

noncentrality parameter are smaller in the positively correlated process (gray line) and

larger in the negatively correlated process (dashed line).

Figure 2.5: Shift size with respect to the noncentrality parameter in the correlated and
non-correlated processes

Throughout the rest of the experiments, the in-control limits are obtained by cal-

ibrating the control chart with the process known parameters. The results for ARL

comparison in detecting the process shift schemes of Figure 2.4 are shown in Table 2.5

and represented in 𝑑 units in Figure 2.6. Although the MCUSUM and MEWMA charts

have equivalent performance in the three situations, the performance of the Hotelling’s

𝑇 2-chart exceeds the others after the first shift in Figure 2.6(c), when the shift occurs in

the minor axis of the negatively correlated process. This result does not contradict the

finding that the Hotelling’s 𝑇 2-chart is a better monitor of large shifts. This situation

occurs because a large distance between the processes tends to result in inertia in the
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MCUSUM and MEWMA methods (Lowry et al., 1992), delay change detection and

make the Hotelling’s 𝑇 2-chart more efficient in the third shifting scheme. We observe

that larger shifts often occur in the direction of larger variability. A more realistic

suggestion in this case is to observe relatively less movement in the direction of minor

variability. The large values in the direction of lower variability are usually related to

typing errors in the data acquisition procedure (Montgomery, 2001). An observation

of the point where the charts intersect indicates that the relative magnitude of the

changes in all three cases is the same when measured using the noncentrality parameter

(𝑑 ∼= 2.6).

Table 2.5: Average run length for mean vector shifts with known parameters and
correlated processes

d 0 0.71 1.41 2.12 2.82 3.54
𝜌 Chart ARL0 ARL1 ARL1 ARL1 ARL1 ARL

MCUSUM 200.8 26.8 9.0 5.3 3.8 3.0
0.85 MEWMA 202.0 25.0 8.7 5.1 3.7 2.9

𝑇 2 203.9 112.8 38.9 14.3 6.2 3.2
MCUSUM 199.7 4.4 2.2 1.6 1.2 1.0

-0.85 MEWMA 201.1 4.3 2.1 1.5 1.2 1.0
𝑇 2 201.5 9.0 1.4 1.0 1.0 1.0

(a) 𝜌 = 0 (b) 𝜌 = +0.85 (c) 𝜌 = −0.85

Figure 2.6: The control charts’ performance for the three simulated processes and mean
vector shifts as noncentrality values

Figure 2.7 illustrates three simulated runs for mean vector shifts in the process.
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The changes in the processes are moderate and large shifts. The inertia effect can

be viewed in Figure 2.7(b) with the non-Shewhart control charts. As the Hotelling’s

𝑇 2-chart triggers a signal at the very first out-of-control observation, the MCUSUM

and MEWMA charts are affected by a delay in triggering the signal.
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(a) 𝑑 = 1.41, M1 = (1.0,1.0)
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(b) 𝑑 = 3.54, M1 = (2.5,2.5)

Figure 2.7: Control chart patterns for moderate and large mean vector shifts

2.3.4 The influence of increasing variances

If the variances of the underlying process changes from (𝜎2
1,𝜎2

2) to
(︀
𝜎2

1 + Δ,𝜎2
2 + Δ

)︀
=(︀

𝜎2
1,𝜎2

2
)︀*, control chart may be affected because this overdispersion increases the indi-

vidual observation distances with respect to the center of the in-control process. The

results in Table 2.6 reflect the effect of process variance increases, which demonstrates

a larger influence on the Hotelling’s 𝑇 2-control chart.

The patterns that result from simultaneously altering the mean vector and covari-

ance matrix generate a greater tendency for signal growth than the pattern shown

in Figure 2.8(a). When the mean vector changes, the subsequent process changes

stemming from the modification of the covariance matrix greatly influence the charts’

performance. Whereas the MCUSUM and MEWMA methods consider the entire pro-
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Table 2.6: The influence of increasing the process variances on the average run length
(︀
𝜎2

1,𝜎2
2
)︀* (1.0, 1.0) (1.5, 1.5) (2.0, 2.0) (2.5, 2.5)

Control chart ARL0 ARL1 ARL1 ARL1
MCUSUM 198.1 52.3 26.8 17.9
MEWMA 202.8 56.3 29.0 18.9

𝑇 2 202.3 35.0 14.2 8.4

cess to be out-of-control, beginning with the characterisation of a new centre of gravity,

the Hotelling’s 𝑇 2-chart discriminates all of the observations that exceed the coverage

area, as defined by the in-control process.
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(a) M1 = (1.0,1.0), Σ1 =
[︃
1 0
0 1

]︃
(b) M1 = (1.0,1.0), Σ1 =

[︃
2 0
0 2

]︃

Figure 2.8: Control chart patterns for mean vector shifts and increased variances

The difference in the charts’ performance can be observed by comparing Table 2.6

and 2.7. Table 2.7 shows the influence of variance increasing over the mean vector

shifts. This experiment performs only a slight increase in the variances, which changes

from
(︀
𝜎2

1,𝜎2
2
)︀

= (1.0,1.0) to
(︀
𝜎2

1,𝜎2
2
)︀* = (1.5,1.5). The combined effect of the increased

variances and mean vector shifts is more evident for the Hotelling’s 𝑇 2 control chart,

where the reductions in the ARL1 are expressive. The MCUSUM and MEWMA control

charts demonstrate a significant difference in the ARL1 only for the first shift. The
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ARL1 reduction for the non-Shewhart charts in the second shift is less significant for

bigger shifts.

Table 2.7: The ARL influence of simultaneously increasing the variances and shifting
the mean vector

Chart MCUSUM MEWMA 𝑇 2(︀
𝜎2

1,𝜎2
2
)︀* d ARL1

(1.0,1.0) 0.71 16.0 15.2 76.9
1.41 6.0 5.8 18.6
2.12 3.7 3.6 5.7

(1.5,1.5) 0.71 13.5 13.1 21.4
1.41 5.8 5.6 8.9
2.12 3.7 3.6 4.1

(2.0,2.0) 0.71 11.5 11.3 10.7
1.41 5.6 5.4 5.9
2.12 3.7 3.5 3.3

2.3.5 The influence of autocorrelation

To verify the control charts’ performance when the process is perturbed with auto-

correlation, the out-of-control processes are simulated based on a first-order autore-

gressive model, VAR(1), on a scale of increasing intensity. The autocorrelations in

both dimensions are Φ = (𝜑1,𝜑2) = (0.0,0.0) for the in-control process and Φ =

(𝜑1 + 𝛿,𝜑1 + 𝛿) = (𝛿,𝛿) for the out-of-control process. The autocorrelation levels are

𝛿 = (0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9). The degree of influence on the processes is indi-

rectly evaluated by comparing the ARL1 values produced in the experiments described

in Table 2.8 and 2.9 to the values presented in Table 2.4, where only the mean vector

was modified.

The experiment in Table 2.8 demonstrates that pure autocorrelation in the out-of-

control process results in small mean vector shifts, being less noticed by the Hotelling’s

𝑇 2-chart. The experiment in Table 2.9 inserts low autocorrelation levels in the process
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Table 2.8: The ARL influence of purely increasing autocorrelation levels

Φ (0.0, 0.0) (0.1, 0.1) (0.2, 0.2) (0.3, 0.3) (0.4, 0.4)
Chart ARL0 ARL1 ARL1 ARL1 ARL1

MCUSUM 198.5 105.3 60.1 36.1 23.9
MEWMA 198.2 111.1 64.7 39.8 25.9

𝑇 2 200.8 194.0 163.6 130.4 92.2
Φ (0.5, 0.5) (0.6, 0.6) (0.7, 0.7) (0.8, 0.8) (0.9, 0.9)

Chart ARL1 ARL1 ARL1 ARL1 ARL1

MCUSUM 16.4 11.7 8.5 6.2 4.6
MEWMA 17.4 12.2 8.7 6.2 4.5

𝑇 2 60.5 37.7 21.8 12.8 7.1

Table 2.9: The ARL influence of simultaneously increasing variances and shifting the
mean vector

Φ (0.0,0.0) (0.1,0.1)
M1 (0.0,0.0) (0.5,0.5) (1.0,1.0) (1.5,1.5) (2.0,2.0) (2.5,2.5)

Chart ARL0 ARL1 ARL1 ARL1 ARL1 ARL1

MCUSUM 201.0 13.2 5.3 3.4 2.5 2.1
MEWMA 201.1 12.8 5.1 3.2 2.4 2.0

𝑇 2 203.1 64.2 14.2 4.4 2.0 1.3
Φ (0.0,0.0) (0.2,0.2)

M1 (0.0,0.0) (0.5,0.5) (1.0,1.0) (1.5,1.5) (2.0,2.0) (2.5,2.5)
Chart ARL0 ARL1 ARL1 ARL1 ARL1 ARL1

MCUSUM 201.0 10.8 4.6 3.0 2.8 2.3
MEWMA 201.1 10.6 4.5 2.9 2.7 2.2

𝑇 2 202.1 48.4 10.2 3.2 2.2 1.5
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Figure 2.9: Three-dimensional scatter plots and control charts with confidence ellipses
for a purely autocorrelated out-of-control process Φ = (0.8,0.8)

and simultaneously shifts the mean vector. The combined effect of mean vector shifts

and autocorrelation shows a reduction in the ARL1 primarily for small shifts with

all control charts and an acceleration of the change detection as the autocorrelation

level increases. Further, the increase in the autocorrelation with mean vector shifts

demonstrates a bigger influence on the Hotelling’s 𝑇 2-chart. Comparing with simply



Chapter 2. On the Hotelling’s 𝑇 2, MCUSUM and MEWMA Control Charts’
Performance with Different Variability Sources: A Simulation Study 32

MCUSUM

−4 −2  0  2  4  6

  0
 5

0
10

0
15

0
20

0

−6 −4 −2  0  2  4

y1

y2

T
im

e

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

MEWMA

−4 −2  0  2  4  6

  0
 5

0
10

0
15

0
20

0

−6 −4 −2  0  2  4

y1

y2

T
im

e

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

T2

−4 −2  0  2  4  6

  0
 5

0
10

0
15

0
20

0

−6 −4 −2  0  2  4

y1

y2

T
im

e

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

(a)

MCUSUM

−4 −2  0  2  4  6

  0
 5

0
10

0
15

0
20

0

−6−4−2 0 2 4

y1

y2

T
im

e

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

MEWMA

−4 −2  0  2  4  6

  0
 5

0
10

0
15

0
20

0

−6−4−2 0 2 4

y1

y2

T
im

e

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

T2

−4 −2  0  2  4  6

  0
 5

0
10

0
15

0
20

0

−6−4−2 0 2 4

y1

y2

T
im

e

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

(b)
MCUSUM

−4 −2  0  2  4  6

  0
 5

0
10

0
15

0
20

0

−6

−4

−2

 0

 2

 4

y1

y2

T
im

e

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

MEWMA

−4 −2  0  2  4  6

  0
 5

0
10

0
15

0
20

0

−6
−4

−2
 0

 2
 4

y1

y2

T
im

e

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

T2

−4 −2  0  2  4  6

  0
 5

0
10

0
15

0
20

0

−6
−4

−2
 0

 2
 4

y1

y2

T
im

e

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

(c)

●

●●

●

●

●

●●
●
●

●

●

●
●

●

●
●

●

●

●●

●

●
●
●

●

●●

●

●

●
●

●●

●●

●

●
●

●

●

●

●●●

●
●

●

●

●

●
●

●

●

●
●

●

●
●
●

●

●
●
●

●

●

●●●

●●

●●

●

●

●

●●

●

●

●
●

●

●●

●

●

●
●
●●

●

●

●

●

●

●
●

●
●●●

●

●

●●
●

●

●

●
●●

●

●

●
●

●

●

●

●

●
●
●

●

●

●
●
●●

●●●
●
●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●●●●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●●

●

●

●

M
C

U
S

U
M

0 20 40 60 80 100 120 140 160 180 200

0
1

2
3

4
5

6
7

●

●●

●
●

●
●
●
●
●

●

●

●●

●

●●

●

●

●●

●

●●
●

●

●●

●

●

●

●

●●

●
●●

●
●

●

●

●
●●●●●

●

●

●●●
●
●

●
●
●

●●
●

●

●
●●

●
●

●

●●
●

●●●
●
●
●

●●
●
●

●●
●●

●●●

●
●
●●

●

●
●

●
●

●●

●

●

●

●

●
●●●

●

●

●●

●
●●

●

●
●●●

●
●
●

●

●
●●

●
●
●●

●
●
●
●

●

●

●

●

●
●●

●●●
●

●

●

●

●●
●
●
●●●

●

●

●

●

●●

●
●

●

●

●●

●
●●

●

●

●

●

●

●●
●
●

●
●●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

M
E

W
M

A

0 20 40 60 80 100 120 140 160 180 200

0
2

4
6

8
10

●

●
●

●

●

●

●

●●●
●

●

●
●

●

●

●

●
●

●

●●

●

●
●

●

●

●
●

●

●

●
●●●

●●
●
●

●

●

●

●
●
●●●

●
●

●

●●

●●

●

●●
●●

●●

●●●

●●
●●●●

●

●
●●●

●●●●

●
●
●
●●●

●

●

●

●●

●●

●●
●
●

●

●
●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●
●

●

●
●●

●●

●
●

●●
●

●

●

●

●

●
●

●●●●

●
●

●
●
●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●●

●
●

●

●

●

T
2

0 20 40 60 80 100 120 140 160 180 200

0
5

10
15

20
25

●
●

●
●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●

● ●

● ●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●
●

●

●

●●●

●

●

●

●

●
●

●
●

●
●

●

●

●●●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

● ●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●● ●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

MCUSUM

−4 −2 0 2 4

−
4

−
2

0
2

4

●
●

●
●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●

● ●

● ●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●
●

●

●

●●●

●

●

●

●

●
●

●
●

●
●

●

●

●●●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

● ●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●● ●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

MEWMA

−4 −2 0 2 4

−
4

−
2

0
2

4

●
●

●
●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●

● ●

● ●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●
●

●

●

●●●

●

●

●

●

●
●

●
●

●
●

●

●

●●●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

● ●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●●● ●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

T2

−4 −2 0 2 4

−
4

−
2

0
2

4

(d)

Figure 2.10: Three-dimensional scatter plots and control charts with confidence ellipses
for the negative autocorrelated process Φ = (−0.8, − 0.8)

shifting the mean vector to M1 = (0.5,0.5), the experiments utilising Φ = (0.1,0.1)

and M1 = (0.5,0.5) accelerate the Hotelling’s 𝑇 2-chart to identify the first two smaller

shifts by 17.7% and 23%, while the MCUSUM and MEWMA charts are accelerated by

18% and 16.3%, respectively. When Φ = (0.2,0.2), the acceleration in change detection

are also more evident for the small shifts in the mean vector.
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To visualise the effect of pure autocorrelation in the out-of-control process, Figure 2.9

illustrates the action pattern of the control charts when Φ = (0.8,0.8). The non-

Shewhart control charts are more likely to detect the change of an oscillatory movement

in the process, which is characteristic of positive autocorrelation. Observing the three-

dimensional scatter plots of Figure 2.9, this variation source initially perform a small

shift in the process mean vector.

In all cases, the distances measured using the noncentrality parameter suggest

that the effects resulting from purely autocorrelated processes favour detection by the

MCUSUM and MEWMA charts. The individual observation distances do not represent

significant shifts relative to the in-control process. In situations when a shift in the

mean vector occurs with a regular autocorrelation level, the Hotelling’s 𝑇 2-chart can

be more effective to change detection.

