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Advisor: Vińıcius Diniz Mayrink
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Abstract

Bayesian hierarchical modeling for spatial data is challenging for professionals from

other areas than statistics. From a technical perspective, setting the model and the prior

distributions are the simplest part of the process. What makes it difficult is the com-

putation of the posterior full conditionals and the implementation of the Gibbs Sampler

algorithm. The BUGS (Bayesian inference Using Gibbs Sampling) family of statistical

softwares reduces the effort of modeling, since the user must indicate only the prior

distributions and the likelihood function. However, in general these softwares do not im-

plement several spatial models, although users of WinBUGS and OpenBUGS can enjoy from

the spatial add-on called GeoBUGS. JAGS (Just Another Gibbs Sampler), the open-source

C++ developed version of the BUGS family, does not contain any function or distribution

for spatial modeling. This project aims to fill this gap through the implementation of an

extension to the JAGS software, allowing users from different fields to perform a spatial

data modeling and analysis.

Keywords: spatial statistics, Bayesian inference, Gibbs sampling, JAGS.
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Resumo

A modelagem hierarquica Bayesiana para dados espaciais pode ser bastante desafi-

adora para profissionais de áreas para além da estat́ıstica. Do ponto de vista técnico, a

parte mais simples do processo é definir o modelo e as distribuições a priori. A dificuldade

está no cálculo das distribuições condicionais completas a posteriori e na implementação

do algoritmo amostrador de Gibbs. A famı́lia de softwares estat́ısticos BUGS (acrônimo

para inferência Bayesiana usando o amostrador de Gibbs, em tradução literal) reduz o

esforço de modelagem, uma vez que o usuário deve indicar apenas as distribuições a priori

e a verossimilhança dos dados. Entretanto, em geral tais softwares não permitem análises

mais complexas de dados espaciais, embora usuários do WinBUGS e do OpenBUGS podem

usar o módulo espacial GeoBUGS. JAGS (apenas outro amostrador de Gibbs, em tradução

literal), é uma alternativa à famı́lia BUGS, desenvolvida em C++ com código aberto, não

contém nenhuma função ou distribuição dispońıvel que simplifique a modelagem de da-

dos espaciais. O objetivo fundamental deste trabalho é suprir essa falta, implementando

um módulo para o software JAGS que permita aos usuários de diferentes áreas realizar

modelagem e análise de dados espacias de maneira simples.

Palavras-chave: estat́ıstica espacial, inferência Bayesiana, amostrador de Gibbs, JAGS.
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Chapter 1

Introduction

The term spatial statistics refers to a wide range of statistical models and methods

created for the analysis of spatially referenced data, generally observed at a discrete set

of sampling locations within some region. Cressie (1993) presents the important aspects

of theoretical spatial statistics. Chiles and Delfiner (1999) deal with models to describe

natural variables distributed in space. Diggle and Ribeiro (2007) analyze applications

of general statistical principles for modeling geostatistical problems, taking into account

classical and Bayesian approaches. Bivand et al. (2008) showcases spatial data analysis

presenting softwares, packages, functions, and methods for handling this type of data.

Hierarchical Bayesian modeling is often applied to spatial data, as remarkably ex-

plained by Banerjee et al. (2004). In this approach, it is necessary to specify the prior

distributions, the likelihood function and compute the posterior full conditionals. In this

situation, the Gibbs sampler algorithm, originated in the studies of Geman and Geman

(1984) and Gelfand and Smith (1990), must be used to generate the posterior sample.

Implementing this algorithm is not trivial for researchers not familiar with statistics, even

for statisticians. An alternative to simplify this computational task arose with the family

of softwares called BUGS (Bayesian inference Using Gibbs Sampling) that became popular

to perform Bayesian analyses. The WinBUGS (www.mrc-bsu.cam.ac.uk/software/BUGS),

released in mid-90s, and OpenBUGS (www.openbugs.net), released in 2005, are the part of

this family that can handle some spatial data through GeoBUGS (an add-on that provides

only two covariance functions and the CAR model; details in Section 3.1.1).
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A compatible alternative software to the BUGS family is called JAGS (Just Another

Gibbs Sampler), initially proposed in Plummer (2003), and released in December 2007.

It was built to be extensible, allowing users to develop their own functions, distributions,

and samplers for this software. JAGS currently lacks a module for performing spatial data

analyses, but this work intends to fill this gap. Based on the paper from Wabersich and

Vandekerckhove (2014), this dissertation aims to create an extension to JAGS that allows

users to model point-referenced data and areal data.

Spatial modeling is widely used by several researchers such as statisticians, physicists,

engineers, geologists, biologists, among others. Some recent studies on spatial statistics

are listed bellow:

• Mohebbi et al. (2011) present a Poisson regression approach for modelling spa-

tial autocorrelation between geographically referenced observations of esophageal

cancer in Iran, considering areal and point-referenced data.

• Addis et al. (2015) conduct a study to assess the correlation among selected soil

attributes and to illustrate the spatial pattern and dependence of neighboring ob-

servations in the Ethiopian highlands;

• Shen and Gong (2015) use the methods for exploratory spatial data analysis, semi-

variogram function and other techniques to show the spatio-temporal evolution of

economic disparities at county level in Guangdong, a Chinese province, from 1991

to 2013;

• de Melo et al. (2015) investigate the crime concentrations and the similarities among

different crime types in the Brazilian city of Campinas using point pattern data;

• Gomes et al. (2016) compare the results of two spatial techniques applied to the area

of transportation engineering. They model the transportation choice, estimating

the probability of using private motorized (car or motorcycle) mean of travel in

several geographical coordinates. The vehicle choice issues are strongly related to

locations and the modeling is done by the use of the spherical and the Gaussian

covariance functions.
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Again, the previous examples are just a few cases. In the literature, it is possible to find

a wide range of applications dealing with spatial statistics techniques.

This thesis is organized as follows. Chapter 2 reviews the theoretical framework of

spatial statistics, focusing on point-referenced data and areal data. It also shows the

definition of covariance function and the CAR distribution that will be used throughout

this work.

Chapter 3 discusses the use of the Bayesian inference in spatial data through the

softwares from the BUGS family and JAGS. We present the BUGS project, the JAGS software

and a short tutorial on adding custom extensions to this open-source software. At the

end, we introduce our module to simplify point-referenced and areal data modeling in

JAGS.

After Chapter 3, we present a validation study divided into two parts, one for each

type of spatial data. Chapter 4 is intended to validate the covariance functions imple-

mented in the proposed module by using a simple data set of elevations from Diggle and

Ribeiro (2007). Here, we compare the parameter estimates (obtained by using JAGS)

with those obtained from the maximum likelihood method. There is no particular inter-

est in the mentioned data set, it was used merely to confirm that the new module works

accurately and in accordance with the parameter estimation done using the frequentist

approach. In addition, we demonstrate how to perform prediction at arbitrary locations

using the proposed module (comparing the results with those from GeoBUGS). Chapter 5

is focused on validating the CAR distribution available in the proposed module. We use

a real data set about the gross domestic product in the municipalities of the Brazilian

state of Minas Gerais. Additionally, we present two simulation studies in which we set

different specifications for the variance parameters in the models. Comparison between

the results from GeoBUGS and the proposed module are shown to confirm that the new

module behaves correctly.

Chapter 6 is dedicated to present the usage of the JAGS spatial module with real

data sets, demonstrating that our module can be used in a wide range of statistical

applications. We begin with a study on precipitation and temperature in the Brazilian

North region (where part of the Amazon rain forest is located), using point-referenced

17



data models. Lastly, we explore survival analysis, presenting a data set on the survival of

leukemia cancer that has been already explored in the literature. We use two approaches

to fit spatial survival data set using the proposed module.

Finally, Chapter 7 presents the main discussions, highlights the contributions so far

and the directions for future research.

18



Chapter 2

Basics of spatial data

This chapter is dedicated to the presentation of basic aspects related to spatial statis-

tics. The purpose of this chapter, divided into three sections, is to establish the theo-

retical background for this work. We begin with the definition of spatial data and the

concepts regarding this field of study in Section 2.1. Section 2.2 covers concepts related

to point-referenced data that shall be needed in later chapters. Ultimately, Section 2.3 is

concerned with areal data and the definition of the conditionally autoregressive model.

2.1 Spatial data

Spatial data refers to data being geographically referenced, often presented as maps. As

stated in Banerjee et al. (2004), spatial data sets are classified into one of the following

types:

• Point-referenced data: the response Y (s) is a random value at a location s ∈

Rr, where s varies continuously over D, a fixed subset of Rr that contains an r-

dimensional rectangle of positive volume;

• Areal data: here, D is a fixed subset of Rr that is partitioned into a finite number

of areal units (of regular or irregular shape) with defined boundaries;

• Point-pattern data: in this case, D is itself random; its index set gives the locations

of random events that form a spatial point pattern. Such type of data are often

19



Figure 2.1: Circle plot of the surface elevation data in the city of Belo Horizonte. Circles are plotted
with centers at the location of the observation and radii resembling the magnitude of the elevations (in
meters).

of interest in studies of event clustering, where points tend to be spatially close to

other points.

In this work, we will focus our attention into point-referenced and areal data models.

Details about point-pattern data can be found in Diggle (2003).

Figure 2.1 offers an example of point-referenced data set, presenting the elevation

measurements of 100 points within the Brazilian city of Belo Horizonte. This data set

was obtained via R (see R Core Team, 2017) by randomly selecting the locations in this

city and retrieving their respective elevation measurements using the googleway package

(see Cooley, 2017). Clearly, the central and north regions present the lowest magnitude of

elevations, whilst the south border has the highest altitudes. In this case, it is reasonable

to expect that observed near points will present similar values. In this type of data, one

might be interested in performing predictions for points with no information about their

elevation within the study area.

An illustrative case of areal data is presented in Figure 2.2. In this map we have

information about the number of places considered either national, state or municipal

heritage site in the municipalities of the Minas Gerais state in Brazil. The data, originally

from IEPHA (Historical and Artistic Heritage Institute of the Minas Gerais State), is

available in Instituto Pristino (2013). The figure uses the red scale to classify values

20



Figure 2.2: Number of registered heritage sites per municipality in the Brazilian state of Minas Gerais
in 2013.

into a few classes, according to the number of heritage sites in each city. From the

central-north to the south axis is located the Royal Road (Estrada Real, in Portuguese),

a touristic route that comprises cities built in mid 17th century by Portuguese gold

explorers (including the cities of Diamantina, Ouro Preto, Tiradentes, and Juiz de Fora,

highlighted in the map). The remaining regions with high concentration of heritage

sites (cities of Pedra Azul, in the northeast, and Uberlandia and its neighbors, in the

west) basically consist of historic buildings registered as municipal heritage sites.

2.2 Point-referenced data

Let s ∈ Rr be a generic data location in the r-dimensional Euclidean space and suppose

that the data Y (s) at location s is a random value; r is usually 2 or 3 for most applications

(Banerjee et al., 2004, p. 21). Let s vary over the index set D ⊂ Rr so as to generate

the multivariate random process

{Y (s) : s ∈ D}. (2.1)

We assume that this process has mean E[Y (s)] and that the variance of Y (s) exists for all

s ∈ D. The notation presented here is based on the stochastic model defined in Cressie
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(1993). According to Banerjee et al. (2004), the process in Expression (2.1) is said to be

Gaussian if Y = (Y (s1), . . . , Y (sn))> has a multivariate normal distribution for any set

of sites {si, i = 1, . . . , n}, n ≥ 1. In addition, we say that this process is strictly stationary

if, for any set of n sites {s1, . . . , sn}, n ≥ 1, the distribution of (Y (s1), . . . , Y (sn)) is the

same as that of (Y (s1 + h), . . . , Y (sn + h)).

In the case of the process having a constant mean, i.e. E(s) ≡ µ, and

Cov(Y (s), Y (s+ h)) = C(h), for all h ∈ Rr such that s and s + h lie within D, we

say that the process has second-order stationarity (or weak stationarity). This condi-

tion implies that the covariance relationship between the values of the process can be

described by a covariance function C(h), a function that depends only on the separation

vector h.

2.2.1 Covariance functions

Let h ∈ Rr be a separation vector, i.e. a vector containing information regarding the

distance between the sites s and s+h. Assuming that E[Y (s+h)−Y (s)] = 0, consider

E[Y (s+ h)− Y (s)]2 = Var(Y (s+ h)− Y (s)) = 2γ(h). (2.2)

The quantity 2γ(h) is called the variogram, whereas γ(h) is known as semivariogram.

Equation (2.2) only makes sense if the left-hand side depends only on h and not on a

specific choice of s. A spatial process is said to be intrinsically stationary if it has a

constant mean and the variance of the differences of Y at pairs of locations only depends

on the separation vector h. Assume that Cov(Y (s), Y (s+h)) = C(h), i.e. the covariance

function depends only on the separation vector h. According to Banerjee et al. (2004,
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ch. 2), the variogram and the covariance function are associated as follows:

2γ(h) = Var(Y (s+ h)− Y (s))

= Var(Y (s+ h)) + Var(Y (s))− 2Cov(Y (s+ h), Y (s))

= Cov(Y (s+ h), Y (s+ h)) + Cov(Y (s), Y (s))− 2Cov(Y (s+ h), Y (s))

= 2[C(0)− C(h)].

Therefore, we can write

γ(h) = C(0)− C(h). (2.3)

As stated in Banerjee et al. (2004, p. 23), if the semivariogram function γ(h) depends

upon the separation vector only through its length ‖h‖, then the process is said to be

isotropic. In this case, γ(h) is a real-valued function with a scalar argument ‖h‖. These

kind of processes are simpler to interpret and assumed in many applications.

A number of parametric forms are available as candidates for the semivariogram.

In general, from Equation (2.3) we can recover C from γ, but some semivariogram do

not determine a covariance function C, since the limit lim‖h‖→∞ γ(h) may not exist.

We present bellow the notation and formulation of twelve different covariance functions

associated with some important semivariograms available in the literature. Consider

t = ‖h‖ and the following covariance functions (valid in all dimensions in the Euclidean

space defined for the locations coordinates, unless stated otherwise):

1. Exponential:

C(t) =

 σ2exp{−φt} if t > 0,

τ 2 + σ2 otherwise.

The parameter σ2 is called the partial sill, φ is the decay parameter (1/φ is the

range parameter), and τ 2 is the nugget effect.

2. Gaussian:

C(t) =

 σ2exp{−φ2t2} if t > 0,

τ 2 + σ2 otherwise.
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3. Powered exponential:

C(t) =

 σ2exp{−(φt)p} if t > 0,

τ 2 + σ2 otherwise.

The powered exponential covariance function presented above is valid if the shape

parameter p ∈ (0, 2]. As can be seen, the exponential and the Gaussian covariance

functions are particular cases of the powered exponential function.

4. Rational quadratic:

C(t) =


σ2

(
1− t2

φ+t2

)
if t > 0,

τ 2 + σ2 otherwise.

5. Wave:

C(t) =

 σ2 sin(φt)
φt

if t > 0,

τ 2 + σ2 otherwise.

The wave covariance function is valid in Rn under some conditions for the parame-

ters, see Yaglom (1987). Note that this is not a monotonically increasing function;

thus the Wave covariance structure allows us modeling situations where we suspect

that an increase in the distance between two points might be associated with a

covariance that increases, decreases and increases again, as shown in Figure 2.3.

6. Matérn:

C(t) =


σ2

2ν−1Γ(ν)
(2
√
νtφ)νKν(2

√
νtφ) if t > 0,

τ 2 + σ2 otherwise.

The function Γ(·) is the usual gamma function and Kν is the modified Bessel func-

tion of order ν. The parameter ν defines the shape of the covariance function;

for details, see Abramowitz and Stegun (1965). This covariance function is widely

used in the literature; as an example, Sun et al. (2015) model the spatial covariance

structure of rain rates with the Matérn function using point-referenced meteoro-
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Figure 2.3: Wave covariance function with φ = 0.5, τ2 = 0 and σ2 = 1.

logical gauges.

7. Cauchy:

C(t) =

 σ2
[
1 + (φt)2

]−κ
if t > 0,

τ 2 + σ2 otherwise.

Here, κ is a smoothness parameter.

8. Generalized Cauchy:

C(t) =

 σ2
[
1 + (φt)κ2

]−κ1/κ2 if t > 0,

τ 2 + σ2 otherwise.

This covariance function is valid in Rr when κ1 > 0 and 0 < κ2 ≤ 2. In this model,

κ1 controls the dependence at large distances, whereas κ2 is the shape parameter.

Note that the Cauchy covariance is a particular case of the generalized Cauchy

function, when κ2 = 2 and κ1 = 2κ.
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9. Spherical:

C(t) =


0 if t ≥ 1/φ,

σ2
[
1− 3

2
φt+ 1

2
(φt)3

]
if 0 < t ≤ 1/φ,

τ 2 + σ2 otherwise.

This covariance function is valid in r = 1, 2 or 3.

10. Circular: Let θ = min{φt, 1} and g(t) = 2π−1
(
θ
√

1− θ2 + sin−1
√
θ
)
. The circular

covariance function (valid in R2) is given by

C(t) =


σ2
[
1− g(t)

]
if t < φ,

τ 2 + σ2 t = 0,

0 otherwise.

11. Cubic:

C(t) =


σ2
(
1−

[
7(φt)2 − 8.75(φt)3 + 3.5(φt)5 − 0.75(φt)7

])
if t < φ,

τ 2 + σ2 t = 0,

0 otherwise.

This covariance function is valid in R3.

12. Gneiting:

C(t) =


σ2
[
1 + 8st+ 25s2t2 + 32s3t3)(1− st)8

]
if 0 < t < 1/s,

τ 2 + σ2 t = 0,

0 otherwise.

Here, s = 0.301187465825. For further details see documentation of the R package

RandomFields, Schlather et al. (2015).

The reader may find other configurations for the covariance functions previously
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showed. We are using those discussed in Banerjee et al. (2004) and Ribeiro Jr and

Diggle (2016). In those functions, the value of τ 2 + σ2 is the variance in a point of the

space and the parameter φ is related to the point above which the spatial variance can

be neglected, this is known as the range.

2.2.2 Empirical variogram

Having a large selection of models for the covariance structure can make the user wonder

how to choose one of them for a given data set. The covariance function can be chosen by

plotting the empirical semivariogram, an estimate of the semivariogram, and comparing

it to the theoretical shapes available from the choices listed above. According to Banerjee

et al. (2004, p. 29, 30) the empirical semivariogram is defined as follows:

γ̂(t) =
1

2|N(tk)|
∑

(si,sj)∈N(tk)

[
Y (si)− Y (sj)

]2
,

where we divide the t-space into intervals I1 = (0, t1), I2 = (t1, t2), . . . , IK = (tK−1, tK),

for some grid 0 < t1 < . . . < tK . Consider that N(tk) = {(si, sj) : ‖si − sj‖ ∈ Ik}, for

k = 1, . . . , K, and |N(tk)| is the number of pairs of points in interval Ik.

We are interested in using the previously listed covariance functions in the Bayesian

context with the support and resources from JAGS. Our main goal is to include all men-

tioned covariance functions in our JAGS module to simplify the point-referenced data

analysis in a Bayesian model to be implemented via JAGS.

2.3 Areal data

We present now a modeling approach that is commonly applied to data collected for areal

units. In general, areal data represent irregular geographic regions, such as municipalities.

However, regular grids of cells can also be modeled (e.g. image pixels). Within this

context, we are interested in investigating whether there is any spatial pattern in the

study region and, if so, how strong it is. By spatial pattern we mean that areal units
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close to each other will take more similar values than those for units far from each

other. This is known as the first law in Geography (see Tobler, 1970). Occasionally, this

pattern can be visually identified, however we must determine its intensity. In the case

of independent measurements, we expect to see no pattern at all.

In order to introduce spatial association, we define a neighborhood structure based

on the arrangement of the blocks in a map through the proximity matrix.

Definition 2.1 (Proximity matrix). Given the vector of measurements θ = (θ1, . . . , θn)

associated with areal units 1, . . . , n, the proximity matrix W is such that entries wij

spatially connect units i and j in some way.

Possibilities for W involve binary choices (wij = 1 if i and j share common border).

As another option, wij could indicate a function of the distance between units (a decreas-

ing function of distance between i and j). Alternatively, we can represent the distance

in a binary fashion, setting wij = 1 if units i and j lie within a specific distance apart.

The previous suggestions imply that W would be symmetric. In fact, we may consider

W̃ , standardizing the proximity matrix by
∑

j wij = wi+. In this case, W̃1 = 1, which

means that W̃ is row stochastic. The entries in W can be seen as weights: the farther

unit j is from i the lower the weight in entry wij. According to Banerjee et al. (2004),

W provides a mean for introducing spatial structure into statistical models.

2.3.1 Measures of spatial association

With the spatial structure defined, we can determine whether there is spatial association.

Banerjee et al. (2004, p. 71) mention Moran’s I and Geary’s C statistics to evaluate the

intensity of spatial association among areal units. The Moran’s I is defined as

I =
n
∑

i

∑
j wij(θi − θ)(θj − θ)(∑

i 6=j wij
)∑

i(θi − θ)2
.
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I is not strictly supported on the [−1, 1] interval and, under the null model (θi are i.i.d),

I is asymptotically normally distributed with mean −1
n−1

. Geary’s C is defined as

C =
(n− 1)

∑
i

∑
j wij(θi − θj)2

2
(∑

i 6=j wij
)∑

i(θi − θ)2
.

C is non-negative and low values (between 0 and 1) indicate positive spatial association.

