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Resumo
Séries temporais para dados de contagem é assunto recorrente na literatura científica devido

sua aplicabilidade a diversas situações reais. O aprimoramento de métodos consagrados e o

desenvolvimento de novas técnicas de modelagem para estas séries temporais são necessários

e importantes, não só para a evolução teórica desta área da Estatística, como também

para uma melhor representação da realidade enquanto modelo matemático-estatístico.

Neste sentido, o presente trabalho propõe uma metodologia inovadora na modelagem dos

processos autoregressivos de valores inteiros, conjuntamente pré-especificando em uma

mesma família as distribuições marginais e inovações. O processo Autoregressivo de Valores

Inteiros Duplo Geométrico de primeira ordem é apresentado e caracterizado através de

diversas propriedades estatísticas. A inferência é realizada através dos métodos de mínimos

quadrados condicionais, Yule-Walker e máxima verossimilhança; além disso, a consistência

e normalidade assintótica dos estimadores são verificadas. Simulação computacional via

métodos de Monte Carlo é empregada a fim de verificar a performance dos estimadores

propostos. Aplicações a dados reais são exibidas comprovando a relevância prática do

modelo desenvolvido; outrossim, a comparação com modelos concorrentes é exibida no

intuito de corroborar a competitividade do modelo proposto.

Palavras-chave: Séries temporais de contagem; processo INAR; cadeia de Markov.





Abstract
Count time series is a recurring subject in the scientific literature due to its applicability to

several real situations. The improvement of established methods and the development of

new modeling techniques for these time series are necessary and important, not only for the

theoretical evolution of this area of Statistics but also for a better representation of reality as

a mathematical-statistical model. On this direction, the present work proposes an innovative

methodology in the modeling of the integer autoregressive processes, jointly prespecifying in

the same family the marginal distributions and innovations. The Double Geometric Integer

Autoregressive process of first-order is presented and characterized by several statistical

properties. The inference is performed through conditional least squares, Yule-Walker,

and maximum likelihood. In addition, the consistency and asymptotic normality of the

estimators are verified. Computational simulation via Monte Carlo methods is used to

verify the performance of the proposed estimators. Applications to real datasets are given

proving the practical relevance of the model developed. Moreover, the comparison with

competing models is presented in order to corroborate the competitiveness of the proposed

model.

Keywords: Count time series; INAR process; Markov chain.
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1 Introduction

Integer-valued time series, better known as count time series, are massively present

in everyday life, often as counts of events, objects or individuals in consecutive intervals or

at consecutive points in time. Series of this kind arise naturally in many areas including

queueing systems, finance, insurance theory, medicine, epidemiology, and others. Thus, it

is not surprising that there is an increasing interest in modeling such count data.

There are several models to deal with time series, in special, in the class of linear

models, we can cite the AutoRegressive Moving Average (ARMA) models (Box et al.,

2015). However, these real-valued models are not sufficient to deal with integer-valued

time series because, often, the multiplication of an integer by a real number results in a

non-integer value. In order to maintain the good properties of the ARMA models, one

may replace the usual multiplication by an operator that always lead to integer values. In

this context, the pioneering INteger-valued AutoRegressive (INAR) process (McKenzie,

1985, 1988; Alzaid and Al-Osh, 1987) arose from the adoption of the binomial thinning

operator (Steutel and van Harn, 1979) as a substitute for the usual multiplication and

from the assumption of a Poisson distribution to the marginal distribution of the process.

Following, Freeland and McCabe (2004a,b, 2005) discuss the inferential and forecasting

aspects of the Poisson INAR process of first-order. Alzaid and Al-Osh (1990) and Du and

Li (1991) present INAR processes with time dependence of order p, relating the INAR(p)

and the AR(p) processes.

Since Poisson distribution is inadequate to accommodate under or overdispersion,

McKenzie (1986) and Al-Osh and Aly (1992) introduced other INAR models, based on

different distributions to the marginal of the process, as the negative binomial distribution

and the geometric distribution.

All models mentioned above are based on the binomial thinning operator. As

Borges et al. (2016) explained, the binomial thinning operator based on a counting series

of Bernoulli distributed random variables is appropriate for modeling the number of

random events, which may only survive or vanish after a period of observation (sum by 0

or 1). However, when the observed unit is capable of generating more counting objects



26 Chapter 1. Introduction

or producing more new random events, the Bernoulli random variable is no more the

best choice for constructing the counting sequence. In this context, Ristić et al. (2009)

introduced the New Geometric INAR process of first-order [in short, NGINAR(1) process]

with geometric marginal distribution using the negative binomial thinning (Aly and Bouzar,

1994), which was based on a geometrically distributed counting sequence. Considering the

nature of the distribution, this choice is more appropriate for modeling counting processes,

which refer to population elements or random events capable of replication (sum by 0, 1, 2

or more).

As some natural phenomena demand that the parameters of the model evolve over

time, Zheng et al. (2006), Zheng et al. (2007), Gomes and Canto e Castro (2009), Wang

and Zhang (2011), and Zhao and Hu (2015) dealt with INAR processes with random

coefficients. While Zheng et al. (2006), Zheng et al. (2007), and Zhao and Hu (2015) used

the binomial thinning operator into their models, Gomes and Canto e Castro (2009) used

a generalization of this operator. On the other hand, Wang and Zhang (2011) used the

signed thinning operator, allowing the presence of negative integers in the count series.

Recently, Awale et al. (2017) proposed a hypothesis test for testing if the parameters of

the model vary across the time.

In this brief discussion, it is possible to note that there are many particularities in

count data models, so it is important to highlight that there is still no unified approach. In

order to understand these peculiarities, Weiß (2008) and Scotto et al. (2015) present good

reviews. Among recent contributions on INAR models, Barreto-Souza and Bourguignon

(2015), Bourguignon and Vasconcellos (2016) and Nastić et al. (2016) dealt with count

series that include negative values and that accommodate skew marginals to the process.

Barreto-Souza (2015), Maiti et al. (2015), Borges et al. (2016), and Bourguignon and Weiß

(2017) faced problems such as overdispersion and as deflation, or inflation, of zeros. Scotto

et al. (2017) proposed a max-INAR model to accommodate time series with sudden large

counts, often caused by an extreme event, followed by monotone decreasing recovery phase.

Barreto-Souza (2017) created a class of INAR(1) processes having mixed Poisson marginal

distribution, introducing new INAR(1) processes such as the Poisson Inverse-Guassian

INAR(1) model, which deals with overdispersion in a convenient and sophisticated way.

The Bayesian approach on INAR models is found at McCabe and Martin (2005) and

Bisaglia and Canale (2016), especially in terms of prediction.
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Despite all of these different approaches in count series modeling, it does not exist

in the literature an approach that jointly prespecifies in the same family the marginals

and the innovations of the INAR processes. In this work, we follow this pioneering path

and propose an INAR process with pre-established marginals and innovations selected in

the same distribution family. This new modeling approach is more natural and intuitive

to model real count data; in counting phenomena is easier to identify the distribution

of the marginals and innovations than the distribution of the count series behind the

thinning operators. Hence, in our approach, the count series is an innate consequence

of the marginals and innovations distributions, the thinning operator arises naturally.

Among the advantages of our approach are the analytic-mathematical simplifications, the

unrestricted parameter space, and good statistical properties as the time reversibility.