The MCUSUM and MEWMA charts are generally considered effective for detecting

shifts that are caused by the occurrence of purely positive autocorrelation at regular

and high levels; for negative autocorrelation, the Hotelling’s 𝑇 2-chart is most suitable

to perceive the changes as outliers in the process.

Figure 2.10 shows the negative autocorrelated out-of-control process pattern results,

which are only detected using the Hotelling’s 𝑇 2-chart, especially if the magnitude

of the autocorrelation is large and the outliers appear beyond the in-control region.

Conversely, the MCUSUM and MEWMA statistics result in no sensitivity to the nega-

tive autocorrelated process because the alternating individual observations cancel each

other.

2.4 Discussion

The present study investigates the behavioural patterns and performance of the control

charts widely applied in SPC to monitor the mean vector, i.e., the MCUSUM, MEWMA
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and Hotelling’s 𝑇 2-charts, with individual observations and combined sources of vari-

ability. The performance comparison of the charts with controlled simulated changes is

carried out by the estimated ARLs. A procedure for the confidence ellipse estimation

based on principal component analysis is briefly described as a descriptive tool for

visualisation purposes.

As a unifying approach to estimate the in-control limits of Shewhart- and non-

Shewhart-type control charts, the linear regressions of the thresholds as a function of

the average run length are adjusted for known parameters and sample estimates of

different sizes. The estimated thresholds for the three selected control charts agree with

the values described in the literature. As noted above, an estimation of the control

charts thresholds with a small number of individual Phase I observations increases the

in-control limits and delays change detection for all studied control charts.

Different scenarios for the correlated process are established to compare the mean

vector shifts in the directions of larger and smaller variations. These experiments

demonstrate how the performance of selected control charts is dependent only on the

shift magnitude, as measured by the noncentrality parameter.

The estimated in-control limits for known parameters are applied to study the effects

of combining mean vector shifts and increasing variances or serial autocorrelations in

the out-of-control process. We demonstrate that the resulting effect on the charts’ per-

formance following an increase only in the variances in the out-of-control process is more

evident in the Hotelling’s 𝑇 2-chart, even for relatively small variance increments. The

combined effect of jointly shifting the mean vector and increasing the variances in low

levels makes the Hotelling’s 𝑇 2-control chart as competitive as the non-Shewhart charts,

even for moderate shift sizes in the mean vector because the influence of increasing the

process dispersion additionally increases the individual noncentrality values.

The effect of serial autocorrelation simulated in the out-of-control process follows

a first-order autoregressive model at different intensity levels. Among all proposed
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increments in the autocorrelation, the experiments in this work showed that the effects

of purely autocorrelated processes can be identified as small shifts in the mean vector,

with correspondingly better change detection by the MCUSUM and MEWMA charts.

When combined with the mean vector shifts, low levels of positive autocorrelation

demonstrate that the Hotelling’s 𝑇 2-control chart is as competitive as or better than

the non-Shewhart charts for moderate and large shifts in the mean vector.

The control charts’ performance in the presence of negative autocorrelation shows

that only the Hotelling’s 𝑇 2-chart recognises the effects as outliers due to their continu-

ous process dispersion. Whereas the MCUSUM method voids the information about the

shift when the observations produce statistics with alternating signs in the cumulative

sums, the MEWMA chart becomes ineffective by weighting the current value with the

historical average, which is also affected by continuously alternating observations.

The noncentrality parameter is widely applied in single-hypothesis problems to

control the mean vectors in multivariate processes because the analysis of all possible

alternative distributions prior to decision-making is impossible. This technique works

well when the observation size is small, e.g., 1 or 2. When p increases, however, mapping

the 𝑝-dimensional space for a one-dimensional distance may destroy valuable information

for the correct classifications that exist in the original spaces, if the direction of the shift

is unknown a priori. A careful search of the conditional discriminant functions that

determine an ideal intersection between the processes can reveal an optimal procedure.

As previously noted, the literature on statistical pattern recognition proposes several

dissimilarity measures to improve class separability. Measures specifically delineated

for multivariate normal distributions, such as appropriate linear transformations of the

Mahalanobis distance, show superior performance in ARL when compared with the

charts in the present study, on which topic work will soon be published.





Chapter 3

Confidence Control Charts with

MEWMA and Sliding Window

Schemes

Abstract

In this paper we show that for normal distributions, Hotelling’s 𝑇 2 and multivariate

exponentially weighted moving average (MEWMA) statistics are directly related to the

Chernoff distance. This relationship provides important information about an upper

bound for the misclassification probability, indicating the degree of overlap between

in- and out-of-control processes. Therefore, the purpose of this research is to present a

methodology to monitor mean vectors of Gaussian process by means of an informative

control chart based on the probability bounds. Additionally, a comparison study is

carried out to measure the effects of estimating the actual mean vector through the

MEWMA scheme and through sliding window schemes with uniform, linear, and expo-

nential weights. The results show that the MEWMA control chart is easier to calibrate

and shows less inertia for large shifts than the sliding window approach. Equivalences
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between the smoothing parameter and the window size are provided for a bivariate

case.

3.1 Introduction

For many industrial problems, the estimation of the misclassification probability is a

subject of great interest. However, such a calculation may be a rather difficult task

even when the observed data are normal. Therefore, the option of monitoring a process

by means of its probability of being in or out of control is usually discarded. Recent

advances in statistical techniques with applications to the �̄� and 𝑆2 control charts

include both the univariate (Faraz and Saniga, 2013), and the multivariate cases (Niaki

and Memar, 2009) covering the global process monitoring by controlling the mean

vector and covariance matrix simultaneously.

Considering the process control of only mean vectors, the most utilised method to

monitor large shifts is the Hotelling’s 𝑇 2 control chart (Hotelling, 1947). With respect to

the Hotelling’s statistics, Machado and Costa (2009) comments that its drawback is the

difficulty to interpret the obtained values and proposed a method to monitor bivariate

process based on the ZMAX and VMAX statistics. Quinino et al. (2012) also propose

a single statistic based on the mixture of variances (VMIX) to monitor the covariance

matrix of bivariate processes. In the case of smaller shifts, the multivariate exponentially

weighted moving average (MEWMA) control chart is preferred chart (Lowry et al.,

1992), mainly because of the simplicity of its implementation when compared to its

more famous counterpart, the multivariate cumulative sums (MCUSUM) control chart

(Crosier, 1988). Although the methodology described in this paper may be extended to

multivariate global process monitored by probabilities, as an initial proposal, we only

consider the process control of multivariate mean vectors.

If a closed-form expression is not available for the misclassification probability, one
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may seek either an approximate expression or an upper bound for the probability. A

closed-form expression for the upper bound would be quite useful for many reasons.

First, the computational effort would be reduced. Second, the evaluation of a simple

formula would facilitate real-time insightful inferences about the actual process state.

Furthermore, the misclassification error is known to increase significantly with the

number of dimensions (Fukunaga, 1990), dramatically reducing the standard confidence

levels for the process actually being in control. Due to this fact, the evaluation of a

probability measure instead of raw distances would provide more valuable information

about the price to be paid for not knowing the alternative process state a priori. Focusing

on this objective, this paper discusses the monitoring of Gaussian mean vectors by

means of a simple distance transformation that leads to a control chart directly based

on probabilities.

Additionally, when a process is monitored for small magnitude shifts in the mean

vector with MEWMA-based control charts, another question that arises is the inertial

phenomenon, which is known to delay change detection when such a change is of a large

magnitude (Lowry et al., 1992). When avoiding the inertial phenomenon is essential,

the analyst may seek alternative approaches to estimate the actual mean vector, which

includes discarding old observations by means of some type of sliding window (SW)

scheme. While the MEWMA method accumulates information about all the previous

observations into the actual mean vector, the SW approach lowers the relative influence

of old observations by giving heavy weights to only the most recent observations.

In fact, many authors (Hwarng and Hubele, 1993b,a; Guh and Shiue, 2005) have

suggested a sliding window approach as the essential tool for on-line pattern identifi-

cation. However, two problems may be anticipated. The first problem is choosing the

appropriate window size. The second problem is addressing unnatural patterns, i.e.,

when a misalignment of the pattern in time may occur. Additionally, the identified

pattern could be different from the training pattern (Guh and Shiue, 2008; Hachicha
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and Ghorbel, 2012), and dynamic window sizes may be more appropriate. However,

the use of dynamic sizes for the SW schemes is beyond the scope of this paper. As

demonstrated in the computational experiments presented in this paper, the use of

fixed window sizes reflects directly on the magnitude of the shift to be detected. Some

authors (Nikiforov, 2001) use SW schemes only with the significant observations from

past data, but this procedure is excessively time consuming.

To provide an analysis of the effects of estimating the actual mean vector based on

the MEWMA and SW approaches, three types of SWs are proposed here for comparison

purposes. The possible weights for the SW observations may be uniform, linear, or

exponential. As the SW size is an important parameter, the probability control charts

using the SW schemes can also provide benchmark criteria for existing and future de-

velopments. Additionally, a probability-based control chart facilitates the comparative

study through standardisation of the statistical distances into a [0-1] interval as upper

bounds for the usual confidence levels.

Section 3.2 describes the main properties of the noncentrality parameter traditionally

used to monitor the mean vector with Hotelling’s 𝑇 2 and the MEWMA control charts.

Also presented is the link between the noncentrality parameter and an upper bound for

the misclassification probability. In Section 3.3, some computational experiments are

presented to compare the performances of Hotelling’s 𝑇 2 and the probability control

charts. Further, the MEWMA and the SW approaches are compared by means of

either their average run lengths (ARLs) or their average time to signal (ATS) because

the intervals between observations are regular. Finally, Section 3.4 provides some final

remarks and recommendations.
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3.2 Methodology

3.2.1 A review on the Hotelling’s 𝑇 2 and MEWMA control charts

It is well known that the performance measured by the average run length (ARL) of

traditional control charts such as Hotelling’s 𝑇 2 and MEWMA depends only on the

noncentrality parameter and not on the shift’s direction (Lowry et al., 1992).

This distance is given by

𝑑2
𝑡 = (X𝑡 − M0)′ Σ−1

0 (X𝑡 − M0) (3.1)

where X𝑡, M0 and Σ0 are the observed vector, the in-control mean vector, and the

in-control covariance matrix, respectively. The decision rule gives an out-of-control

signal when 𝑑2
𝑡 > ℎ1, where ℎ1 is a specified threshold that leads to a pre-specified false

alarm rate, usually defined in terms of the in-control average run length (ARL0).

While Hotelling’s 𝑇 2 considers global process monitoring using outlying observations

that are outside the in-control boundaries, the MEWMA statistic considers the entire

process to be out-of-control as soon as 𝑧2
𝑡 > ℎ2, with

𝑧2
𝑡 = (M𝑡 − M0)′ Σ−1

0 (M𝑡 − M0) . (3.2)

In Equation (3.2), M𝑡 is the mean vector estimated with past and current informa-

tion by a MEWMA scheme, such that

M𝑡 = (1 − 𝜆) M𝑡−1 + 𝜆Y𝑡. (3.3)

Observe that when 𝜆 = 1, the MEWMA distance reduces to the Hotelling’s 𝑇 2

distance. This version of the MEWMA scheme considering equal weights for all variables

is a reduction of the more general case in which different weights can be set to each
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variable of the vector of observations (Lowry et al., 1992). However, in this case the

MEWMA chart becomes directionally oriented and the ARL may vary depending on

the shift direction.

To examine the main properties of this distance, let us consider the distribution of 𝑑2

with the expected vector M and the covariance matrix Σ known for the in-control (IC)

process. For the general problem, consider that the mean vector of the out-of-control

state (OC), unknown in practice, is defined as M1. According to Fukunaga (1990) the

standardised distance from individual observations to the process centre is

𝑑2 = (X − M)′ Σ−1 (X − M) = Z′Z =
𝑝∑︁

𝑖=1
𝑧2

𝑖 (3.4)

where Z = A′ (X − M) and A is the whitening transformation. Because the

expected vector and covariance matrix of Z are 0 and I , respectively, the z𝑖’s are

uncorrelated, with 𝐸 (𝑧𝑖) = 0 and Var (𝑧𝑖) = 1. Thus, the expected value and variance

of 𝑑2 for the IC process are

𝐸
(︁
𝑑2|IC

)︁
= 𝑝𝐸

(︁
𝑧2

𝑖

)︁
= 𝑝, (3.5)

and

Var
(︁
𝑑2|IC

)︁
= 𝐸

(︂(︁
𝑑2

)︁2
)︂

− 𝐸2
(︁
𝑑2

)︁
=

𝑝∑︁
𝑖=1

𝐸
(︁
𝑧4

𝑖

)︁
+

𝑝∑︁
𝑖=1

𝑝∑︁
𝑗 ̸=𝑖

𝐸
(︁
𝑧2

𝑖 𝑧2
𝑗

)︁
− 𝑝2𝐸2

(︁
𝑧2

𝑖

)︁
.

(3.6)

When the 𝑧2
𝑖 ’s are uncorrelated (this is satisfied when the 𝑧𝑖’s are independent),

and 𝐸
(︀
𝑧4

𝑖

)︀
is independent of i, the variance of 𝑑2 can be further simplified to

𝑉 𝑎𝑟
(︁
𝑑2|IC

)︁
= 𝑝𝛾 (3.7)
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𝛾 = 𝐸
(︁
𝑧4

𝑖

)︁
− 𝐸2

(︁
𝑧2

𝑖

)︁
= 𝐸

(︁
𝑧4

𝑖

)︁
− 1 (3.8)

For normal distributions, when the 𝑧𝑖’s are uncorrelated, they are also independent.

Therefore, Equation (3.8) can be used to compute Var
(︀
𝑑2|IC

)︀
, and 𝛾 = 2. Note that

in Equations (3.5) and (3.7), only the first and second order moments of 𝑑2 are given.

However, if the 𝑧𝑖’s are normal, the density function of 𝑑2 is the gamma density with

𝛼 = 1/2 and 𝛽 = 𝑝/2 − 1. Because the 𝑧𝑖’s are obtained by a linear transformation of

X, the 𝑧𝑖’s are normal if X is normal. Note that the gamma distribution becomes an

exponential distribution for 𝑝 = 2.

Indeed, the distribution of 𝑑2 with the mean 𝑛 and standard deviation
√

2𝑝 approx-

imates the normal distribution when 𝑝 is large (Fukunaga, 1990).

Considering the OC state with mean vector M1, the expected value of 𝑑2 under the

assumption of equal covariance matrices is given as

𝐸
(︁
𝑑2|OC

)︁
= 𝑝 + M′

1M1, (3.9)

and the variance is given as

Var
(︁
𝑑2|OC

)︁
= 𝑝 + 4M′

1M1. (3.10)

These results may be extended to the case in which the sample mean and sample

covariance matrix are used in the place of known parameters, as

𝜁 = 1
𝑚 − 1

(︁
X − M̂

)︁′
Σ̂−1 (︁

X − M̂
)︁

. (3.11)

When X is normal, 𝜁 has the beta distribution with 𝐸 (𝜁|IC) = 𝑝/ (𝑚 − 1) and

Var (𝜁|IC) = 2𝑝/ (𝑚 − 1)2.
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3.2.2 Upper bounds on the error probability

The noncentrality parameter, also known as Mahalanobis distance in the pattern recogni-

tion field (Therrien, 1989), has a close connection to the Bhattacharyya (1943) distance,

which is derived from the most general case, the Chernoff (1952) distance. Those

boundaries lead to a closed-form expression for computing an upper limit for the Bayes

error in the case of normally distributed processes. The following is a brief discussion

on the upper bounds of the error probability.