2.3.2 Markov random fields

As a result of the Bayes’ theorem, given the joint distribution p(θ), the full conditional

distributions p(θi | θj 6=i), i = 1, . . . , n can be uniquely determined. One may wonder

about the converse: does p(θi | θj 6=i) determines p(θ)? Besag showed that the result from

Brook’s Lemma (see Banerjee et al., 2004, p. 76) allows us to retrieve the unique joint

distribution determined by the full conditionals, as follows:

p(θ) =
p(θ1 | θ2, . . . , θn)

p(θ10 | θ2, . . . , θn)
× p(θ2 | θ10, θ3, . . . , θn)

p(θ20 | θ10, θ3 . . . , θn)
×

· · · × p(θn | θ10, . . . , θn−1,0)

p(θn0 | θ10, . . . , θn−1,0)
× p(θ10, . . . , θn0).

(2.4)

This equality holds if the set of full conditional distributions determine a unique and

valid joint distribution (in this case, we say the full conditionals are compatible) and each

conditional is proper (with integrable density function). Apart from the constant term

θ0 = p(θ10, . . . , θn0) in the right side of (2.4), in the case this distribution is proper, the

joint distribution can be determined up to a proportionality constant.

As stated in Banerjee et al. (2004), when the number of regions in the study area

is large, it is simpler to work with the full conditional distributions. Moreover, it is

reasonable to consider that the full conditional distribution for θi would depend only

upon the neighbors of region i. Let δi denote the set of neighbors of unit area i and

consider

p(θi | θj, j 6= i) = p(θi | θj, j ∈ δi). (2.5)

This sort of specification for the full conditional distributions, when compatible, is re-
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ferred to as a Markov random field (MRF). The following definitions are essential for

understanding the remaining concepts of this section.

Definition 2.2 (Clique). A clique is a set of units such that each element in the set is

a neighbor of every other element in the set.

The proximity matrix can be depicted as a graph and thus a clique represents a set

of nodes M on the graph such that each pair of indices (i, j), with both i and j in M ,

represents an edge on the graph. In a study area with n spatial units, we can have cliques

of size 1, . . . , n.

Definition 2.3 (Potential function). A potential of order k is a function of k arguments

that is exchangeable in its arguments.

The arguments of the potential function would be the values taken by the variables

associated with the cells for a clique of size k. Examples include θiθj and (θi − θj)2 if i

and j are a clique of size 2.

Definition 2.4 (Gibbs distribution). p(θ1, . . . , θn) is a Gibbs distribution if it takes the

form

p(θ1, . . . , θn) ∝ exp

{
γ
∑
k

∑
α∈Mk

φ(k)(θα1 , θα2 . . . , θαk)

}
,

where φ(k) is a potential of order k,Mk is the collection of all subsets of size k of the set

{1, . . . , n}, α = (α1, . . . , αk)
> is a subset of this collection and γ > 0 is a scale parameter.

According to Banerjee et al. (2004, p. 78), the Hammersley-Clifford Theorem demon-

strates that if p(θi | θj∈δi) determines a unique p(θ1, . . . , θn), i.e we have a MRF, then this

joint distribution is a Gibbs distribution. In addition, Geman and Geman (1984) provide

the converse of this theorem. That is, determine a MRF from the Gibbs distribution. As

a result, we can use the full conditionals to sample from the Gibbs distribution.

A common choice for the joint distribution is the pairwise difference that takes the

form

p(θ1, . . . , θn) ∝
{
− 1

2τ 2

∑
i,j

(θi − θj)2I(i ∼ j)

}
,
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where I(i ∼ j) indicates whether i and j are neighbors. Note that this is a Gibbs

distribution on potentials of order 1 and 2. Moreover,

p(θi | θj, j 6= i) = p(θi | θj∈δi) = N

(∑
j∈δi

θi/mi, τ
2/mi

)
, (2.6)

with mi being the number of neighbors of region i. The distribution in (2.6) is a MRF

and shows that the mean of θi is an average of its neighbors.

2.3.3 Conditionally autoregressive (CAR) model

It was initially proposed by Besag (1974) with two approaches: the Gaussian and the non-

Gaussian cases. Here, we will focus our attention only on the former case, also referred to

as autonormal. This model is computationally convenient for Gibbs sampling and other

Markov chain Monte Carlo (MCMC) and is applied to introduce spatial random effects

in a second stage of a hierarchical specification.

Considering the case when the number of unit areas is large, our aim is to write the

full conditionals instead of the joint distribution. Again, intuitively, it is reasonable to

think that p(θi | θj 6=i), the full conditional distribution for θi of region i, will depend only

upon its neighbors. Suppose we set, for i = 1, ..., n,

θi|θj 6=i ∼ N
[∑

j

bijθj, τ
2
i

]
.

As stated in Banerjee et al. (2004, p. 79), the full conditionals above are compatible and

through Brook’s lemma we can write the joint distribution

p(θ1, . . . , θn) ∝ exp

{
− 1

2
θ>D−1(I −B)θ

}
, (2.7)

where B = {bij} and D = diag(τ 2
1 , . . . , τ

2
n). Expression (2.7) resembles a joint multivari-

ate normal distribution for θ with probability density given by

f (θ1, . . . , θn) =
1√

2π|Σθ|
exp

{
− 1

2
(x− µ)>Σ−1

θ (x− µ)

}
,

31



with null mean vector µ and Σθ would be the covariance matrix given by inverting

D−1(I − B). But first, we need to ensure that Σθ is symmetric, i.e. bij/τ2i = bji/τ2j , for all

i, j. Recall the proximity matrix in Definition 2.1. By setting bij = wij/wi+ and τ 2
i = τ2/wi+

we guarantee the symmetry of Σθ and thus Expression (2.7) becomes

p(θ1, . . . , θn) ∝ exp

{
− 1

2τ 2
θ>(Dw −W )θ

}
, (2.8)

where Dw = diag(w1+, . . . , wn+). However, in Expression (2.8), Dw −W is singular,

since each of its rows sum up to zero and thus the distribution in (2.8) is improper. This

aspect can be solved by redefining Σ−1
θ = Dw − ρW and choosing a value ρ to make

the indicated Σ−1
θ nonsingular. Banerjee et al. (2004) state the conditions to choose

this parameter: ρ ∈
(

1/λ(1), 1/λ(n)
)
, where λ(1) < λ(2) < · · · < λ(n) are the ordered

eigenvalues of D−1/2
w WD−1/2

w . Setting ρ = 0 leads to θi being independent normally

distributed random variables with null mean and variance τ2/wi+, and the full conditional

p(θi|θj, j 6= i) becomes N(0, τ2/wi+).

We are interested in the CAR model presented here in the Bayesian context with the

support and resources from JAGS, delivering a simple method to use the CAR distribution

in JAGS, reducing the complicated computations related to the covariance matrix in this

model.
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Chapter 3

Extending JAGS

Bayesian inference is an important approach in statistics, in which the Bayes’ rule is

applied to update the probability of an event as data information becomes available. This

type of inference became very popular in the past decades with the advent of modern

computers capable of executing computationally demanding algorithms. This chapter

discusses the use of the Bayesian inference in spatial analyses through the softwares

of the BUGS family and JAGS. This chapter is divided into four sections. Section 3.1

introduces the BUGS project and highlights the main differences between JAGS and the

members of the BUGS family. Section 3.2 demonstrates how a hierarchical Bayesian model

can be fit using JAGS. Section 3.3 illustrates steps required to build a custom module

in JAGS. Ultimately, Section 3.4 presents our extension to JAGS, which features all the

covariance functions and the CAR distribution defined in the previous chapter.

3.1 The BUGS project

Bayesian inference is an alternative to the frequentist inference. We must specify the

model with the prior distributions expressing our knowledge about the parameters be-

fore observing the data. In addition, in many situations the Gibbs sampling algorithm

is used to sample from unknown joint posterior distributions. In this case, we shall com-

pute the posterior full conditionals, which can be very challenging for users who are not

used to the mathematical computations related to the Bayes’ rule. Once these posterior
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full conditionals are determined, one can apply the Markov chain Monte Carlo (MCMC)

algorithm to draw a posterior sample for each parameter. Again, the implementation of

the Gibbs sampler algorithm is not trivial and thus not attractive for most users. The

BUGS project (started in 1989) and JAGS (initially proposed in 2003) are good alternatives

to work with the Gibbs sampling because they build the whole algorithm without much

effort from the user. The statistical model is specified by simply stating the prior dis-

tributions and the likelihood function. According to Lunn et al. (2009), these statistical

softwares have been fundamental in raising attention to Bayesian modeling among both

academic and commercial communities. Two well known members of the BUGS family

are:

• WinBUGS, released in 1997, it uses a standard ‘point-and-click’ windows interface

for controlling the analyses. It runs exclusively on the Windows platform;

• OpenBUGS, released in 2005, the open-source version of the core BUGS code with

a variety of interfaces. It runs on Windows, with a similar graphical interface to

WinBUGS, and on Linux also with a plain-text interface.

The last release of WinBUGS was in August 2007. The alternative OpenBUGS had its last

release in 2014. Although OpenBUGS is open-source, it was written in Component Pascal,

a programming language that is not widely used as C++. An attractive alternative to the

previous options is the C++ open-source version of the BUGS family, named JAGS (Just

Another Gibbs Sampler); see Plummer (2003). This option has almost the same syntax

language of the two other softwares. An important feature is the fact that it was written to

run on the Unix platform; it also runs on Windows. In addition, it is modular extensible,

meaning that users can implement custom functions, distributions and samplers. Similar

to OpenBUGS and its interfaces to the R software through R2OpenBUGS (Sturtz et al.,

2005) and rbugs (Yan and Prates, 2013), the JAGS software can also be used within R,

through the packages R2jags (Su and Yajima, 2015) and rjags (Plummer, 2016). These

packages allow the user to take advantage of all the resources in R for creating graphics

and descriptive analyses using the outputs from OpenBUGS and JAGS.

Whilst WinBUGS and OpenBUGS have an add-on that provides some features for spatial
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statistics, as far as the authors are concerned, there is no spatial module in JAGS, which

can be seen by some practitioners as a deficiency making JAGS the last choice for a spatial

analysis. This fact motivated us to create a novel spatial extension to JAGS, a module

containing key tools for the analyses of point-referenced and areal data.

3.1.1 The GeoBUGS module

This add-on to WinBUGS and OpenBUGS is an interface for spatial modelling, developed by

a team at the Department of Epidemiology and Public Health of Imperial College at St

Mary’s Hospital in London. Although this spatial module is part of OpenBUGS, its source

code is not freely available for developers.

Concerning point-referenced data, only two covariance structures are available within

this package. The first one is the powered exponential (defined in Section 2.2.1). The

other one is called disc model and is defined as

C(t) =


2σ2

p{cos−1(t/φ)−[(t/φ)(1−t2/φ2)]1/2} if t < φ,

0 if t > φ.

Apart from these two structures, if the user wants to work with other covariance matrices,

they must build it within the BUGS model script, which can be seen as a difficult task,

depending on their programming skills.

Regarding areal data, GeoBUGS implements both the proper and the improper versions

of the CAR distribution. In this setting the user might be requested to provide values for

the arguments of the CAR function, such as a vector listing the identification numbers

of the adjacent areas for each area, a vector giving unnormalized weights associated with

each pair of areas, a vector giving the number of neighbors for each area, and an scalar

argument representing the precision of the distribution.
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3.2 Bayesian Inference with JAGS

The central idea in this section is not to present a meaningful statistical model, instead

we demonstrate how a hierarchical model is set in JAGS, briefly describing the commands

needed to write a script for a statistical model.

As stated in Plummer (2003), the architecture that the BUGS language uses is based

on graphs. The BUGS language provides its own form to specify statistical models which

mimics the mathematical specification of the model in terms of parent–child relation-

ships. The first step in the construction of a Bayesian graphical model is to describe

the conditional independence relationships between the variables using a directed acyclic

graph (DAG). The complex joint distribution is thus broken down into a set of simpler

parent-child relationships. The fundamental object of this language is the node, which

represents a variable in the model. In addition, a model script associates a graph with a

set of samplers and a set of monitors. A sampler defines a method of updating a graph,

such as the Gibbs sampler. A monitor records the sampled values and summarizes them

(the trace monitor records the sampled value every nth iteration). Stochastic relation-

ships are denoted by ‘∼’ whereas deterministic relationships are denoted with a ‘<-’.

Repetitive structures are represented using for-loops. Moreover, the BUGS language is a

declarative language, which means that it does not matter in which order the various

statements are made.

Consider the following simple model

Yi | µ, θi, σ2 ∼ Nn(µ+ θi, σ
2),

θ ∼ Nn(µθ,Σ
−1),

σ2 ∼ IG(aσ, bσ),

µ ∼ N(m, v),

(3.1)

where θ = (θ1, . . . , θn)> and Σ is the precision matrix. With some adjustments, the

model above can be used to fit a data set with point-referenced information such as

the Belo Horizonte elevation data shown in Figure 2.1 (see Section 4.3 for a detailed

example).
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Box 3.1: JAGS script using the exponential covariance function without the module.

1 m o d e l {
2 for ( i in 1 :N) {
3 Y[ i ] ~ d n o r m (mu_y + theta [ i ] , tau2 )
4 }
5 theta ~ dmnorm (mu_ theta , Sigma )
6 mu_y ~ d n o r m (m , v )
7 tau2 ~ d g a m m a ( a _ tau , b_ tau )
8 s i g 2 < - 1 / tau2
9 }

Any JAGS script can be executed with the command line interface in the Unix terminal

and also with its interfaces to the R software. The script version of the model indicated

in (3.1) is shown in Box 3.1. For this model, the user is required to provide values for the

parameters mu theta, Sigma, m, v, a tau, b tau and the response variable Y[1:N]. Note

that here we use the reciprocal of the gamma distribution to sample from the inverse

gamma distribution. In addition, the univariate and the multivariate normal distribution,

respectivelly dnorm(·, ·) and dmnorm(·, ·), are parameterized in terms of the precision.

After the model has been defined, it must be compiled. According to Plummer (2003),

it is also at this stage that the provided data is combined with model script to create

a graphical model. Syntax errors in the model specification and possible directed cycles

will produce compilation error. Before the model is run, it must be initialized by either

providing initial values for the unknown parameters or by defining a random number

generator. In the subsequent step, we define the initial burn-in period for the MCMC

output chain: all values sampled at this stage are discarded, since during this period we

consider that the chains have not yet converged to the target distribution. Finally, we

define the size of the MCMC chains and run the model script in JAGS. An analysis of

the resulting chains, including the posterior means and highest posterior density (HPD)

intervals, can be done with the support of R and its packages, e.g. coda (see Plummer

et al., 2006).

3.3 Adding custom functions to JAGS

A central study taken as starting point for our work is Wabersich and Vandekerckhove

(2014), which demonstrates how to create custom distributions in JAGS for univariate
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random variables. An important aspect not explored in this reference, which can be seen

as one of the contributions of our work, is the fact that it is possible for the user to create

a JAGS module that only contains functions and does not implement any sampler for a

probability distribution. This feature was used to implement the many spatial functions

evaluated ahead. Such functions are used to build covariance matrices to be inserted in

the multivariate normal sampler already available in JAGS.

In this section, we describe the steps needed to build new functions in JAGS. It is

important to remark that differently from what is described in Wabersich and Vandeker-

ckhove (2014), the functions implemented in our proposed module does not yield a scalar

value, instead they give covariance or precision matrices. As an illustration of the process

of development, we will focus on the Matérn covariace function. Basic knowledge of the

C++ programming language is required for a complete understanding. Once created, we

can dynamically load the custom module to extend the JAGS functionality.

We need to specify two C++ classes to create a new JAGS function; the first one is

for the module itself, let us call it GeoJAGS (its content is shown in Box 3.2). This

file should be stored in the src/ directory, a subfolder of the working directory for the

project. Again, in this tutorial we are demonstrating how to develop a single function

for JAGS. More functions can be added within the constructor function (line 11), all

newly developed functions for JAGS must be inserted here by creating a new object of

the corresponding class, as shown in line 12.

Box 3.2: The GeoJAGS.cc module definition

1 # i n c l u d e <module/Module . h> // i n c l u d e JAGS module base c l a s s
2 # i n c l u d e <f unc t i on s /cvmatern . h>
3 n a m e s p a c e GeoJAGS { // s t a r t d e f i n i n g t h e module namespace
4 // Module c l a s s
5 c l a s s GeoModule : p u b l i c Module {
6 p u b l i c :
7 GeoModule ( ) ; // c on s t r u c t o r
8 ˜GeoModule ( ) ; // d e s t r u c t o r
9 } ;

10 // Cons t ruc to r f u n c t i o n
11 GeoModule : : GeoModule ( ) : Module ( ”GeoJAGS” ) {
12 i n s e r t ( new CVMatern) ; // l oad th e new f un c t i o n i n t o JAGS
13 }
14 // Des t ru c t o r f u n c t i o n
15 GeoModule : : ˜ GeoModule ( ) {
16 std : : vector<Function∗> c o n s t &fvec = func t i on s ( ) ;
17 for ( u n s i g n e d int i =0; i<f v e c . s i z e ( ) ; ++i ) {
18 d e l e t e f v e c [ i ] ; // d e l e t e a l l i n s t a n t i a t e d f u n c t i o n s o b j e c t s
19 }
20 }
21 } // end namespace d e f i n i t i o n
22 GeoJAGS : : GeoModule GeoJAGS module ;
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Box 3.3: The Matérn covariance function class header file cvmatern.h

1 # i f n d e f CVMatern FUN H
2 # d e f i n e CVMatern FUN H
3 # i n c l u d e <f unc t i on /ArrayFunction . h> // the base c l a s s used
4
5 u s i n g n a m e s p a c e j a g s ;
6 n a m e s p a c e GeoJAGS {
7 c l a s s CVMatern : p u b l i c ArrayFunction {
8 p u b l i c :
9 CVMatern ( ) ; // the c on s t r u c t o r f u n c t i o n

10 v o i d eva luate ( d o u b l e ∗value , std : : vector<d o u b l e c o n s t ∗> c o n s t &args ,
11 std : : vector<std : : vector<u n s i g n e d int> > c o n s t &dims ) c o n s t ;
12 b o o l checkParameterDim ( std : : vector<std : : vector<u n s i g n e d int> > c o n s t &dims ) c o n s t ;
13 b o o l checkParameterValue ( std : : vector<d o u b l e c o n s t ∗> c o n s t &args ,
14 std : : vector<std : : vector<u n s i g n e d int> > c o n s t &dims ) c o n s t ;
15 std : : vector<u n s i g n e d int> dim( std : : vec tor <std : : vector<u n s i g n e d int> > c o n s t &dims ,
16 std : : vec tor <d o u b l e c o n s t ∗> c o n s t &values ) c o n s t ;
17 } ;
18 }
19 # e n d i f /∗ CVMatern FUN H ∗/

Now we must define the Matérn covariance function, which returns a covariance ma-

trix according to the definition of the function in Section 2.2.1. A new JAGS function is

implemented through a new C++ class. Since the return value of the new function is a

matrix object, we set its parent class to be of the type ArrayFunction. Thus, the new

class should contain four inherited functions, together with its own constructor:

• evaluate: routine to apply calculations using the input values of the covariance

function and returns a vector structure containing this matrix. Because the JAGS

programming structure in C++ does not handle matrices, the covariance matrix

should be returned in a (1× n2)-dimensional vector;

• checkParameterDim: checks whether dimensions of the arguments of the covariance

function are correct, in other words, if one argument should be real-valued, this

function must perform this verification;

• checkParameterValue: checks whether each of the argument values lie in the do-

main of the corresponding parametric space;

• dim: calculates the dimension of the return value, based on the arguments. In any

covariance function, the output value should be a squared matrix of order n (the

number of observations), therefore, the dim function must return the vector (n, n).

Box 3.3 contains the file /src/functions/cvmatern.h, which includes the prototypes

of the constructor and the four required functions previously listed.

The evaluate function takes three input arguments:
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• The first argument (value) is the array of doubles which contains the result of the

evaluation on the exit. In our case, this vector must contain the covariance matrix.

• The second argument (args) contains pointers that reference the arguments of the

function.

• The argument dims contains the corresponding dimensions of each element of args.

The arguments of the remaining functions have a straightforward interpretation, just

follow the ones described for the evaluate function. The implementations of the required

functions in Box 3.3 are provided in Box 3.4. Line 6 defines the constructor function for

our class. It calls the constructor for ArrayFunction with two input arguments. The

first one is used to name the function and the second one is used to define its number

of arguments. For the Matérn covariance function, it should contain five arguments: a

matrix with the locations coordinates and values for σ2, φ, τ 2 and ν. Note that the

representation of matrices adopted in JAGS is made by row vectors (line 15), with the

first n elements being the first column of the matrix and so forth.

In order to compile the code, build and install the module we need to create some

configuration files such as the configure.ac in the main directory and a Makefile.am

in every directory of the project. These files contain information on correct configuration

and the necessary arguments to build the project. Full details can be found in Wabersich

and Vandekerckhove (2014) at step 3 on page 18.

3.4 The GeoJAGS module

Considering the description of the functions for spatial data models given in Chapter 2,

one can clearly see that performing all computations of covariance and precision matrices

is not a trivial task, especially for those professionals not familiar with programming.

In fact this is a considerable group, including researches from social sciences, medical

sciences, natural sciences to name a few. From this perspective, our proposed module

arises as an alternative that simplifies the work of writing JAGS scripts for models dealing

with point-referenced data and areal data.