The dissertation is organized as follows. In Chapter 2, a review of the basic concepts

about time series and INAR processes is given. In Chapter 3, a new perspective on count

time series modeling is presented. A new process is constructed and its main statistical

properties are displayed. Estimators of the model parameters are obtained in Chapter

4, as well as its asymptotic distribution. Moreover, to evaluate the performance of the

estimators, a Monte Carlo simulation is driven and discussed. In Chapter 5, real data

examples are considered in order to show the relevance of our model. Concluding remarks

and future research are discussed in Chapter 6.
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2 Preliminaries

The basis for integer-valued time series modeling is the binomial thinning operator

proposed by Steutel and van Harn (1979) and the INAR(1) process introduced by McKenzie

(1985) and Alzaid and Al-Osh (1987). In this Chapter, these concepts are discussed and

also elementary concepts about time series are presented.

2.1 Time Series and Related Concepts

A time series is a sequence of observations of a random variable (rv) taken sequen-

tially in time, usually observed at equally spaced time points. Let T be an arbitrary set

of indexes and let X be a rv, then we denote a time series by {Xt}t∈T . Note that a time

series process is a stochastic process indexed in time and regard to the nature of T we

can have a discrete-time random process, T ⊆ N, or a continuous-time random process,

T ⊆ R.

Additionally, unlike many statistical models in which the assumption of independent

rvs is required, time series analysis is precisely concerned with describing this dependence

among the elements of a sequence of rvs.

Time series can also be classified as discrete-valued (if X is a discrete rv) or

continuous-valued (if X is a continuous rv). Examples of discrete-valued time series are

the number of accidents occurred on the highways of a determined city during a month or

the number of users of a specific website during a day. On the other hand, examples of

continuous-valued time series are the price of a share on a stock exchange in a day and

the temperature of the earth over the years.

In the present work, we focus on the non-negative integer-valued time series, i.e.,

time series where the rv X assumes values in a subset of the non-negative integers. In

general, this type of time series deals with the count of events, objects or individuals, and

this is the reason why we call it a count time series.

The next subsections present elementary concepts regarding time series and is

strongly based on Prado and West (2010) and Box et al. (2015).
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2.1.1 Stationarity

A time series is said to be stationary when it oscillates randomly around a constant

mean over time, thus the behavior of a stationary time series process does not depend

upon when the process is started. In other words, we say that the time series process is

invariant under time translations, keeping the statistical equilibrium and its probabilistic

characteristics. Here we provide two widely used definitions of stationarity.

Definition 2.1.1. A time series process {Xt}t∈T is completely or strongly stationary if all

finite-dimensional distributions remain the same under time translations, that is,

Pr(X1 ≤ c1, . . . , Xn ≤ cn) = Pr(X1+h ≤ c1, . . . , Xn+h ≤ cn),

for any t = 1, 2, . . . , n+ h, with n = 1, 2, . . .; for all c1, . . . , cn, and for all translations

h = 0,±1,±2, . . ..

In particular, if a process is strongly stationary it means that all one-dimensional

distributions are invariant under time translations, so the mean E(Xt) and variance

V ar(Xt) are constants, that is, E(Xt) = µ(t) = µ and V ar(Xt) = σ2(t) = σ2 > 0.

It is very difficult to verify that a process is strongly stationary and so, the notion

of weak or second order stationarity arises as follow:

Definition 2.1.2. A time series process {Xt}t∈T is weakly or second-order stationary if

and only if:

i) E(Xt) = µ(t) = µ.

ii) E(X2
t ) <∞.

iii) Cov(Xh, Xt) = γt−h, depending only on the length |t− h|.

Note 2.1.3. In this work, when dealing with stationarity we are considering the case of

weak stationarity.

2.1.2 Autocorrelation Function

In time series analysis, one of the initial steps is to study the correlation patterns

displayed by the data at different time points. This can be done using the sample autocor-
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relation function which is an estimator of the autocorrelation function (ACF). In order to

present the definition of the autocorrelation, we first introduce the autocovariance.

Definition 2.1.4. Let {Xt}t∈Z be a stationary time series process with mean E(Xt) = µ.

The autocovariance is a function that gives the covariance of the process with itself at

pairs of time points, i.e.,

γh = Cov(Xt, Xt+h) = E[(Xt − µ)(Xt+h − µ)].

Note that γ0 = V ar(Xt) = σ2.

Now we can define the autocorrelation.

Definition 2.1.5. The ACF is defined by

ρh = γh
γ0
, h ∈ Z.

Note that ρ0 = 1.

The ACF has the following properties:

i) −1 ≤ ρh ≤ 1.

ii) ρh = ρ−h.

So the ACF measures the linear dependence of the time series and it is also used

to identify a suitable model for the time series.

2.2 Binomial Thinning Operator

To properly model integer-valued time series, classic ARMA models (Box et al.,

2015) should not be used because, often, the multiplication of an integer by a real number

results in a non-integer value. To circumvent this problem, we use the binomial thinning

operator (Steutel and van Harn, 1979):

Definition 2.2.1. Let X be an arbitrary non-negative integer-valued rv, then for any

α ∈ [0, 1] the binomial thinning operator “◦” is defined as

α ◦X =
X∑
i=1

Yi,
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where {Yi}, called the count series, is a sequence of independent and identically distributed

(iid) Bernoulli(α) rvs. Also, Yi is independent of X, ∀i.

By convention, ∑0
i=1 Yi = 0.

Due to the operator definition, we have the following properties:

i) 0 ◦X a.s.= 0 and 1 ◦X a.s.= X.

ii) E(α ◦X) = αE(X).

iii) Associative Law: for any β ∈ [0, 1], β ◦ (α ◦X) d= (βα) ◦X.

iv) Distributive Law: if Z, independent of X, is a non-negative integer-valued rv, then

α ◦ (X + Z) d= α ◦X + α ◦ Z.

Note 2.2.2. “a.s.= ” means almost surely and “ d=” means equality in distribution.

The proofs of these four properties are provided in Appendix A.

The next result shows the reason the operator “◦” is named a “binomial” operator.

Proposition 2.2.3. The conditional distribution of α ◦X given X = x, is Binomial with

parameters x and α.

Proof. Since the rv X is independent of the sequence {Yi} iid∼ Bernoulli(α), it follows that

Pr(α ◦X = k|X = x) = Pr
(

X∑
i=1

Yi = k

∣∣∣∣∣X = x

)

= Pr
(

x∑
i=1

Yi = k

)[(
x

k

)
ways to obtain this summation

]

=
(
x

k

)
Pr(Y1 = 1, . . . , Yk = 1, Yk+1 = 0, . . . , Yx = 0)

=
(
x

k

)
k∏
i=1

Pr(Yi = 1)
x∏

i=k+1
Pr(Yi = 0) [due to independence]

=
(
x

k

)
αk(1− α)x−k [Due to equality in distribution] ,

which is the probability mass function (pmf) of a Binomial distribution with parameters x

and α.



2.3. Negative Binomial Thinning Operator 33

To realize why the operator “◦” is a “thinning” operator, consider a population of

size Xt at a particular time t, e.g., the number of patients in a hospital. If we observe the

size population at time t+ 1, then the population may have shrunk(in the meaning of

the thin verb: make or become less dense, crowded, or numerous), because some of the

patients may have received a discharge from the hospital or have died between times t

and t + 1. If the patients receive a discharge or die independently of each other, and if

the probability of receiving a discharge or dying in between t and t+ 1 is equal to 1− α

for all patients, then the number of patients still hospitalized, at time t+ 1, is given by

α ◦Xt. Note that we disregard admissions of new patients to the hospital between times t

and t+ 1.