Let X be an observation vector, and let be our purpose to determine whether X

belongs to 𝜔1 or 𝜔2. A decision rule based simply on probabilities may be written as

follows:

𝑞1 (X) > 𝑞2 (X) → X ∈ 𝜔1, (3.12)

where 𝑞𝑖 (𝑋) is a posteriori probability of 𝜔𝑖 given X, 𝑖 = 1,2.

In general, a decision rule does not lead to perfect classification and is convenient

to evaluate the performance of a decision rule. The conditional error 𝑟 (𝑋), given X,

due to the decision rule (3.12) is either 𝑞1 (X) or 𝑞2 (X) which ever smaller. That is,

𝑟 (X) = min [𝑞1 (X) , 𝑞2 (X)] . (3.13)

The total error, which is called the Bayes error (𝜖), is computed by

𝜖 = 𝐸 (𝑟 (X)) =
∫︁

𝑟 (X) 𝑓 (X) 𝑑X =
∫︁

𝑚𝑖𝑛 [𝑃1𝑓1 (X) ,𝑃2𝑓2 (X)]𝑑X =

𝑃1

∫︁
𝐿2

𝑓1 (X) 𝑑X + 𝑃1

∫︁
𝐿1

𝑓2 (X) 𝑑X = 𝑃1𝜖1 + 𝑃2𝜖2, (3.14)

where 𝑃𝑖 and 𝑓𝑖, 𝑖 = 1,2 are the weights and density functions of each class, respec-
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tively.

If the classes are well separable the error is near to zero, and increases when they

are more overlapped. It is evident that the calculations of the error probability in

high-dimensional spaces are a difficult task. Even when the observation vectors have

a normal distribution, we must resort to numerical techniques. If we cannot obtain a

closed-form expression for the error probability, we may take some other approach. We

may seek either an approximate expression for the error probability, or an upper bound

on the error probability. In this section, we will discuss some upper bounds of error

probability.

An upper bound of the integrand may be by making use of

min [𝑎,𝑏] ≤ 𝑎𝑠𝑏1−𝑠, 0 ≤ 𝑠 ≤ 1. (3.15)

Using the inequality of Equation (3.15), 𝜖 can be bounded by

𝜖𝑢 = 𝑃 𝑠
1 𝑃 1−𝑠

2

∫︁
𝑓 𝑠

1 (X) 𝑓1−𝑠
2 (X) 𝑑𝑋, 0 ≤ 𝑠 ≤ 1, (3.16)

where 𝜖𝑢 indicates an upper bound of 𝜖. This 𝜖𝑢 is called Chernoff (1952) bound.

The optimum 𝑠 can be easely obtained minimizing 𝜖𝑢. When two density functions are

normal as 𝑀𝑉 𝑁 (M1,Σ1) and 𝑀𝑉 𝑁 (M2,Σ2) the integration can be carried out to

obtain a closed expression,

𝜖𝑢 =
∫︁

𝑓𝑠
1 (X) 𝑓1−𝑠

2 (X) 𝑑𝑋 = 𝑒−𝜇(𝑠), (3.17)

where 𝜇 (𝑠) is the Chernoff distance given by,
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𝜇 (𝑠) = 𝑠 (1 − 𝑠)
2 (M2 − M1)′ [𝑠Σ1 + (1 − 𝑠) Σ2]−1 (M2 − M1) +

1
2 𝑙𝑛

[︂ |𝑠Σ1 + (1 − 𝑠) Σ2|
(|Σ1|𝑠|Σ2|1−𝑠)

]︂
. (3.18)

For this case, the optimum 𝑠 can be obtained by plotting 𝜇 (𝑠) for various 𝑠 given

M𝑖 and Σ𝑖. The optimum 𝑠 is the one which gives the maximum value for 𝜇 (𝑠). If we

do not insist on the optimum selection of 𝑠, we may obtain a less complicated bound.

One of the possibilities is to select 𝑠 = 1/2. Thus, the upper bound is given by

𝜖 =
√︀

𝑃1𝑃2

∫︁ √︁
𝑓1 (𝑋) 𝑓1 (𝑋)𝑑𝑋 =

√︀
𝑃1𝑃2𝑒−𝜇( 1

2 ) (3.19)

where,

𝜇

(︂1
2

)︂
= 1

8 (M2 − M1)′
[︂Σ1 + Σ2

2

]︂−1
(M2 − M1) + 1

2 𝑙𝑛

⃒⃒⃒
Σ1+Σ2

2

⃒⃒⃒
√︀

|Σ1| |Σ2|
. (3.20)

The term 𝜇
(︁

1
2

)︁
is known as the Bhattacharyya distance and is used as an important

separability measure between two normal distributions. This distance is composed of

two terms. The first term carries the information about the process difference in the

mean vectors, and the second corresponds to the difference in the covariance matrices.

Rao (1947) explained that this distance is an explicit function of the proportion of

overlapping individuals in the two populations. Additionally, Rao (1949) mentioned

that Bhattacharyya had developed a perfectly general measure defined by the distance

between two populations based on a metric of the Riemannian geometry, with the

angular distance between points representing the populations in a unit sphere.

In the case of single-hypothesis tests, such as in statistical process control (SPC)
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problems, the out-of-control state is generally undetermined. In such cases, instead of

consider the upper bound on the Bayes error of Equation (3.21), which assumes two

known processes, it is more interesting to evaluate only the upper bound for the Type

I error, which refers only to the known process, given by

𝜖𝐼 =
√︁

𝑃1/𝑃2

∫︁ √︁
𝑓1 (𝑋) 𝑓1 (𝑋)𝑑𝑋 =

√︁
𝑃1/𝑃2𝑒−𝜇( 1

2 ). (3.21)

Additionally, as this paper is focused only on the monitoring of mean vectors, the

assumption of equal covariance matrices reduces the Bhattacharyya distance to the

noncentrality parameter, except by a constant, assuming the form

𝜇

(︂1
2

)︂
= 1

8 (M𝑡 − M0)′ Σ−1
0 (M𝑡 − M0) (3.22)

where M𝑡 is the mean vector estimated at the instant 𝑡, M0 is the in-control mean

vector, and Σ0 is the in-control covariance matrix. This simplified form preserves all

the known properties of the Hotelling’s 𝑇 2 and the MEWMA control chart with respect

to the performance measured by the ARL.

In his original paper, Hotelling suggested the utilisation of 𝑑2 instead of d to avoid

the labour of extracting the square root, but with the massive increases in computational

power in the last decades, this problem is no longer relevant. Thus, scale transformations

on d do not modify the chart’s performance. To maintain clarity in the effect on the

in-control limits, in this paper, d is varied in the [0-4] range for ARL comparisons.

In the transition phase, d is varied in the [0-7] range for comparisons of the first and

second order statistics at the transition phase. The phase transition can be understood

as a limited run length on which the monitored process is moving from the in-control

state to the out-of-control state. As it is expected that a shift from the in-control

process should be investigated as soon as detected, the transition phase statistics are

more important for analysis than the statistic after the stabilisation of the out-of-control
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process, which is seldom observed in practice. This subject will be further explored in

the next section.

The first and second order moments for Bhattacharyya distance for equal covariance

matrices are easily deduced from the results of Section 3.2.1. The simulated experiments

presented in the following section correspond with the presented theoretical values for

the first and second moments of Bhattacharyya distance and for Hotelling’s 𝑇 2 with

high precision for the IC state. Due to the transition phase explained earlier, the

statistics of the OC state do not converge to the expected values unless we consider an

extended run length after the first alarm is signalled. Thus, we are not interested in

confirming these asymptotic results for the stationary OC state but rather in inspecting

statistical behaviour in the transition phase with fixed run lengths.

3.2.3 The confidence control charts

Based on the theoretical results presented in the previous subsection, we propose a

different look at process monitoring. Without actually modifying the control chart

performances, one could transform the statistical raw distances and their respective in-

control boundaries into probability values. First, if there is no special reason to weight

the in- and out-of-control processes differently, the processes are equally weighted in

Equation 3.21, thus reducing the upper bound on the type I error to exp
(︁
−𝜇

(︁
1
2

)︁)︁
. If

different weights for the processes are utilised, the result will be a scale modification

on the statistic values while still preserving the [0-1] domain.

Observe that when the process is actually in control, either the estimated mean

vector or the individual observations must not be significantly different from the in-

control standard error levels. This fact leads to an upper bound of 𝜖𝐼 that is close to

one because the in-control and current processes are completely overlapped. When

the mean vector shifts from the in- to the out-of-control state, the upper bound on 𝜖𝐼

decreases, indicating less overlap among the processes. However, if the complementary
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probability is taken, it indicates an upper bound for the confidence level, which is closer

to zero, meaning that the current process is not separate from the in-control state.

Based on such considerations, a confidence control chart utilising individual obser-

vations is taken as the standard level for the different ways of estimating the mean

vector. This approach can be viewed as the MEWMA chart with 𝜆 = 1 or a sliding

window chart with unitary window size. For this reason, this control chart is identified

by the SW1 code (sliding window of size 1), triggering a signal when

𝑝𝑡 = 1 − exp
[︂
−1

8 (X𝑡 − M0)′ Σ−1
0 (X𝑡 − M0)

]︂
> ℎ*

1, (3.23)

where ℎ*
1 is the threshold to achieve a desired ARL0.

3.2.4 Confidence control chart with MEWMA scheme

If the individual observed vector is changed by a mean vector utilising past data in-

formation, it is possible to utilise the MEWMA or the SW schemes for estimation

of the actual mean vector. Equation (3.3) is utilised to estimate M𝑡 in the case of

an MEWMA-based control chart. For all methods utilising the current mean vector

estimates instead of individual observations, the probability control chart triggers an

out-of-control signal as soon as

𝑝𝑡 = 1 − exp
[︂
−1

8 (M𝑡 − M0)′ Σ−1
0 (M𝑡 − M0)

]︂
> ℎ*

2, (3.24)

with ℎ*
2 as the upper limit to achieve an ARL0 value.

3.2.5 Confidence control chart with sliding window schemes

For all cases of sliding window (SW) schemes, the same form of Equation (3.24) is

utilised but only the observation vectors inside the current window are weighted. Thus,

the current mean vector M𝑡 is given by
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M𝑡 =
𝑡∑︁

𝑖=𝑡−𝑘+1
𝑤*

𝑖 Y𝑖, (3.25)

with ∑︀𝑡
𝑖=𝑡−𝑘+1 𝑤*

𝑖 = 1 and 𝑘 representing the window size. Let us now describe

each type of weight distribution considered.

First, in the uniform sliding window (USW) approach, the weights are equal for all

the observations inside the window of size 𝑘, with 𝑤𝑈
𝑖 given by

𝑤𝑈
𝑖 = 1

𝑘
, 𝑖 = 𝑡 − 𝑘 + 1, . . . , 𝑡. (3.26)

Second, the linear sliding window (LSW) approach gives more weight to the most

recent observation and decreases linearly the weight as the observation gets older such

that

𝑤𝐿
𝑖 =

𝑗
𝑘∑︀𝑘

𝑗=1
𝑗
𝑘

. (3.27)

Finally, in the exponential sliding window (ESW) scheme, the weights for the

observation vectors inside the window are distributed by

𝑤𝐸
𝑖 = 𝑗𝜙∑︀𝑘

𝑗=1 𝑗𝜙
, (3.28)

where 𝜙 is a smoothing factor between 0 and 1.

When 𝜙 = 1, the exponentially weighted window converges to the uniform window.

The smoothing factor 𝜙 utilised for the exponentially weighted window is fixed to 0.7

as it decays below 0.5 after two steps. The calculation of individual weights for the

three proposed sliding window schemes of size 4 is illustrated in Table 3.1, while the

weights for the windows with size 2 are shown in Table 3.2.

The control chart calibration procedure is performed in two steps to achieve an
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Table 3.1: Weights computation for sliding window schemes with size 4 (SW4)

Position

Scheme 𝑡 − 3 𝑡 − 2 𝑡 − 1 t Sum

Uniform 1
4

1
4

1
4

1
4

4
4

Uniform weights 0.25 0.25 0.25 0.25 1
Linear 1

4
2
4

3
4

4
4

10
4

Linear weights 0.1 0.2 0.3 0.4 1
Exponential 0.74 0.73 0.72 0.71 1.77

Exponential weights 0.135 0.193 0.276 0.395 1

Table 3.2: Weights for sliding window schemes with size 2 (SW2)

Position

Scheme 𝑡 − 1 𝑡 Sum

Uniform 0.50 0.50 1
Linear 0.33 0.67 1

Exponential 0.41 0.59 1

ARL0 = 200 for all control charts. The first step adjusts the linear regression models

in the form 𝑑2 = 𝑎 + 𝑏 · 𝑙𝑛 (𝐴𝑅𝐿). This procedure gives an approximate first estimate

of thresholds for each chart. The second step in the calibration procedure iteratively

adjusts the threshold by interpolation. The next section illustrates the functionality of

the proposed control chart and presents analysis of the comparative experiments.

3.3 Experiments and results

The first part of the experiment compares Hotelling’s 𝑇 2 and the SW1 control chart,

which performs a scale transformation of Hotelling’s distance. In Figure 3.1, the vertical

lines in the middle of the chart delimit the change point. The horizontal dashed lines

are the in-control thresholds for the pre-defined ARL0 = 200. Given a probability

value, the in-control upper limit for the SW1 chart is ℎ*
𝑆𝑊 1 = 0.7362 (73,62%). The

corresponding in-control noncentral distance that holds for an ARL0 = 200 in the
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Hotelling’s 𝑇 2 control chart is 𝑑 = 3.265, which is a scale transformation of ℎ*
𝑆𝑊 1.

Figure 3.1(a) shows the signal pattern for the case of no change in the mean vector

(that is, 𝑑 = 0), while Figures 3.1(b) and (c) shift the mean vector process at time

𝑡 = 201 to the distances 𝑑 = 3 and 𝑑 = 6, respectively. In the respective scatter

plots illustrated in Figures 3.1(d), (e) and (f), the out-of-control observation vectors

are marked with light red dots, while the in-control vectors are marked with dark black

dots.
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Figure 3.1: Confidence control chart for individual vectors (SW1) with scatter plots

Noteworthy in Figure 3.1(c), is the fact that most of the out-of-control observation

vectors do not overlap with the in-control region, resulting in probability values converg-

ing to 1. This result indicates that when considering individual observation vectors, the

confidence level converges to 1 when the processes do not overlap. This pattern does

not hold for Hotelling’s 𝑇 2 statistic because no bound exists there for the maximum

values, which makes out-of-control signals difficult to interpret.

A more detailed summary of the raw distances and their equivalent confidence

levels are given in Table 3.3, where 𝑑2 and 𝑝 are the average values and Sd(*) are the
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standard deviations computed over 100,000 sample replications of size 10. Notice that

the simulated experiments confirm with high precision the parameters of the Hotelling’s

𝑇 2 statistic for the IC state (i.e., 𝑑 = 0). As expected, the ARL for both charts is the

same, which indicates that the transformation of Hotelling’s 𝑇 2 into probabilities using

the Bhattacharyya distance does not actually modify ARL performance. As indicated

earlier, for 𝑑 > 0 the estimates may not converge to the expected values due to the

transition phase affecting the first 10 observations after the process has changed. As

the ARL is a function of 𝑑, a fixed run length is affected differently for distinct values

of 𝑑.