The GeoJAGS module is currently available for Mac and Linux users and can be
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Box 3.4: The cvmatern.cc file

1 # i n c l u d e <c on f i g . h>

2 # i n c l u d e ”cvmatern . h”

3 # i n c l u d e <cmath> // b a s i c math op e r a t i o n s

4 # i n c l u d e <JRmath . h>

5 n a m e s p a c e GeoJAGS {

6 CVMatern : : CVMatern ( ) : ArrayFunction ( ”CVMatern” , 5) {}

7 v o i d CVMatern : : eva luate ( d o u b l e ∗value , std : : vector<d o u b l e c o n s t ∗> c o n s t &args ,

8 std : : vector<std : : vector<u n s i g n e d int> > c o n s t &dims ) c o n s t {

9 int n = dims [ 0 ] [ 0 ] , m = dims [ 0 ] [ 1 ] , count = 0 ;

10 std : : vector<std : : vector<double> > coords (n) ;

11 std : : vector<std : : vector<double> > c (n) ;

12 d o u b l e sigma2 = args [ 1 ] [ 0 ] , phi = args [ 2 ] [ 0 ] , tau2 = args [ 3 ] [ 0 ] , nu = args [ 4 ] [ 0 ] ;

13 d o u b l e gamma, be s s e l , d i s t ; // the d i s t a n c e from two c oo r d i n a t e s

14 for ( int i = 0 ; i < n ; i++){ c [ i ] . r e s i z e (n) ; coords [ i ] . r e s i z e (m) ; }

15 for ( int j = 0 ; j < m; j++){

16 for ( int i = 0 ; i < n ; i++){ coords [ i ] [ j ] = args [ 0 ] [ count ] ; count++; }

17 }

18 for ( int i =0; i<n ; i++) {

19 for ( int j=i ; j<n ; j++) {

20 if ( i==j ){ c [ i ] [ j ] = tau2 + sigma2 ; }

21 e l s e {

22 d i s t = 0 ; // d i s t a n c e computat ion

23 for ( int k=0; k<m; k++){

24 d i s t += ( coords [ i ] [ k ] − coords [ j ] [ k ] ) ∗( coords [ i ] [ k ] − coords [ j ] [ k ] ) ;

25 }

26 d i s t = sq r t ( d i s t ) ; gamma = tgamma(nu) ;

27 b e s s e l = b e s s e l k (2∗ sq r t (nu)∗ d i s t ∗phi , nu , 1) ;

28 c [ i ] [ j ] = ( sigma2 / (pow(2 , nu−1) ∗ gamma) ) ∗ pow(2∗ sq r t (nu)∗ d i s t ∗phi , nu) ∗ b e s s e l ;

29 c [ j ] [ i ] = c [ i ] [ j ] ;

30 }

31 }

32 }

33 // c r e a t e s a v e c t o r t h a t c on t a i n s t h e matr ix as a r e t u rn o b j e c t

34 for ( int i = 0 ; i < n ; ++i ) {

35 value [ i ∗n + i ] = c [ i ] [ i ] ;

36 for ( int j = 0 ; j < i ; ++j ) {

37 value [ i ∗n + j ] = c [ j ] [ i ] ; va lue [ j ∗n + i ] = c [ j ] [ i ] ;

38 }

39 }

40 }

41 b o o l CVMatern : : checkParameterDim ( std : : vector<std : : vector<u n s i g n e d int> > c o n s t &dims ) c o n s t {

42 int n = dims [ 0 ] [ 0 ] , m = dims [ 0 ] [ 1 ] , dim sigma2 = dims [ 1 ] [ 0 ] , dim phi = dims [ 2 ] [ 0 ] ,

43 dim tau2 = dims [ 3 ] [ 0 ] , dim nu = dims [ 4 ] [ 0 ] ;

44 r e t u r n (n > 1 && m >= 1 && dim sigma2 == 1 && dim phi == 1 && dim tau2 == 1 && dim nu == 1) ;

45 }

46 b o o l CVMatern : : checkParameterValue ( std : : vector<d o u b l e c o n s t ∗> c o n s t &args ,

47 std : : vector<std : : vector<u n s i g n e d int> > c o n s t &dims ) c o n s t {

48 d o u b l e sigma2 = args [ 1 ] [ 0 ] , phi = args [ 2 ] [ 0 ] , tau2 = args [ 3 ] [ 0 ] , nu = args [ 4 ] [ 0 ] ;

49 r e t u r n ( sigma2 > 0 && phi > 0 && tau2 > 0 && nu > 0) ;

50 }

51 std : : vector<u n s i g n e d int> CVMatern : : dim( std : : vec tor <std : : vector<u n s i g n e d int> > c o n s t &dims ,

52 std : : vec tor <d o u b l e c o n s t ∗> c o n s t &values ) c o n s t {

53 std : : vector<u n s i g n e d int> n = dims [ 0 ] ;

54 dim [ 0 ] = n [ 0 ] ; dim [ 1 ] = n [ 0 ] ;

55 r e t u r n dim ;

56 }

57 }
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downloaded at geojags.sourceforge.net together with installation instructions. An

installation wizard for Windows users is still under development and will be available

soon at the same address. In the next subsections, we present a general description of

the functions currently available in the GeoJAGS module. A full comprehensive list of all

functions available in the module is detailed in Appendix A.

3.4.1 Covariance functions for point-reference data models

In the previous section, we described how to implement a custom function in JAGS, using

as an example the Matérn covariance function. All the covariance functions described in

Section 2.2.1 were implemented using a similar structure.

At this time, we have available in our GeoJAGS module twelve functions that builds

covariance structures for the point-referenced data case: Matérn, exponential, Gaussian,

powered exponential, rational quadratic, wave, Cauchy, generalized Cauchy, spherical,

circular, cubic, and Gneiting. These functions in the module were designed to be used

along with the multivariate normal distribution, with the matrix given as the return

value representing the covariance matrix of this distribution.

3.4.2 The CAR model

Regarding areal data, GeoJAGS provides a simple approach to use the CAR model in any

JAGS script. Here, we sample from the joint distribution instead of using the condition-

als p (θi | θj, j 6= i). In fact, JAGS currently does not allow the implementation of such

conditionals, for it is not able to cope with the cycles induced by the distribution (see

example below). The following example illustrates this situation.

Example (Cycle involving the random effects). For simplicity purpose, consider two

neighbor regions in which we desire to model the spatial random effects vector θ = (θ1, θ2)

using the CAR model. As stated in Section 2.3.3, the full conditionals are

p(θ1 | θ2) ∼ N
(
ρθ2, τ

2
)
,

p(θ2 | θ1) ∼ N
(
ρθ1, τ

2
)
.
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Thus, the full conditionals of each random effect depend on the random effect of its

neighbor. During the period of development of the GeoJAGS module, we found out that

JAGS does not allow this kind of dependence between the variables. This generates an

error message indicating possible directed cycle involving some or all of the nodes. �

Considering the fact the CAR distribution is basically a multivariate normal distri-

bution with a particular precision matrix, our module offers to the users a function that

performs all the computations needed to build the non-singular precision matrix Σθ.

Therefore, when planning to use the CAR model in a JAGS scrip, the user is required to

set the distribution of the random effects vector to be a multivariate normal distribution

with precision matrix defined by the function precMatrixCAR from our module. Here,

the parameters τ 2, ρ, and the proximity matrix should be indicated accordingly. For

users migrating from OpenBUGS to JAGS, we will offer a function with parameters similar

to those implemented for the CAR in GeoBUGS (see details in Appendix A).

Sampling from the multivariate normal distribution can be very time consuming,

especially if the number of regions is large. Algorithm 3.1 demonstrates the computations

performed by JAGS in order to get a sample of size n from the multivariate normal. In

terms of execution time, the algorithm to find the eigen-decomposition has the same

complexity of matrix multiplication, which is O(n2.376), according to Coppersmith and

Winograd (1987). Algorithm 3.1 is executed in every iteration of the MCMC whenever a

multivariate normal variable is in the model script. A plausible alternative to remediate

this time consuming procedure arises from the result of the following theorem, taken

from Beezer (2008).

Algorithm 3.1 Sample from the multivariate normal distribution

1: generate n values from N(0, 1);
2: find the eigen-decomposition of the covariance matrix;
3: for each of the n-samples do
4: scale by the square-root of the corresponding eigenvalue;
5: end for
6: rotate the vector of samples by pre-multiplying the scaled vector by the orthonormal

matrix found by the decomposition.
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Theorem 3.1 (Eigenvalues of a scalar multiple of a matrix). Suppose W is a square

matrix and λ is an eigenvalue of W . Then αλ is an eigenvalue of αW .

Proof. Let x 6= 0 be one eigenvector of A for λ. Then

(αW )x = α (Wx) (scalar matrix multiplication)

= α (λx) (definition of eigen-values and -vectors)

= (αλ) x (scalar multiplication associativity)

So x 6= 0 is an eigenvector of λW with the eigenvalue λα.

Recall the fact that there is no manual for developers in JAGS. The best material

available in the literature is Wabersich and Vandekerckhove (2014), which can be seen as

a short tutorial on creating extensions to the JAGS. In fact, this paper guides the devel-

opment of univariate functions and distributions only. Based on some instructions in the

mentioned paper and after reading part of the JAGS source code, we implemented a ver-

sion of the multivariate normal, which receives the eigen-decomposition as an argument

(replacing the usual mean vector and covariance matrix). Details of this implementa-

tion can be found in Appendix B. In this setting, the user is required to provide the

eigen-values and -vectors of the matrix Dw − ρW , where Dw, W and ρ are defined in

Section 2.3.3. Internally, this function will skip the more time consuming step in Algo-

rithm 3.1 (Line 2), due to the eigen-decomposition being given as argument. We use the

result from Theorem 3.1 to get the eigen-values and -vectors of τ 2(Dw − ρW ). In the

CAR model, τ 2 is considered to be random and Dw − ρW is a constant matrix. Note

that here, we are considering the parameter ρ to be fixed.

Table 3.1 shows the execution times of a model script used as an example (see Box 3.5).

Here, we simply sample from the multivariate normal distribution using three imple-

mentations. The execution times related to different dimension sizes are shown in the

columns of Table 3.1. We use the conventional multivariate normal distribution sampler

(dmnorm), our implemented version of this distribution as well (dmnorm2), and the version

using the result from Theorem 3.1 (eigen). Additionally, a graphical representation of

these times are displayed in Figure 3.1. Note that when the eigen-decomposition is given,
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Vector size 10 50 100 200 300 500 800

dmnorm 0.28 10.99 42.81 200.41 574.47 1,528.75 5,175.41
dmnorm2 0.27 7.39 20.87 75.39 208.83 633.25 2,130.64
eigen 0.10 0.63 3.04 23.27 89.42 291.87 1,297.24

Table 3.1: Comparison among execution times (in seconds) of algorithms to sample from the multivariate
normal distribution: JAGS (dmnorm), our own proposed implementation (dmnorm2) and the implementa-
tion using the given eigen-decomposition (eigen). Seven different vector sizes are considered.

sampling from the multivariate normal distribution is much faster. We also remark that

the dmnorm2 version is faster to perform the linear algebra computations needed in this

sampling algorithm (it runs faster than dmnorm). In this example, the MCMC algorithm

was set to perform 1,000 iterations. This performance test was carried out in a Ubuntu

16.04 machine with Intel Core i7-3770 x8 processor and 8GB memory.

Despite the efficiency of our proposed implementation, when trying to run a full

Bayesian model including the likelihood and prior distributions (see an Example in 5.2),

JAGS interrupts the execution process and produces an error message indicating that it

is “unable to find appropriate sampler”. JAGS is not able to sample from the posterior

distribution, when using our proposed implementation. Note that we have defined a

sampler for this distribution (again, see Appendix B).

Exploring this issue, we decided to implement our own version of the multivariate

normal distribution (with mean vector and covariance matrix as arguments), which is

basically a copy of the source code used in JAGS for defining this distribution. The

only difference being in the approach to perform the eigen-decomposition. JAGS uses the

LAPACK library (see Anderson et al., 1999), a library with Fortran 77 subroutines for

solving numerical linear algebra problems. However, in our implementation, we adopted

the Armadillo library (see Sanderson and Curtin, 2016), which according to its authors

is a high quality linear algebra library for the C++ language, aiming towards a good

balance between speed and ease of use. Surprisingly the same error message appeared

Box 3.5: JAGS script to sample from our proposed implementation.

1 m o d e l {
2 theta [ 1 : n ] ~ dmnormcar ( e igenValues , e igenVectors , tau2 )
3 }

45



Figure 3.1: Times (in seconds) to sample from a multivariate normal distribution in JAGS using three
approaches. The dashed line is the conventional sampler (dmnorm), the dotted line is our version of the
conventional sampler (dmnorm2). The solid line is our proposed version using the eigen-decompotision
(eigen).

when trying to run a full Bayesian model with our implementation of this distribution.

We were expecting JAGS to be able to sample from this distribution, as its procedures

are the same as in the native multivariate normal distribution in JAGS.

With these results, we came to the conclusion that further work is necessary in order

to define a new multivariate distribution in JAGS beyond developing a new C++ class

(which is the case for univariate distributions in JAGS). However, there is no complete

manual for JAGS developers and no source of information about it, only the JAGS source

code and the tutorial for implementing univariate functions and distributions in Waber-

sich and Vandekerckhove (2014) are available. Our main investigations and findings in

this regard so far are described in Appendix B. As a future work, we plan to solve this

computational issue.

Currently, our module offers a function (namely precMatrixCAR) to simply using

the CAR model within a JAGS script. This function computes the precision matrix of

the CAR distribution and this matrix is expected to be used as the precision matrix argu-

ment of the dmnorm function in JAGS. Although we demonstrated that this function can

be inefficient, when the number of regions is small, the time taken to execute the model

is reasonable. Regardless the number of regions, the posterior chains of the parameters

present low levels of autocorrelation due to block sampling.
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Chapter 4

Validating the covariance functions

In this chapter, we show a comparative study to validate the proposed implementation

of the covariance structures in the GeoJAGS module, confirming that it works properly.

By validation, we mean that we run a Bayesian model and compare the results with the

corresponding frequentist estimates, considering a data set already explored in the liter-

ature. We start by presenting in Section 4.1 a simple data set that will serve as the base

for our analysis. There is no special interest or main motivation in the application related

to this data set. Some other interesting applications of spatial data models involving real

data are discussed ahead in Chapter 6. In Section 4.2, we show the estimation using

the frequentist approach. In Section 4.3, we confront the Bayesian estimation, using the

proposed GeoJAGS module, with the corresponding script without the module. This is

intended to show how simple and clean is the code when using the proposed module. In

Section 4.4, we compare the maximum likelihood estimates with the Bayesian estimates.

Finally, in Section 4.5, we demonstrate how to perform predictions at arbitrary locations

with the proposed module. We also compare the results with those from the GeoBUGS

module. The tests were developed using the freely available R software (R Core Team,

2017) and its packages coda (Plummer et al., 2006), geoR (Ribeiro Jr and Diggle, 2016)

and R2jags (Su and Yajima, 2015).
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4.1 Surface elevations data

The point-referenced data for this example are taken from Diggle and Ribeiro (2007). We

have chosen this database since it is well known in the literature and thus allows a full

comparison with published results to evaluate the performance of the GeoJAGS module.

The data, stored into the R package geoR, contains the measurements (yi) of the surface

elevation for 52 locations (si) within a 310-foot square. One unit of height represents

10 feet of elevation, whereas the unit of distance is 50 feet. Each si is a 2 × 1 vector

containing the coordinates of the observation i. Figure 4.1 shows how the observations

are distributed in the study area.

Let S(si) denote the true elevation value at location si. In this example, each yi is

approximately S(si), since surface elevation can be measured with some negligible error,

i.e. S(s) = Y (s) + ε, with ε ≈ 0. The following model is considered in our analysis:

Y ∼ Nn[µ,Σ], (4.1)

where Y = (y1, . . . , yn)>, µ = (µ1, . . . , µn)> and Σ is the covariance matrix that will be

handled through our module. In addition,

µi = µ(si) = β0 + β1si1 + β2si2, (4.2)

with si1 and si2 being the latitude and longitude coordinates, respectively.

Again, the parameter estimation that will be presented ahead in the next sections are

based on the model proposed here for the elevation data.

4.2 Parameter estimation: the frequentist approach

The inference here is based on the maximum likelihood method to estimate β0, β1,

β2, and any additional parameter needed to properly define the covariance structure

of the data. When using the likfit function from the geoR package, with parameter

trend="1st" to consider the individual mean defined in (4.2), and assuming the Matérn
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Figure 4.1: Circle plot of the surface elevation data. Circles are plotted with centers at the location of
the observation and radii resembling the magnitude of the elevations (as multiples of 10 feet).

covariance function with κ = 1.5 fixed, we get the following estimates for the elevation

data application:

β̂0 = 912.4865, β̂1 = −4.9904, β̂2 = −16.4640,

τ̂ 2 = 34.8953, σ̂2 = 1,693.1329, φ̂ = 0.8061.

As explained in Diggle and Ribeiro (2007), since likfit uses a numerical maximiza-

tion procedure, initial values for the covariance parameters can be specified through the

argument ini. In this example, ini contains initial values for σ2 and φ. It is important

to note that the Matérn covariance function implemented in geoR is not parameterized

as described in Chapter 2. Instead, the package uses

C(t) =


σ2

2κ−1Γ(κ)

(
t
φ∗

)κ
Kκ

(
t
φ∗

)
if t > 0,

τ 2 + σ2 otherwise,

where the parameter κ is equivalent to our ν and φ∗ = 2
√
νφ.

Box 4.1 shows the R code considered to fit the previously described model. Similarly,

we can also fit the model for other covariance functions available in the package (such as

Cauchy, circular, cubic, exponential, spherical, Gneiting and wave) by simply replacing
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the argument cov.model in line 2 with the appropriate name of the covariance function.

Box 4.1: Parameter estimation using likfit function

1 > r e qu i r e ( geoR)
2 > mod . matern = l i k f i t ( e l eva t i on , i n i=c (3000 , 2) , trend = ”1 s t ” , cov . model = ”matern” , kappa = 1 . 5 )

4.3 Parameter estimation: the Bayesian approach

In this section, the focus is on the estimation of the hierarchical model through the

Bayesian inference for the elevation data. Again, the software JAGS simplifies the Gibbs

sampler implementation, since it requires only the specification of the prior distributions

and the likelihood function. There is no need to specify the posterior full condition-

als. The main obstacle in using JAGS for a spatial point-referenced data analysis is the

construction of the covariance matrix Σ.

As mentioned in Section 3.1.1, GeoBUGS offers to OpenBUGS and WinBUGS users two co-

variance structures: the powered exponential and the disc. Working with any covariance

function other than these two demands that the user writes the code for this structure

within the model script. In fact, this can be seen as a difficult task and also inefficient

in terms of execution time. To the best of the authors’ knowledge, currently neither

WinBUGS, OpenBUGS or JAGS have implemented the Matérn covariance function and, fur-

thermore they do not have the tools required to define this covariance structure within

their model scripts (a function for the modified Bessel function is also unavailable). In

this situation, we are unable to compare the estimated parameters from the likfit func-

tion with those from the Bayesian model fit using the Matérn covariance structure with

JAGS or OpenBUGS.

4.3.1 The code with and without the module

We will now present how to use the new module and discuss the differences with respect

to the script without the module. Before we start, we assume the reader have followed

the steps to correctly install the GeoJAGS module in his or her computer; see steps given
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Box 4.2: JAGS script using the exponential covariance function without the module.

1 m o d e l

2 {
3 Y ~ dmnorm(mu, omega .w)
4 for ( i in 1 :N) {
5 mu[ i ] < - b e t a [ 1 ] + b e t a [ 2 ] * c o o r d s [ i , 1 ] + b e t a [ 3 ] * c o o r d s [ i , 2 ]
6 }
7 for ( i in 1 :N){
8 sigma [ i , i ] < - tau2 + s i g2
9 for ( j in ( i +1) :N){

10 sigma [ i , j ] < - s i g 2 * exp (−phi * d i s t [ i , j ] ) ;
11 sigma [ j , i ] < - sigma [ i , j ]
12 }
13 }
14 b e t a ~ dmnorm(mu. beta , omega . b e t a )
15 omega .w < - i n v e r s e ( sigma )
16 s i g 2 ~ d g a m m a ( a _ s ig , b_ s i g )
17 tau2 ~ d g a m m a ( a _ tau , b_ tau )
18 phi ~ d g a m m a ( a _phi , b_ phi )
19 }

in Section 3.3 and in the tutorial by Wabersich and Vandekerckhove (2014, p. 20-21). In

addition, the software R and the package R2jags are expected to be installed and ready

to use.

Without our module, the JAGS user is restricted to work with simple covariance

structures (such as the spherical, rational quadratic or the exponential). See an example

considering the exponential covariance function in Box 4.2. In this case, we set gamma

prior distributions for σ2, τ 2 and φ, and a multivariate normal distribution for the re-

gression coefficients in β. The covariance matrix is stored in omega.w (Box 4.2, line 15).

Formally, the prior specifications are:

σ2 ∼ Ga(aσ, bσ), τ 2 ∼ Ga(aτ , bτ ), φ ∼ Ga(aφ, bφ),

β ∼ N3(Mβ, Vβ),

where the hyperparameters a’s and b’s are specified to determine vague priors. We chose

aσ = aτ = aφ = 0.1, bσ = bτ = bφ = 0.001, which determine a gamma distribution with

mean 100 and variance 105. These values are carefully chosen to appropriately represent

the scale of the observation in the elevation data. The remaining hyperparameters values

are Mβ = (0, 0, 0)> and Vβ
−1 = diag3×3(10−6), which is a precision matrix; these choices

for the coefficients suggest no information regarding the sign of these parameters and a

high prior uncertainty about them.

The Gibbs sampler is set to perform 15,000 iterations (burn-in period with 5,000

51



Box 4.3: Running the JAGS model in R.