2.3 Negative Binomial Thinning Operator

In spite of innovating the modeling of count time series, the binomial thinning

operator has some limitations, for example, it is inadequate for count series with full range

in N and to negative integers. Thus, some types of processes, such as those in which there

is a replication of the phenomena modeled by the count series, are not attended by the

binomial thinning operator. Some alternatives, reviewed and compiled by Weiß (2008), are

the generalized thinning operator, the signed thinning operator, and others.

In the class of the generalized thinning operators, we can mention the negative

binomial thinning operator, whose initial idea was presented by Aly and Bouzar (1994)

and incorporated by Ristić et al. (2009) in its NGINAR model.

Definition 2.3.1. Let X be an arbitrary non-negative integer-valued rv. For any α ∈ [0, 1),

the negative binomial thinning operator “∗” is defined by

α ∗X =
X∑
i=1

Wi,

where the count series {Wi} is a sequence of iid rvs with Geometric(α) distribution with

parametrization

Pr(W = w) = αw

(1 + α)w+1 , w = 0, 1, 2, . . . .

In this case, E(W ) = α and V ar(W ) = α(1 + α).

Also, Wi is independent of X, ∀i.
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Note 2.3.2. The operator “∗” is not actually a “thinning” operator because α ∗X ≤ X is

not always true.

In the case where X ∼ Geo(µ), µ > 0, it is possible to show (Ristić et al., 2009)

that the main differences between the binomial thinning operator ◦ and the negative

binomial thinning operator ∗ are

• 0 ◦X = 0 and 0 ∗X = 0, but 1 ◦X = X, while

1 ∗X d=



0 wp 1/(1 + µ)

X wp µ2/(1 + µ)2,

X + Y wp µ/(1 + µ)2

where Y ∼ Geo ((1 + µ)/(2 + µ)) is independent of X and where “wp” means with

probability.

• β ◦ (α ◦X) d= (βα) ◦X, where counting sequences of “α◦” and “β◦” are independent,

but

β ∗ (α ∗X) d=



0 wp 1+α
1+α+αµ

(βα) ∗X + Y1 wp α2µ2

(1+α+αµ)(1+αµ) ,

(βα) ∗X + Y2 wp αµ
(1+α+αµ)(1+αµ)

where Y1 and Y2 are independent and geometrically distributed with mean parameters

βα and β(1 + α + αµ), respectively, and are independent of X.

• E(α ◦X)2 = α2E(X2) + α(1 − α)E(X), similarly

E(α ∗X)2 = α2E(X2) + α(1 + α)E(X).

2.4 Discrete Self-decomposability

Despite the introduction of the binomial thinning operator, the main goal of Steutel

and van Harn (1979) was to propose analogues for the (continuous) concepts of self-

decomposability and stability for distributions on the non-negative integers. In order to

illustrate these concepts, we present a glimpse of discrete self-decomposable distributions.

Let ϕZ(s) := E(sZ) = ∑∞
k=0 pks

k be the probability generating function (pgf) of a

non-negative integer-valued rv Z, where pk = Pr(Z = k), k = 0, 1, 2, . . .. Note that the pgf
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of Z is a power series representation of its pmf. Besides, ϕZ(1) = 1 so the series converges

absolutely for |s| ≤ 1. Also, ϕZ(0) = p0. Finally, the most important property of the pgf is

its uniqueness: if Z1 and Z2 have pgfs ϕZ1 and ϕZ2 respectively, then ϕZ1(s) = ϕZ2(s), ∀s,

if, and only if, Pr(Z1 = k) = Pr(Z2 = k), for k = 0, 1, 2, . . .. In addition, as the name of

the pgf itself says, by taking derivatives of ϕZ(s) it is possible to generate values from the

pmf of the rv Z: pk = ϕZ(0)(k)/k!.

Example 2.4.1. Let Y ∼ Bernoulli(α), α ∈ [0, 1]. Then, the pgf of Y is given by

ϕY (s) = E(sY ) = s0 Pr(Y = 0) + s1 Pr(Y = 1) = 1− α + αs, |s| ≤ 1.

Example 2.4.2. Let X ∼ Geo(µ), µ > 0. Hence, the pgf of X is

ϕX(s) = E(sX) = 1
1 + µ

∞∑
x=0

(
sµ

1 + µ

)x
= 1

1 + µ(1− s) , |s| < 1 + µ

µ
.

The following definition is found in Steutel and van Harn (1979).

Definition 2.4.3. A distribution X on N with pgf ϕX is called discrete self-decomposable

if

ϕX(s) = ϕX(1− α + αs)ϕY (s), |s| ≤ 1, ∀α ∈ (0, 1), (2.1)

with ϕY a pgf, and Y a rv with parameter(s) depending on α.

Next, we state a proposition in order to ensure self-decomposability to a discrete

rv X.

Proposition 2.4.4. Let X be a rv on N with the following stochastic representation:

X
d= α ◦X ′ + Y,

where α ◦X ′ and Y are independent, and X ′ is distributed as X. Then, X has a discrete

self-decomposable distribution.

Proof. Just apply the pgf calculation in both sides of equality and use the fact that X

and X ′ are identically distributed.

Discrete self-decomposable distributions have remarkable and useful properties

such as unimodality, closure under convolution and under weak convergence, and infinite

divisibility. For more details, the reader may consult Steutel and van Harn (2003).
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2.5 INAR(1) Process

The INAR(1) process was introduced by McKenzie (1985) and Alzaid and Al-Osh

(1987) in order to model and generate sequences of dependent counting processes. In an

autoregressive process of order p, what happens in a certain time t depends upon what

happened in the p previous times. The INAR(1) process focuses on the time immediately

preceding t and satisfies the following definition:

Definition 2.5.1. A INAR(1) process is a discrete time non-negative integer-valued

stochastic process {Xt}, satisfying

Xt = α ◦Xt−1 + εt, t > 1, (2.2)

where α ∈ [0, 1], ◦ represents the binomial thinning operation in Definition 2.2.1, and {εt},

called innovation, is a sequence of non-negative integer-valued iid rvs having mean µε and

finite variance σ2
ε . Also, Xt−h is independent of εt, ∀h ≥ 1.

In particular, the INAR(1) process is a discrete version of the linear AR process,

copycatting its structure and correlation, with ◦ replacing the usual multiplication.

To illustrate the practical meaning behind Eq. (2.2), remember the exemplification

of the binomial thinning operator regard to the population of patients at a hospital. We

have at time t a population of size Xt and probability 1−α of a patient leaves the hospital

(by receiving a hospital discharge or dying). Now, consider that εt is the number of new

patients arriving at the hospital at time t to be hospitalized. Then, clearly, at time t, Xt

is a contribution of α ◦Xt−1 (the number of remaining hospitalized patients from time

t− 1 to t) and a immigration/innovation (new patients being hospitalized) of size εt.