Table 3.3: Summary of Hotelling’s 𝑇 2 and SW1 statistics with ARL comparison

d 𝑑2 𝑆𝑑
(︀
𝑑2)︀

ARL 𝑝(x100%) 𝑆𝑑 (𝑝) ARL
0.0 2.0 1.9 200.6 20.0 15.7 200.6
0.5 2.3 2.1 118.8 22.0 16.9 117.7
1.0 3.0 2.6 43.1 27.6 19.6 43.1
1.5 4.3 3.4 16.0 36.1 22.0 16.0
2.0 6.0 4.3 7.0 46.4 23.0 7.0
2.5 8.3 5.2 3.6 57.2 22.3 3.6
3.0 11.0 6.1 2.2 67.5 20.1 2.2
3.5 14.3 7.0 1.5 76.5 17.0 1.5
4.0 18.0 8.0 1.2 83.9 13.4 1.2
h 10.7 73.6

Figure 3.2 is composed of the four sets of control charts and theirs respective two-

dimensional scatter plots. The Confidence MEWMA control chart utilises 𝜆 = 1, such

that it performs identically to the SW1 control chart, at a maximum standard confidence

level to protect the global in-control process region. As evident in this example, both

USW and ESW control charts with sliding windows of size 2 (SW2) performs identically

because 𝜙 = 1. Also noticeable is the reduction in the in-control limits of the USW

and ESW charts in Figure 3.2 , which is ℎ*
USW = ℎ*

ESW = 0.4811 (𝑑 = 2.2908). This

reduction indicates that the chart becomes sensitive to small changes in the mean vector,
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Figure 3.2: Confidence control charts with 𝜆 = 1, SW2, 𝜙 = 1 and the respective
scatter plots (M1 = (3,0))

no matter the individual distances. The in-control limit for the LSW chart with SW2

scheme is ℎ*
LSW = 0.5166 (𝑑 = 2.4115).

Figure 3.3 shows the reducing effect on the confidence levels for all control charts.

The Confidence MEWMA control chart with 𝜆 = 0.7 is called MEWMA.7 and the

transformed in-control limit is ℎ𝑀𝐸𝑊 𝑀𝐴.7 = 0.5086 (𝑑 = 2.3842). For the SW2 chart

with the ESW scheme in Figure 3.2, the estimated threshold is ℎ𝐸𝑆𝑊 = 0.4901 (𝑑 =

2.3212).

Despite the fact that the control charts become more sensitive to small shifts in the

mean vector, a drawback of the USW, LSW, and ESW schemes with SW2 is noteworthy,

a drawback that allows some extreme, clearly out-of-control values to be considered

in-control. In the same manner, many vectors that could be considered in-control are

marked with out-of-control dots. This happens because the observation vector receives,

at the instant 𝑡 − 1, too much weight in the SW approach for the current observation

vector to compensate (see Table 3.2). The MEWMA-based control chart seems to

avoid this problem, providing a better differentiation between the in- and out-of-control

vectors. Such behaviour is because the MEWMA scheme accumulates all the past
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Figure 3.3: Confidence control charts with 𝜆 = 0.7, SW2, 𝜙 = 0.7 and the respective
scatter plots (M1 = (3,0))

information in the current mean vector, while the SW scheme does not.

More detailed information concerning the mean and standard deviation of the

transformed statistics for all control charts are given in Table 3.4 and 3.5. Notably, there

is a reduction in the in-control limits for small distances. That reduction provides insight

into the optimum distance that can be efficiently detected for each chart configuration,

which is below 𝑑 = 3 for the MEWMA.7 and SW2 charts.

Table 3.4: Summary statistics for the MEWMA.7 and SW2 control charts

MEWMA.7 USW2 LSW2 ESW2
d 𝑝(x100%) 𝑆𝑑 (𝑝) 𝑝(x100%) 𝑆𝑑 (𝑝) 𝑝(x100%) 𝑆𝑑 (𝑝) 𝑝(x100%) 𝑆𝑑 (𝑝)

0.0 11.8 9.9 11.1 9.1 12.2 10.0 11.4 9.3
0.5 14.1 11.3 13.4 10.5 14.4 11.4 13.6 10.7
1.0 20.4 14.2 19.8 13.5 20.5 14.4 19.9 13.8
1.5 29.9 16.9 29.4 16.4 29.7 17.5 29.4 16.8
2.0 41.2 18.4 40.8 18.3 40.7 19.6 40.6 18.8
2.5 53.1 18.3 52.6 19.0 52.1 20.8 52.2 19.8
3.0 64.3 17.1 63.7 18.6 62.7 21.1 63.1 19.9
3.5 74.1 14.9 73.2 17.7 71.9 21.0 72.5 19.4
4.0 81.9 12.4 80.8 16.3 79.1 20.6 79.9 18.6
h 50.9 48.1 51.7 49.0
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Table 3.5: Summary statistics for the MEWMA.4 and SW4 control charts

MEWMA.4 USW4 LSW4 ESW4
d 𝑝(x100%) 𝑆𝑑 (𝑝) 𝑝(x100%) 𝑆𝑑 (𝑝) 𝑝(x100%) 𝑆𝑑 (𝑝) 𝑝(x100%) 𝑆𝑑 (𝑝)

0.0 5.8 4.7 5.5 4.3 6.6 5.3 6.3 5.1
0.5 7.8 5.9 7.6 5.7 8.6 6.6 8.4 6.4
1.0 13.8 8.7 13.7 8.8 14.5 9.8 14.2 9.6
1.5 22.7 11.7 22.9 12.7 23.3 13.6 23.0 13.5
2.0 33.5 14.5 33.8 16.5 33.7 17.4 33.4 17.4
2.5 44.9 16.8 45.0 20.0 44.6 20.6 44.3 20.9
3.0 55.9 18.3 55.6 22.8 54.8 23.2 54.5 23.6
3.5 65.6 19.1 64.8 24.7 63.8 24.8 63.4 25.5
4.0 73.8 19.2 72.2 25.8 71.1 25.4 70.6 26.3
h 27.5 26.8 31.9 30.8

The ARL comparisons between the MEWMA.7, MEWMA.4, SW2 and SW4 control

charts are given in Table 3.6. Although the SW2 control charts perform better than the

SW1 chart (Table 3.1) and similarly to the MEWMA.7 chart for small shifts, an inertial

effect is visible for distances larger than 𝑑 = 3 in the case of SW schemes. Ordering

the schemes from the least to the most sensitive with respect to the inertial effect, the

MEWMA chart performs better, followed by the USW, ESW and LSW charts.

Table 3.6: ARL comparison between MEWMA and SW control charts

d EWMA.7 USW2 LSW2 ESW2 EWMA.4 USW4 LSW4 ESW4
0.0 198.9 202.7 201.8 201.9 199.3 199.0 199.1 200.7
0.5 83.2 82.0 84.6 81.0 52.6 54.4 61.1 59.2
1.0 22.7 22.2 23.7 22.4 12.8 13.2 15.4 14.8
1.5 8.4 8.0 8.6 8.1 5.6 5.7 6.7 6.5
2.0 4.1 3.9 4.2 4.0 3.4 3.7 4.3 4.2
2.5 2.6 2.5 2.8 2.6 2.5 3.0 3.5 3.5
3.0 1.9 2.0 2.2 2.1 2.0 2.6 3.0 3.0
3.5 1.5 1.8 2.0 1.9 1.7 2.3 2.6 2.6
4.0 1.3 1.6 1.9 1.8 1.5 2.1 2.2 2.3

When the sliding window size increases to 4 (SW4), the Confidence MEWMA control

chart has the 𝜆 parameter decreased from 0.7 to 0.4, and for comparison purposes, is



57 3.3. Experiments and results

called MEWMA.4. Figure 3.4 illustrates the standard patterns for the four confidence

control charts for a shift of magnitude 𝑑 = 3. The respective in-control limits are

very close to each other, and all of them lead to completely separable processes, which

are ℎMEWMA.4 = 0.2747 (𝑑 = 1.6028), ℎUSW = 0.2677 (𝑑 = 1.5789), ℎLSW = 0.4901

(𝑑 = 1.7530) and ℎESW = 0.3082 (𝑑 = 1.7168). Table 3.5 provides the summary

statistics for the MEWMA.4 and SW4 schemes.
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Figure 3.4: Confidence control charts with 𝜆 = 0.4, SW4, 𝜙 = 0.7 and the respective
scatter plots (M1 = (3,0))

Figure 3.5(a) shows an ARL comparison of all control charts, while Figure 3.5(b) uses

the natural logarithm to amplify the differences in the tail. Splitting the comparison

into two groups, Figure 3.6(a) compares the SW1, MEWMA.7 and SW2 control charts,

while Figure 3.6(b) compares the SW1, MEWMA.4 and SW4 control charts. Noticeable

in the figures is the high degree of inertia effect produced by the SW schemes.

The second set of control charts in Figure 3.6(b) compares the SW1, MEWMA.4

and SW4 charts. Although these sliding window control charts perform better for shifts

below 𝑑 = 2, they have a higher degree of inertial effect than the SW2 charts for shifts

in which 𝑑 = 4. Again, the USW4 has the best performance, which is comparable to

the MEWMA.4 chart. With respect to robustness against the inertia impact of large
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Figure 3.5: ARL and ln(ARL) comparison for all control charts

shifts, the USW approach seems to be the most effective scheme. The LSW and ESW

schemes perform worse in both cases when compared to the USW scheme for large

shifts. While the differences between the SW schemes for small shifts are not evident

in the SW2 charts, the LSW4 and ESW4 charts perform worse than the USW4 chart

for small shifts as well.

Figure 3.7 presents comparisons between the mean values produced by the MEWMA

chart varying the 𝜆 parameter from 1 to 0.1 by 0.1 intervals and the mean values for

the sliding windows chart with window sizes 1, 2, 4, 6, 8, 10, 12, 14, 16 and 20. The

𝜆’s are positioned above the MEWMA bars and the window sizes for the SW schemes

are specified in the horizontal axis. This experiment makes it possible to choose the

appropriate window size that would present expected performance similar to a specific

𝜆 value for the MEWMA chart. As shown in the above experiments, this expected

equivalent performance is limited to an ideal range of noncentral values, as the sliding

windows tend to present considerably more inertia from large shifts than the MEWMA

method.
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Figure 3.6: Comparison for SW1, MEWMA.7, SW2, MEWMA.4 and SW4 schemes

Figure 3.7: Comparison of mean values of the MEWMA and SW control charts

For example, the mean value on the MEWMA chart with 𝜆 = 0.7 is close to 15%,

which is similar to the sliding window of size 2. For 𝜆 = 0.4, the window size that

presents the approximate mean value is 4. Thus, if a specific magnitude of mean shift in

the process requires 𝜆 = 0.2 on the MEWMA chart, to achieve similar performance with

sliding window schemes one should select a window of size 10 or 12, depending on the

sliding window scheme. Additionally, note that the 𝜙 parameter in the exponentially

weighted window was fixed at 0.7 for all window sizes, but it can be reduced as the
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window size increases to compensate for differences. A detailed comparison between

the MEWMA-based confidence control chart baselines (mean values) and standard

deviations for the in-control process, with 𝜆 varying from 1 to 0.1 by 0.1 units, is

illustrated in Figure 3.8. These values agree completely with the expected ones.
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Figure 3.8: Mean value and standard deviation of the Confidence MEWMA control
chart for the in-control process with various 𝜆’s

To analyse the out-of-control behaviour of the proposed statistic, the mean vector

is shifted, with d varying in the 0.5-7 range by 0.5 units. This information on the

first and second order moments of the proposed statistic also provides valid informative

support for the decision makers. From the results presented in Figure 3.9, an interesting

out-of-control statistics pattern is noticeable for the confidence chart in the transition

period that is fixed to 20 observations. Note that, as the mean values in Figure 3.9(a)

decreases with the smoothing parameter 𝜆, the standard deviation has a maximum

point in Figure 3.9(b) that is highly affected by the inertial period of 20 observations

and that does not converge to the expected value.

We observe that the mean value and standard deviation of the stationary out-of-

control state only makes sense if the researcher waits for the convergence after the
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Figure 3.9: Mean value and standard deviation of the Confidence MEWMA control
chart for the out-of-control process with various 𝜆’s

inertial period. That waiting generally does not take place for the problems found in

SPC because the monitoring stage is stopped after the first signal occurrence, and the

out-of-control process stabilisation is not verified in practice.

To illustrate a common decision problem that occurs in many applications, take the

example given in Figures 3.10- 3.12. A researcher is monitoring a bivariate Gaussian

process without any prior information about the direction of change. Thus, the non-

directional MEWMA control can be selected with sliding window schemes to also

perform on-line pattern identification. Additionally, as the researcher has no prior

information about the magnitude of the shift, a control chart to monitor large shifts can

be configured at the cost of not detecting the change if it is a small change. Otherwise,

the control chart can be configured to detect a small shift, but at the cost of an inertial

delay if the actual shift occurring in the process is large.

In a simulated scenario such as the example in Figure 3.10, the threshold of all

proposed control charts are nominally specified to detect a small shift utilising 𝑑 = 1,
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Figure 3.10: Transitional phase comparison for 𝑑 = 0 with MEWMA.1 and SW20
schemes
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Figure 3.11: Transitional phase comparison for 𝑑 = 1 with MEWMA.1 and SW20
schemes

which given in probability is ℎ* = 1 − exp
[︁
−1

812
]︁

= 0.1175. Observe that all control

charts are not exactly calibrated to the same ARL, but as shown in Figure 3.7, they are

expected to show similar performance for small shifts in the mean vector. In fact, the

ESW scheme is clearly configured to detect smaller changes than all other concurrent

schemes, given the high confidence mean value shown in Figure 3.7. In Figure 3.11

and 3.12, a short run length of size 40 is monitored when two types of shifts occur at
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Figure 3.12: Transitional phase comparison for 𝑑 = 3 with MEWMA.1 and SW20
schemes

position 𝑡 = 21.

As all the control charts are configured to detect small shifts, they performed

similarly in detecting a shift of size 1. However, when a large shift of size 𝑑 = 3

occurred, as shown in Figure 3.12, the ESW scheme clearly performed the worst. Such

behaviour in the SW schemes can be related to the number of observations that are

needed to fulfil the actual estimate of the mean vector to compensate for the information

history accumulated by the MEWMA scheme.

Additionally, to emphasize the context of Figure 3.9, it is interesting to note that

while the expected value for the proposed statistic when 𝑑 = 7 and 𝜆 = 0.1 can be
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given by

𝐸 (𝑝|M1 = (7,0)) = 𝐸

[︂
1 − exp

(︂
−1

8𝑑2
)︂

|M1 = (7,0)
]︂

= 1 − exp
[︂
−𝐸

(︂1
8𝑑2|M1 = (7,0)

)︂]︂
= 1 − exp

[︂
−1

8𝐸
(︁
𝑑2|M1 = (7,0)

)︁]︂
= 1 − exp

[︂
−1

8
(︀
𝑛 + M′

1M1
)︀]︂

= 1 − exp
[︂
−1

8
(︁
2 + (7,0)′ (7,0)

)︁]︂
= 1 − exp

[︂
−1

8 (2 + 49)
]︂

= 1 − exp
[︂
−51

8

]︂
= 0.9983 (3.29)

The observed value of the first 20 individual vectors in 50,000 Monte Carlo simula-

tions converges to 0.7886. This reflects the high inertial effect suffered in the control

charts configured for small change detection when the actual change happening in the

process is large.