1 l i b r a r y ( R2jags ) ; l o a d . module ( ‘ ‘GeoJAGS” ) ;
2 l i b r a r y ( geoR) ; data ( e l e v a t i on ) ;
3 cvexp = jag s ( data = l i s t ( ‘ coords ’ = coord , ‘N’ = 52 , ‘Y’ = e l e va t i on $data ,
4 ‘mu. beta ’ = rep (0 ,3 ) , ‘ omega . beta ’ = diag (x=1/ 1000000 , nco l=3, nrow=3) ,
5 ‘ a _ s ig ’ = 0 . 1 , ‘b_ s ig ’ = 0 .001 ,
6 ‘ a _ tau ’ = 0 . 1 , ‘b_ tau ’ = 0 .001 ,
7 ‘ a _phi ’ = 0 . 1 , ‘b_phi ’ = 0 .001) ,
8 model . f i l e =‘model . exp ’ , n . cha ins = 1 , n . burnin = 1000 , n . i t e r = 2000 ,
9 parameters . to . save = c ( ‘ beta ’ , ‘ tau2 ’ , ‘ s ig2 ’ , ‘ phi ’ ) )

iterations and 1,000 observations forming the final posterior sample). Due to the auto-

correlation of the chains, we choose lag = 10 for selecting spaced observations for the

posterior sample. Moreover, the analysis is based on a single chain. Box 4.3 shows how

to run the JAGS model inside the R environment.

It is important to emphasize that implementing the posterior full conditionals can

be an obstacle, and thus it is not attractive for those not familiar with the Bayesian

inference or not well trained in programming. In some situations, only the kernel of

the posterior full conditionals is know; in this case extra sampling algorithms such as

Metropolis-Hastings (see Metropolis et al. 1953; Hastings 1970), adaptive rejection sam-

pling (see Gilks and Wild 1992; Gilks 1992) or slice sampling (see Neal 2003), among

others, are needed within the Gibbs sampler. With the support of the sampling algo-

rithms implemented in JAGS, our module can significantly reduce the implementation

burden of the problem.

The usage of the GeoJAGS module is quite straightforward. Besides the fact that it

is simpler, many parts of the model script in Box 4.4 look similar to the one defined

in Box 4.2. Note that the commands in lines 7-13 of Box 4.2 are replaced by the one

in line 9 of Box 4.4, where we set the exponential covariance structure. Here we have

Box 4.4: JAGS script using the exponential covariance structure with the module.

1 m o d e l

2 {
3 Y ~ dmnorm(mu, omega .w)
4 for ( i in 1 :N) {
5 mu[ i ] < - b e t a [ 1 ] + b e t a [ 2 ] * c o o r d s [ i , 1 ] + b e t a [ 3 ] * c o o r d s [ i , 2 ]
6 }
7 b e t a ~ dmnorm(mu. beta , omega . b e t a )
8 omega .w < - i n v e r s e ( sigma )
9 sigma < - CVPowerExp( coords , s ig2 , phi , tau2 , 1)

10 s i g 2 ~ d g a m m a ( a _ s ig , b_ s i g )
11 tau2 ~ d g a m m a ( a _ tau , b_ tau )
12 phi ~ d g a m m a ( a _phi , b_ phi )
13 }

52



used the fact that the exponential covariance function is a particular case of the powered

exponential function, when p = 1. However, GeoJAGS also offers the CVExp function, in

which the user is not required to set a value for the parameter p, since it is fixed (see

details in Appendix A).

Additionally, note that in Box 4.2 line 10 the user is required to provide the dist

argument, which is a matrix of interlocation distances. In fact, this is not a trivial task

depending on the users programming skills. When using the covariance functions from

the proposed module, the user needs to provide only the list of the locations coordinates.

We compared the performance of the model scripts described in Boxes 4.2 and 4.4,

considering a MCMC setting with burn-in period of 1,000, lag = 5 and posterior sample

size of 1,000 iterations. In the model in Box 4.2, the time taken to perform the Gibbs

sampler algorithm was 116 seconds (disregarding the time taken to build the interlocation

distances matrix), while, when using the GeoJAGS module to build the covariance matrix

(Box 4.4), it took 114 seconds to produce the posterior chain. The machine considered

in this performance test was a Ubuntu 17.04, Intel Core i7-4770 x8 processor with 16GB

memory. Note that although the time difference is small, the facility the proposed module

provides to its user is considerable.

4.3.2 Model fit with Matérn covariance

Now that we have built the GeoJAGS module, we can fit a Bayesian model with the Matérn

covariance structure for the elevation data using the newly created CVMatern function.

We also implemented the bessel k function, that computes the modified Bessel function

of the third kind, for those users willing to implement their own Matérn covariance

function (see details in Appendix A).

Let us recall the model in (4.1). Similarly to the script in Box 4.4, we can set the co-

variance structure to any of the twelve functions currently available in the module, replac-

ing the command in line 9 by the respective name of the covariance function. Currently,

the options are: CVExp, CVGaussian, CVPowerExp, CVMatern, CVCauchy, CVGenCauchy,

CVGneiting, CVRatQuad, CVCircular, CVCubic, and CVSpherical. As it can be seen,

the chosen name for the function clearly indicates the type of the covariance structure
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being used. We can run this JAGS script in R using the structure in Box 4.3.

When using the spherical, the circular or the cubic covariance functions, we empha-

size that the definitions presented in Section 2.2.1 show that the intervals where these

functions are defined depend upon the parameter φ. The reciprocal of this parameter

represents the distance at which the spatial dependence vanishes (in the cases of circular

and cubic covariance structures). For the spherical covariance function, φ itself is seen

as the distance at which the spatial dependence is negligible. Therefore, the covariance

functions were implemented assuming φ as fixed and specified by the user, who is in

charge to determine an appropriate or reasonable value for this dependence threshold. If

we set a prior to φ, computational problems arise when attempting to compute the in-

verse of the covariance matrix. We suggest that when using these covariance structures,

the user should plot the empirical variogram and choose a suitable value for φ in the

application. Thus, line 12 in Box 4.4 can be removed and a value for φ must be passed

as data to JAGS.

4.4 Comparing frequentist and Bayesian estimates

In this section, we develop a comparative study to verify whether the results from the

Bayesian model fit using JAGS are in accordance with those from the frequentist analysis

reported in the literature. In Box 4.1, we demonstrated how to adjust a model with the

linear trend defined in Equation (4.1) using maximum likelihood method, considering the

Matérn covariance function. We run the code for all the covariance functions available

in the R package geoR. Some of these functions produced errors when trying to adjust

the model for the elevation data. The wave covariance is one of them; here the likfit

function reported an error message that seems to be related to matrix inversion. This

error is observed even when running the likfit function multiple times with distinct

initial values for φ and σ2, as recommended by the developers. Although the documen-

tation of the geoR states that the generalized Cauchy covariance function is available in

the package, when attempting to use it we observe an error notification displayed in the

screen informing that it is in fact not yet implemented. Further, geoR does not imple-

54



Figure 4.2: Posterior sample, 95% HPD limits (solid lines), and the maximum likelihood estimates
(dashed horizontal line) of the coefficients and the parameters using the Matérn covariace function for
the elevation data.

ment the rational quadratic covariance structure, therefore we could not compare with

the estimates from the GeoJAGS module for this spatial model.

The results discussed in Figure 4.2 and Table 4.1 are related to the Matérn covariance

function. The main goal of the analysis here is not to perform model selection, instead we

aim to compare the estimates of the maximum likelihood method in likfit with those

from JAGS (using our module). Figure 4.2 shows the chains for six parameters estimated

with the Matérn model for the elevation data. In each graph, the dashed horizontal line

indicates the maximum likelihood estimates. The two horizontal solid lines represent the

HPD intervals limits for each parameter (with 95% credibility). In addition, the posterior

means, HPD intervals, and maximum likelihood estimates are presented in Table 4.1. We

considered the coda package to build the HPD intervals. This is an advantage of using

the Bayesian approach with JAGS instead of the frequentist. In other words, if we want

to compute confidence intervals for the maximum likelihood estimates, we must compute

their limits by ourselves, since there is no function that can automatically perform these

computations in geoR. Moreover, the JAGS script for this model considering the Matérn
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Parameters
Maximum likelihood

estimates
JAGS model using
CVMatern function

HPD interval (95%)

φ 0.506 0.512 0.279 0.741
τ 2 34.895 37.602 0.000 146.124
σ2 1,693.133 1,971.465 844.610 3,552.477
β0 912.487 912.050 846.895 984.655
β1 -4.990 -4.868 -17.541 8.647
β2 -16.464 -16.500 -29.634 -3.919

Table 4.1: Comparison of parameter estimates for the two approaches (Bayesian vs. Frequentist) using
the Matérn covariance structure.

covariance function took 655 seconds to run a sample of 15,000 iterations (specifications

of the machine used: Ubuntu 17.04, Intel Core i7-4770 x8 processor and 16GB memory).

The results from other covariance functions are presented in Appendix C. They show

similar conclusions as those for the Matérn.

Note that all the maximum likelihood estimates lie within the respective HPD interval,

in other words the chains are oscillating in a region of the parameter space where the

maximum likelihood estimates are located. As it can be seen, all chains indicate the

visual behavior of a convergence condition and they exhibit low autocorrelation, which

is expected since we are fitting a simple Gaussian model.

This result (and those in Appendix C) clearly confirms that the new module is work-

ing as expected. The remaining comparison between the frequentist and the JAGS model

estimates and further comments related to other covariance structures are presented in

Appendix C. Additionally, Figure 4.3 shows the estimates for β0 using the maximum

likelihood and the Bayesian methods. Note that the frequentist estimates for the models

considering the rational quadratic, the wave and the generalized Cauchy covariance func-

tions are not shown due to the fact that they are not available in geoR. Further comments

can be found in Appendix C. After several tests being carried out, we can finally conclude

that the covariance functions available in our GeoJAGS module are correctly implemented

and working appropriately.
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Figure 4.3: Estimates for β0: the x dots are the maximum likelihood estimates, the solid circles are the
posterior mean, and the vertical lines represent the HPD for each of the twelve covariance functions in
the GeoJAGS module.

4.5 Spatial prediction at arbitrary locations

Spatial prediction can be performed by using the GeoJAGS module in a different manner

that is done in GeoBUGS. In this section, we compare the usage of these two modules for

predicting response values at arbitrary locations and also analyze the results given by

them for the surface elevations data. We define a 15×15 regular grid of points at which we

wish to predict surface elevation within the study area (see Figure 4.4). The hierarchical

model previously presented in Section 4.3 will be adapted here to accommodate prediction

in such a way that is done in OpenBUGS, thus we will be able to compare the predicted

values from the two spatial modules. The model presented here is based on the one

available in the GeoBUGS user manual for spatial prediction on the surface elevations data.

A few adjustments were made in the prior distributions in order to make it possible to

run the model with the very same specifications in JAGS and OpenBUGS.

Instead of considering the response variable (elevation measurements) following a

multivariate normal distribution, we set

Yi |W , ν, β ∼ N(µi, ν),

W |σ2, τ 2, φ, κ ∼ N
(
0,Σ(σ2, τ 2, φ, κ)

)
,

(4.3)
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Figure 4.4: Spatial arrangement of the elevation data. Solid black circles are locations of the 52 observed
measurements, solid gray circles are the 225 locations in which the response variable will be predicted.

where µi = β0 + β1si1 + β2si2 + wi, si1 and si2 are the latitude and the longitude

(i = 1, . . . , n), W = (w1, . . . , wn)> is the vector of spatial random effects, Σ(·) is the

powered exponential covariance function. Consider σ2, τ 2, φ, and κ being the parameters

of the covariance structure and ν is the non-spatial variance. The prior distributions are

β1 ∼ N(0, 105), β2 ∼ N(0, 105), βj ∼ N(0, 105),

1/ν ∼ Ga(10−3, 10−3), 1/σ2 ∼ Ga(10−3, 10−3), φ ∼ U(0.05, 20), κ ∼ U(0.05, 1.95).

The values for the hyperparameters were chosen according to the example available in

the GeoBUGS manual.

Box 4.5 shows the JAGS script for the model in (4.3). The lines 2-5 are related to

the observed data (Nobs elements), lines 6-9 represent the values to be predicted (Npred

items). Note that coords is a (Nobs + Npred) × 2 vector with latitude and longitude

coordinates for both “observed” and “to be predicted” locations. This vector is used as

an argument for the CVPowerExp function. Recall that in the definitions of the covariance

functions in Section 2.2.1, we define σ2 as the spatial variance effect and τ 2 as the non-

spatial variance effect. In the model presented in (4.3), ν plays the role of the non-spatial

variance. As a result, the argument τ 2 in the covariance function CVPowerExp must be

set to zero to avoid identifiability issues. The argument κ is the exponent term in the
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Box 4.5: JAGS script for prediction.

1 m o d e l {
2 for ( i in 1 : Nobs ) {
3 mu[ i ] < - beta0 + beta1 * c o o r d s [ i , 1 ] + beta2 * c o o r d s [ i , 2 ] + w[ i ]
4 Y[ i ] ~ d n o r m (mu[ i ] , inv . nu)
5 }
6 for ( j in 1 : Npred ) {
7 mu[ Nobs+j ] < - beta0 + beta1 * c o o r d s [ Nobs+j , 1 ] + beta2 * c o o r d s [ Nobs+j , 2 ] + w[ Nobs+j ]
8 Ypred [ j ] ~ d n o r m (mu[ Nobs+j ] , nugget )
9 }

10 w ~ dmnorm(mu.w, Omega .w)
11 Sigma .w < - CVPowerExp( coords , s ig2 , phi , 0 , k a p p a )
12 Omega .w < - i n v e r s e ( Sigma .w)
13 inv . s i g 2 ~ d g a m m a ( a _ inv . s ig2 , b_ inv . s i g 2 )
14 s i g 2 < - 1 / inv . s i g 2
15 inv . nu ~ d g a m m a ( a _nu , b_nu)
16 phi ~ d u n i f ( a _phi , b_ phi )
17 k a p p a ~ d u n i f ( a _ kappa , b_ k a p p a )
18 beta0 ~ d n o r m (mu. beta0 , tau . beta0 )
19 beta1 ~ d n o r m (mu. beta1 , tau . beta1 )
20 beta2 ~ d n o r m (mu. beta2 , tau . beta2 )
21 }

Box 4.6: Running the JAGS model in R.

1 l i b r a r y ( R2jags ) ; l o a d . module ( ‘ ‘GeoJAGS” ) ;
2 out jags = jag s ( data = l i s t ( ‘ Nobs ’ = Nobs , ‘Npred ’= Npred , ‘mu.w’ = rep (0 , Nobs+Npred ) ,
3 ‘ coords ’ = coords , ‘Y’ = e l e va t i on $data ,
4 ‘ a _nu ’ = 0 .001 , ‘b_nu ’ = 0 .001 ,
5 ‘ a _ inv . s ig2 ’ = 0 .001 , ‘b_ inv . s ig2 ’ = 0 .001 ,
6 ‘mu. beta0 ’ = 0 , ‘ tau . beta0 ’ = 1 / 100000 ,
7 ‘mu. beta1 ’ = 0 , ‘ tau . beta1 ’ = 1 / 100000 ,
8 ‘mu. beta2 ’ = 0 , ‘ tau . beta2 ’ = 1 / 100000 ,
9 ‘ a _phi ’ = 0 .05 , ‘b_phi ’ = 20 ,

10 ‘ a _kappa ’ = 0 .05 , ‘b_kappa ’ = 1 .95 ) ,
11 i n i t s = l i s t ( nugget =0.001 , inv . s i g 2 =0.001 , phi =0.4 , kappa=1) ,
12 parameters . to . save = c ( ” k a p p a ” , ” beta0 ” , ” beta1 ” , ” beta2 ” , ” inv . nu” , ” phi ” , ” s i g 2 ” ,
13 ”w” , paste0 ( ‘ pred [ ‘ , 1 : Npred , ‘ ] ’ ) ) ,
14 model . f i l e=f i l e p a th , n . cha ins = 1 , n . burnin = 10000 , n . i t e r = 20000 , n . th in = 10)

powered exponential covariance structure. Finally, vector w stores the spatial random

effects of all locations (observed and to be predicted).

Values for the remaining variables in the model script must be passed as data before

running JAGS, as seen in Box 4.6, with commands to run the JAGS model inside the

R environment using the R2jags package. Again, values for the hyperparameters were

chosen according to those presented in the GeoBUGS manual. The analysis here is based

on a single chain and the Gibbs sampler is set to perform 20,000 iterations (burn-in

period with 10,000 iterations and 1,000 observations forming the final posterior sample).

Due to autocorrelation of the chains, we choose lag = 10.

The OpenBUGS script for a version of the model in (4.3) is presented in Box 4.7. Here,

the powered exponential covariance structure is introduced by the spatial.exp function

and the prediction is performed through spatial.pred function, which performs joint

prediction from the joint distribution and not from the full conditionals. Latitude and
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Box 4.7: OpenBUGS model script for prediction.

1 m o d e l {
2 for ( i in 1 : Nobs ) {
3 mu[ i ] < - beta0 + beta1 * coordX [ i ] + beta2 * coordY [ i ]
4 }
5 for ( j in 1 : Npred ){
6 mu. pred [ j ] < - beta0 + beta1 * coordX . pred [ j ] + beta2 * coordY . pred [ j ]
7 }
8 Y[ 1 : Nobs ] ~ s p a t i a l . exp (mu [ ] , coordX [ ] , coordY [ ] , inv . s ig2 , phi , k a p p a )
9 Y. pred [ 1 : Npred ] ~ s p a t i a l . pred (mu. pred [ ] , coordX . pred [ 1 : Npred ] , coordY . pred [ 1 : Npred ] , Y [ ] )

10 inv . s i g 2 ~ d g a m m a ( a _ inv . s ig2 , b_ inv . s i g 2 )
11 sigma2 < - 1 / inv . s i g 2
12 phi ~ d u n i f ( a _phi , b_ phi )
13 k a p p a ~ d u n i f ( a _ kappa , b_ k a p p a )
14 beta0 ~ d n o r m (mu. beta0 , tau . beta0 )
15 beta1 ~ d n o r m (mu. beta1 , tau . beta1 )
16 beta2 ~ d n o r m (mu. beta2 , tau . beta2 )
17 }

longitude coordinates for observed values are now detached from those for prediction

lattice points in vectors coordX and coordY, and coordX.pred and coordY.pred, re-

spectively. The R script for running this OpenBUGS model is quite analogous to the one

in Box 4.6. Hyperparameters values are not shown in a separate box given that they are

the same as those used in the JAGS script, thus similar to Box 4.6.

We emphasize the main difference between the two modules. The nugget effect (non-

spatial variance) τ 2 cannot be included when using the GeoBUGS module, because this

parameter is not considered in the implementation, thus all the variance effects are incor-

porated in one parameter. An advantage of using the proposed module is that we allow

the user the right to introduce the nugget effect into the model.

Figure 4.5: Posterior mean estimates of surface elevation prediction at 225 locations using (a) likfit

function, (b) GeoJAGS module and (c) GeoBUGS module.
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Running in a Ubuntu 17.04 machine with Intel Core i7-4770 x8 processor and 16GB

memory, the GeoJAGS module took approximately 114 minutes to execute this script,

while GeoBUGS took 144 minutes.

Figure 4.5 displays the posterior mean estimates for the surface elevation values pre-

dicted for the 225 locations, considering the frequentist approach and the Bayesian ap-

proach using GeoJAGS and GeoBUGS modules. Note that the three methods produced

very similar estimated elevation for every location in predicting grid.

Figure 4.6 presents the interpolation over the study area using the R package akima

(see Akima and Gebhardt, 2016). The akima package is useful for making interpolations

involving irregular data over a regular study area (such as the squared region in the

elevation data example). The results from the frequentist approach and those from the

two spatial modules are quite similar.

Figure 4.6: Interpolation of the 225 posterior mean estimates of surface elevation data over the study
area using predictions from (a) likfit function, (b) GeoJAGS module and (c) GeoBUGS module.
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Chapter 5

Validating the CAR distribution

In this chapter, we show a comparative study to validate the implementation of the CAR

function in the GeoJAGS module. We begin by presenting in Section 5.1 a simple real

data set for which our analysis is based. In Section 5.2, we demonstrate how to use the

CAR function from our module, comparing with the implementation in OpenBUGS. We

conclude this chapter in Section 5.3 by showing a simulation study in which we control

the values for the variance parameters and also for the spatial random effects. This

is done to compare the performances of GeoJAGS and GeoBUGS in terms of parameter

estimation.

5.1 Gross domestic product data

The areal data for this example is the gross domestic product (GDP) per capita in the

853 municipalities of Minas Gerais state in 2013, obtained in IBGE (2018). Figure 5.1

presents the data using the green scale to classify the values into a few classes. The

political boundaries in Minas Gerais state are available as polygons in the R package

mapsBR, see Silva e Silva (2014). In this data set, each unit is equivalent to a thousand

Brazilian reais (1 USD = 3.26 BRL in January 2018). The municipality with the minimum

GDP per capita (4.22) is São João das Missões in the north of the state, whereas São

Gonçalo do Rio Abaixo in the central area has the highest GDP per capita value (340.69).

In addition, considering the 853 municipalities, the average GDP per capita is 15.31, with

62



Figure 5.1: GDP per capita in the municipalities of Minas Gerais in 2013 (in thousands of Brazilian
Real).

a variance of 341.34.

Although there is no evident pattern shown in Figure 5.1, an attentive eye would note

the fact that when compared with the northeastern municipalities, a greater number of

western regions of the map have higher GDP (darker shades of green). In this case, we

might be interest in investigating spatial association between the observations. As the

fundamental idea here is to validate the CAR matrix function in the GeoJAGS module,

we will fit a rather simple hierarchical model and, afterwards, we compare the results

from GeoBUGS with those from our module.

Let Yi be the GDP per capita in the municipality i (i = 1, . . . , 853) and let

θ = (θ1, . . . , θ853) be the vector of spatial random effects associated with each region.