Alzaid and Al-Osh (1987) showed that the marginal distribution of the model in

Eq. (2.2) can be expressed in terms of the arrival process, {εt}, as

Xt
d=
∞∑
i=1

αiεt−i,

where the dependence of {Xt} on the sequence of innovations decays exponentially with

the time lag. Note that there is a parallel with the Box and Jenkins’ models, in which

an AR(1) model can be represented by a moving average model MA(∞), satisfied some

stationarity conditions.
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Furthermore, it is possible to show that {Xt} is markovian and a stationary process

and hence if ϕXt(s) and ϕεt(s) are the pgfs of the rvs Xt and εt, respectively, then

ϕXt(s) = E
(
sXt

)
= E

(
sα◦Xt−1+εt

)
= E

(
s
∑Xt−1

i=1 Yi

)
E (sεt)

= E

[
E

(
s
∑Xt−1

i=1 Yi

∣∣∣∣∣Xt−1

)]
ϕεt(s)

= E
[
(ϕY (s))Xt−1

]
ϕεt(s)

= ϕXt−1 (ϕY (s))ϕεt(s)

= ϕXt (ϕY (s))ϕεt(s)

= ϕXt (1− α− αs)ϕεt(s). (2.3)

Thus, the pgf of an INAR(1) process satisfies Eq. (2.1), i.e., the definition of a

discrete self-decomposable distribution. Consequently, the marginal distribution of an

INAR(1) process can be chosen from the class of discrete self-decomposable distributions.

Among many others, this class contains the Poisson and Negative Binomial distributions

as special cases.

Example 2.5.2 (PINAR(1)). An INAR(1) process given by Eq. (2.2), where the marginal

distributions are Poisson(µ), µ > 0, and where the ◦ operator is the binomial thinning

operator, is called a Poisson INAR(1) process [in short, PINAR(1) process]. Its innovations

are such that {εt} iid∼ Poisson (µ(1− α)), 0 < α < 1.

Example 2.5.3 (NGINAR(1)). In Eq. (2.2), if we replace the ◦ operator by the ∗ operator,

given by Definition 2.3.1, and set {Xt}
iid∼ Geo(µ), µ > 0, we have that the innovations, {εt},

are a mixture of two rvs with Geo(µ) and Geo(α) distributions, where α ∈ [0, µ/(1 + µ)].

Its pmf is given by

Pr(εt = k) =
(

1− αµ

µ− α

)
µk

(1 + µ)k+1 + αµ

µ− α
· αk

(1 + α)k+1 , k = 0, 1, 2, . . . ,∀t ≥ 1.

This process is the NGINAR(1) process presented by Ristić et al. (2009).
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3 A New Look at INAR Processes

In this Chapter, we present a new approach in the modeling of INAR processes by

jointly prespecifying the marginals and innovations of the process in the same distribution

family. From this perspective, a new type of INAR process is constructed and characterized,

as well as its statistical properties are investigated.

3.1 Pre-established Marginals and Innovations

In general, autoregressive integer-valued time series, at a time t, can be represented

by its stochastic form as

Xt = θ ? Xt−1 + εt, t > 1, (3.1)

where

• {Xt} is a stationary process with a non-negative discrete marginal distribution.

• ? is a compounding operator, such as θ ?Xt−1 = ∑Xt−1
i=1 Gi, where {Gi} is a sequence

of iid non-negative integer rvs with common distribution G, whose parameters depend

upon the vector θ.

• {εt} is a sequence of iid integer rvs, called innovations, independent of {Gi}.

Furthermore, Xt−h is independent of εt, ∀h ≥ 1.

In the modeling of this kind of integer-valued time series, one usually chooses

between the two most common paths. (1) Specify the marginal distribution of the process

and the distribution of G, then obtain the distribution of the innovations. Or, (2) specify

the distribution of the innovations and the distribution of G, then derive the marginal

distribution of the process. In both cases, the calculations are made in order to keep the

stationarity of the process.

In this work, what we propose is to choose a third path: jointly specify, in the same

discrete distribution family, both the marginals and innovations of the process, then verify

if there is a proper G distribution that keeps the stationarity of the process.
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Note that, if the process in Eq. (3.1) is stationary, the pgf of {Xt} is such that

ϕX(s) = ϕX (ϕG(s))ϕε(s). (3.2)

Hence, if there exists ϕ−1
X (s), the inverse function of ϕX(s), we have from Eq. (3.2)

that

ϕG(s) = ϕ−1
X

(
ϕX(s)
ϕε(s)

)
. (3.3)

Therefore, since the distributions of Xt and εt are specified, Eq. (3.3) represents a

mechanism to obtain the distribution of G through its pgf, as long as ϕG(s) is a pgf from

a proper discrete distribution.

Example 3.1.1. Let, ∀t ≥ 1, Xt ∼ Poisson(µ) and εt ∼ Poisson((1 − α)µ), µ > 0,

0 < α < 1. So,

ϕX(s) = e−µ(1−s), s ∈ R ⇒ ϕ−1
X (s) = 1 + 1

µ
ln(s), s > 0.

And, ϕε(s) = e−(1−α)µ(1−s), s ∈ R.

Replacing these quantities in Eq. (3.3), we have that ϕG(s) = 1− α + αs, s ∈ R,

which is the pgf of a Bernoulli distribution with parameter α ∈ (0, 1).

Note that in this case, the binomial thinning operator arises naturally.

Example 3.1.2. Consider that {Xt}
iid∼ Geo(µ), µ > 0, and that {εt} iid∼ Geo((1− α)µ),

0 < α < 1. Remember that,

Pr(X = x) = µx

(1 + µ)x+1 , x = 0, 1, 2, . . . ,

with E(Xt) = µ and V ar(Xt) := σ2 = µ(1 + µ).

Consider E(εt) := µε = (1− α)µ and V ar(εt) := σ2
ε = µε(1 + µε).

Note that,

ϕX(s) = 1
1 + µ(1− s) , |s| <

1 + µ

µ
⇒ ϕ−1

X (s) = 1− 1
µ

(1− s
s

)
. (3.4)

Analogously,

ϕε(s) = 1
1 + µε(1− s)

, |s| < 1 + µε
µε

. (3.5)

By replacing Eq. (3.4) and Eq. (3.5) in Eq. (3.3) we have

ϕG(s) = 1− 1
µ

(
ϕε(s)
ϕX(s) − 1

)
= 1− 1

µ

[
1 + µ(1− s)

1 + (1− α)µ(1− s) − 1
]
⇒
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ϕG(s) = 1− 1
µ

[
αµ(1− s)

1 + (1− α)µ(1− s)

]
= 1 + [(1− α)µ− α] (1− s)

1 + (1− α)µ(1− s)

=
1 +

[
1− α

(1− α)µ

]
(1− α)µ(1− s)

1 + (1− α)µ(1− s) , |s| < 1 + µε
µε

. (3.6)

Therefore, Eq. (3.6) shows that ϕG(s) is a pgf of a Zero-modified Geometric (ZMG)

distribution with parameters

π = 1− α

(1− α)µ = 1− α

µε
and µε,

both depending on the parameter vector θ = (µ, α). We denote G ∼ ZMG(π, µε) and its

pmf is given by

Pr(G = k) =


π + (1− π)

(
1

1 + µε

)
, for k = 0,

(1− π) µkε
(1 + µε)k+1 , for k = 1, 2, . . . .

The mean and variance of G are, respectively,

E(G) = µε(1− π) = α,

and

V ar(G) = µε(1− π) [1 + µε(1 + π)] = (1 + 2µ)(1− α)α.

Note that for π ∈ (−1/µε, 0) and π ∈ (0, 1), we have a zero-deflated model and a

zero-inflated model with respect to the geometric distribution, respectively. The ZMG

distribution has the geometric distribution as a special case by taking π = 0.