3.4 Discussion

In this paper, we discuss an alternative way of monitoring Gaussian mean vectors

through the use of an upper bound for the confidence that the process is in control.

Instead of monitoring the noncentrality parameter, we suggest the use of the Bhat-

tacharyya distance and its relationship with the upper bound of the misclassification

error. While the traditional distance of Hotelling’s 𝑇 2 has no maximum values, the pro-

posed confidence control chart based on probabilities for individual observation vectors

manifests a useful distinction between processes in the [0-1] range. In this case, when

the out-of-control process becomes completely separable from (not overlapped with)

the in-control process, the proposed statistic converges to 1, not going to infinity.
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Additionally, we show that the probability control chart for individual observation

vectors can be extended to more general cases, the monitoring of small shifts through the

use of MEWMA-based control charts and control charts with sliding window schemes.

In the same manner as the MEWMA method, instead of using individual observation

vectors, the sliding window approaches are commonly used to estimate the actual

mean vector for different purposes, including on-line pattern recognition. We show the

equivalence in performance measured by the ARL among the MEWMA-based control

charts and sliding window schemes for specific parameters.

While this equivalence holds for small shifts in the mean vector, the sliding window

approach proves to be more susceptible to the inertial effect for large shifts than the

MEWMA-based scheme. Indeed, in the same manner that a decrease in the weighting

factor 𝜆 in the MEWMA chart helps in identifying small shifts, an increase in the

sliding window size corresponds to more effective detection of smaller shifts but with a

greater inertial effect for large shifts than the MEWMA-based chart.

Future work on this topic includes the monitoring of the covariance matrix of a

Gaussian process through the use of probability-based control charts, as well global

process monitoring, i.e., the joint monitoring of the mean vector and covariance matrix

of a multivariate Gaussian process.





Chapter 4

Self-oriented Control Charts for

Efficient Monitoring of Mean

Vectors

Abstract

This work presents a procedure for monitoring the centre of multivariate processes

by optimizing the noncentrality parameter with respect to the maximum separability

between the in- and out- of control states. Similarly to the Principal Component

Analysis, this procedure is a linear transformation but using a different criteria which

maximises the trace of two scatter matrices. The proposed linear statistic is self-oriented

in the sense that no prior information is given, then it is monitored by two types of

control charts aiming to identify small and intermediate shifts. As the control charts

performances depend only on the noncentrality parameter, comparisons are made with

traditional quadratic approaches, such as the Multivariate Cumulative Sum (MCUSUM),

the Multivariate Exponentially Weighted Moving Average (MEWMA) and Hotelling’s

𝑇 2 control chart. The results show that the proposed statistic is a solution for the



Chapter 4. Self-oriented Control Charts for Efficient Monitoring of Mean Vectors 68

problem of finding directions to be monitored without the need of selecting eigenvectors,

maximizing efficiency with respect to the average run length.

4.1 Introduction

Quality assessment should be considered in several respects, as it is a deciding factor

when one intends to acquire a product or service. Among the modern techniques for

quality improvement and control, we highlight the statistical methods used initially by

Shewhart (1931) that led to the formal statistical process control (SPC) field. As the

field of automatic process control grew, many issues concerning machine learning and

risk prevention arose. In the specific case of monitoring multivariate processes when

few information sources about the possible changes are available, machines must be

calibrated to notify problems promptly as they arise. Thus, the industry seeks solutions

that can minimise the lag between issues and warnings, which can be viewed as the

inertial time from the root cause of the problem until detection. After an alarm warning,

the units used are to be inspected to compute losses. In some cases, the cost involved

in the production of a few defective units may be of a serious consequence.

For a single characteristic, control charts can be considered as the definition of the

thresholds that the values of the quality characteristic must satisfy such that the process

is considered stable. However, in multivariate processes, defining the control limits is

a more complex task. In addition to the computational costs due to high correlations

among the original variables, an increase in the number of parameters also requires an

increase in the number of samples for the accurate estimation of the current state of

the process.

In terms of controlling the mean vector, a proeminent but often neglected feature is

the emptiness property of the multivariate space centre illustrated in Figure 4.1, which

contradicts the common concepts of one-dimensional spaces. As can be observed in
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Figure 4.1: Emptiness property of the centre of multivariate spaces

Figure 4.1 a), the probability density between the -1 to +1 interval sums to 68.3%,

while the bi-dimensional density inside the circle of radius 1 sums to 46.6%. This effect

increases continuously with the dimensions of the data. The effect of this property on

Gaussian data implies that when the data size increases, the likelihood that observations

are present near the centre of the distribution decreases. In the case of high-dimensional

spaces, the majority of the data concentrate in the tails of the distribution, and the pres-

ence of observations near the process centre becomes a very rare event. In other words,

in high-dimensional spaces, Gaussian data and many other heavy-tailed distributions

tend to concentrate in the tails, with highly sparse data in between.

Analysing this aspect of multivariate data, Jimenez and Landgrebe (1998) proposed

classification methods for digital images by means of feature selection and extraction,

eliminating the redundancy of the original variables and optimising the available infor-

mation on the output variables. Although some feature reduction techniques are already

well known in the pattern recognition and digital image analysis, this methodology re-

mains unexplored in time-varying single-hypothesis problems, which are extensively
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used in multivariate process control and monitoring.

Many authors, such as Jackson (1991), Kourti and MacGregor (1996) and Choi et al.

(2005), suggest monitoring schemes based on Principal Component Analysis (PCA), but

these methods often do not provide a rule that optimises the separation of the processes.

Additionally, selecting a reduced number of principal components in the multivariate

charts often results in poor performance in terms of ARL. This phenomenon possibly

occurs because the linear and orthogonal transformations of the PCA method do not

optimise the separability among processes but rather better represent the data using

a reduced number of features (Fukunaga, 1990). However, if the purpose is to classify

the data, better features can be found using non-orthogonal transformations, which are

specifically designed to maximise the classification accuracy in terms of the Bayes error.

In this work, we propose a linear control chart for mean vectors that can additionally

provide optimum performance in terms of the average run length for a wide range of

changes in the process.

Assuming that the observation is a random sample with a conditional density

function that depends on its class, the purpose of this work is to find an efficient feature

that classifies samples in time-varying processes with a minimum probability of error.

Although the same type of linear transformation utilised in PCA is applied in the

present work, a different criterion for optimization is adopted.

4.1.1 Control charts for Gaussian processes

The SPC approach for controlling process parameters consists of determining whether

a given sample is more likely to belong to a known subjacent process or not. Then, the

unknown sample could be tagged in one of two categories, the in-control (IC) state or

the out-of-control (OC) state. A problem related to the design of control charts lies in

recognising a shift from the IC state as soon as possible once it occurs.

This problem is a special case of sequential hypothesis testing in which only the
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parameters of the reference class, the IC process, are known. The second class, the

OC process, is completely unknown until the process has shifted for an undetermined

period. In this case, it is impossible to assign an alternative process a priori. Such

problems are called single class hypotheses (Fukunaga, 1990), as there is no way to

examine the wide variety of alternative states before designing a decision rule. For

example, for selecting the most similar object from a list of objects, one possible simple

decision rule could be to select the object with the features most similar to those of the

target, representing the minimum distance in a global sense.

The SPC methodology for monitoring the parameters of a given process generally

involves two steps (Montgomery, 2001). The first step is the Phase I stage, where the

IC parameters are monitored to generate control boundaries, mostly based on the mean

rate of false alarms and ARL. The second step is the Phase II stage, where the samples

that arise from the running process are measured and their statistics compared with the

IC boundaries. If the statistic computed using the new sample exceeds the boundaries,

an alarm is triggered and the process is tagged as OC.

For the SPC of covariance matrices, traditional approaches include the use of moving

ranges or generalised variance tests (Montgomery, 2001), while new approaches include

the use of auxiliary information proposed by Riaz and Does (2008) and the VMAX

procedure of Costa and Machado (2008). Quinino et al. (2012) also propose a single

statistic based on the mixture of variances (VMIX) to monitor the covariance matrix

of bivariate processes. Recent proposals for simultaneous monitoring mean vectors

and covariance matrices are developed by Zhang et al. (2010) and Khoo et al. (2010),

with great improvements in the monitoring process. In the case of autocorrelated data,

the known proposals for monitoring mean vectors include time series modelling and

controlling the residuals of the adjusted model.

The most applied methods for monitoring mean vectors of a stable process employ

Hotelling’s 𝑇 2 (1947), the Crosier’s (1988) Multivariate Cumulative Sum (MCUSUM),
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and the Multivariate Exponentially Weighted Moving Average (MEWMA) chart of

Lowry et al. (1992). These three charts are directly comparable due to the common

dependency of the ARL on the noncentrality parameter. In the next section, we

link these three control charts with the Mahalanobis distance and propose a linear

transformation to optimise the classification accuracy of new observation vectors in

terms of the ARL.

4.1.2 The noncentrality parameter

With respect to the control of mean vectors with no prior information on the direction

of the shifts, it is known that the performance of the Hotelling’s 𝑇 2, MCUSUM, and

MEWMA control charts depends only on the noncentrality parameter (𝑑). If the shift

is large, Shewhart-type charts, such as Hotelling’s 𝑇 2, are known to have a good

performance in terms of ARL. In contrast, if the shift is small, non-Shewhart charts,

such as MCUSUM or MEWMA charts, have been proven to be more effective in terms

of rapid change detection. Some authors have also developed efficient modifications of

these methods, such as the dEWMA method proposed by Alkahtani and Schaffer (2012).

For multistage processes, when there is prior information on the plausible directions of

the shift, the directional MEWMA (DMEWMA) control chart (Zou and Tsung, 2008)

that incorporate the generalized likelihood ratio test is a successful approach.

The noncentrality parameter is a squared distance with known distribution and

properties (Fukunaga, 1990). The distance between the mean vectors of two populations

is also known as the Mahalanobis distance (Mahalanobis, 1936). For the case of the

normal distribution, the density is a Gamma distribution with mean 𝑛 and variance 2𝑛,

where 𝑛 is the dimension of the data. Approaches based on this measure usually exhibit

a good performance for very small distances and when the dimensionality is low (no

higher than one or two) but deteriorate with increasing dimensions, as the separability

between the two classes decrease.
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The Mahalanobis distance can be directly linked with other dissimilarity measures

used in classification problems (Tou and Gonzalez, 1974; Therrien, 1989) in more general

formulations, namely, the Bhattacharyya (1943) and Chernoff (1952) distances. These

distances are perfect general measures that can be used to monitor both mean vectors

and covariance matrices, as it is possible to optimise each factor separately. Fukunaga

(1990) states that for problems based on the noncentrality parameter, the total error

of classification, known as the Bayes error, increases significantly with the number of

dimensions; the loss of this valuable information is the price paid for unknowing the

alternative class.

In this paper a procedure is presented for monitoring the mean vectors of multi-

variate Gaussian processes by optimising the Mahalanobis distance with respect to

the maximum separability between the mean vectors. The single and time-continuous

hypothesis test performed using the control charts can be viewed as a binary pattern

recognition problem with the aim of classifying a given sample into one of two possi-

ble classes, IC or OC. As the parameters of the second class (the OC state) can be

estimated a posteriori, the single-hypothesis problem can be extended to a two-class

problem. This procedure allows for the optimisation of the method in terms of maxi-

mum separability between classes in the IC and the OC states. In this optimal space,

the proposed control charts yield a faster indication of whether the process is moving

from the IC to the OC state for a wide range of distances. The structure of the paper

is the following. Section 4.2 describes the methodology. Section 4.3 shows numerical

simulations, and Section 4.4 presents the final remarks.

4.2 Methodology

It is known that the performance of Hotelling’s 𝑇 2, MEWMA and MCUSUM control

charts for monitoring mean vectors depends only on the noncentrality parameter (d)
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and does not depend on the direction of the shift. The noncentrality value is exactly the

Hotelling’s distance (𝑇 2 = 𝑑2) of individual observation vectors to the process centre,

given by

𝑑2 = (x𝑖 − M0)′ Σ−1
0 (x𝑖 − M0) > ℎ1 (4.1)

where x𝑖, M0 and Σ0 are the observation vector, mean vector and covariance matrix

of the reference process, respectively. The decision rule gives an out-of-control signal

as soon as 𝑑2 > ℎ, where ℎ is a specified threshold for achieving the desired false alarm

rate, usually defined in terms of the in-control average run length (ARL0). Moreover,

in addition to providing the standardised distance of the current observation to the

reference distribution, the Mahalanobis distance (𝑑2
𝑀 ) is a measure of dissimilarity

between two populations mean vectors, given by

𝑑2
𝑀 = (M2 − M1)′

[︂Σ1 + Σ2
2

]︂−1
(M2 − M1) (4.2)

where M𝑖, Σ𝑖, 𝑖 = 1,2, are respectively the mean vectors and the covariance matrices

of the process 𝑖. Note that in SPC applications, both MEWMA and MCUSUM control

charts make use of the Mahalanobis distance intrinsically. The main difference between

these methods is the estimation of the current mean vector. In a recent study, Bersemis

et al. (2007) discuss many technical aspects related to the Phase I and II applications of

the multivariate control charts for mean vectors based on the noncentrality parameter.

Rao (1947) explained that the Mahalanobis distance is an explicit function of

the proportion of overlapping individuals in the two populations. Rao (1949) also

commented that Bhattacharyya had developed a perfectly general measure defined using

the distance between two populations based on a Riemannian geometry metric, with the

angular distance between points representing the populations in a unit sphere. Later,

Atkinson and Mitchell (1981) studied Rao’s paper in detail, providing the distances for
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a well-known family of distributions. Recently, Michelli and Noakes (2005) determined

Riemannian distances for a large class of multivariate probability densities with the

same mean by reducing the distances to quadratures and, in some cases, yielding

closed-form expressions.

As it is possible to utilise the Mahalanobis distance for on-line monitoring by using

the information available sequentially, a method for optimising it and extracting the

optimal variable to discriminate between two populations with respect to the difference

of mean vectors is presented. Thus, the transformation criteria adopted in the present

work for extracting a more informative variable and application in statistical on-line

process control is discussed in the following section.

4.2.1 Maximisation criteria

It is known that the number of available observational samples may be insufficient for

estimating the scope of the parameters in the original space, given a moderate increase

in the dimension of the data. Thus, the mapping of the original data (Y) into another

space (X) in which most of the important information is optimally concentrated in a

smaller number of variables may produce better results by reducing the total probability

of misclassification without incurring any significant loss of information. Among the

two types of criteria that are frequently used in practice, one is based on a family of

functions of scatter matrices, which are conceptually simple and for which systematic

algorithms for choosing the best features are available. This type of criteria measures

the separability between classes, but does not provide information on the Bayes error

directly. The second type of criteria provides upper bounds of the Bayes error, such as

the Chernoff (1952) and Bhattacharyya (1943) distances.

When the objective is to effectively preserve the class separability, the criteria for

choosing the appropriate features are essentially independent of coordinate systems.

Thus, these criteria are completely different from those utilised for signal representation
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as applied in PCA, which are based only on the correlation or covariance matrix.