Then, consider

Yi | θi ∼ N(µ+ θi, σ
2),

θ ∼ CAR(τ 2, ρ),
(5.1)

where µ is a scalar representing the global GDP mean of all regions, σ2 is the non-spatial

variance effect, τ 2 is the spatial variance effect and ρ is the parameter introduced to

guarantee that the precision matrix Σ−1 is nonsingular (here, we consider ρ = 0.9). The

proximity matrix used in this model is binary, i.e. wij = 1 if i and j share a common
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Box 5.1: OpenBUGS model script for the GDP data.

1 m o d e l {
2 for ( i in 1 : n) {
3 Y[ i ] ~ d n o r m ( m e a n [ i ] , inv . s i g 2 )
4 m e a n [ i ] < - mu + theta [ i ]
5 }
6 theta [ 1 : n ] ~ car . normal ( adj [ ] , w e i g h t s [ ] , num [ ] , inv . tau2 )
7 for ( j in 1 : sumNumNeigh){
8 w e i g h t s [ j ] < - rho
9 }

10 inv . tau2 ~ d g a m m a ( 2 . 001 , 1 . 001)
11 tau2 < - 1 / inv . tau2
12
13 inv . s i g 2 ~ d g a m m a ( 2 . 001 , 1 . 001)
14 s i g 2 < - 1 / inv . s i g 2
15
16 mu ~ d n o r m (0 , prec .mu)
17 prec .mu < - 1 / 100
18 }

boundary.

5.2 Hierarchical model fitting

Since we are interested in a Bayesian modeling approach, we set the following prior

specifications as a complement to the model in (5.1):

µ ∼ N(µ0, ν
2
0), σ2 ∼ IG(aσ, bσ), τ 2 ∼ IG(aτ , bτ ),

where the hyperparameters are chosen to determine vague distributions. We choose the

global mean µ to be normally distributed with mean µ0 = 0 and variance ν2
0 = 100,

values that suggest no information regarding the sign of this parameter and a high prior

uncertainty about it. We choose aσ = aτ = 2.001 and bσ = bτ = 1.001, which give an

inverse gamma distribution with mean 1 and variance 103.

The Gibbs sampler algorithm is set to perform 10,000 iterations with a burn-in period

of 5,000 iterations and 5,000 observations forming the posterior sample. Since we are

fitting a simple model, the autocorrelation is not expected to be severe, thus we choose

lag=1. Moreover, the analysis here will be based on a single chain.

Box 5.1 shows the OpenBUGS script for the model in (5.1). As mentioned before,

GeoBUGS implements the CAR distribution through the function car.normal, which uses

a particular setting for its parameters (see line 6 of Box 5.1). The adj parameter is a

sparse representation of the full adjacency matrix, weights is a vector giving unormalised
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Box 5.2: JAGS model script for the GDP data.

1 m o d e l {
2 for ( i in 1 : n) {
3 Y[ i ] ~ d n o r m ( m e a n [ i ] , inv . s i g 2 )
4 m e a n [ i ] < - mu + theta [ i ]
5 }
6 theta [ 1 : n ] ~ dmnorm( zero , precMatrixCAR(W, rho , inv . tau2 ) )
7
8 inv . tau2 ~ d g a m m a ( 2 . 001 , 1 . 001)
9 tau2 < - 1 / inv . tau2

10
11 inv . s i g 2 ~ d g a m m a ( 2 . 001 , 1 . 001)
12 s i g 2 < - 1 / inv . s i g 2
13
14 mu ~ d n o r m (0 , prec .mu)
15 prec .mu < - 1 / 100
16 }

weights associated with each pair of areas (this parameter plays the role of the scalar ρ

defined in Section 2.3.3), num is a vector giving the number of neighbors for each area

and inv.tau2 is a scalar argument representing the spatial precision (inverse of spatial

variance). The first three arguments of this function must be entered as data. The

sumNumNeigh scalar value is the length of adj. Details about this implementation of the

CAR distribution can be found in the GeoBUGS user’s manual at www.mrc-bsu.cam.ac.

uk/wp-content/uploads/geobugs12manual.pdf.

Box 5.2 presents the JAGS script for model (5.1) using the CAR matrix function

(precMatrixCAR) from the GeoJAGS module, as described in Section 3.4.2. Note that,

differently from the implementation in GeoBUGS, the parameter ρ in the JAGS script is

a scalar value, i.e. every neighboring relationship in the study region weights the same

(again, we consider ρ = 0.9). Line 6 shows how the CAR distribution for the spatial

random effects can be used with the proposed module. As the name suggests, the zero

parameter in the multivariate normal distribution is a null vector. The proximity matrix

is stored in W and inv.tau2 represents the precision. Although it is necessary to use the

precMatrixCAR with the dmnorm function, the implementation is simpler than the one

from GeoBUGS.

Again, by using the R packages rbugs and R2jags, we can easily run the model scripts

in Boxes 5.1 and 5.2, respectively. The posterior means of µ, σ2, τ 2 and for one of the

spatial random effects are presented in Table 5.1. As there are a large number (853) of

spatial random effects, we decided to show only results corresponding to the capital city of

Minas Gerais, Belo Horizonte, namely θBH . The global mean GDP per capita estimated
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Parameters
GeoJAGS GeoBUGS

Mean (SD) 95% HPD interval Mean (SD) 95% HDP interval
µ 15.26 (0.62) 14.07 16.48 15.26 (0.59) 14.02 16.38
σ2 340.16 (16.64) 308.08 373.33 303.30 (18.16) 268.90 337.90
τ 2 0.55 (0.26) 0.18 1.04 58.02 (28.13) 13.42 109.20
θBH 0.02 (0.31) -0.58 0.66 7.10 (3.89) -0.52 14.74

Table 5.1: Comparison of estimates for the two spatial modules. Only one spatial random effect is
shown, representing Belo Horizonte. Standard deviations are shown in parentheses.

by the two modules are close to the data average 15.31. For the non-spatial variance σ2,

the estimate from GeoJAGS (340.16) is close to the sample variance, whereas the same does

not occur for the corresponding estimate from GeoBUGS (303.30). There is a substantial

difference between the estimated spatial variance τ 2 from JAGS and OpenBUGS. The same

behavior is observed with respect to the spatial random effects θi (see also Figure 5.4).

These aspects of difference will be regarded in the remaining of this subsection.

Figure 5.2 shows the chains for the very same parameters presented in Table 5.1.

In each graph, the solid horizontal line represents the posterior mean estimate, the two

horizontal dashed lines indicate the limits of the 95% HPD intervals. For comparison

purposes, the vertical axis limits are fixed for each parameter in the graph, i.e. each row

in Figure 5.2 has the same range in the y-axis. Note that the autocorrelation in the

chains is not negligible, specially those from GeoBUGS. A detailed version of this figure

for parameters τ 2 and θBH can be found in Appendix D (page 112).

Additionally, using the effectiveSize function from the coda package, we obtain

the effective sample size (ESS) for each chain in the model. Figure 5.3 shows the ESS of

the chains obtained from GeoJAGS (right column) and GeoBUGS (left column). We can see

that in terms of autocorrelation the performance of the proposed module is better than

the GeoBUGS module for almost all parameters, being comparable only for the spatial

variance effect τ 2 (again, see also Figure D.1, page 112) and the global mean µ.

Figure 5.4 displays the posterior mean of the spatial random effects described in (5.1).

Note that the range of the spatial random effects are considerably different for each

spatial module. An explanation for this divergence lies in the fact that the non-spatial

variance is greater than the spatial variance, which makes it difficult to estimate the
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Figure 5.2: Posterior sample, 95% HPD limits (dashed lines) and the posterior mean (solid horizontal
lines) of 4 parameters of the GDP per capita in Minas Gerais data set. Estimates in the left column are
from GeoJAGS and from the right column are from GeoBUGS.

spatial random effects. Another reason for this difference could be due to the fact that the

GeoJAGS module jointly samples all the spatial random effects in a single block (using the

multivariate normal distribution) whilst, based on some evidence, GeoBUGS samples from

the univariate full conditional distributions (we are not sure since it is not an open-source

software and neither is mentioned in its user manual). In fact, there will be differences

in the autocorrelation whether the parameters are sampled in block or individually and

it affects the estimates in terms of efficiency (see Mayrink and Gamerman, 2009). Since

we are dealing with a real data set and we do not know the true values of the latent

random effects, we cannot state whether GeoJAGS or GeoBUGS are correctly estimating

these effects. Aiming to investigate these different behaviors in the estimates from the

two modules, we present a simulation study in Section 5.3.

Despite the difference in the scale of the estimated random effects θi from JAGS and
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Figure 5.3: GDP data analysis. Effective sample size of posterior chains for the variance parameters (σ2

and τ2) and for 10 randomly selected spatial random effects (θi). The left bars display the ESS from
GeoBUGS and the right bars show the ESS from GeoJAGS. The horizontal dashed line indicate the chain
size (10,000 iterations).

OpenBUGS, they clearly exhibit a higher spatial effect with impact to the response variable

(GDP per capita) in some areas: the central part of Minas Gerais, where Belo Horizonte

is located; the central western zone, known as Triangulo Mineiro (an area with high

concentration of factories and agribusiness activities), and the southern portion of the

state (having agriculture, mainly coffee production, as base of its economy). On the

other hand, the northeastern region presents modest spatial random effects, as expected,

for it is known as the poorest area of the state. Again, this proposed model is simple

indeed and therefore may be improved by inclusion of some covariates such as the HDI

(human development index), rate of citizens living in the urban area of the municipalities,

education level, number of technology companies in the region, etc. By doing so the non-

spatial variance is expected to reduce, leading to better estimates (see Section 5.3.2).

5.3 Simulation study

The results from the previous section motivated a simulation study to better evaluate

the behavior of the the proposed GeoJAGS and GeoBUGS modules. The hierarchical model

to be fitted is the same as described in Section 5.2, with the only difference being the

response variable Y . Here the response is randomly generated complying with the con-

straints described in Section 5.3.1. In these simulation cases, we set the MCMC algorithm

to perform 10,000 iterations, with a burn-in period of 5,000 and lag=1, forming a poste-
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(a) (b)

Figure 5.4: Posterior mean estimates of the random effects for the GDP data obtained from: (a) GeoJAGS
and (b) GeoBUGS modules.

rior sample with size 5,000. For the computation of the effective sample sizes (explored

ahead), we considered the full chain (including the burn-in period).

5.3.1 Case 1: data variance grater than spatial variance

Here we consider σ2 � τ 2, reproducing the scenario of the real data set. Let σ2 = 340,

chosen according to the magnitude of the data variance, and τ 2 = 0.66, which is a value

within the HPD interval from GeoJAGS (see Table 5.1). The neighborhood structure

in this simulation study involves the 853 municipalities of Minas Gerais. Using the R

software, we generated:

θ ∼ N853

(
0,Σ

)
,

where 0 is a 853-dimensional null vector, Σ−1 = 1
τ2

(Dw−ρW ) with ρ = 0.9. In addition,

we set µ = 15 to generate the response Y = (Y1, . . . , Yn), with Yi ∼ N(µ + θi, σ
2). The

generated spatial random effects lie in the interval [−1.77, 1.52], and Yi ∈ [−44.76, 82.68].

With this synthetic data set, we run the model scripts in Box 5.1 and Box 5.2. The

range of the random effect posterior means is [−0.06, 0.07] from GeoJAGS and [−0.22, 0.31]

from GeoBUGS. Further, their respective mean squared errors are 0.211 and 0.218. The

chains of some parameters in this model are presented in Appendix D (page 113). The

estimated spatial random effects are shown in Figure 5.5 along with the real θ. Note that

the estimates do not convey much information regarding the original random effects. As
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Figure 5.5: Comparison between (a) synthetic spatial random effects and corresponding posterior mean
estimates from (b) GeoJAGS and (c) GeoBUGS.

mentioned before, this can be expected since the non-spatial variance effect σ2 is rather

greater than the spatial variance effect τ 2.

Table 5.2 shows the real values and the corresponding estimates from the two mod-

ules. Whilst the true value of the nonspatial variance σ2 = 340, the estimates from

both modules are approximately 351 (with similar standard deviations close to 17), how-

ever, the corresponding 95% HPD intervals contain the real value. For the remaining

parameters, the performance of GeoJAGS and GeoBUGS are similar in terms of parameter

estimation and HPD interval computation, with the main difference being related to the

HPD interval of the random effects (only estimates for the random effect θ66 is shown in

Table 5.2).

Figure 5.6 presents the ESS (based on effectiveSize function from the coda pack-

age) for the variance parameters and the ESS for 10 randomly selected spatial effects.

Real
GeoJAGS GeoBUGS

Mean (SD) 95% HPD interval Mean (SD) 95% HDP interval
µ 15.00 14.61 (0.64) 13.38 15.85 14.61 (0.64) 13.30 15.82
σ2 340 351.85 (16.89) 318.05 383.74 351.61 (16.87) 319.10 384.50
τ 2 0.66 0.64 (0.43) 0.13 1.53 0.62 (0.38) 0.13 1.53
θ66 0.01 0.01 (0.33) -0.68 0.63 -0.03 (0.43) -0.88 0.85

Table 5.2: Comparison of estimates for the two spatial modules for the simulation study with σ2 � τ2.
Only one spatial random effect is shown, representing Belo Horizonte. Standard deviations are shown
in parentheses.

70



Figure 5.6: Effective sample size of the chains for the variance parameters (σ2 and τ2) and for 10
randomly selected spatial random effects (θi). The left bars display the ESS from GeoBUGS and the right
bars the ESS from GeoJAGS. The horizontal dashed line indicates the size of the chain (5,000 iterations).

Observe that the ESS formulation allows values grater than the actual size of the posterior

chain. Overall, the figure shows that the posterior chains from GeoJAGS are considerably

less autocorrelated than those from the GeoBUGS module. Considering all parameters in

the model, the average ESS of the chains from OpenBUGS is 415 (1st qu.: 232; 3rd qu.: 496),

while from JAGS this quantity is 9,936 (1st qu.: 9,687; 3rd qu.: 10,019). Note that the pa-

rameter with the higher autocorrelation (and thus the lower ESS) is the spatial variance

τ 2.

In addition, we explore the relative bias, defined as

RB =
α̂− α
|α|

, (5.2)

for any parameter α in a model, with α being the true value and α̂ the estimated value

(without the burn-in period). This ratio can also be expressed as a percentage if multi-

plied by 100. Since the spatial random effects θi are close to zero and due to the form

of the relative bias equation, the RB for some parameters took large values (in the order

of 102). The mean RB from GeoBUGS and GeoJAGS are −0.50 (1st qu.: −1.11; 3rd qu.: 1.01)

and −0.01 (1st qu.: −1.00; 3rd qu.: 1.00), respectively. The range of relative bias from

OpenBUGS is [−259.20, 103.57] and from JAGS is [−17.65, 14.75]. Ultimately, the percent-

age of RB (in absolute value) from our proposed module that are less than those from

GeoBUGS is 55%.
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5.3.2 Case 2: data variance smaller than spatial variance

In this simulation study, we will consider that the non-spatial variance is less than the

spatial variance, i.e. σ2 < τ 2. The data generation here follows the same specification

described in Section 5.3.1, with the only difference being the values σ2 = 0.1 and τ 2 = 5.

The generated random effects lie in the interval [−4.84, 4.16], whereas Yi ∈ [9.89, 18.91].

Again, we use the softwares JAGS and OpenBUGS to run the model (scripts in Box 5.1

and 5.2). Figure 5.7 presents the spatial distribution of the true random effects along

with the estimated means from GeoJAGS and GeoBUGS modules. The range of the spatial

random effect posterior means is [−4.40, 3.48] for GeoJAGS and [−4.70, 3.64] for GeoBUGS.

Furthermore, the respective mean squared errors are 0.104 and 0.145. Note that the

proposed module gives estimates slightly closer to the synthetic data than GeoBUGS. In

addition, the spatial distribution of the random effects are very similar in both spatial

modules, resembling the original data.

The posterior means for µ, σ2, τ 2 and for one spatial random effect (θ66) are presented

in Table 5.3. The global mean µ estimated by the two modules are close to 15 (the

real value). Differently from the previous simulation case, the non-spatial variance σ2

estimated from GeoJAGS is closer to the real value 0.10 when compared with the result

from GeoBUGS. For the estimated spatial variance τ 2, only the mean estimate from our

module is close to the true value; the HPD interval from GeoBUGS does not contain the

Figure 5.7: Comparison between (a) synthetic spatial random effects and corresponding posterior mean
estimates from (b) GeoJAGS and (c) GeoBUGS modules.
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Real
GeoJAGS GeoBUGS

Mean (SD) 95% HPD interval Mean (SD) 95% HDP interval
µ 15.00 14.96 (0.10) 14.76 15.16 14.96 (0.02) 14.91 14.99
σ2 0.10 0.23 (0.07) 0.11 0.36 0.35 (0.08) 0.20 0.51
τ 2 5.00 4.83 (0.43) 3.95 5.61 3.43 (0.39) 2.72 4.23
θ66 0.03 0.05 (0.42) -0.79 0.84 0.00 (0.45) -0.83 0.94

Table 5.3: Comparison between the real values and the parameter estimates from the two spatial modules.
For simplicity, only one spatial random effect is shown (θ66), index chosen at random. Standard deviation
is shown in parentheses.

real value of this parameter. Regarding the spatial random effect, both HDP intervals

contain the true value of θ66.

Figure 5.8 shows the ESS values for the variance parameters and for 10 randomly

selected spatial effects (the indices here are the same chosen in Section 5.3.1). In this

controlled situation, we can see that the chains from GeoJAGS and GeoBUGS are similar

in effective size. Again, the parameters with the higher autocorrelation (and thus the

lower ESS) are the spatial and non-spatial variances, regardless the module used to fit

the data. Considering all parameters in the model, the average ESS of the chains from

OpenBUGS is 7,459 (1st qu.: 5,497; 3rd qu.: 9,413), while from JAGS the average is 7,727

(1st qu.: 5,489; 3rd qu.: 10,000). Clearly, both modules present similar performance in

terms of effective size of the chains, differently from the case when σ2 � τ 2, which

GeoJAGS shown a better performance than GeoBUGS (see again Figure 5.6).

Figure 5.8: Effective sample size of the chains for the variance parameters (σ2 and τ2) and for 10
randomly selected spatial random effects (θi). The left bars display the ESS from GeoBUGS and the right
bars the ESS from GeoJAGS. The horizontal dashed line indicates the size of the chain (10,000 iterations).
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In addition, we compute the relative bias as defined in (5.2) for each parameter

in the model. The range of relative bias from GeoBUGS is [−108.97, 73.82] and from

GeoJAGS is [−85.96, 73.78]. The mean RB when using GeoBUGS and GeoJAGS are 0.22

(1st qu.: −0.28; 3rd qu.: 0.36) and 0.03 (1st qu.: −0.23; 3rd qu.: 0.32), respectively.

Ultimately, the percentage of RB (in absolute value) from our proposed module that are

less than those from GeoBUGS is 67%.

5.4 Execution times

Currently, when the number of regions is large (in our simulation cases, n = 853), the

execution time of our proposed implementation of the CAR model is larger than that

of GeoBUGS. For the simulation case presented in Section 5.3.1, the OpenBUGS script run

in 21.90 seconds, while in JAGS took 10,408.07 seconds in a Ubuntu 16.04 machine with

Intel Core i7-3770 x8 processor and 8GB memory. In Section 5.3.2, the execution time

from the GeoBUGS module was 22.13 seconds and from GeoJAGS was 10,996.04 seconds

using the same machine. This is due to the fact that we use the multivariate normal

distribution together our CAR matrix function (computing the precision matrix). The

implementation of the dmnorm sampler performs the eigen-decomposition of the precision

matrix (see Section 3.4.2) in every iterate of the MCMC algorithm. Such task is time

consuming.

Despite the time taken, the chains produced by our proposed model are less auto-

correlated due to blocking sampling. Again, based on some evidences, we believe that

the GeoBUGS CAR function samples individually from all full conditional posterior distri-

butions, which reduces both the execution time and the the effective sample size of the

chains. Thus, in this case, the JAGS user shall consider the loss in terms of computational

speed and the gain in quality of estimated, as previously shown in the simulation studies.

Also, taking into account the simpler script needed to implement the CAR model in JAGS

than that needed in OpenBUGS.

We are already working on improvements in the CAR implementation for the GeoJAGS

module that can drastically reduce the execution time of the CAR model in our proposed
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module. Again, some details about this can be found in Section 3.4.2 and Appendix B.
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Chapter 6

Using GeoJAGS with real data sets

The main motivation of this work is to simplify spatial statistics modeling in a hierarchical

Bayesian approach using JAGS. In this chapter, we present two real applications from

different research areas: climatology and medical science. It is important to emphasize

that we are not proposing any new modeling strategy here. The idea is to show how the

GeoJAGS module can be used in different applications. Section 6.1 presents climate data

from the north region of Brazil, where part of the Amazon rain forest is located. The

main focus will be on performing prediction on temperature and precipitation at arbitrary

locations for which no information is available within the region. Finally, we conclude

this chapter in Section 6.2 with an application on the survival of patients diagnosed with

acute myeloid leukemia in northwest England.

6.1 A study on the Brazilian North region climate

The Amazon is a vast region that spans across eight countries (Brazil, Bolivia, Peru,

Ecuador, Colombia, Venezuela, Guyana, Suriname and French Guiana). According to

World Wild Life (2017), its landscape contains one in ten known species on Earth, half of

the planet’s remaining tropical forests, 4,100 miles of winding rivers, 2.6 million square

miles in the Amazon basin. There is a clear link between the health of the Amazon and

the health of the planet, since the rain forests help stabilize local and global climate.

Deforestation may release significant amounts of carbon, which could have catastrophic
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(a) (b)

Figure 6.1: Map of Brazil with (a) its geopolitical division into five regions and (b) the North region
additionally showing the location of the meteorological stations in this region.

consequences around the world.