3.2 The DGINAR(1) Process

To build our new INAR process, we jointly prespecify the marginal distribution

and innovations of the process as geometric distributions as stated in Example 3.1.2.

In this set up, we call the process {Xt} given by Eq. (3.1) a Double Geometric

INAR Process of first-order [in short, DGINAR(1) process].

Although this is just the specification phase of our model, we already can highlight

an advantage when comparing with many models, specially with the model proposed by

Ristić et al. (2009). In the DGINAR(1) process, the autocorrelation parameter α varies
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freely in the interval (0, 1), not being limited by any imposed constraint dependent on the

mean parameter µ.

In order to characterize the DGINAR process, some properties of the ? operator,

associated with a ZMG distribution, are required. Proposition 3.2.1 lists those most useful

and its proof is presented in Appendix B.

Proposition 3.2.1. Let {Gi}
iid∼ G ∼ ZMG(π, µε). Let X and Y be discrete non-negative

rvs, not necessarily independent of each other, but independent of Gi, ∀i. Then,

i) E(θ ? X) = E(G)E(X).

ii) E((θ ? X)2) = V ar(G)E(X) + E2(G)E(X2).

iii) E ((θ ? X)Y ) = E(G)E(XY ).

iv) V ar(θ ? X) = V ar(G)E(X) + E2(G)V ar(X).

v) Cov(θ ? X,X) = E(G)V ar(X).

In the context of INAR processes, one interest is to determine the conditional

distribution of θ ? X given X = x. Proposition 3.2.2 gives this distribution.

Proposition 3.2.2. The conditional distribution of θ ?X given X = x is a Zero-modified

Negative Binomial (ZMNB) distribution with parameters π, µε and x ≥ 1. Its pmf is given

by

Pr (θ ? X = k|X = x) =


πx? , k = 0,
k∑
i=1

(
i+ x− 1

i

)
πx? (1− π?)i

(
k − 1
i− 1

)
pk−i(1− p)i, k ≥ 1,

where

π? = π + (1− π) 1
1 + µε

= 1− α

1 + µε
and p = µε − α

1 + µε − α
.

Furthermore,

E(θ ? X = k|X = x) = xE(G),

and

V ar(θ ? X = k|X = x) = xV ar(G).

We denote (θ ? X|X = x) ∼ ZMNB(π, µε, x).
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Remark 3.2.3. The ZMNB distribution has the Negative Binomial distribution as a special

case by taking π = 0.

Proof. Note that

Pr (θ ? X = k|X = x) = Pr
(

X∑
i=1

Gi = k

∣∣∣∣∣X = x

)
= Pr

(
x∑
i=1

Gi = k

)
= Pr (Sx = k) ,

where Sx =
x∑
i=1

Gi.

We want to find the pmf of Sx which is the sum of x independent and equally

distributed ZMG distributions. One way to do this is to compute the pgf of Sx.

ϕSx(s) = E(sSx) = E
(
s
∑x

i=1 Gi

)
= E

(
x∏
i=1

sGi

)

=
x∏
i=1

E(sG) = (ϕG(s))x =
(

1 + πµε(1− s)
1 + µε(1− s)

)x
. (3.7)

Now, rearranging ϕSx(s) given by Eq. (3.7) in a convenient way and following the

steps of Proposition 4.1 from Kolev et al. (2000) (after an adequate reparametrization),

we obtain that

ϕSx(s) =
(

1 + πµε(1− s)
1 + µε(1− s)

)x
=
(

1 + πµε
1 + µε

)x1− (1− π)µε
(1 + µε)(1 + πµε)

s

1− s πµε

1+πµε

−x .
Then, using the fact that (1− z)−x = ∑∞

i=0

(
i+x−1

i

)
zi, |z| < 1 and x ≥ 1, we have

that

ϕSx(s) =
(

1 + πµε
1 + µε

)x ∞∑
i=0

(
i+ x− 1

i

) (1− π)µε
(1 + µε)(1 + πµε)

s

1− s πµε

1+πµε

i

=
(

1 + πµε
1 + µε

)x
+
(

1 + πµε
1 + µε

)x
×

∞∑
i=1

si
(
i+ x− 1

i

)(
(1− π)µε

1 + µε

1
1 + πµε

)i (
1− s πµε

1 + πµε

)−i

=
(

1 + πµε
1 + µε

)x
+
(

1 + πµε
1 + µε

)x
×

∞∑
i=1

si
(
i+ x− 1

i

)(
(1− π)µε

1 + µε

1
1 + πµε

)i ∞∑
j=0

(
j + i− 1

j

)(
s

πµε
1 + πµε

)j

=
(

1 + πµε
1 + µε

)x
+
(

1 + πµε
1 + µε

)x
×
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∞∑
i=1

∞∑
j=0

si+j
(
i+ x− 1

i

)(
j + i− 1

j

)(
(1− π)µε

1 + µε

1
1 + πµε

)i (
πµε

1 + πµε

)j

(I)=
(

1 + πµε
1 + µε

)x
+
(

1 + πµε
1 + µε

)x
×

∞∑
i=1

∞∑
j=0

si+j
(
i+ x− 1

i

)(
j + i− 1
i− 1

)(
(1− π)µε

1 + µε

1
1 + πµε

)i (
πµε

1 + πµε

)j

(II)=
(

1 + πµε
1 + µε

)x
+
(

1 + πµε
1 + µε

)x
×

∞∑
k=1

sk
k∑
i=1

(
i+ x− 1

i

)(
k − 1
i− 1

)(
(1− π)µε

1 + µε

1
1 + πµε

)i (
πµε

1 + πµε

)k−i

=
(

1 + πµε
1 + µε

)x
+
(

1 + πµε
1 + µε

)x
×

∞∑
k=1

sk
k∑
i=1

(
k − 1
i− 1

)(
i+ x− 1

i

)(
(1− π)µε

1 + µε

)i ( 1
1 + πµε

)i (
πµε

1 + πµε

)k−i

= πx? + πx?

∞∑
k=1

sk
k∑
i=1

(
i+ x− 1

i

)
(1− π?)i

(
k − 1
i− 1

)
pk−i(1− p)i

= πx? +
∞∑
k=1

sk Pr(Sx = k),

where for k = 1, 2, . . ., Pr(Sx = k) =
k∑
i=1

(
i+ x− 1

i

)
πx? (1− π?)i

(
k − 1
i− 1

)
pk−i(1− p)i.

It is worth mentioning that the expression here obtained for the pmf of the ZMNB

distribution is simpler than that obtained by Kolev et al. (2000).

Notes:

(I) In this step we use the fact that
(
j + i− 1

j

)
=
(
j + i− 1
i− 1

)
.

(II) Use the following result:

Lemma 3.2.4.
∞∑
i=1

∞∑
j=0

si+jaibj =
∞∑
k=1

skck, where ck =
k∑
i=1

aibk−i.

Proof. Put k = i+ j. Note that k = 1, 2, . . ., ∞ and so 1 ≤ i ≤ k.

Thus, replacing j by k, we have that
∞∑
i=1

∞∑
j=0

si+jaibj =
∞∑
k=1

k∑
i=1

skaibk−i =
∞∑
k=1

sk
k∑
i=1

aibk−i︸ ︷︷ ︸
ck

.
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To obtain the mean and the variance of Sx, note that

E(Sx) = xµε(1− π) = xE(G)

and

V ar(Sx) = xµε(1− π) [1 + µε(1 + π)] = xV ar(G).