Generally, in linear feature extraction for signal representation as utilised in PCA,

the transformations are limited only to orthonormal spaces because the shape of the

distribution has to be preserved. By changing the transformation criteria, the linear

features do not need to be orthonormal, leading to more effective boundaries between

the different classes involved for signal classification purposes.

In discriminant analysis, the main criterion frequently used in practice is based

on a function of scatter matrices. Within-class, between-class and a mixture of scat-

ter matrices are the three types of matrices used to formulate criteria for class sep-

arability, yielding a simple and systematic feature extraction algorithm. A within-

scatter matrix (S𝑤) shows the scatter samples around their mean vectors, given by

S𝑤 = ∑︀𝐿
𝑖=1 𝑃𝑖Σ𝑖, where 𝑃𝑖 is the a priori probability of each of the 𝐿 classes. A

between-scatter matrix (S𝑏) is the scatter of the expected vectors around the mix-

ture means, S𝑏 = ∑︀𝐿
𝑖=1 𝑃𝑖 (M𝑖 − M0) (M𝑖 − M0)′. The mixture scatter matrix is the

covariance of all samples regardless of their class assignments, defined as S𝑤 + S𝑏.

To be an effective class separability criterion, these matrices need to be converted

to a number that should increase when S𝑏 increases or S𝑤 decreases. A typical criterion

for preserving class separability is 𝐽 = 𝑡𝑟
(︁
S−1

𝑤 S𝑏

)︁
. Fukunaga (1990) shows that this

criterion is invariant under any non-singular transformation, as the two scatter matrices

can be simultaneously diagonalised using linear transformations, not altering the value of

𝐽 regardless of the selection of the coordinate system. Thus, performance comparison

can be conducted without any lack of generality by simulating only non-correlated

processes.

For the out-of-control process, or 𝜔1 class, in addition to the estimation of the current

mean vector, it is also possible to assume that the variance-covariance structure of the

process is unknown, i.e., Y|𝜔1 𝑁𝑝 (M1,Σ1). Thus, the decision boundaries are adjusted

according to the averaged covariance matrix instead of using only the prior information
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for Σ0. The estimation of the covariance matrix generally requires a significantly larger

number of samples than is necessary to estimate only the mean vector. Appropriately

smoothing the covariance matrix at each instant for this case is a subject not described

in detail in this study. As the main focus of this study is the on-line monitoring of

mean vectors, the hypothesis assumed here is the equality of the covariance matrix in

the processes, and only the mean vector is updated for each new observation vector.

In general form, a linear coordinate system transformation can be represented by

X = A′Y (4.3)

where A is the transformation matrix that maps the original Y space into the trans-

formed X space. However, contrary to the case of PCA utilised for signal representation,

the column vectors of A do not need to be orthonormal when the purpose is classifica-

tion. Thus, finding A that optimises 𝐽 in the Y space is conducted as follows.

When Σ1 = Σ2, the Mahalanobis distance defined in Equation (4.2) becomes the

noncentrality parameter comparing two population mean vectors,

𝑑2 = (M2 − M1)′ Σ−1 (M2 − M1) (4.4)

Note that the product in the right-hand side of Equation (4.4) has dimension 1 × 1

and therefore becomes

𝑑2 = 𝑡𝑟
(︁
(M2 − M1)′ Σ−1 (M2 − M1)

)︁
(4.5)

For two matrices A and B, it is known that 𝑡𝑟 (AB) = 𝑡𝑟 (BA), such that

𝑑2 = 𝑡𝑟
(︁
Σ−1 (M2 − M1) (M2 − M1)′

)︁
(4.6)
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In the right-hand side of Equation (4.6), observe that (M2 − M1) (M2 − M1)′ is a

matrix with dimensions 𝑝 × 𝑝 generated by the product of a vector by itself; therefore,

its rank equals 1. In this case,
(︁
Σ−1 (M2 − M1) (M2 − M1)′

)︁
is also a 𝑝 × 𝑝 matrix

with a rank equal to 1 and has only one eigenvalue other than zero, i.e.,

𝜆1 ̸= 0,𝜆2 = 𝜆3 = . . . = 𝜆𝑛 = 0 (4.7)

This indicates that for two-class problems, only one feature is needed. It can be

shown that the trace of a matrix is equal to the sum of its eigenvalues; thus, Equation

(4.6) becomes

𝑑2 = 𝜆1 (4.8)

with

𝜆1 = (M2 − M1)′ Σ−1 (M2 − M1) (4.9)

Therefore, in the original variable space Y, 𝑑2 is aligned with the eigenvector e1 of

Σ−1 (M2 − M1) (M2 − M1)′ and associated with the first eigenvalue 𝜆1. Observe that

𝜆1 is exactly the noncentrality value, this fact guarantee the direct comparison of the

proposed control charts with the selected ones.

For a vector Y with dimensions 𝑝 × 1, the extracted feature (𝑋) can carry all the

information of class separability due to the difference in mean vectors and is, therefore,

a sufficient statistic, while the other features are redundant. In this transformed space,

𝑋 can be obtained by projecting Y on 𝑒1 according to Equation (4.3).

𝑋 = e′
1Y (4.10)

The direction of e1 can be obtained from the general problem of finding eigenvalues
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and eigenvectors in a generic matrix 𝜂 such that

𝜂e1 = e1𝜆1 (4.11)

In this case,

𝜂 = Σ−1 (M2 − M1) (M2 − M1)′ (4.12)

Then,

Σ−1 (M2 − M1) (M2 − M1)′ e1 = e1 (M2 − M1)′ Σ−1 (M2 − M1) (4.13)

Therefore,

e1 = Σ−1 (M2 − M1) . (4.14)

Thus, the extracted feature containing all the information with respect to the separation

between the mean vectors of two multivariate normal processes is the transformed space

given by

𝑋 =
(︁
Σ−1 (M2 − M1)

)︁′
Y. (4.15)

Then, to project two distributions onto one vector, this vector must be perpendic-

ular to the optimum hyperplane between the two distributions. The above argument

suggests that by projecting two distributions into the vector oriented along e1, all the

classification information is preserved as long as the class separability is effectively

measured using the selected criterion.

4.2.2 The Lin-MEWMA control chart

The procedure described above is defined for the classification of two classes that are

given or estimated a priori. Thus, each new observation is classified as belonging to one

of the two known classes, according to the decision criteria previously established. As
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the parameters or estimates of both classes are given, most commonly, the maximum

likelihood rule is adopted for the classification procedure.

The difference between the MEWMA scheme and the MEWMA control chart must

be considered first. For the application of this method to the on-line process control of

mean vectors, it is first necessary to estimate the current mean vector. For this purpose,

we tested sliding window schemes and the MEWMA scheme. In the present work, we

differentiate the MEWMA scheme from the MEWMA chart in that the former is a

method for on-line mean vector estimation and that the latter is a Mahalanobis distance

classifier, applying a MEWMA scheme. Our comparison of the sliding window schemes

are not presented in this work because the results have shown that the MEWMA scheme

is more simple and efficient than the tested sliding window approaches, and it is the

scheme adopted for the current purpose. This scheme has the advantage of allowing a

direct comparison of the proposed chart with the quadratic MEWMA control chart by

utilising the same smoothing values.

The current mean vector M𝑡 is estimated at the instant 𝑡 with the inclusion of Y𝑡

such that

M𝑡 = (1 − 𝜆) M𝑡−1 + 𝜆Y𝑡 (4.16)

where M0 = 0 and 0 > 𝜆 ≥ 1. Although different weights could be set for each variable

in the vector, observe that maintaining the weights of all variables as fixed renders the

proposed control charts directionally independent. If different weights are given for

the different variables, the control charts becomes directionally dependent and their

performances cannot be compared with those of the selected non-directional control

charts.

Performance efficiency is measured by comparing the ARL of the competing control

charts after the calibration process. As the proposed control charts for monitoring

mean vectors are based on the linear 𝑋 statistic and utilises the MEWMA and CUSUM



81 4.2. Methodology

schemes, they are called the Linear MEWMA (Lin-MEWMA) and Cumulative Sum of

𝑋 (CUSUM-Lin) control charts.

Because the resultant variable approximates a normal distribution, the Lin-MEWMA

control chart involves simply monitoring the one-dimensional variable by selecting sym-

metrical in-control limits that result in a pre-specified ARL0. The observations gener-

ated from the in-control process are referred to as class 𝜔0 such that Y|𝜔0 𝑀𝑉 𝑁 (M0,Σ0).

The transformed variable triggers an out-of-control signal as soon as

𝑋𝑡 =
(︁
Σ−1

0 (M𝑡 − M0)
)︁′

Y𝑡 ≥ ±ℎ1 (4.17)

Here, M𝑡 is the current mean vector, and ℎ1 is chosen to achieve a pre-specified ARL0.

4.2.3 The CUSUM-Lin control chart

For investigating very small shifts in the mean value of a one-dimensional normal

variable, the CUSUM and EWMA control charts are recognised as efficient tools for

quality improvement. The performance of these methods is often compatible and depend

only on the individual parameters 𝑘 and 𝜆, respectively, for the CUSUM and EWMA

charts. The method for performing a CUSUM procedure over a one-dimensional statistic

for multivariate processes was first proposed by Crosier (1988), called the CUSUM of T

control chart. This procedure was less effective than the vectorial CUSUM (MCUSUM)

chart. Similarly, this work employs the CUSUM scheme over a one-dimensional statistic

of a multivariate process.

Beyond its simple rule for the choice of the k parameter, the standardised CUSUM

procedure has two main advantages, as shown by Montgomery (2001). First, many

CUSUM charts can now accommodate the same values of 𝑘 and ℎ, and the choice of

these parameters does not depend on the standard deviation of the variables. Second,
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a standardised CUSUM naturally controls the process variability, as it becomes more

sensitive to the process dispersion around the mean vector.

Thus, for the CUSUM-Lin control chart, first compute

y𝑡 = 𝑋𝑡 − 𝜇𝑋

𝜎𝑋
(4.18)

the standardised value of 𝑋𝑡. As a closed form for 𝜇𝑋 and 𝜎𝑋 is not provided yet, the

estimation of those parameters was carried out by means of Monte Carlo simulation.

Then, the positive and negative standardised CUSUMs are defined as

𝐶+
𝑡 = 𝑚𝑎𝑥

[︁
0, y𝑡 − 𝑘 + 𝐶+

𝑡−1

]︁
(4.19)

𝐶−
𝑡 = 𝑚𝑎𝑥

[︁
0, −𝑘 − y𝑡 + 𝐶−

𝑡−1

]︁
(4.20)

where the starting values are 𝐶−
𝑡 = 𝐶+

𝑡 = 0. If either 𝐶+
𝑡 or 𝐶−

𝑡 exceed the decision

threshold ℎ chosen to achieve a specific ARL0, the process is considered to be out-of-

control.

The condition 𝑘 = 0.5 was selected for both CUSUM-Lin and MCUSUM charts

because it is expected to yield the best performance for a shift 𝑑 = 1 by utilising the

rule 𝑘 = 𝑑/2 (Montgomery, 2001). As the CUSUM-Lin chart monitors the proposed

variable after smoothing by the MEWMA scheme, the performance of this method can

be viewed as a double-filtering procedure, as it is affected not only by the 𝑘 parameter

but also by the 𝜆 smoothing factor employed first by the MEWMA scheme in the linear

transformation.

4.3 Experiments and results

This section describes the calibration of the control chart and the experiments for

performance comparison. The differences between the proposed control charts and
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traditional multivariate approaches of Hotelling’s 𝑇 2, MEWMA and MCUSUM charts

are analysed for mean vector shifts in the [0-5] range of the noncentrality parameter.

The experimental scenarios described below are established to illustrate the sensitivity

of the 𝜆 and 𝑘 parameters. For the MEWMA scheme, as 𝜆 in the range 0.1 to 0.4

leads to effective detection of shifts in the mean vector with magnitude 𝑑 ≈ 1 or larger

(Lowry et al., 1992), values of 𝜆 in this range are applied for the proposed control charts.

The 𝑘 parameter for the MCUSUM chart was set to 𝑘 = 0.5 (Crosier, 1988), indicating

that the chart is calibrated to detect differences in the noncentrality parameter when it

is equal to 1. Although the CUSUM-Lin chart is primarily filtered using the 𝜆 factor,

the value 𝑘 = 0.5 is kept fixed for the sake of comparison with the MCUSUM chart.

4.3.1 Control chart calibration procedure

In this work, the control chart calibration is performed by specifying a sequence of

thresholds for each control chart and recording the resulting ARL0. The thresholds of

all competing control charts were adjusted to obtain ARL0 = 200. The control chart

calibration procedure is performed in two steps. The first step utilises a linear regression

model of 𝑑2 as a function of the 𝑙𝑛 (ARL0). All the regression models presented a

goodness of fit of at least 0.95. The second step in the calibration procedure iteratively

refines the desired threshold using linear interpolation. A sequence of 20 thresholds with

𝐵 = 5,000 Monte Carlo simulations were performed to obtain the first ARL0 estimates.

For the final control chart comparisons, 𝐵 = 50,000 Monte Carlo simulations were

performed.

Mahmoud and Maravelakis (2010, 2011) show that utilising estimated parameters

instead of known parameters delays the change detection of the multivariate control

charts. Without loss of generality, for performance comparison, all control charts were

calibrated using Phase I sample estimates of limited sizes, to amplify the performance

differences. Therefore, to illustrate the control chart efficiency in different dimensions,
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the p-dimensional multivariate processes are simulated using 𝑝 = 2 and 𝑝 = 4.

For the bivariate case, the in-control process parameters were estimated using a

Phase I stage with 𝑚 = 25 observations. In the four-dimensional case, the mean vector

and covariance matrix of the in-control process were estimated using a Phase I stage

with 𝑚 = 50 observations. Thus, the estimated in-control limits must address a bigger

variation than expected for the case of known parameters. While the in-control limit

utilising known parameters for the MCUSUM chart in Crosier’s (1988) paper is ℎ = 5.5,

in this work, with unknown parameters, we found ℎ = 6.64 using our new methodology.

The same was observed using the MEWMA chart; the in-control threshold in Lowry

et al. (1992) paper was ℎ = 8.79, and we obtained ℎ = 11.43 by utilising unknown

parameters.

4.3.2 A numerical example

A numerical example with a simulated dataset to illustrate the MCUSUM and MEWMA

charts in both respective original papers is shown in Table 4.1. The first five observations

of the data are generated from a bivariate normal process with M0 = (0, 0), unitary

variances and correlation 𝜌 = 0.5. The last five observations are generated from an

out-of-control process with the mean vector shifted to M1 = (1, 2). The shift correspond

to a noncentrality value 𝑑 = 2, which is considered as an average distance value for the

bivariate case.

First of all, notice that both Lin-MEWMA and CUSUM-Lin charts were calibrated

for a process with unknown parameters (Phase I with 𝑚 = 25). Then, in the same

way that the MEWMA and MCUSUM charts have delayed detection when estimated

parameters are employed to delimit the thresholds (Mahmoud and Maravelakis, 2010,

2011), a relative delay in change detection observed for both charts is expected for the

proposed charts. In practice, as the shift size is unknown, the 𝜆 factor must be chosen

a priori. Following the example of the original Lowry et al. (1992) paper, 𝜆 is set to
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0.1 for comparison purposes.