The Brazilian Amazon is mainly located in the north region, the largest region of

Brazil, corresponding to 45% of the national territory. Information regarding the weather

in the country is provided by the Brazilian National Institute of Meteorology (Instituto

Nacional de Metereologia, INMET), see INMET (2017). Its database, named BDMEP

(acronym for meteorological database for teaching and research), stores daily meteoro-

logical measurements of the various conventional weather stations in the INMET stations

network. The atmospheric variables available for consultation are: precipitation in the

last 24 hours, dry-bulb temperature1, wet-bulb temperature2, maximum temperature,

minimum temperature, relative humidity, atmospheric pressure at station level, insola-

tion, and direction and wind speed.

We will retain our attention to temperature and precipitation measurements taken

in the north region of Brazil. Section 6.1.1 presents a hierarchical spatial model for the

precipitation and Section 6.1.2 investigates the temperature. Figure 6.1 presents the

geopolitical division of Brazil into five regions and the north region with the marked lo-

cations of the INMET’s 41 meteorological gauges. Note that the gauges are not regularly

distributed throughout the space and the total number of stations is small given the area

of the region (3,853,676.9km2). Therefore, we aim to predict precipitation amounts and

1The dry-bulb temperature is the temperature of the air measured by a thermometer freely exposed
to the air, but shielded from radiation and moisture.

2The wet-bulb temperature is the lowest temperature which may be achieved by evaporative cooling
of a water-wetted (or even ice-covered), ventilated surface.
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the average temperatures at arbitrary locations over the map.

Although the BDMEP database is available in the INMET’s website, some effort

is required to get and manipulate the data before fitting any statistical model. The

procedure for extracting the data from the website is as follows: 1) log in into the

system (after creating an account); 2) choose the atmospheric variables and the time

span accordingly; 3) a map of Brazil will be displayed with all stations; 4) in that map,

click on the desired station, then select the option for downloading the data and finally

download the generated text file; 5) repeat this procedure to obtain the data from each

station (in our case, 41 stations). In order to eliminate this tiresome work, we have used

the R package rvest (see Wickham, 2016), which enables us to simulate a session in the

web browser and automatically perform the numerous steps needed to download the data

from all 41 meteorological stations. In addition, we manipulated the obtained text files

using the dplyr package (see Wickham et al., 2017).

Before discussing the Bayesian models for prediction, we describe the approach used

to visualize the resulting estimates. When willing to construct a smooth map of predic-

tions, the number of locations to predict must be large, due to size of the study area.

However, this fact makes the JAGS model very inefficient, since we specify a multivariate

normal distribution for a vector parameter and, as stated before, sampling from this dis-

tribution is time consuming when the number of regions is large. Thus, we need to specify

the number of points for prediction taking into account a threshold between execution

Figure 6.2: Voronoi diagram for the Brazilian north region with the grid of points for prediction of
precipitation and temperature.
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time and smoothness of the resulting map. In our models, we will predict precipita-

tion amounts and average temperatures on 301 points of a regular grid within the north

region. The estimates for these locations will be shown in a Voronoi diagram (Auren-

hammer, 1991, see), which is a partitioning of a plane into regions based on distance to

points in a specific subset of the plane. That set of points (the locations for prediction)

is pre-specified. For each point si in that set, there is a corresponding region consisting

of all points closer to si than to any other point in the grid. Thus, each Voronoi region

will receive color related to the value predicted in that location. In R, we have used the

functions provided by the deldir package (see Turner, 2017) to produce Figure 6.2.

6.1.1 Modeling precipitation

Let Yobs,i = Y (sobs,i) be the total precipitation (in millimeters) of the station located at

sobs,i (i = 1, . . . , n = 41). We will analyze the model in two different periods of time,

namely the “rainy month” and the “driest month”, March and September, respectively,

of the years 2006 and 2016. As a baseline for comparison of the predictions, consider the

maps provided by CPRM (2017); see Appendix D. These maps were build considering

precipitation measurements between the years 1977 and 2006 and the data is provided in

maps of monthly averages. Thus we decided to analyze precipitation in 2006 and after

a ten year period, in 2016. We are interested in modeling the geographic distribution of

rainfall in northern Brazil using the hierarchical Bayesian approach. It is important to

remark that the models presented here are not spatio-temporal models. The same model

is used to fit the data from different periods of time.

In total, there are 41 stations in the system, however some of them have missing

values. In the years of 2006 and 2016, there are records of precipitation amount in

40 and 38 meteorological stations, respectively, ranging from 0.4mm to 757.5mm in the

month of March. Considering September, the data set contains information about 40 and

37 gauges in the years of 2006 and 2016, respectively. The range of the measurements is

[1.40, 252.52]mm.

It is clear that the response variable can only take non-negative values. In addition,

the data has an asymmetric heavy-tailed distribution in the right tail. Thus we consider
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the following model:

Yobs,i | µobs,i, α ∼ Ga(α, α/µobs,i), (6.1)

where µobs,i = µ(sobs,i) = exp{β0 +β1sobs,i1 +β2sobs,i2 +β3sobs,i3 +ωobs,i}, sobs,i1, sobs,i2 and

sobs,i3 are the latitude, longitude and elevation of the observed station, respectively. In

addition, α > 0 is the shape parameter of the distribution, and this specification defines

the gamma-distributed variable to have mean µobs,i and variance µ2
obsi

/α. The random

effects ωobs,i will be discussed ahead in this section.

To the best of our knowledge, we emphasize that currently it is not possible to fit

spatial models with non-Gaussian response variables using the GeoBUGS module. How-

ever, by using the proposed module, we are able to execute this Gamma model through

JAGS. This is another contribution of our work.

In the north region, the latitude ranges from S13◦20′ to N4◦22′, while the longitude

ranges from W73◦15′ to W46◦50′, and the elevation is in the interval [−14.05, 1,235.76]m.

Since the covariates are introduced in the exponential function and due to their mag-

nitude, we adjusted their values by dividing latitude, longitude and elevation3 by 100.

This adjustment was made after observing computational issues and some coefficient be-

ing estimated close to zero. The real impact of this modification in the estimation of

the βi coefficients is only seen in the scale of the estimated values, which will have their

values multiplied by 100.

We will perform prediction on a regular grid that contains m = 301 points throughout

the north region. They all have their geographical coordinates and elevation measure-

ments available. These points were obtained using the R package sp (see Pebesma and

Bivand, 2005). The function spsample regularly samples locations within a polygon (the

shape of the study region), given the desired number of points, in our case we consider

300. This function yields a grid having approximately the pre-specified number of loca-

tion, that is the reason we have 301 points instead of exactly 300. For each location,

3We are aware of the high mountains in the further north part of the study region, specially those
in the Roraima state. In this case, we considered applying the logarithmic function to the elevation
measurements in order to reduce their scale. We fit the data considering this new scale (log). However,
the resulting estimates did not show a considerable difference if compared to the estimates given from
the model which considers the elevation dhivided by 100.
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we collected its elevation measurement from Google’s database by using the googleway

package (see Cooley, 2017).

The aim is to predict the response at these locations given the observed data

Y1, . . . , Yn. Let Y = (Yobs,1, . . . , Yobs,n)> be the n-vector containing the observed val-

ues, with Yobs,i being as defined in (6.1), and Ypre = (Ypre,1, . . . , Ypre,m)> be the m-vector

with the responses to be predicted. We assume:

Ypre,i | ωpre,i,β ∼ Ga(α, α/µpre,i), i = 1, . . . ,m

Ω = (Ωobs,Ωpre) ∼ Nn+m(0,Σ(θ))
(6.2)

where µpre,i = exp{β0 + β1spre,i1 + β2spre,i2 + β3spre,i3 + ωpre,i}, β = (β0, β1, β2, β3)>

is the vector of regression coefficients, Ω = (ωobs,1, . . . , ωobs,n, ωpre,1, . . . , ωpre,m)> is a

vector containing both observed and unobserved spatial random effects, and Σ(θ) is

the covariance matrix. In this model, we will adopt the Gaussian covariance function,

thus θ = (σ2, τ 2, φ). The reason for such choice of covariance structure is due the fact

that it is smooth and perhaps the most popular. Similar response values are expected

in nearby locations when using a smooth covariance function. In addition, the prior

specifications are:

α ∼ Ga(aα, bα), φ ∼ Ga(aφ, bφ), σ2 ∼ IG(aσ, bσ), β ∼ N4(Mβ, Vβ).

We chose a vague prior for α by setting aα = 1, and bα = 1/8, which gives mean 8 and

variance 64. We also set aφ = bφ = 0.1, which provides E(φ) = 1 and Var(φ) = 10.

For σ2, we choose aσ = 2.1 and bσ = 1.1, providing an inverse-gamma distribution with

mean 1 and variance 10. Finally, for the vector of coefficients we chose Mβ = 0 and

Vβ = 10I4.

The JAGS script for this hierarchical model is in Box 6.1. Note that the prediction is

performed in the same manner as described in Section 4.5. In line 16, we use the Gaus-

sian exponential function from the GeoJAGS module, considering the powered exponential

function with p = 2 (alternatively, one may use the CVGaussian function, an encapsu-

lation of the Gaussian covariance structure, since it is a particular case of the powered
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Box 6.1: JAGS script for the precipitation data.

1 m o d e l {
2 for ( i in 1 : Nobs ) {
3 Y[ i ] ~ d g a m m a ( alpha , eta [ i ] )
4 mu[ i ] < - exp ( b e t a [ 1 ] + b e t a [ 2 ] * c o o r d s [ i , 1 ] + b e t a [ 3 ] * c o o r d s [ i , 2 ] + b e t a [ 4 ] * a l t [ i ] + w[ i ] )
5 eta [ i ] < - alpha /mu[ i ]
6 }
7 for ( i in 1 : Npred ) {
8 Y. pred [ i ] ~ d g a m m a ( alpha , eta [ Nobs+i ] )
9 mu[ Nobs+i ] < - exp ( b e t a [ 1 ] + b e t a [ 2 ] * c o o r d s [ Nobs+i , 1 ] + b e t a [ 3 ] * c o o r d s [ Nobs+i , 2 ]

10 + b e t a [ 4 ] * a l t [ Nobs+i ] + w[ Nobs+i ] )
11 eta [ Nobs+i ] < - alpha /mu[ Nobs+i ]
12 }
13 alpha ~ d g a m m a ( a _ alp , b_ alp )
14 w[ 1 : ( Nobs+Npred ) ] ~ dmnorm(mu.w, Omega .w)
15 b e t a ~ dmnorm(mu. beta , Omega . b e t a )
16 Sigma < - CVPowerExp( coords , s ig2 , phi , tau2 , 2)
17 Omega .w < - i n v e r s e ( Sigma )
18 inv . s i g 2 ~ d g a m m a ( a _ inv . s ig2 , b_ inv . s i g 2 )
19 s i g 2 < - 1 / inv . s i g 2
20 phi ~ d g a m m a ( a _phi , b_ phi )
21 }

exponential function). Recall that the parameter tau2 is the non-spatial variance effect

of the model, but the shape parameter α (alpha in the model script) is also responsible

for accommodating the non-spatial variance, therefore tau2 is set to be zero. We set the

burn-in period with 100,000 iterations and lag=50 providing a chain with 1,000 values.

The posterior mean of the four studied months are shown in Figure 6.3, using the

Voronoi diagram with the 301 predicting locations. In the first row, we show the esti-

mates for the historically rainier month, March 2006 and 2016, (Figure 6.3 (a) and (b),

respectively). In the former, the direction from central to east region presents the pattern

of increasing precipitation amounts, whereas the northernmost and further west presents

the least precipitation estimates. This result is in accordance with the map shown in

Figure D.3a (page 114), a map that presents the monthly mean precipitation amount

considering measurements taken between the years 1977 and 2006. In March 2016, the

highest estimated values seems to follow the Madeira river waterway. This is one of the

biggest tributaries of the Amazon river, accounting for about 15% of the water in the

basin (see Amazon Waters, 2018). Again, the southeast area also has higher estimates,

although the values are lower than those from March 2006. The second row presents

estimates for September, the historically driest month in that region for years 2006 and

2016.

In the 2006–07 period, the Earth experienced a weak El Niño event, whereas in the

period between 2015 and 2016, another El Niño event was registered, being considered
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(a) (b)

(c) (d)

Figure 6.3: Voronoi diagram of the posterior mean estimates for the monthly precipitation (in millime-
ters) in the north region: (a) March 2006, (b) March 2016, (c) September 2006, and (d) September
2016.

a very strong climate event, according to National Oceanic and Atmospheric Adminis-

tration, see NOAA (2018). The impact of this event varies across the world. When this

event happens, there is a reduction in the amount of rain fall in some areas of the Amazon

forest, especially those located further to the north and also to the east. This fact can be

observed in the first row of Figure 6.3: considering the estimates, March 2016 was drier

than March 2006. Meanwhile, the month of September showed a similar pattern in both

years. Overall, the two maps match the pattern displayed in Figure D.3b (page 114),

with a driest portion being located in the central-eastern region.

6.1.2 Modeling temperature

Now we consider the measurements of the mean temperature in the 41 meteorologic

stations. We believe there is association between temperature and pluviometric mea-
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Box 6.2: JAGS script for the temperature data.

1 m o d e l {
2 for ( i in 1 : Nobs ) {
3 Y[ i ] ~ d n o r m (mu[ i ] , prec . y )
4 mu[ i ] < - b e t a [ 1 ] + b e t a [ 2 ] * c o o r d s [ i , 1 ] + b e t a [ 3 ] * c o o r d s [ i , 2 ] + b e t a [ 4 ] * a l t [ i ] + w[ i ]
5 }
6 for ( i in 1 : Npred ) {
7 Y. pred [ i ] ~ d n o r m (mu[ Nobs+i ] , prec . y )
8 mu[ Nobs+i ] < - b e t a [ 1 ] + b e t a [ 2 ] * c o o r d s [ Nobs+i , 1 ] + b e t a [ 3 ] * c o o r d s [ Nobs+i , 2 ] + b e t a [ 4 ] * a l t [ Nobs+i ]

+ w[ Nobs+i ]
9 }

10 w[ 1 : ( Nobs+Npred ) ] ~ dmnorm(mu.w, Omega .w)
11 b e t a ~ dmnorm(mu. beta , Omega . b e t a )
12 Sigma < - CVPowerExp( coords , s ig2 , phi , tau2 , 2)
13 Omega .w < - i n v e r s e ( Sigma )
14 inv . s i g 2 ~ d g a m m a ( a _ inv . s ig2 , b_ inv . s i g 2 )
15 s i g 2 < - 1 / inv . s i g 2
16 phi ~ d g a m m a ( a _phi , b_ phi )
17 prec . y ~ d g a m m a ( a _y , b_y )
18 nu2 < - 1 / prec . y
19 }

surements explored in the previous section. Thus, we also analyze the model in two

different periods of time, namely the “rainy month” and the “driest month” of the years

2006 and 2016.

Missing values are also registered for this data set. There are less missing values for the

minimum average temperature, therefore we decided to model this variable instead of the

maximum average temperature. In fact, the behavior of these two variables is the same,

with the difference between them being their magnitude. In March, there are records

on minimum average temperature in 40 and 37 meteorological stations, respectively,

ranging from 19.37◦C to 26.41◦C in the years of 2006 and 2016. For September, the data

set contains information about 41 and 36 gauges in 2006 and 2016, respectively. The

range of the measurements is [19.93, 26.93]oC.

The histogram of the observed data suggests a symmetric distribution for the response

in the model. In addition, given the absence of constraints on the parameter space of

the response variable, we set temperature to be normally distributed, unlike the model

of precipitation. Let

Yobs,i | µobs,i ∼ N(µobs,i, ν
2), (6.3)

where µobs,i = β0 +β1sobs,i1 +β2sobs,i2 +β3sobs,i3 +wobs,i, with sobs,i1, sobs,i2 and sobs,i3 being

the latitude, longitude and the elevation of the station sobs,i, respectively. Differently from

the model for precipitation, this model can also be executed using GeoBUGS, however, the

results presented here are from the GeoJAGS module.
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(a) (b)

(c) (d)

Figure 6.4: Voronoi diagram with posterior mean estimates for monthly precipitation (in Celsius degrees)
in North region for (a) March 2006, (b) March 2016, (c) September 2006 and (d) September 2016.

The locations for predicting the response variable are the same m = 301 used in the

previous section. We aim to predict the response (minimum average rainfall amounts)

at these locations given the observed data Y1, . . . , Yn. The specification of the prediction

vector is the same as in (6.2), except for the fact that the response variable is normally

distributed, as can be seen in the corresponding JAGS script in Box 6.2. The prior

specifications for the common parameters are the same as in the previous section and

we set 1/ν2 ∼ G(aν , bν) with aν = bν = 0.1 (we are adopting this prior for precision,

see Box 6.2, line 17). The MCMC configuration is the same as in the previous section:

burn-in period of 100,000 iterates, thinning rate of 50 and final chain size of 1,000.

The Voronoi diagrams with the 301 locations and their corresponding predicted mini-

mum temperature values are exhibited in Figure 6.4. In the first row, panels (a) and (b),

we show the estimates for the historically rainier month, March 2006 and March 2016.

In the former, the central north part and the northeastern region presents the high-
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est predicted values. In the latter, the prediction was smoothed throughout the region

with higher estimates than the former. Regarding September 2006, in the second row,

the estimated minimum temperature follows a similar pattern as shown in March 2006.

September 2016 presents lower estimates for the farthest west area and an increase in

the estimated minimum temperature can be noted as we move from the southwest to the

northeast, in general presenting higher estimates for the minimum average temperature.

As mentioned in Section 6.1.1, 2016 was a year with a very strong El Niño event. The

impact of the event is a decreasing in precipitation, and thus, it is expected to present

higher temperatures. This pattern is observed in Figure 6.4: in general, the year 2016

was warmer and drier than 2006.

6.2 Leukemia survival data

Several fields of statistics can make use of spatial modeling and survival analysis is one

of them. Survival analysis aims to investigate the expected duration of time until an

event of interest happens, such as failure in mechanical systems or death in biological

organisms, see Lawless (2011). It is widely used in medical applications to model the

survival prognosis of patients with a potentially fatal medical condition. A peculiarity of

survival data is the presence of incomplete observations, called censoring, and a crucial

issue of this field is building models that accommodate censoring. Here we will consider

the right-censoring case (the most commom censoring in practice), when some time-to-

event outcomes are not observed, but are known to be greater than the observed times.

With the GeoJAGS module, the user is not restricted to model data with this type of

censoring, since we are modeling the (latent) spatial random effects separately from the

response variable.

In survival analysis, random effects of different types can be introduced in the model

by a frailty term. It is often of interest to consider that dependence between locations in

space play an important role to explain the time response. In this case, we can include

spatial random effects in the survival model through the frailties.

Spatial random effects included in survival models are usually intended to represent
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different spatially arranged clusters, such as geographical regions. In this case, we believe

that random effects corresponding to regions close to each other might be comparable

in magnitude. Let tij be the time to death or censoring for individual j in cluster i,

(j = 1, . . . , ni, i = 1, . . . , D) and let xij be the vector of covariates for individual j in

cluster i.

In a proportional hazards model, the unique effect of a unit increase in a covariate

is multiplicative with respect to the hazard rate. The usual assumption of proportional

hazards enables models of the form

h(tij;xij) = h0(tij) exp
(
β>xij

)
,

where h0(·) is the baseline hazard, which can be parametrically or non-parametrically

modeled, and β is the vector or regression coefficientes. Following Banerjee et al. (2004),

when using the frailty setting, the proportional hazards model above is extended to

h(tij;xij) = h0(tij) exp
(
β>xij +Wi

)
, (6.4)

where Wi is the cluster-specific frailty term. Note that the Wi (i = 1, . . . , D) are not

observed, but a latent variable included in the model to explain an underlying spatial

variation. The simple specification for the random effects is Wi
iid∼ N(0, σ2), however we

consider the case which the random effects are not independent.

Let us consider the records on the survival of acute myeloid leukemia in n = 1,043 pa-

tients in northwest England, recorded between 1982 and 1998. This data set is explored

in Henderson et al. (2002) and Zhou and Hanson (2017). These records are named as

LeukSurv in the spBayesSurv package (see Zhou et al., 2017), a R package for imple-

menting Bayesian spatial survival models. It is of interest to investigate possible spatial

variation in survival after accounting for known covariates, including age, sex, white

blood cell count (wbc) at diagnosis (truncated at 500 units, with 1 unit =50 × 109/L)

and the Townsend score (tpi) for which higher values indicate less affluent areas, with

a range from -7 to 10. The median survival time is just over 6 months. As both exact

residential locations of all patients and their administrative districts are available, we can
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fit two models using the geostatistical and areal model approaches.

In the literature, a variety of parametric forms are used for the baseline hazard h0,

such as gamma, lognormal and Weibull. As shown in Banerjee et al. (2004, p. 302),

adopting the Weibull baseline hazard function in (6.4) produces

h(tij;xij) = νtν−1
ij exp

(
β>xij +Wi

)
.

Further, setting priors distributions for ρ, β and a distribution for the vector of random

effects W = (W1, . . . ,WD)> completes the Bayesian hierarchical model specification.

The joint posterior distribution of interest is

p(β,W , ν,θ|t,x,γ) ∝ L(β,W , ν,θ; t,x,γ) p(W |θ) p(β) p(ν) p(θ), (6.5)

where the first term in the right-hand side is the Weibull likelihood, the second one is the

joint distribution of the random effects, θ is the vector indexing the distribution of the

random effects, and the remaining terms are the prior distributions. For this application

our choices of priors are based on Henderson et al. (2002) and Zhou et al. (2017), setting

a vague independent Gaussian specification for β (details ahead in the text). In addition,

we will consider forW two different approaches: distance-based and neighborhood-based

spatial models. In (6.5), let t = {tij}, x = {xij} and γ = {γij} denote the collections

of times to death, covariate vectors and death indicators (e.g. censored=0, dead=1),

respectively, for the subjects in all clusters.