Referent to the unconditional distribution of θ ? X, once ϕθ?X(s) = ϕX (ϕG(s))

and replacing Eq. (3.4) and Eq. (3.6), we have that

ϕθ?X(s) = 1
1 + µ

(
1− 1+(1−α/µε)µε(1−s)

1+µε(1−s)

) = 1
1 + µα(1−s)

1+(1−α)µ(1−s)

= 1 + (1− α)µ(1− s)
1 + µ(1− s) ,

which implies that θ ? X ∼ ZMG(1− α, µ). Thus,

E(θ ? Xl) = µ− µε and V ar(θ ? Xl) = σ2 − σ2
ε .

Another interesting feature of our process is that the ZMG distribution is maintained

for associative operations.

Proposition 3.2.5. Let X ∼ Geo(µ), µ > 0. For θi = (µ, αi), 0 < αi < 1, set

Gi ∼ ZMG (πi, µ) , πi = 1− αi
(1− αi)µ

, i = 1, 2.

Then,

θ1 ? (θ2 ? X) ∼ ZMG(1− α1α2, µ)

Proof. We use the fact that pgf of θ1 ? (θ2 ? X) is such that

ϕθ1?(θ2?X)(s) = ϕX (ϕG2 (ϕG1))

= 1 + µ(1− α1α2)(1− s)
1 + µ(1− s)

which is the pgf of a ZMG distribution with parameters 1− α1α2 and µ.

Some simulated trajectories of the DGINAR(1) process are presented in Figure 1.

We simulate the trajectories for different combinations of the mean parameter (µ = 1, 5)

with the autocorrelation parameter (α = 0.1, 0.3, 0.5, 0.7). Note that in all scenarios, the
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Figure 1 – Simulated trajectories of the DGINAR(1) process for µ = 1 and µ = 5, and for
different values of α. Sample size is equal to 200.

series has its observed values distributed around its mean; the variance of the process

seems to be constant over time.

Figure 2 gives plots of the sample ACF for each scenario, while Figure 3 presents

the plots of the sample PACF. The ACF and the PACF characterize the series in terms of

its dependency structure. In INAR models, the interpretation of the ACF and PACF are

the same as in the ARMA models.

Figure 2 – Sample ACF for the simulated trajectories of the DGINAR(1) process for µ = 1
and µ = 5, and for different values of α.

In Figure 2, note that the ACF plots have a certain exponential decay at the

autocorrelation values; it becomes more noticeable as α increases. This fact is because in
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the DGINAR(1) process, the theoretical autocorrelation of order h is of the form γh = αh,

as will be shown in Section 3.3.3.

Figure 3 – Sample PACF for the simulated trajectories of the DGINAR(1) process for
µ = 1 and µ = 5, and for different values of α.

Figure 3 shows that the PACF plots have a clear cut-off after lag 1, meaning that all

higher-order autocorrelations are effectively explained by the lag 1 autocorrelation, what

indicates an autoregressive structure of order 1 for the simulated values of the DGINAR(1)

process. However, note that it is troublesome to detect this trait for small values of α.

3.3 Statistical Properties of the DGINAR(1) Process

In this Section, we present some statistical properties of our process, such as the

calculation of the transition probabilities, joint distributions and correlation structure,

among others.

3.3.1 Transition Probabilities

The transition probabilities in a Markov process are defined by

pij = Pr(Xt = j|Xt−1 = i), i, j ∈ N ∪ {0},

the conditional probability function of Xt given Xt−1.

Proposition 3.3.1. The transition probabilities of the DGINAR(1) process are:
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i) i = 0 and j ∈ N ∪ {0}:

p0j = pε(j).

ii) i ≥ 1 and j ∈ N ∪ {0}:

pij = pε(j)
πi? +

j∑
m=1

m∑
l=1

(
1 + 1

µε

)m (
l + i− 1

l

)
(1− π?)lπi?

(
m− 1
l − 1

)
pm−l(1− p)l

,
where pε(·) is the pmf of the innovations. Recall that π? = 1− α

1+µε
and p = µε−α

1+µε−α .

Proof. From the definition of conditional probability and from the DGINAR(1) process, it

follows that:

i) From state 0 to state j:

p0j = Pr(Xt = j|Xt−1 = 0) = Pr(Xt = j,Xt−1 = 0)
Pr(Xt−1 = 0)

= Pr(θ ? Xt−1 + εt = j,Xt−1 = 0)
Pr(Xt−1 = 0) = Pr(εt = j − θ ? Xt−1, Xt−1 = 0)

Pr(Xt−1 = 0)

= Pr(εt = j −∑Xt−1
k=1 Gk, Xt−1 = 0)

Pr(Xt−1 = 0) = Pr(εt = j −∑0
k=1 Gk, Xt−1 = 0)

Pr(Xt−1 = 0)

= Pr(εt = j) Pr(Xt−1 = 0)
Pr(Xt−1 = 0)

= pε(j), j = 0, 1, 2, . . . .

ii) From state i ≥ 1 to state j:

pij = Pr(Xt = j|Xt−1 = i) = Pr(Xt = j,Xt−1 = i)
Pr(Xt−1 = i)

= Pr(θ ? Xt−1 + εt = j,Xt−1 = i)
Pr(Xt−1 = i) = Pr(εt = j − θ ? Xt−1, Xt−1 = i)

Pr(Xt−1 = i)

= Pr(εt = j −∑Xt−1
k=1 Gk, Xt−1 = i)

Pr(Xt−1 = i) = Pr(εt = j −∑i
k=1 Gk, Xt−1 = i)

Pr(Xt−1 = i)

= Pr(εt = j −∑i
k=1 Gk) Pr(Xt−1 = i)

Pr(Xt−1 = i) = Pr
(
εt = j −

i∑
k=1

Gk

)

=
j∑

m=0
Pr
(
εt = j −

i∑
k=1

Gk,
i∑

k=1
Gk = m

)
=

j∑
m=0

Pr
(
εt = j −m,

i∑
k=1

Gk = m

)

=
j∑

m=0
Pr(εt = j −m) Pr

(
i∑

k=1
Gk = m

)
=

j∑
m=0

µj−mε

(1 + µε)(j−m)+1 Pr
(

i∑
k=1

Gk = m

)
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= Pr(εt = j)
j∑

m=0

(
1 + µε
µε

)m
Pr (Si = m) [Si ∼ ZMNB(π, µε, i), i ≥ 1]

= pε(j)
Pr(Si = 0) +

j∑
m=1

(
1 + 1

µε

)m
Pr(Si = m)



= pε(j)
πi? +

j∑
m=1

m∑
l=1

(
1 + 1

µε

)m (
l + i− 1

l

)
(1− π?)lπi?

(
m− 1
l − 1

)
pm−l(1− p)l

.

3.3.2 Joint Distribution

In the case of a discrete bivariate random vector (Z1, Z2), its pgf is given by

ϕZ1,Z2(s1, s2) = E
(
sZ1

1 sZ2
2

)
, max{|s1|, |s2|} ≤ 1.

Since {Xt} is a stationary process, the following result holds and is a tool to derive the

joint pgf of the rvs Xt and Xt−1.

Lemma 3.3.2. The joint pgf of the discrete random vector (Xt, Xt−1) is

ϕXt,Xt−1(s1, s2) = ϕε(s1)ϕX (s2ϕG(s1)) ,

where {Xt} is the DGINAR(1) process.