Table 4.1: A numerical example of bivariate quality-control schemes (𝜆 = 0.1)

t 𝑌1 𝑌2 𝑒11 𝑒12 𝑋𝑡 𝐶+
𝑖 𝐶−

𝑖

1 -1.19 0.59 -0.20 0.16 0.33 0.00 0.00
2 0.12 0.90 -0.22 0.25 0.20 0.00 0.16
3 -1.69 0.40 -0.45 0.39 0.92 0.43 0.00
4 0.30 0.46 -0.40 0.40 0.06 0.00 0.47
5 0.89 -0.75 -0.19 0.20 -0.32 0.00 1.78
6 0.82 0.98 -0.13 0.25 0.15 0.00 2.06
7 -0.30 2.28 -0.31 0.55 1.35 1.39 0.00
8 0.63 1.75 -0.31 0.69 1.01 2.02 0.00
9 1.56 1.58 -0.17 0.73 0.88 2.35 0.00
10 1.46 3.05 -0.17 0.96 2.70* 6.72 0.00
h ±1.84 15.2

As seen in the next section, the same value for the smoothing factor 𝜆 affects

the charts performance differently. Therefore, in the simulated example, the Lin-

MEWMA control chart shows a performance compatible with that of the MEWMA

chart, signalling the shift after the ninth observation. Additionally, the CUSUM-Lin

chart with 𝜆 = 0.1 and 𝑘 = 0.5 is sensitive for smaller shifts in the mean vector, when

𝑑 ≤ 2. In this way, and considering that the bounds are set for a process with unknown

parameters, the simulated change was not detected by the CUSUM-Lin chart before

the tenth observation.

4.3.3 Control chart pattern analysis

The illustrations that follow compare the common patterns of the control chart for

mean vector shifts. Figure 4.2 presents the simulation of an extended run length of

𝑚 = 400 observations with no change in the process (𝑑 = 0) monitored using Hotelling’s

𝑇 2 and the MEWMA and Lin-MEWMA control charts. Red dots are out-of-control

observations; the horizontal line indicates the estimated threshold (Table 4.2), and the

vertical dashed line in the middle of the control chart indicates a change point for the
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process.
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Figure 4.2: Hotelling’s 𝑇 2, MEWMA and Lin-MEWMA control chart patterns with
scatter plots (𝑝 = 2, 𝜆 = 0.1, 𝑑 = 0)

As stated before, PCA finds directions that best represent the multivariate process.

Therefore, the estimations of confidence ellipsoids (axis directions and sizes) were

conducting using PCA. Figure 4.2 show those estimated PCA boundaries, seen in the
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scatter plots on the right side of each respective control chart in blue and red. The blue

circle is the estimated ellipsoid with a confidence level of 99.5% for the IC process, and

the red circle is the estimated ellipsoid for the OC process.

Figure 4.3 shows the MCUSUM and CUSUM-Lin charts for monitoring the simu-

lated IC process. The first aspect to be observed when comparing all the control charts

is that the Lin-MEWMA chart plots an approximately normal statistic, varying sym-

metrically around a mean value. This behaviour of the proposed linear statistic allows

for the successful implementation of the standardised CUSUM procedure. This is not

possible in low-dimensional spaces because the quadratic statistic is very asymmetrical

and does not satisfy the required assumptions of the CUSUM procedure. The experi-

ments showed that the standardised CUSUM with the MEWMA statistic was equally

or less effective than the MEWMA control chart itself. When the quadratic statistic

is applied in the CUSUM chart, the transformation indicates very erratic behaviour,

without good stability in the control chart signal.

From the simulated experiment of Figure 4.4, it can be seen that a shift in the

mean vector (𝑑 = 1) can be detected by all compared control charts. This change is

not perceived as well using the Hotelling’s 𝑇 2 chart because too few observations are

present in the external region of the IC process. The MEWMA statistic does not cover

the IC region in the same way as the Hotelling’s 𝑇 2 statistic.

Instead of denoting observations situated outside the IC region, these observations

are denoted as OC according to whether the current mean vector is considered OC.

However, in Figure 4.4(c), the linear statistic monitored using the Lin-MEWMA chart

displays OC observations outside of the threshold projection in the direction of the

shift. As M1 = (1,0), OC observations are clearly delimited by linear boundaries

perpendicular to the mean vector’s shift.

This characteristic aspect, the projected linear boundaries, of the Lin-MEWMA

control chart is a very important result of the proposed statistic. Observe that any
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Figure 4.3: MCUSUM and CUSUM-Lin control chart patterns (𝑝 = 2, 𝜆 = 0.1, 𝑘 =
0.5, 𝑑 = 0)

observation vectors situated near the IC process centre were tagged as OC. In real

applications, not discarding non-defective units generated by an OC process may result

in cost or time savings in stopping the process too early. Even if the process mean

vector is actually OC, when all variables of the particular observation vector are IC,

some applications may see no reason to discard a perfectly manufactured unit.

This type of selective criterion to trigger an OC signal was used before only in

Shewhart-type methods such as the Hotelling’s 𝑇 2 chart. As seen if Figure 4.5, a non-

Shewhart control chart, i.e., utilising the past process information, can also selectively

tag observations vectors even if the current mean vector is already OC.

Increasing the distance of the OC process to 𝑑 = 2, Figure 4.5 shows the behavior

of the Hotelling’s 𝑇 2, MEWMA and Lin-MEWMA charts. While the Hotelling’s 𝑇 2
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Figure 4.4: Hotelling’s 𝑇 2, MEWMA and Lin-MEWMA control chart patterns with
scatter plots (𝑝 = 2, 𝜆 = 0.1, 𝑑 = 1)

chart depicts too few observations as OC, the MEWMA chart discards observations

that are clearly IC as OC observations. Here, the use of 𝜆 = 0.1 for the MEWMA

scheme in the Lin-MEWMA chart seems to be a reasonable choice as a compromise for

the two others, identifying and protecting units that are clearly IC situated inside the
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(a) Hotelling’s 𝑇 2
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(b) MEWMA
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(c) Lin-MEWMA

Figure 4.5: Hotelling’s 𝑇 2, MEWMA and Lin-MEWMA control chart patterns with
scatter plots (𝑝 = 2, 𝜆 = 0.1, 𝑑 = 2)

projected linear boundaries.

As seen in Figures 4.4-4.5, with 𝜆 = 0.1, a linear boundary is projected at 𝑑 ∼= 1.

Increasing 𝜆 to 0.4 in the MEWMA scheme extends the projected boundaries to larger

distances (𝑑 ∼= 2.5). Therefore, the control chart becomes less sensitive to smaller shifts
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Figure 4.6: MCUSUM and CUSUM-Lin control chart patterns (𝑝 = 2, 𝜆 = 0.1, 𝑘 =
0.5, 𝑑 = 1)

in the mean vector and has a performance that is similar to that of the Hotelling’s

𝑇 2 chart. This indicates that if the overlap between the processes is high and the

smoothing factor tends to 1, more observations will be considered IC and the chart will

be sensitive only to very large shifts in the mean vector.

Considering multivariate Gaussian distributions, higher values for the smoothing

factor should be considered only when the process dimensionality is very high because

the changes occurs generally at higher distances. In such cases, considering that many

variables could change simultaneously, the observed distances will be naturally larger

than what would be observed if only one variable has a shift.

As usual, for the CUSUM procedure, the CUSUM-Lin chart ensures a continuous

change, triggering alarms after detecting a significant change in the mean vector. Stan-
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dardising the linear statistic through a CUSUM procedure renders the statistic to be

a quadratic measure again, resulting in the loss of some important information on the

vector location, as described above.

Figure 4.6 illustrates a simulated example with a reduced run length of 𝑚 = 50

observations. In this case, a change occurs at position 𝑡 = 51, and the CUSUM-Lin

chart detects the change before the MCUSUM chart. In the example simulated in

Figure 4.7, increasing the distance of the OC process to 𝑑 = 2 results in the same

performance for both MCUSUM and CUSUM-Lin control charts.
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Figure 4.7: MCUSUM and CUSUM-Lin control chart patterns (𝑝 = 2, 𝜆 = 0.1, 𝑘 =
0.5, 𝑑 = 2)

Although in- and out-of-control processes becomes more separable, there is no

apparent reason for differences in performance by the concurrent control charts, unless

the difference is due to a known inertial effect of the MEWMA control chart (Lowry et al.,
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1992) when compared to the Hotelling’s 𝑇 2 chart. In the next section, the performances

of the control charts are compared. The combined effect of double-filtering the process

using the quadratic CUSUM-Lin chart after the smoothed linear transformation is also

studied by the following ARL comparison.

4.3.4 Performance comparison

To effectively compare the performances of the control charts, the charts were calibrated

to ARL0 = 200. For the control chart calibration, the parameter estimates of (M0,Σ0)

were calculated using a Phase I stage with 𝑚 = 25 observations of the IC process

in the two-dimensional case (𝑝 = 2) and with 𝑚 = 50 for 𝑝 = 4. The effect of the

unknown parameters creates a natural delay in change detection for all the control

charts. Regarding the methodological differences, comparisons were made utilising the

same 𝜆 factor in the MEWMA scheme for both the Lin-MEWMA and MEWMA charts.

Table 4.2: Control chart performance comparison (𝑝 = 2, 𝜆 = 0.1)

d 𝑇 2 MCUSUM MEWMA Lin-MEWMA CUSUM-Lin
0.0 200,7 200,3 200,9 200,5 200,1
0.5 123.7 57.3 54.8 58.9 37.2
1.0 51.5 12.7 13.3 14.5 11
1.5 20.9 6.9 7.1 7.3 6.5
2.0 8.8 4.8 5.0 4.6 4.6
2.5 4.4 3.8 3.9 3.3 3.6
3.0 2.5 3.1 3.2 2.5 2.9
3.5 1.7 2.6 2.8 2.0 2.5
4.0 1.3 2.3 2.5 1.6 2.2
4.5 1.1 2.1 2.2 1.4 1.9
5.0 1.1 1.9 2.0 1.2 1.7
h 11.19 6.64 11.43 1.84 15.19

The values of the weighting factor 𝜆 were fixed at 0.1 and 0.4 for both simulated

dimensions. For the comparative analysis of the MEWMA-based charts, the values

selected for 𝜆 represent low and intermediate smoothing levels. Additionally, when 𝜆 = 1,
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the proposed statistic displays an exactly equal performance for both the Hotelling’s

𝑇 2 and the MEWMA chart.

As the experiments demonstrate, using 𝑘 = 0.5 for the MCUSUM chart results in its

performance being similar to that of the MEWMA chart with 𝜆 = 0.1. Thus, this fixed

𝑘 value for the MCUSUM chart and the Hotelling’s 𝑇 2 chart for individual observation

vectors acts as a benchmark for relatively small and large shifts, respectively, in the

mean vector.

Notice that very small shifts in the mean vector are usually considered to be situated

in the acceptance region. Although the ARL0 is fixed to 200, it may be desirable to

detect the out-of-control signal in less than 20 observations in the maximum case.

The following comparison is intended to understand where and how the proposed

methodology is more efficient than the alternative approaches. In Table 4.2, for example,

shifts bigger than 𝑑 > 0.5 are detected using all the non-Shewhart methods in less than

15 observations.

Table 4.3: Control chart performance comparison (𝑝 = 2, 𝜆 = 0.4)

d 𝑇 2 MCUSUM MEWMA Lin-MEWMA CUSUM-Lin
0.0 200.2 200.5 200.8 200.3 200.7
0.5 123.7 50.5 90.9 88.3 59.0
1.0 51.7 12.3 20.3 23.8 12.2
1.5 20.9 6.6 7.1 8.8 5.4
2.0 8.8 4.7 3.9 4.3 3.4
2.5 4.4 3.7 2.7 2.8 2.5
3.0 2.5 3.0 2.1 2.0 2.0
3.5 1.7 2.6 1.8 1.6 1.7
4.0 1.3 2.3 1.5 1.3 1.4
4.5 1.1 2.1 1.4 1.1 1.3
5.0 1.1 1.9 1.2 1.1 1.2
h 11.19 6.64 11.43 4.96 7.42

The experiments of Table 4.2 were designed to detect large shifts, and the best

performance for the Hotelling’s 𝑇 2 chart is achieved when 𝑑 ≥ 3. Both the MEWMA
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and MCUSUM charts present the same performance, given the parameter settings.

Comparing only the non-Shewhart methods, the Lin-MEWMA chart presents the best

performance for 𝑑 ≥ 2 and behaves most similarly to the MEWMA chart when 𝑑 = 1.5.

Table 4.4: Control chart performance comparison (𝑝 = 4, 𝜆 = 0.1)

d 𝑇 2 MCUSUM MEWMA Lin-MEWMA CUSUM-Lin
0.0 200.2 200.1 201.0 201.6 199.5
0.5 144.0 49.1 56.0 64.8 40.5
1.0 70.2 15.7 15.2 18.1 13.1
1.5 31.3 9.3 8.2 9.1 7.6
2.0 14.3 6.7 5.8 5.8 5.4
2.5 6.8 5.3 4.5 4.1 4.1
3.0 3.7 4.4 3.7 3.1 3.4
3.5 2.3 3.8 3.2 2.4 2.9
4.0 1.6 3.3 2.8 2.0 2.5
4.5 1.3 3.0 2.5 1.6 2.2
5.0 1.1 2.7 2.3 1.4 2.0
h 17.02 10.88 17.09 2.65 12.08

By transforming the ARLs in a logarithmic scale, as shown in Figure 4.8, it is

possible to obtain a good ARL differentiation between small and large shifts with a

decrease in the scale difference. This behaviour indicates that all control charts present

a compromise between small and large shifts, as shown by ln(ARL) in Figure 4.8. For

both the MCUSUM and MEWMA charts, the ARL curves in Figure 4.8(a) show that

to be effective for very small shifts, the control chart must compensate with a loss of

performance at higher shifts. By analysing the ln(ARL) curves, the Lin-MEWMA chart

is the most optimal approach in terms the overall performance for all shifts in the [0-5]

range.

While the CUSUM-Lin chart performs similar to the Lin-MEWMA chart for 𝑑 = 2,

its performance is the best when 𝑑 < 2. As stated before, the advantage of increasing

the alarm rate for 𝑑 = 0.5 can be viewed as a pseudo true alarm rate, and its use may

be controversial. Therefore, the advantages of applying this chart may depend on the
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particular application. The results indicate that for large shifts, the CUSUM-Lin tends

to suffer problems related to inertia, but with less impact than the alternative quadratic

MEWMA chart. Based on this fact, comparing only the non-Shewhart methods, it

can be clearly seen in Figure 4.8(a) that the Lin-MEWMA and even the CUSUM-Lin

charts are less affected by the problem of inertia than the MCUSUM and MEWMA

charts.

Table 4.5: Control chart performance comparison (𝑝 = 4, 𝜆 = 0.4)

d 𝑇 2 MCUSUM MEWMA Lin-MEWMA CUSUM-Lin
0.0 201.1 199.8 199.6 200.2 200.9
0.5 142.5 48.4 94.2 106.7 67.5
1.0 69.5 15.6 25.3 33.7 15.7
1.5 31.8 9.3 9.0 12.2 7.0
2.0 14.0 6.7 4.8 6.0 4.4
2.5 6.9 5.3 3.2 3.6 3.2
3.0 3.7 4.4 2.5 2.5 2.5
3.5 2.3 3.8 2.0 1.9 2.1
4.0 1.6 3.3 1.7 1.5 1.8
4.5 1.3 3.0 1.5 1.3 1.5
5.0 1.1 2.7 1.4 1.1 1.4
h 17.0 10.9 17.1 7.4 7.5

The observed average difference in the proposed methods for triggering an OC

signal can represent great savings of cost in real applications. This means that too

many alarms for a very small shift in the process can make the process stop too early,

leading to the fix of small problems. The utilisation of symmetrical in-control limits for

the Lin-MEWMA control chart has been shown to have good properties, as it highlights

out-of-control observations that are situated at both sides of the out-of-control process

with respect to the direction of the shift.