Distance-based spatial model

In this model setting, we consider the following joint distribution for the frailties:

W|Σ(θ) ∼ ND

[
0,Σ(θ)

]
,

where θ = (σ2, φ, p) and Σ is the powered-exponential covariance matrix, as suggested

in Henderson et al. (2002, p. 967). Again, as stated in Section 2.2.1, σ2 is the spatial

variance effect and 1/φ is the range parameter (the distance at which the covariance
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Box 6.3: JAGS script for the distance-based model.

1 m o d e l {
2 for ( i in 1 : n) {
3 is . censored [ i ] ~ d in t e r v a l ( t [ i ] , c [ i ] )
4 t [ i ] ~ dweib ( rho . h0 , lambda [ i ] )
5 lambda [ i ] < - exp ( b e t a [ 1 ] + b e t a [ 2 ] * age [ i ] + b e t a [ 3 ] * sex [ i ]
6 + b e t a [ 4 ] * wbc [ i ] + b e t a [ 5 ] * tp i [ i ] + w[ d i s t r i c t [ i ] ] )
7 }
8
9 w[ 1 : D ] ~ dmnorm(mu.w, Omega .w)

10 Omega .w < - i n v e r s e ( Sigma )
11 Sigma < - CVPowerExp( coords , s i g 2 .w, phi .w, 0 , 1 . 5 )
12 inv . s i g 2 ~ d g a m m a ( 2 . 0 1 , 1 . 01 )
13 s i g 2 .w < - 1 / inv . s i g 2
14 inv . phi ~ d g a m m a ( 2 . 0 1 , 1 . 01 )
15 phi .w < - 1 / inv . phi
16
17 b e t a ~ dmnorm(mu. beta , Prec . b e t a )
18 rho . h0 ~ d g a m m a ( 0 . 0 1 , 0 . 01 )
19 }

between two points vanishes).

The script in Box 6.3 presents the JAGS model for this data set using the covariance

function from our module. We describe the parameters in the model in the order they

appear in the script. Censoring is handled in JAGS using the dinterval(t[i], c[i])

distribution and the right-censored survival model is set as follows: when the failure

time is uncensored then ti is observed and the censoring indicator is.censored[i] is

zero (this vector must be passed as data in the JAGS script); when the failure time is

right-censored (i.e. we only know that ti > ci) then ti is unobserved (a missing value)

and the censoring indicator is.censored[i] is one.

The observed times are set to follow a Weibull distribution with shape ν and rate

λi. As the covariate values are part of the term in the exponential function, some scale

adjustments were made to avoid numerical problems. These modifications were made

considering the scale and the shape of the covariates values: the age (in years) was divided

by 100; the tpi, that lies in the interval [−6.09, 9.55], was divided by 10; and for the wbc,

we considered log(wbc + 1), due to its range (from 0 to 500) and its asymmetry (median:

7.90, mean: 38.65). In addition, the observed/censored times (in days) were divided by

30 (transformed to months), which will only modify the scale parameter ρ of the Weibull.

In this model, the individuals within the same district shares common frailty terms.

The powered exponential covariance function is assumed with p = 1.5, as suggested in

Henderson et al. (2002). Note that this model does not include the non-spatial variance

τ 2, therefore, the fourth argument in the CvPowerExp corresponding to this parameter
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Box 6.4: JAGS script for the neighborhood-based model.

1 m o d e l {
2 for ( i in 1 : n) {
3 is . censored [ i ] ~ d in t e r v a l ( t [ i ] , c [ i ] )
4 t [ i ] ~ dweib ( rho . h0 , lambda [ i ] )
5 lambda [ i ] < - exp ( b e t a [ 1 ] + b e t a [ 2 ] * age [ i ] + b e t a [ 3 ] * sex [ i ]
6 + b e t a [ 4 ] * wbc [ i ] + b e t a [ 5 ] * tp i [ i ] + w[ d i s t r i c t [ i ] ] )
7 }
8 w[ 1 : D ] ~ dmnorm(mu.w, precMatrixCAR(AdjMat , rho . car , inv . s i g 2 ) )
9 inv . s i g 2 ~ d g a m m a ( 2 . 0 1 , 1 . 01 )

10 s i g 2 < - 1 / inv . s i g 2
11 rho . car < - 0 .999
12
13 b e t a ~ dmnorm(mu. beta , Prec . b e t a )
14 rho . h0 ~ d g a m m a ( 0 . 0 1 , 0 . 01 )
15 }

is set to be 0. The parameters σ2 and φ follow an inverse-gamma, with mean 1 and

variance 100. The vector of coefficients is multivariate-normally distributed with mean

0 and covariance matrix 100I5. Ultimately, the Weibull’s shape parameter follows a

gamma distribution with mean 1 and variance 100.

Neighborhood-based spatial model

In this case, we consider the CAR distribution for the frailty terms using a binary prox-

imity matrix to indicate the first-order neighbors of each region. Box 6.4 shows the model

script using the GeoJAGS. we set the parameter ρ = 0.999, since Zhou et al. (2017) suggest

the improper CAR distribution and the proposed implementation of GeoJAGS is based

on the proper CAR. In addition, σ2 ∼ IG(2.01, 1.01), which gives an inverse-gamma dis-

tribution with mean 1 and variance 100. The specifications for the remaining parameters

are the same as defined in the distance-based model.

The posterior estimates

In this application we consider the following MCMC configuration: burn-in = 200,000

iterations, lag = 10 and final chain size of 1,000. Here, we do not aim to perform

model selection, instead our goal is to present results using our module, and show how

it simplifies the modeling of spatial survival data in JAGS.

Together with the posterior mean of the coefficients from GeoJAGS, we present in Ta-

ble 6.1 the results of a similar neighborhood-based CAR model from spBayesSurv. It

is important to remark that spBayesSurv implements the transformed Bernstein poly-
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Covariates
Neighborhood-based model Distance-based

model (JAGS)
spBayesSurv GeoJAGS

Age β1 0.048 (0.003) 0.032 (1.368) 0.032 (0.991)
Sex β2 0.124 (0.111) 0.062 (0.217) 0.070 (0.221)
WBC β3 0.004 (0.001) 0.069 (0.070) 0.068 (0.068)
Townsend β4 0.054 (0.016) 0.024 (0.022) 0.022 (0.021)
Spatial variance 0.269 (0.105) 0.213 (1.650) 0.981 (0.714)

Table 6.1: Comparison of the posterior means for the coefficients and the spatial variances from GeoJAGS

and spBayesSurv. The last column shows the distance-based model considering a Gaussian covariance
structure using GeoJAGS. Standard deviations in parentheses.

nomial (BP) prior for the baseline hazard function, in which we can set the centering

distribution to be the Weibull, loglogistic or lognormal. As we aim the comparison be-

tween the mean estimates, we set the Weibull as the centering distribution for the BP.

For the CAR model, the posterior mean coefficients and variances are similar using both

softwares, except for the sex coefficient β2, being estimated by spBayesSurv as approxi-

mately the double of the estimates from GeoJAGS. The spBayesSurv does not implement

distance-based models, thefore we cannot compare with the corresponding results from

GeoJAGS, even though the estimates of the neighborhood-based case are similar to those

from the CAR modeling. Note that the model with greater spatial variance estimate is

the distance-based model. Standard deviations from GeoJAGS are slightly greater in both

distance- and neighborhood-based models than those from the R package.

Figure 6.5 shows the estimated mean district frailties for the neighborhood-based

model using spBayesSurv and GeoJAGS. The spatial arrangement of frailties are similar,

showing a higher frailty effect with impact to the response variable in the northern and

in the central part of the study area, indicating possible clusters in these regions.

Finally, considering the MCMC specifications described above, these models were ex-

ecuted in a Ubuntu 16.04 machine with Intel Core i7-3770 x8 processor and 8GB memory.

The time taken to run the CAR model and the distance-based model using GeoJAGS was

16.57 minutes and 36.77 minutes, respectively, whereas using the spBayesSurv package

took 512.90 minutes. Note that the computational times are considerably different, but

there are differences in the compared models, as stated before.
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(a) (b)

Figure 6.5: Posterior means of frailties for the neighborhood-based model from (a) spBayesSurv package
and (b) GeoJAGS module.
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Chapter 7

Conclusion and future work

The study presented in this document was motivated mainly by Wabersich and Vandek-

erckhove (2014), which can be seen as a short tutorial on how to implement a new JAGS

module with univariate functions and distributions. The central topic explored in our

research is spatial modeling and we have focused our attention on point-referenced and

areal data. There is no spatial module in JAGS to build and handle the (sometimes

complicated) covariance functions required in geostatistical models and the covariance

matrix required in the CAR model. In fact, there is no spatial module in JAGS to work

with any spatial data; including areal data and point-pattern data. The main goal of

our study was to implement a JAGS module for a spatial analysis. Again, it is important

to highlight the fact that the BUGS family of softwares (WinBUGS, OpenBUGS) and JAGS

consist of attractive tools to work with the MCMC Gibbs Sampling widely used to fit a

Bayesian model. The main advantage of them is the fact that only the likelihood and the

prior distributions are necessary when defining a model script (no need to implement the

posterior full conditionals). This represents a major step to attract researches interested

in the Bayesian analysis, but not willing to learn or spend time with calculations and the

full implementation of the MCMC algorithm. As mentioned above, the lack of a spatial

module in JAGS makes this option less attractive than OpenBUGS and WinBUGS, since the

two latter have the GeoBUGS module.

At this point of our research, we have implemented a JAGS module with twelve covari-

ance functions to be used for a point-referenced data analysis. Some of these functions
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are complex and would demand a great effort to be implemented in a JAGS script; for ex-

ample the Matérn class involving the modified Bessel function. In addition, the proposed

module offers an approach to use the CAR distribution for areal data analysis, computing

the precision matrix for the user. During the development period, we have realized that

JAGS modules can be created only with functions, i.e. there is no need to add a routine to

sample from certain distribution in order to build a valid module. This can be considered

a contribution of our work since the tutorial in Wabersich and Vandekerckhove (2014)

does not mention this aspect.

The covariance functions in the proposed module were tested using a simple geostatis-

tical data set found in the literature (the elevation data). We have compared the estimates

via JAGS with those from likfit function of the package geoR; note that likfit is based

on the frequentist inference through maximum likelihood estimation. The idea here is

that the frequentist results are well established in the literature, thus we have used them

as a reference to check if the new module is working properly. As expected, all results

from JAGS are close to the corresponding values from likfit (confirming the accuracy

of the implementation). Furthermore, using the same elevation data set we presented an

application involving predictions at arbitrary locations. The results obtained by GeoJAGS

module were compared with those from GeoBUGS module and the frequentist approach

using the likfit function, indicating a similar performance in terms of predictions by

the two modules.

Our proposed CAR matrix function was tested using the gross domestic product data

in the municipalities of Minas Gerais state in Brazil. We have compared the estimates

from JAGS with those from OpenBUGS. Overall, in terms of effective sample size, the chains

from GeoJAGS had a better performance than those from GeoBUGS. The random effects

estimated by the two modules were considerably different in magnitude. Since it was a

real scenario, the true values of the latent parameters are unknown. This fact motivated

us to develop two simulation cases in order to compare the estimates provided by the two

spatial modules. We came to a conclusion that although GeoJAGS takes a longer time

to perform the computations than GeoBUGS, the former gave better estimates than the

latter. The chains from the proposed module were less autocorrelated than those from
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GeoBUGS in the case which the data variance is large than the spatial variance. When

the spatial variance was set to be greater than the non-spatial variance, both modules

shown a similar performance in terms of ESS.

Once the proposed module was validated, we illustrated the usage of GeoJAGS in two

data sets from different research areas (climatology and medical science). Here, we have

not proposed any new model, the main aim is to show how the GeoJAGS module can be

used to simplify the task of modeling spatially correlated data. In addition, we showed

that with the proposed module, the user is able to fit spatial data coming from other

distribution than the Gaussian (as the Gamma, in Section 6.1.1).

Overall, our module arises as a compelling alternative for implementing a Bayesian

hierarchical model. There is no module that provides a wide range of covariance functions

for point-referenced data in neither BUGS or JAGS. In the comparison study presented in

Section 4.5, the GeoJAGS module had a better performance than OpenBUGS in terms of

execution time. A considerable contribution of our work is the implementation of the

Matérn covariance structure, allowing the users to take advantage of the properties of

this function in their Bayesian modeling. Regarding areal data, we provide a simple

approach to introduce the CAR distribution in any JAGS script. In our implementation

of the CAR model, we used the block sampling method (along with the multivariate

normal distribution), which leads to less autocorrelated MCMC chains when compared

to those sampled from the full conditional distributions. Thus, when it comes to effective

sample size, our tests indicated that the proposed module produces posterior chains that

are less autocorrelated than those from GeoBUGS.

7.1 Future work

At this point, we have finished the implementation of the point-referenced data tools

and the CAR model for areal data. A straightforward extension of this module is the

development of procedures for point-pattern data, such as modeling intensity functions for

the inhomogeneous Poisson process. These functions assume that the intensity function

varies spatially.
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Another aspects that can be explored are the spatio-temporal models, which could

supplement GeoJAGS module to be useful in a even wider range of applications. In this

case, computational complexity will rise, since we must take into account the spatial

correlation and the temporal correlation. These implementations would be useful for the

meteorological data shown in Section 6.1.

Currently, we are working on some important improvements on the performance of

the CAR distribution in our module. We plan to develop a new JAGS distribution for the

proper CAR model. It will be based on the results from the Eigenvalues of a scalar mul-

tiple of a matrix theorem (see Theorem 3.1) which will drastically reduce the execution

time of hierarchical models that include the CAR distribution from GeoJAGS (consider-

ing the results shown in Section 3.4.2). It is important to remark that performing these

implementations consists of a challenging task since there is no tutorial on this regard,

with the only resource being the JAGS source code and the contributions in Wabersich

and Vandekerckhove (2014).
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Appendix A

Complete list of functions in GeoJAGS

In this appendix, we present the description of all functions currently available in the

GeoJAGS module, their input arguments and their return values. The proposed module

is available for download in www.geojags.sourceforge.net.

CVCauchy(coords, sigma2, phi, tau2, kappa)

Computes the Cauchy covariance matrix.

coords a n × r matrix where each row has the r-dimensional coordinates of the n data

locations (r ≥ 1).

sigma2 the partial sill (spatial variance).

phi the reciprocal of the range parameter.

tau2 the nugget effect (non-spatial variance).

kappa the smoothness parameter.

Value a n× n matrix with entries following the Cauchy covariance function.

CVGenCauchy(coords, sigma2, phi, tau2, kappa1, kappa2):

Computes the generalized Cauchy covariance matrix.

coords a n × r matrix where each row has the r-dimensional coordinates of the n data

locations (r ≥ 1).

sigma2 the partial sill (spatial variance).

phi the reciprocal of the range parameter.

tau2 the nugget effect (non-spatial variance).

kappa1 controls the dependence at large distances.

kappa2 the shape paratemer.

Value a n×n matrix with entries following the generalised Cauchy covariance function.
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CVCircular(coords, sigma2, phi, tau2):

Computes the circular covariance matrix.

coords a n × r matrix where each row has the r-dimensional coordinates of the n data

locations (r ≥ 1).

sigma2 the partial sill (spatial variance).

phi the reciprocal of the range parameter.

tau2 the nugget effect (non-spatial variance).

Value a n× n matrix with entries following the circular covariance function.

CVCubic(coords, sigma2, phi, tau2):

Computes the cubic covariance matrix.

coords a n × r matrix where each row has the r-dimensional coordinates of the n data

locations (r ≥ 1).

sigma2 the partial sill (spatial variance).

phi the reciprocal of the range parameter.

tau2 the nugget effect (non-spatial variance).

Value a n× n matrix with entries following the cubic covariance function.

CVExp(coords, sigma2, phi, tau2):

Computes the exponential covariance matrix.

coords a n × r matrix where each row has the r-dimensional coordinates of the n data

locations (r ≥ 1).

sigma2 the partial sill (spatial variance).

phi the reciprocal of the range parameter.

tau2 the nugget effect (non-spatial variance).

Value a n×n matrix with entries following the powered exponential covariance function.

CVGaussian(coords, sigma2, phi, tau2):

Computes the Gaussian covariance matrix.

coords a n × r matrix where each row has the r-dimensional coordinates of the n data

locations (r ≥ 1).

sigma2 the partial sill (spatial variance).

phi the reciprocal of the range parameter.

tau2 the nugget effect (non-spatial variance).

Value a n×n matrix with entries following the powered exponential covariance function.

99



CVGneiting(coords, sigma2, tau2):

Computes the Gneiting covariance matrix. The corresponding covariance func-

tion only depends on the distance between two points. Differently from geoR,

in our implementation we added the possibility of introducing the nugget ef-

fect (τ2). Thus in the diagonal, it depends on σ2 and τ2. For further details

see documentation of the function RMgneiting in the R package RandomFields

(Schlather et al., 2015). According to this reference: It is an alternative to the

Gaussian model since its graph is visually hardly distinguishable from the graph

of the Gaussian model, but possesses neither the mathematical and nor the nu-

merical disadvantages of the Gaussian model.

coords a n × r matrix where each row has the r-dimensional coordinates of the n data

locations (r ≥ 1).

sigma2 the partial sill (spatial variance).

tau2 the nugget effect (non-spatial variance).

Value a n× n matrix with entries following the Gneiting covariance function.

CVMatern(coords, sigma2, phi, tau2, nu):

Computes the Matérn covariance matrix.

coords a n × r matrix where each row has the r-dimensional coordinates of the n data

locations (r ≥ 1).

sigma2 the partial sill (spatial variance).

phi the reciprocal of the range parameter.

tau2 the nugget effect (non-spatial variance).

nu the shape parameter.

Value a n× n matrix with entries following the Matérn covariance function.

CVPowerExp(coords, sigma2, phi, tau2, p):

Computes the powered exponential covariance matrix.

coords a n × r matrix where each row has the r-dimensional coordinates of the n data

locations (r ≥ 1).

sigma2 the partial sill (spatial variance).

phi the reciprocal of the range parameter.

tau2 the nugget effect (non-spatial variance).

p the shape parameter. When p = 1 it gives the exponential function, whereas

p = 2 gives the Gaussian covariance function

Value a n×n matrix with entries following the powered exponential covariance function.
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CVRatQuad(coords, sigma2, phi, tau2):

Computes the rational quadratic covariance matrix.

coords a n × r matrix where each row has the r-dimensional coordinates of the n data

locations (r ≥ 1).

sigma2 the partial sill (spatial variance).

phi the reciprocal of the range parameter.

tau2 the nugget effect (non-spatial variance).

Value a n× n matrix with entries following the rational quadratic covariance function.

CVSpherical(coords, sigma2, phi, tau2):

Computes the spherical covariance matrix.

coords a n × r matrix where each row has the r-dimensional coordinates of the n data

locations (r ≥ 1).

sigma2 the partial sill (spatial variance).

phi the reciprocal of the range parameter.

tau2 the nugget effect (non-spatial variance).

Value a n× n matrix with entries following the spherical covariance function.

CVWave(coords, sigma2, phi, tau2):

Computes the wave covariance matrix.

coords a n × r matrix where each row has the r-dimensional coordinates of the n data

locations (r ≥ 1).

sigma2 the partial sill (spatial variance).

phi the reciprocal of the range parameter.

tau2 the nugget effect (non-spatial variance).

Value a n× n matrix with entries following the wave covariance function.

precMatrixCAR(W, rho, tau2):

Computes the precision matrix for the CAR distribution.

W a n-dimensional squared matrix given the proximity structure.

rho the parameter to solve the impropriety of the distribution .

tau2 the spatial precision (inverse of variance).

Value a n× n matrix of the form 1
τ2

(Dw − ρW ).

bessel k(x, nu, expo):
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Calculates modified Bessel functions of the third kind, which is useful for users

willing to implement their own version of the Matérn covariance function instead

of using our proposed one.

x argument for which K’s or exponentially scaled K’s (K*EXP(X)) are to be cal-

culated.

nu the order of the Bessel function.

expo must be equals 1 if unscaled K’s are to be calculated and equals 2 if exponentially

scaled K’s are to be calculated.

Value an scalar with the value of the modified Bessel function.
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Appendix B

Adding a multivariate distribution

to JAGS

In this appendix we discuss the steps needed to build new multivariate distributions

in JAGS using as an illustrative example of the process the proposed version of the

multivariate normal distribution mentioned in Section 3.4.2. This implementation will

take advantage of the result from Theorem 3.1 by using the eigen-decomposition of the

matrix Dw − ρW to obtain a sample from the multivariate normal distribution with

precision matrix 1
τ2

(Dw − ρW ).