Proof. From the definition of the ? operator, it follows that

ϕXt,Xt−1(s1, s2) = E(sXt
1 s

Xt−1
2 ) = E

(
s
θ?Xt−1+εt

1 s
Xt−1
2

)
= E(sεt

1 )E
(
s
θ?Xt−1
1 s

Xt−1
2

)

= ϕε(s1)E
[
E

(
s
∑Xt−1

i=1 Gi

1 s
Xt−1
2

∣∣∣∣∣Xt−1

)]

= ϕε(s1)E
sXt−1

2

Xt−1∏
i=1

E(sG1 )


= ϕε(s1)E
[
(s2ϕG(s1))Xt−1

]
= ϕε(s1)ϕX (s2ϕG(s1)) .
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With Lemma 3.3.2 in hand, we have that ϕXt,Xt−1(s1, s2) = ϕε(s1)
1 + µ(1− s2ϕG(s1)) .

Then,

ϕXt,Xt−1(s1, s2) = 1
1 + µ [(1− s1) + (1− s2) + (µε − α)(1− s1)(1− s2)] , (3.8)

which is a pgf of a Bivariate Geometric Distribution (BGD) with parameters c1 = c2 = µ

and γ2 = µ
1+µα as given by Jayakumar and Mundassery (2007).

We denote (Xt, Xt−1) ∼ BGD(c1, c2, γ
2).

Furthermore, note from Eq. (3.8) that ϕXt,Xt−1(s1, s2) is symmetric in s1 and s2,

meaning that the DGINAR(1) process is time reversible, which is a remarkable property of

our process. By time reversible, we mean that in the DGINAR(1) process, the future and

the past can be swapped, i. e., from an inferential point of view, one can analyze data from

past to future or from future to past to obtain the same results. It is worth mentioning that

this property is extremely rare on INAR processes. To the best of our knowledge, the only

analogous case is the Poisson INAR process, which also has marginals and innovations in

the same family of distributions. It seems that time reversibility is an innate characteristic

of the INAR processes constructed under the new modeling perspective proposed in this

work. This fact must be investigated by the author in future works.

3.3.3 Autocorrelation Structure

To obtain the autocorrelation function, we first determine the autocovariance,

γh = Cov(Xt, Xt+h), h ≥ 0.

Proposition 3.3.3. The autocovariance of the DGINAR(1) process is given by

γh = αhγ0, h ≥ 0 and 0 < α < 1.

Proof. We use mathematical induction and items i) and iii) of Proposition 3.2.1.

• Base case: h = 1.

γ1 = Cov(Xt, Xt+1) = Cov(Xt,θ ? Xt + εt+1)

= Cov(θ ? Xt, Xt) + Cov(εt+1, Xt)

= E(G)V ar(Xt) = E(G)V ar(X) = αγ0.



3.3. Statistical Properties of the DGINAR(1) Process 51

• Step case: h ∈ N.

Suppose the result holds for h ∈ N, i. e., γh = αhγ0.

Now evaluate the result for the case when h+ 1 ∈ N.

γh+1 = Cov(Xt, Xt+(h+1)) = Cov(Xt,θ ? Xt+h + εt+h+1)

= Cov(θ ? Xt+h, Xt) + Cov(εt+h+1, Xt), εt+h+1 ⊥ Xt

= E((θ ? Xt+h)Xt)− E(θ ? Xt+h)E(Xt)

= E(G)E(Xt+hXt)− E(G)E(Xt+h)E(Xt)

= E(G)Cov(Xt, Xt+h) = E(G)γh = ααhγ0

= αh+1γ0.

Corollary 3.3.4. The autocorrelation function is

ρh = αh, ∀h ≥ 0 and 0 < α < 1.

Proof. ρh = γh
γ0

= αhγ0

γ0
= αh, ∀h ≥ 0 and 0 < α < 1.

Note that the autocorrelation function decays exponentially as h −→∞.

3.3.4 Conditional Moments

Conditional moments are of great importance in the analysis of time series. On the

one hand, they have practical interpretations in the modeling of various phenomena; in

financial time series, such as stock market returns, the first and the second conditional

moments are associated with the risk premium and with its volatility, respectively. On the

other hand, these measures aid in the estimation procedures of the unknown parameters,

as given in Chapter 4.

Proposition 3.3.5. In the DGINAR(1) process, the 1-step ahead conditional mean and

conditional variance are:

i) E(Xt+1|Xt) = E(G)Xt + E(ε) = αXt + (1− α)µ.

ii) V ar(Xt+1|Xt) = V ar(G)Xt + V ar(ε) = [(1 + 2µ)(1− α)α]Xt + σ2
ε .
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Proof. Just use the definition of DGINAR(1) process and some algebra manipulation.

i) E(Xt+1|Xt) = E(θ ? Xt + εt+1|Xt)

= E(θ ? Xt|Xt) + E(εt+1|Xt)

= E(G)Xt + E(ε)

= αXt + (1− α)µ.

ii) V ar(Xt+1|Xt) = E
(
X2
t+1|Xt

)
− E2 (Xt+1|Xt)

= E
(
(θ ? Xt + εt+1)2|Xt

)
− (E(G)Xt + E(εt+1))2︸ ︷︷ ︸

ζ

= E
(
(θ ? X)2|X

)
+ E (2(θ ? X)ε|X) + E(ε2)− ζ

= XE(G2) + (X2 −X)E2(G) + 2XE(G)E(ε) + V ar(ε) + E2(ε)− ζ

= XV ar(G) + (E(G)X + E(ε))2︸ ︷︷ ︸
ζ

+V ar(ε)− ζ

= V ar(G)Xt + V ar(ε)

= [(1 + 2µ)(1− α)α]Xt + σ2
ε .

It is possible to generalize this result using induction methods to obtain the following

recurrence relations:

r.1) E(Xt+h|Xt) = E(G)E(Xt+(h−1)|Xt) + µε.

r.2) V ar(Xt+h|Xt) = V ar(G)E(Xt+(h−1)|Xt) + E2(G)V ar(Xt+(h−1)|Xt) + σ2
ε .

Then, solving the difference equations we can generalize the h-step ahead conditional

moments:

Proposition 3.3.6. In the DGINAR(1) process, the h-step ahead conditional mean and

conditional variance are:

i) E(Xt+h|Xt) = αhXt + 1− αh
1− α µε.
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ii) V ar(Xt+h|Xt) = (1 + 2µ)
[
αh+1(1− αh−1) + α2h−1(1− α)

]
Xt+

(1 + 2µ)
[
αh+1 1− αh−1

1− α + α
1− α2h−2

1− α2

]
µε +

[
α2h−2 + 1− α2h−2

1− α2

]
σ2
ε .

Proof. The proof uses the principle of mathematical induction. The base case where h = 1

is the Proposition 3.3.5. The step case where h ∈ N, uses the recurrence relations (r.1)

and (r.2) above.

Note that in Proposition 3.3.6 when h→∞ we have that:

i) E(Xt+h|Xt) → 0Xt + 1
1− αµε = µ = E(Xt);

ii) V ar(Xt+h|Xt) → (1 + 2µ)0Xt + (1 + 2µ) α

1− α2µε + 1
1− α2σ

2
ε

= 1
1− α2 (1− α)(1 + α)µ(1 + µ) = µ(1 + µ) = V ar(Xt),

which are, as expected, the unconditional mean and unconditional variance, respectively.