The projected linear boundaries do not allow for alarms for perfect observations,

which are situated near the IC process centre. Although not perfectly centred, if the

OC process is not perfectly linearly separable, i.e., if there is an overlap between the
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IC and OC distributions, the process does not produce defective units at all and may

possibly keep running. When the mean vector is OC for intermediate shifts, perfect

units are saved from being discarded or inspected, and real defective units are tagged

OC sooner than with the competing non-Shewhart methods.
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Figure 4.8: Control chart ARL comparison on the logarithmic scale
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To avoid the problem of inertia, the results in Table 4.3 for 𝜆 = 0.4 indicate that

the Lin-MEWMA control chart has a performance superior to that of the MEWMA

chart for 𝑑 ≥ 3. For this selected parameter, the Lin-MEWMA chart does not show

an inferior performance when compared to the Hotelling’s 𝑇 2 chart for large shifts,

which is a significant result because the proposed chart is as effective or more so than

the MEWMA chart for small and intermediate shifts in the mean vector. As the k

parameter for the MCUSUM chart is fixed, its performance cannot be directly compared

with that of the MEWMA chart at 𝜆 = 0.4 shown in Table 4.3, but it can serve as a

comparison basis for the inertial effect at large shifts.

To analyse how the performances of the competing multivariate control charts

deteriorate when the process dimensionality increases, experiments with 𝑝 = 4 are shown

in Tables 4.4-4.5. With a reminder of the properties of multivariate spaces, note that the

increase in the dimensionality is reflected in the increase in the observed distances. This

phenomenon arises because the data spread toward the tails of the distribution, with

fewer observation vectors appearing near the process centre. Comparing Tables 4.2-4.4,

the increase in the dimensionality reflects a natural delay in change detection in all the

control charts, especially for the very small shifts.

Similar to the bivariate case, the shifts in the higher dimensionality are detected

using the Lin-MEWMA chart when 𝜆 = 0.1 as soon as they are using the MEWMA

chart when 𝑑 = 2 and faster when 𝑑 > 2 (Table 4.4). Figures 4.8(c)-(d) present the

ARL results of Tables 4.2-4.5 on the logarithmic scale. When 𝜆 = 0.4 (Table 4.5), the

projected linear boundaries result in the Lin-MEWMA control chart performing best

in detecting large shifts, while the CUSUM-Lin procedure shows superior performance

for the very small shifts. Again, the MCUSUM performance of Table 4.5 cannot be

directly compared with the performance of the other chartsbecause it is designed for

smaller shifts and serves as a basis of comparison of the inertial effect.

The experiments demonstrated that the choice of parameters always have to include
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(d) CUSUM-Lin 𝑝 = 4

Figure 4.9: ARL comparison of the Lin-MEWMA and CUSUM-Lin control charts on
the logarithmic scale

a compromise between earlier alarms for small shifts and a relative delay for large shifts,

when compared to the Hotelling’s 𝑇 2 chart. For the MEWMA control chart, smaller

values of 𝜆 result in the proposed control chart being more efficient for the detection

of smaller shifts at the cost of losing sensitivity for large shifts in the mean vector. If
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Table 4.6: Comparison of the performance of the CUSUM-Lin and Lin-MEWMA control
charts (𝑝 = 2)

CUSUM-Lin Lin-MEWMA
d 𝜆 = 0.1 𝜆 = 0.2 𝜆 = 0.3 𝜆 = 0.4 𝜆 = 0.1 𝜆 = 0.2 𝜆 = 0.3 𝜆 = 0.4

0.0 199.8 199.9 200.1 200.2 200.0 199.7 200.3 200.3
0.5 37.2 41.6 51.8 59.0 58.9 65.2 80.0 88.3
1.0 11.0 10.4 11.2 12.2 14.5 16.1 20.4 23.8
1.5 6.5 5.5 5.4 5.4 7.3 6.9 7.7 8.8
2.0 4.6 3.8 3.6 3.4 4.6 4.1 4.1 4.3
2.5 3.6 2.9 2.7 2.5 3.3 2.8 2.8 2.8
3.0 2.9 2.3 2.1 2.0 2.5 2.1 2.0 2.0
3.5 2.5 2.0 1.8 1.7 2.0 1.7 1.6 1.6
4.0 2.2 1.7 1.5 1.4 1.6 1.4 1.3 1.3
4.5 1.9 1.5 1.4 1.3 1.4 1.2 1.2 1.1
5.0 1.7 1.3 1.2 1.2 1.2 1.1 1.1 1.1

the chart is to detect regular and large shifts early, the ARL curve incurs a loss of

performance for very small shifts. When the chart is configured to detect small shifts,

it will tend to suffer more of the inertial effect in detecting larger shifts.

The same behaviour can be observed for all the control charts, as indicated by the

ARL values in Tables 4.6, 4.7 and in Figure 4.9 on a logarithmic scale. It is to be

emphasised that the ARL curve of the our new scheme best fits the expected behaviour,

which delays change detection for non-significant shifts and accelerates the detection

for significant shifts.

Upon comparing the ARL curves of the quadratic classifiers and the proposed

methodologies, the choice of 𝜆 depends on the dimensionality of the problem. As

discussed earlier in this work, on increasing the dimension of the multivariate process,

the changes will be significant at higher distances. Therefore, 𝜆 must be increased for

better detection of large and meaningful shifts. The experiments demonstrate that

for small dimensions such as those tested in this work, 𝜆 < 0.2 is recommended. If

different values of k are set in the CUSUM-Lin chart, for example, increasing values,
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Table 4.7: Comparison of the performance of the CUSUM-Lin and Lin-MEWMA control
charts (𝑝 = 4)

CUSUM-Lin Lin-MEWMA
d 𝜆 = 0.1 𝜆 = 0.2 𝜆 = 0.3 𝜆 = 0.4 𝜆 = 0.1 𝜆 = 0.2 𝜆 = 0.3 𝜆 = 0.4

0.0 199.5 200.5 200.3 201.1 201.6 201.2 200.1 200.4
0.5 40.5 50.3 58.1 67.5 64.8 80.2 96.9 106.7
1.0 13.1 13.0 14.0 15.7 18.1 22.1 27.5 33.7
1.5 7.6 6.9 6.7 7.0 9.1 9.1 10.4 12.2
2.0 5.4 4.6 4.4 4.4 5.8 5.3 5.5 6.0
2.5 4.1 3.5 3.3 3.2 4.1 3.6 3.5 3.6
3.0 3.4 2.8 2.6 2.5 3.1 2.6 2.5 2.5
3.5 2.9 2.4 2.2 2.1 2.4 2.1 1.9 1.9
4.0 2.5 2.1 1.9 1.8 2.0 1.7 1.6 1.5
4.5 2.2 1.8 1.6 1.5 1.6 1.4 1.3 1.3
5.0 2.0 1.6 1.4 1.4 1.4 1.2 1.2 1.1

the ARL is expected to be more sensitive to large shifts in the mean vector at the cost

of performing worse for small shifts.

From the results, it is clear that there is a correlation between the smoothing

parameter and the process dimensionality. As the control chart’s performance depends

on the noncentrality parameter, the amount of change in the process that is significant

must also be considered in terms of the process dimension to select appropriate values

for the smoothing parameter 𝜆.

4.4 Discussion

It is important to realise that for multivariate Gaussian distributions, most samples

fall into a doughnut-type ring-shaped region and that fewer samples fall into the centre,

where the value of the density function is the largest. This effect increases with the

process dimensionality, and the shift in the mean vector is considered to be significantly

OC in high-dimension spaces for relatively larger distances. If the IC and OC processes

are perfectly separable, the Hotelling’s 𝑇 2 chart offers the best and simplest approach.
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Given a significant overlap between the IC and OC processes, the selection of appropriate

methods is of crucial importance.

As stated before, the performance of the control charts for mean vectors that are

based on the noncentrality parameter are independent of the direction of the shift. If

their performances were directionally dependent, the average run length could vary

with the direction of change, performing better in one direction and worse in another

direction.

The problem of finding the best directions by means of reducing the data dimen-

sionality with linear methods such as PCA often results in a poorer performance than

that obtained using the traditional quadratic approaches. This occurs because there is

no definitive rule for selecting a reduced number of principal components to effectively

monitor. In fact, the linear projection involved in the PCA is limited to orthonormal

transformations and are not indicated for classification purposes. When the direction of

change is not known a priori, selecting a reduced number of dimensions to be monitored

can be a complicated task, resulting in an exhaustive search for several univariate and

multivariate control charts. Additionally, several studies have shown that monitoring

all the transformed principal components with a multivariate control chart results in

the same performance obtained with monitoring the original variables.

Therefore, the proposed method presents advantages in addition to having its per-

formance dependent only on the noncentrality parameter. In the proposed linear trans-

formation, a reduced space dimension need not be chosen because the non-orthonormal

transformation always leads to one-dimensional spaces, or a first-order statistic, irre-

spective of the original space dimensionality.

By maximising the trace criterion, the Lin-MEWMA control chart bounds the IC

process in a projected axis oriented along the direction of the shift. It was observed that

this procedure yields more efficient shift detection in terms of the ARL for intermediate

and large shifts than the MEWMA chart for the same smoothing parameters. In fact,
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the Lin-MEWMA control chart is selective with respect to the individual observation

vectors and does not misclassify perfect units. This behaviour is not observed with

the non-Shewhart methods as they discard perfect observations as often as when the

current mean vector is considered to be OC.

A question remains regarding the size of the shift to be monitored. As described in

the discussion section, the performance of the Lin-MEWMA control chart is affected

by the smoothing factor 𝜆 similar to the MEWMA chart. Depending on the choice

of 𝜆, the performance of the proposed control charts lies midway between that of the

MEWMA and Hotelling’s 𝑇 2 charts. The experiments have shown that it is possible to

achieve the same alarm rate as that of the MEWMA control chart for very small shifts

in the mean vector and still maintain performance comparable to the Shewhart-type

chart if the actual shift is large.

The k factor is also an issue in terms of the CUSUM-Lin chart, but based on the

extensive CEP literature, 𝑘 = 0.5 represent a reasonable choice for this parameter in low

dimensional problems. As demonstrated in the experiments for both dimensions (𝑝 = 2

and 𝑝 = 4), even though performance is diminished for large shifts, the CUSUM-Lin

chart is as effective or more so than the MCUSUM and MEWMA charts for a wide

range of distances.

Future research on this topic may include comparisons with respect to the influence

of the 𝜆 factor for higher dimensions, including hyperspaces (𝑝 > 100). It was observed

that as the transformed variable allows for the implementation of the standardised

CUSUM procedure, it is also suitable for double filtering using the univariate EWMA

procedure. A detailed comparison between different values of k in the CUSUM-Lin

chart and different values of 𝜆 for a EWMA-based control chart is also to be undertaken

in a future performance comparison study.





Chapter 5

Conclusão

5.1 Considerações finais

Nesta Tese foi abordado o problema do monitoramento do vetor de médias de processos

quando apenas uma observação do vetor multivariado está disponível a cada instante

do tempo. A partir do estudo dos principais métodos aplicados no controle estatístico

de processos (CEP), a saber os métodos MCUSUM, MEWMA e 𝑇 2 de Hotelling, foram

identificados os padrões de atuação desses métodos bem como suas limitações.

A partir dessa investigação inicial foram levantados importantes aspectos quanto a

essas medidas de distâncias, os quais deram origem a uma nova abordagem interpreta-

tiva na forma de limites de probabilidade, nomeadas como os Gráficos de Confiança.

Os Gráficos de Confiança propostos, além de fornecerem uma maneira diferenciada na

interpretação dos processos sob e fora de controle, foram úteis também na investigação

de métodos alternativos para tentar reduzir o efeito inercial pronunciado no esquema

MEWMA. Embora a abordagem alternativa com o uso de janelas deslizantes não

tenha se mostrado efetiva no sentido de mitigar o efeito inercial resultante do esquema

MEWMA, foi possível estabelecer uma forma empírica para a escolha adequada do

tamanho das janelas deslizantes, parâmetro esse que têm sido também alvo de interesse



Chapter 5. Conclusão 106

na literatura sobre CEP.

Classificando-se a magnitude das mudanças no vetor de médias em três tipos,

considera-se que o primeiro tipo é a identificação de grandes mudanças no processo.

Nesse contexto, grandes mudanças não são um problema de difícil solução, uma vez

que os estados sob e fora de controle podem ser instantaneamente detectados por um

gráfico de controle do tipo Shewhart, como o gráfico 𝑇 2 de Hotelling, por exemplo. O

segundo e terceiro tipos de mudanças são classificados como de magnitudes pequenas

e intermediárias, e são os tipos onde residem as maiores dificuldades das abordagens,

tradicionalmente enfrentadas com gráficos de controle do tipo não-Shewhart. Conforme

já exposto nos capítulos anteriores, o contínuo aumento na dimensionalidade dos proces-

sos acarreta em uma área de sobreposição entre os processos sob e fora de controle cada

vez maior, pois a maior parte da densidade dos processos multivariados encontra-se nas

caudas das distribuições. Isso caracteriza que mudanças em magnitudes intermediárias

são muito importantes e devem abarcar um vasto número de aplicações práticas nos

espaços multivariados.

Considera-se que o objetivo principal da Tese foi alcançado com a proposição de

um critério diferenciado, utilizando projeções lineares adequadas para a classificação

de dados. Embora já conhecidos na área de processamento de sinais, até então tais

metodologias não haviam sido adaptadas ao problema temporal de controle de processos.

Tal critério de projeção, ou transformação linear, visando reduzir a dimensão dos

processos de forma ótima no sentido de maximizar a separabilidade entre os estados

sob e fora de controle, resultou na minimização do tempo médio até a detecção das

mudanças. Em primeiro lugar, a estatística proposta denominada Lin-MEWMA logrou

bons resultados para mitigar o efeito inercial do método MEWMA em sua forma

quadrática. Além disso, ao contrário do que acontece ao aplicar o esquema CUSUM

sobre a estatística MEWMA quadrática, a aplicação do método denominado CUSUM-

Lin mostrou-se enormemente eficiente para a rápida detecção de pequenas mudanças
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nos processos simulados. Espera-se com isso que a proposta oferecida nessa Tese tenha

grande aplicação em problemas práticos para a melhoria dos processos de controle de

qualidade.

5.2 Trabalhos futuros

Dentre as várias possibilidades que se descortinaram a partir do trabalho iniciado nessa

Tese, as principais vias de pesquisa para investigações futuras são:

• Disponibilização de um pacote no ambiente R contendo todas as técnicas propostas

no presente trabalho;

• Estudo das formas fechadas para as estatísticas de primeira e segunda ordem da

estatística proposta;

• Otimização da redução de dimensionalidade em processos multivariados visando

a implementação de um gráfico de controle para o monitoramento da matriz de

covariâncias;

• Unificação da proposta desenvolvida nessa Tese com o item acima, propondo um

gráfico de controle para o monitoramento global de processos multivariados, isto

é, controlar simultaneamente o vetor de médias e a matriz de covariâncias;

• O desenvolvimento de uma abordagem não-paramétrica para o controle de pro-

cessos multivariados.
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