As stated in Section 3.3, a new distribution for JAGS is implemented through a new

C++ class. In the src/ directory of our module, add a subdirectory distributions/ and

place in it the files of the new distribution (See Boxes B.1 and B.2). For the multivariate

case, this new class must inherit from the ArrayDist class, which is useful whenever a

distribution takes values in a matrix or a array or has parameters that are array-valued

(the ArrayDist.h file is located at /src/include/distributions within the JAGS

directory folder). Any class that inherits from ArrayDist must implement its virtual

functions, namely:

• logDensity: a routine that returns the log probability density;

• randomSample: draws a random sample from the distribution;

• typicalValue: returns a typical value from the distribution (the meaning of this

will depend on the distribution, but it will normally be a mean, median or mode);

• checkParameterDim: checks that dimensions of the parameters are correct;

• checkParameterValue: Checks that the values of the parameters are consistent

with the distribution;
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Box B.1: The DMNormCAR class header file dmnormcar.h

1 # i f n d e f DMNORMCARH
2 # d e f i n e DMNORMCARH
3 # i n c l u d e <d i s t r i b u t i o n /ArrayDist . h>
4 # i n c l u d e <armadi l lo>
5 u s i n g n a m e s p a c e j a g s ;
6 n a m e s p a c e GeoJAGS {
7
8 c l a s s DMNORMCAR : p u b l i c ArrayDist {
9 p u b l i c :

10 DMNORMCAR() ;
11 d o u b l e l ogDens i ty ( d o u b l e c o n s t ∗x , u n s i g n e d int length , PDFType type ,
12 std : : vector<d o u b l e c o n s t ∗> c o n s t &parameters ,
13 std : : vector<std : : vector<u n s i g n e d int> > c o n s t &dims ,
14 d o u b l e c o n s t ∗ lower , d o u b l e c o n s t ∗upper ) c o n s t ;
15 v o i d randomSample ( d o u b l e ∗x , u n s i g n e d int length ,
16 std : : vector<d o u b l e c o n s t ∗> c o n s t &parameters ,
17 std : : vector<std : : vector<u n s i g n e d int> > c o n s t &dims ,
18 d o u b l e c o n s t ∗ lower , d o u b l e c o n s t ∗upper , RNG ∗ rng ) c o n s t ;
19 v o i d typ i ca lVa lue ( d o u b l e ∗x , u n s i g n e d int length ,
20 std : : vector<d o u b l e c o n s t ∗> c o n s t &parameters ,
21 std : : vector<std : : vector<u n s i g n e d int> > c o n s t &dims ,
22 d o u b l e c o n s t ∗ lower , d o u b l e c o n s t ∗upper ) c o n s t ;
23 b o o l checkParameterDim ( std : : vector<std : : vector<u n s i g n e d int> > c o n s t &dims ) c o n s t ;
24 b o o l checkParameterValue ( std : : vector<d o u b l e c o n s t ∗> c o n s t &parameters ,
25 std : : vector<std : : vector<u n s i g n e d int> > c o n s t &dims ) c o n s t ;
26 std : : vector<u n s i g n e d int> dim( std : : vector<std : : vector<u n s i g n e d int> > c o n s t &dims ) c o n s t ;
27 s t a t i c v o i d randomsample ( d o u b l e ∗x , d o u b l e c o n s t ∗ e igenValues , d o u b l e c o n s t ∗ e igenVectors ,
28 d o u b l e tau2 , b o o l prec , int nrow , RNG ∗ rng ) ;
29 v o i d support ( d o u b l e ∗ lower , d o u b l e ∗upper , u n s i g n e d int length ,
30 std : : vector<d o u b l e c o n s t ∗> c o n s t &parameters ,
31 std : : vector<std : : vector<u n s i g n e d int> > c o n s t &dims ) c o n s t ;
32 b o o l i sSupportFixed ( std : : vector<bool> c o n s t &fixmask ) c o n s t ;
33 } ;
34 }
35 # e n d i f /∗ DMNORMCAR H ∗/

• dim: Calculates what the dimension of the distribution should be, based on the

dimensions of its parameters;

• support: returns the support of an unbounded distribution;

• isSupportFixed: indicates whether the support of the distribution is fixed;

Box B.1 contains the file /src/distributions/dmnormcar.h, which includes the pro-

totypes of the constructor and the required functions previously listed. The randomsample

function takes seven input arguments:

• x: array to which the sample values are written;

• length: size of the array x;

• parameters: parameters for the distribution. Each element is a pointer to the start

of an array containing the parameters. The size of the array should correspond to

the dims parameter. In our case, the parameters will be the eigen-decomposition

and the spatial variance effect;

• dims: dimensions of the parameters. It will contain the size of the vector of eigen-

values and the dimension of the eigen-vectors matrix;
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• lower: pointer to array containing the lower boundary of the distribution. This

should be of size length or may be NULL if there is no lower boundary;

• upper: same as above, but considering the upper boundary of the distribution;

• rng: pseudo-random number generator to use.

Since some of the functions have similar arguments and considering the descriptions

above, the arguments of the remaining functions have a straightforward interpretation.

Further, a few comments on each argument can be found in the ArrayDist.h file. Box B.2

displays implementations of the essential functions in the class. The constructor is defined

in line 1, it calls its parents’ constructor function with two arguments. The first sets the

name of the new distribution (dmnormcar) and the second is used to define the number

of arguments (our proposed distribution has 3 arguments: the eigen-values, eigen-vectors

and the spatial variance effect). In line 2 we have the implementation of the logdensity

function. As the name suggests, it returns the log probability density. Note that here

we have used the armadillo library to perform the required linear algebra computations

(lines 8-12). Thus, this package must be installed in the computer ahead of compiling

the code in Box B.2. The randomsample function in line 35 implements the core part of

the new distribution. Our procedure here follows Algorithm 3.1, except for computing

the eigen-decomposition, since it is part of the arguments of this implementation.

After the distribution class is ready, we need to add it to the GeoJAGS.cc module by

loading it with the constructor and deleting it with the destructor, as in Box 3.2. See

Box B.3 for the lines to add. In addition, an appropriate Makefile.am must be added

to the newly created src/distributions/ folder. Details about this file are found in

Wabersich and Vandekerckhove (2014, step 3.3, p. 19). Ultimately, steps for building

and installing the module are the same as described at the end of Section 3.3.

The steps described above define a new multivariate distribution to JAGS. However

when attempting to sample from this distribution on a hierarchical Bayesian model, JAGS

is unable to find an appropriate sampler for this distribution. Our investigations so far led

us to create a new JAGS sampler for this newly implemented distribution, based on the

complex implementation of the sampler for the multivariate normal distribution which

uses the Metropolis algorithm. Since there is no instructions available for developing

a new sampler structure for JAGS, our implementation still needs some adjustment in

order to make it work properly. Once this sampler is ready to use, we believe (based on

the experiments about execution time shown in Section 3.4.2) in the decreasing of the

time taken to sample from our proposed version of the multivariate normal distribution

and therefore, the CAR distribution will be more efficient in terms of execution time.
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Box B.2: Some functions in the DMNormCAR dmnormcar.cc file

1 DMNORMCAR: :DMNORMCAR() : ArrayDist ( ”dmnormcar” , 3) {}
2 d o u b l e DMNORMCAR: : logDens i ty ( d o u b l e c o n s t ∗x , u n s i g n e d int m, PDFType type ,
3 vector<d o u b l e c o n s t ∗> c o n s t &parameters , vector<vector<u n s i g n e d int> > c o n s t &dims ,
4 d o u b l e c o n s t ∗ lower , d o u b l e c o n s t ∗upper ) c o n s t {
5 d o u b l e c o n s t ∗ e igenValues = parameters [ 0 ] ;
6 d o u b l e c o n s t ∗ e igenVector s = parameters [ 1 ] ;
7 d o u b l e c o n s t tau2 = parameters [ 2 ] [ 0 ] ;
8 vec diag = vec (m) ;
9 for ( int i =0; i<m; i++){ diag [ i ] = e igenValues [ i ] ; }

10 mat P( e igenVectors , m, m) ;
11 mat D = tau2 ∗ arma : : diagmat ( diag ) ;
12 mat Pinv = inv (P) ;
13 mat T = P ∗ D ∗ Pinv ;
14 d o u b l e l o g l i k = 0 ;
15 vector<double> de l t a (m) ;
16 for ( u n s i g n e d int i = 0 ; i < m; ++i ) {
17 de l t a [ i ] = x [ i ] ;
18 l o g l i k −= ( de l t a [ i ] ∗ T( i , i ) ∗ de l t a [ i ] ) /2 ;
19 for ( u n s i g n e d int j = 0 ; j < i ; ++j ) {
20 l o g l i k −= ( de l t a [ i ] ∗ T( i , j ) ∗ de l t a [ j ] ) ;
21 }
22 }
23 s w i t c h ( type ) {
24 c a s e PDF PRIOR:
25 b r e a k ;
26 c a s e PDF LIKELIHOOD:
27 l o g l i k += log (arma : : det (T) ) /2 ;
28 b r e a k ;
29 c a s e PDF FULL:
30 l o g l i k += log (arma : : det (T) ) /2 − m ∗ M LN SQRT 2PI ;
31 b r e a k ;
32 }
33 r e t u r n l o g l i k ;
34 }
35 v o i d DMNORMCAR: : randomSample ( d o u b l e ∗x , u n s i g n e d int m, vector<d o u b l e c o n s t ∗> c o n s t &parameters ,
36 vector<vector<u n s i g n e d int> > c o n s t &dims , d o u b l e c o n s t ∗ lower , d o u b l e c o n s t ∗upper ,
37 RNG ∗ rng ) c o n s t {
38 d o u b l e c o n s t ∗ e igenValues = parameters [ 0 ] ; d o u b l e c o n s t ∗ e igenVector s = parameters [ 1 ] ;
39 d o u b l e c o n s t tau2 = parameters [ 2 ] [ 0 ] ;
40 randomsample (x , e igenValues , e igenVectors , tau2 , true , m, rng ) ;
41 }
42 v o i d DMNORMCAR: : randomsample ( d o u b l e ∗x , d o u b l e c o n s t ∗ e igenValues , d o u b l e c o n s t ∗ e igenVectors ,
43 d o u b l e tau2 , b o o l prec , int nrow , RNG ∗ rng ) {
44 d o u b l e ∗ w = new d o u b l e [ nrow ] ; int N = nrow∗nrow ;
45 /∗ Generate independen t random normal v a r i a t e s , s c a l e d by t h e e i g en v a l u e s ∗/
46 if ( prec )
47 for ( int i = 0 ; i < nrow ; ++i )
48 w[ i ] = rnorm (0 , 1/ sq r t ( e igenValues [ i ] ) , rng ) ;
49 e l s e

50 for ( int i = 0 ; i < nrow ; ++i )
51 w[ i ] = rnorm (0 , sq r t ( e igenValues [ i ] ) , rng ) ;
52 for ( int i = 0 ; i < nrow ; ++i ) { /∗ Now trans form them to dependant v a r i a t e s ∗/
53 x [ i ] = 0 ;
54 for ( int j = 0 ; j < nrow ; ++j ) {
55 x [ i ] += tau2 ∗ e igenVector s [ i + j ∗ nrow ] ∗ e igenValues [ j ] ;
56 }
57 } d e l e t e [ ] w;
58 }

We are currently working in two different fronts. The first aims to develop a new

sampler that can generate values following the proposed implementation of the proper

CAR model. In the second, we attempt to create a version of the CAR distribution that

samples from the posterior full conditionals p(θi | θj, j 6= i).

Box B.3: The code to add to the module class file (src/GeoJAGS.cc).

1 // add t h i s to t h e c on s t r u c t o r f u n c t i o n
2 // to i n s t a n t i a t e a d i s t r i b u t i o n o b j e c t when the module i s l oaded
3 i n s e r t ( new DMNORMCAR) ;
4
5 // add t h i s to t h e d e s t r u c t o r f u n c t i o n
6 // to remove th e i n s t a n t i a t e d d i s t r i b u t i o n o b j e c t when the module i s un loaded
7 std : : vector<Di s t r i bu t i on∗> c o n s t &dvec = d i s t r i b u t i o n s ( ) ;
8 for ( u n s i g n e d int i =0; i<dvec . s i z e ( ) ; ++i ) {
9 d e l e t e dvec [ i ] ; // d e l e t e a l l i n s t a n t i a t e d d i s t r i b u t i o n s o b j e c t s

10 }
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Appendix C

Additional results for the validation

study of covariance functions

In this appendix, we present the results for the remaining covariance functions not ex-

plored in Chapter 4. Consider the same MCMC configuration and the same prior dis-

tributions indicated for the Matérn covariance analysis. Again, the study here compares

the Bayesian (JAGS with the GeoJAGS module) and the frequentist (likfit in geoR)

estimates (model selection is not developed). Running each covariance structure is quite

simple. Revise Box 4.3 (page 52) to see the general structure of the code used within R

to run the JAGS model; the only change is applied to line 8, replacing the model.file

argument, which should be the name of the JAGS model file to be executed. Similarly to

the model in Box 4.4, we only need to replace the function in line 9 by the corresponding

covariance function, with one of the twelve currently available options in GeoJAGS.

Powered exponential

Parameters
Maximum likelihood

estimates
JAGS using

CVPoweredExp function
HPD interval (95%)

φ 0.044 0.194 0.007 0.583
τ 2 0.000 11.485 0.000 68.205
σ2 3,409.387 2,364.217 973.995 4,379.111
β0 926.985 921.640 829.942 1,000.609
β1 -5.037 -4.719 -15.597 5.488
β2 -17.196 -17.829 -28.679 -7.996

Table C.1: Bayesian and frequentist estimates assuming the Gaussian model described in Section 4.3.1,
considering the powered exponential covariance. Let p = 0.5.
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Exponential

Parameters
Maximum likelihood

estimates
JAGS using

CVPoweredExp function
HPD interval (95%)

φ 0.402 0.362 0.092 0.684
τ 2 0.000 5.452 0.000 25.158
σ2 1,731.799 2,268.663 893.538 4,166.565
β0 919.103 919.3173 841.646 1,019.822
β1 -5.583 -5.475 -20.864 7.288
β2 -15.515 -14.983 -29.603 -1.568

Table C.2: Bayesian and frequentist estimates assuming the Gaussian model described in Section 4.3.1,
considering the powered exponential covariance. Let p = 1, which determines the Exponential covariance.

Gaussian

Parameters
Maximum likelihood

estimates
JAGS using

CVPoweredExp function
HPD interval (95%)

φ 0.725 0.703 0.470 0.941
τ 2 86.189 125.221 20.881 291.279
σ2 1,450.216 1,588.140 715.325 2,667.433
β0 913.266 910.206 852.720 961.228
β1 -4.812 -4.389 -14.254 6.193
β2 -18.271 -18.082 -28.994 -7.133

Table C.3: Bayesian and frequentist estimates assuming the Gaussian model described in Section 4.3.1,
considering the Gaussian covariance (powered exponential with p = 2).

Rational quadratic

Parameters
Maximum likelihood

estimates
JAGS using

CVRatQuad function
HPD interval (95%)

φ - 2.459 0.659 5.043
τ 2 - 78.169 0.006 229.777
σ2 - 2.469 901.594 3,289.230
β0 - 912.616 843.996 984.954
β1 - -4.839 -17.019 8.968
β2 - -16.297 -27.992 -2.868

Table C.4: Bayesian estimates assuming the Gaussian model described in Section 4.3.1, considering the
Rational Quadratic covariance function. The frequentist results are not presented since likfit (geoR)
does not have this case.
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Wave

Parameters
Maximum likelihood

estimates
JAGS using

CVWave function
HPD interval (95%)

φ - 1.423 0.744 2.252
τ 2 - 361.668 140.491 639.567
σ2 - 1,519.512 367.957 3,012.710
β0 - 912.906 860.505 959.730
β1 - -4.703 -15.897 4.621
β2 - -18.618 -29.484 -5.798

Table C.5: Bayesian estimates assuming the Gaussian model described in Section 4.3.1, considering the
Wave covariance. likfit fails to fit this case, even when choosing different initial values for φ and σ2.

Cauchy

Parameters
Maximum likelihood

estimates
JAGS using

CVCauchy function
HPD interval (95%)

φ 1.239 1.045 0.520 1.607
τ 2 57.423 45.110 0.000 159.172
σ2 2,640.767 2,333.670 885.927 4,318.037
β0 914.656 914.875 831.632 992.189
β1 -5.553 -5.112 -18.209 -9.267
β2 -14.975 -16.146 -29.174 -1.597

Table C.6: Bayesian and frequentist estimates assuming the Gaussian model described in Section 4.3.1,
considering the Cauchy covariance.

Generalized Cauchy

Parameters
Maximum likelihood

estimates
JAGS using

CVGenCauchy function
HPD interval (95%)

φ - 0.991 0.445 1.630
τ 2 - 4.480 0.000 22.584
σ2 - 3,213.359 1,374.884 5,239.042
β0 - 919.363 808.821 1,012.235
β1 - -5.320 -18.721 8.885
β2 - -15.121 -30.162 3.560

Table C.7: Bayesian estimates assuming the Gaussian model described in Section 4.3.1, considering the
Generalized Cauchy covariance. The frequentist estimates are not presented since this option is not
implemented in likfit (geoR).
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Gneiting

Parameters
Maximum likelihood

estimates
JAGS using

CVGneiting function
HPD interval (95%)

φ 1.337 - - -
τ 2 79.828 1,308.138 826.034 1,908.299
σ2 1,422.834 37.971 0.000 300.235
β0 913.333 912.917 888.223 941.178
β1 -4.721 -1.654 -7.388 3.675
β2 -18.476 -25.052 -30.133 -20.342

Table C.8: Bayesian and frequentist estimates assuming the Gaussian model described in Section 4.3.1,
considering the Gneiting covariance.

Note that the maximum likelihood estimates differ significantly from the posterior

means of σ2, φ and τ 2. These parameters were implemented in CVGneiting but they

are not specified in the geoR documentation. Even though their outputs are obtained

through likfit.

The definition of the next covariance functions (spherical, circular and cubic; pre-

sented in Section 2.2.1) shows that the intervals where they are defined depend on the

parameter φ. As explained in Section 4.3, the user is supposed to choose an appropriate

value for φ (fixed, it will not be estimated). This is the reason why the next three tables

do not show estimates for φ for the Bayesian estimates.

Spherical

Parameters
Maximum likelihood

estimates
JAGS using

CVSpherical function
HPD interval (95%)

φ 0.395 - - -
τ 2 0.00 61.385 0.004 178.114
σ2 1,070.964 1,283.353 627.515 1,934.576
β0 914.771 925.110 878.884 973.210
β1 -3.926 -5.701 -14.429 4.138
β2 -19.817 -21.563 -31.470 -13.293

Table C.9: Bayesian and frequentist estimates assuming the Gaussian model described in Section 4.3.1,
considering the Spherical covariance.
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Circular

Parameters
Maximum likelihood

estimates
JAGS using

CVCircular function
HPD interval (95%)

φ 2.223 - - -
τ 2 0.000 417.512 0.001 1,445.901
σ2 1,091.457 891.067 0.000 1,594.459
β0 915.571 912.822 886.032 938.140
β1 -4.172 -1.764 -6.884 3.669
β2 -19.984 -24.585 -29.306 -19.085

Table C.10: Bayesian and frequentist estimates assuming the Gaussian model described in Section 4.3.1,
considering the Circular covariance.

Cubic

Parameters
Maximum likelihood

estimates
JAGS using

CVCubic function
HPD interval (95%)

φ 3.034 - - -
τ 2 55.027 27.597 0.000 224.768
σ2 1,381.935 1,274.467 796.429 1,800.511
β0 914.082 912.042 886.096 936.941
β1 -4.695 -1.526 -7.441 3.162
β2 -18.912 -24.487 -28.974 -19.490

Table C.11: Bayesian and frequentist estimates assuming the Gaussian model described in Section 4.3.1,
considering the Cubic covariance.
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Appendix D

Additional figures

In this appendix we present supplementary figures that convey extra information regard-

ing some topics discussed in the main text.

Posterior chains of some parameters in the GDP data analysis

Consider the data set on gross domestic product (GDP) per capita in the municipali-

ties of Minas Gerais presented in Section 5.1. For each parameter shown in Figure 5.2,

Figure D.1: Posterior sample, 95% HPD limits (dashed lines) and the posterior mean (solid horizontal
line) of τ2 and the spatial random effect related to Belo Horizonte in the GDP per capita study in Minas
Gerais. Estimates in the left column are from GeoJAGS and those in the right column are from GeoBUGS.
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the vertical axis are fixed, thus the magnitude of the estimates are in fact comparable.

However, the range of values taken by two parameters in the JAGS model (τ 2 and θBH) are

too narrow. Thus, making it impossible to note the behavior of these chains and compare

with the corresponding chains from GeoBUGS. In Figure D.1 we present a detailed version

of the chains for τ 2 and θBH from both GeoJAGS and GeoBUGS modules. Here, the y-axis

ranges from the maximum and minimum values obtained in each chain of size 5,000.

Note that the two spatial models generate high autocorrelated chains for the spatial

variance parameter τ 2. The chains from GeoJAGS present a better visual behaviour of

convergence than those from GeoBUGS.

Posterior chains of some parameters in the simulation analysis

(case 1)

Here we consider the simulation study discussed in in Section 5.3.1, in which we set

σ2 � τ 2. Figure D.2 presents the chains for µ, σ2, τ 2 and for one of the spatial

Figure D.2: Posterior sample, 95% HPD limits (dashed lines) and the real values (solid horizontal lines)
of 4 parameters of the simulated data considering σ2 � τ2. Estimates in the left column are from
GeoJAGS and from the right column are from GeoBUGS.

113



random effects, θ66. The chains in the left column are those obtained from GeoJAGS,

whereas those in the right are from GeoBUGS. The true (generated) value are shown in

the solid horizontal lines and the 95% HPD intervals are represented as the dashed lines.

For each parameter, the HPD interval contain the true value regardless of the spatial

module used. Note that the GeoBUGS produces chains with hight autocorrelation than

GeoJAGS.

Pluviometric atlas of Brazil

In this section we present the data from the Geological Service of Brazil (see CPRM,

2017) which serves as a basis for comparison among the predictions made by our proposed

model and the official government data presented in Section 6.1. It presents the monthly

mean isohyets (each isohyet is a line on the map connecting places that presents equal

rainfall amount) considering precipitation measurements taken between the years 1977

and 2006. In the maps shown in Figure D.3, we present only the average precipitation

of the driest and the rainy month of the year, September and March respectively. These

are the months considered in the models discussed in Section 6.1. Although these maps

show data for the entire Brazilian territory, we will only consider the pattern regarding

the northern region of the country.

(a) (b)

Figure D.3: Isohyets maps of monthly average precipitation (in millimeters) in Brazil for (a) March
and (b) September between the years of 1977 and 2006.
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