3.3.5 Conditional pgf

Now, we derive the conditional pgf E(sXt+h|Xt). At first, by the definition of the ?

operator we have that

E
(
sXt+h

∣∣∣Xt

)
= E

(
sθ?Xt+(h−1)+εt+h

∣∣∣Xt

)
= E

[
E
(
sθ?Xt+(h−1) |Xt+(h−1)

) ∣∣∣∣∣Xt

]
E
(
sεt+h

∣∣∣Xt

)

= E

[
E
(
s
∑Xt+(k−1)

i=1 Gi |Xt+(h−1)

) ∣∣∣∣∣Xt

]
ϕε(s) = E

Xt+(h−1)∏
i=1

E
(
sGi

∣∣∣Xt+(h−1)
)∣∣∣Xt

ϕε(s)
= E

Xt+(h−1)∏
i=1

E
(
sG
)∣∣∣Xt

ϕε(s) = E
[
(ϕG(s))Xt+(h−1)

∣∣∣Xt

]
ϕε(s).

Then, after repeating h times, we obtain

E
(
sXt+h

∣∣∣Xt

)
=

h−1∏
i=0

ϕε
(
ϕ

(i)
G (s)

)
·
(
ϕ

(h)
G (s)

)Xt

,

where ϕ(h)
G (s) = ϕG

(
ϕ

(h−1)
G (s)

)
and ϕ(0)

G (s) = s. Applying Eq. (3.2), we obtain that

E
(
sXt+h

∣∣∣Xt

)
= ϕX(s)

[
ϕX

(
ϕ

(h)
G (s)

)]−1 (
ϕ

(h)
G (s)

)Xt

. (3.9)
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By induction, we can prove that

ϕ
(h)
G (s) =

1 +
[
(1− αh−1)µ− αh

]
(1− s)

1 + (1− αh−1)µ(1− s)

and substituting this in Eq. (3.9), we finally achieve the conditional pgf as

E
(
sXt+h

∣∣∣Xt

)
=

ϕX(s)
ϕX

1 +
[
(1− αh−1)µ− αh

]
(1− s)

1 + (1− αh−1)µ(1− s)

−11 +
[
(1− αh−1)µ− αh

]
(1− s)

1 + (1− αh−1)µ(1− s)

Xt

,

which converges to the pgf ϕX(s) as h→∞, since ϕ(h)
G (s)→ 1, as h→∞.
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4 Parameters Estimation

In this Chapter we provide some alternatives to estimate the unknown parameters

of the DGINAR(1) process. Let θ = (µ, α)T be the parameter vector and consider

(X1, X2, . . . , Xn) a realization from {Xt; t ≥ 1}. Note that n is the sample size.

4.1 Conditional Least Squares

The Conditional Least Squares (CLS) estimators are obtained by minimizing the

function

Qn(θ) =
n∑
i=2

(Xi − E(Xi|Xi−1))2 =
n∑
i=2

(Xi − αXi−1 − (1− α)µ)2,

in µ and α.

By solving the system of equations ∂Qn(θ)/∂θ = 0 we obtain the following

estimators

α̂CLS =

∑n
i=2 XiXi−1 −

1
n− 1

∑n
i=2 Xi

∑n
i=2 Xi−1∑n

i=2 X
2
i−1 −

1
n− 1 (∑n

i=2 Xi−1)2
(4.1)

and

µ̂CLS =
∑n
i=2 Xi − α̂CLS

∑n
i=2 Xi−1

(n− 1)(1− α̂CLS) . (4.2)

Appendix C presents the procedure to obtain Eq. (4.1) and Eq. (4.2).

Proposition 4.1.1. Let θ̂CLS = (µ̂CLS, α̂CLS)T be the CLS estimators given by Eq. (4.1)

and Eq. (4.2). Then θ̂CLS is a strongly consistent estimator to θ and its asymptotic

distribution is given by

√
n

 µ̂CLS − µ

α̂CLS − α

 d−→ N


 0

0

 ,

µ(1 + µ)(1 + α)

1− α (1 + 2µ)α

(1 + 2µ)α (1 + µ+ 2µ)σ2
G + σ2

ε

µ(1 + µ)


 ,

where σ2
G = V ar(G) = (1 + 2µ)(1− α)α.

Proof. To prove Proposition 4.1.1 we must verify all the conditions given in Theorem 3.1

from Tjostheim (1986). We also apply Theorem 3.2 from Tjostheim (1986) to ensure the

asymptotic result of θ̂CLS.
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Firstly, note that E (|Xt|2) < ∞ and that E(Xt|Xt−1) = αXt−1 + (1 − α)µ, as a

function of µ and α, is almost surely three times continuously differentiable in an open set Θ

containing θ0 = (µ0, α0)T , the true value of the unknown parameter θ = (θ1 = µ, θ2 = α)T .

Condition 1:

(I1) : E

∣∣∣∣∣∂E(Xt|Xt−1)

∂θi
(θ0)

∣∣∣∣∣
2
 <∞ and (II1) : E


∣∣∣∣∣∂2E(Xt|Xt−1)

∂θi∂θj
(θ0)

∣∣∣∣∣
2
 <∞

for i, j = 1, 2.

Indeed. Note that in (I1) we have

E


∣∣∣∣∣∂E(Xt|Xt−1)

∂µ
(θ0)

∣∣∣∣∣
2
 = E

{
|1− α0|2

}
= (1− α0)2 <∞ and

E


∣∣∣∣∣∂E(Xt|Xt−1)

∂α
(θ0)

∣∣∣∣∣
2
 = E

{
|Xt−1 − µ0|2

}
= V ar(Xt−1) <∞.

While from (II1) follows that

E


∣∣∣∣∣∂2E(Xt|Xt−1)

∂µ2 (θ0)
∣∣∣∣∣
2
 = E

{
|0|2

}
= 0 <∞,

E


∣∣∣∣∣∂2E(Xt|Xt−1)

∂µ∂α
(θ0)

∣∣∣∣∣
2
 = E

{
|−1|2

}
= 1 <∞,

E


∣∣∣∣∣∂2E(Xt|Xt−1)

∂α2 (θ0)
∣∣∣∣∣
2
 = E

{
|0|2

}
= 0 <∞ and

E


∣∣∣∣∣∂2E(Xt|Xt−1)

∂α∂µ
(θ0)

∣∣∣∣∣
2
 = E

{
|−1|2

}
= 1 <∞.

Condition 2: The vectors ∂E(Xt|Xt−1)(θ0)/∂θi, i = 1, 2, are linearly independent in the

sense that if a1 and a2 are arbitrary real numbers such that

E


∣∣∣∣∣

2∑
i=1

ai
∂E(Xt|Xt−1)

∂θi
(θ0)

∣∣∣∣∣
2 = 0,

then a1 = a2 = 0.



4.1. Conditional Least Squares 57

Note that

E


∣∣∣∣∣a1

∂E(Xt|Xt−1)
∂µ

(θ0) + a2
∂E(Xt|Xt−1)

∂α
(θ0)

∣∣∣∣∣
2
 = 0⇒

E
{
|a1 (1− α0) + a2 (Xt−1 − µ0)|2

}
= 0⇒

a2
1 (1− α0)2︸ ︷︷ ︸

>0

+ a2
2V ar (Xt−1)︸ ︷︷ ︸

>0

= 0⇒

a2
1 (1− α0)2︸ ︷︷ ︸

>0

= 0 and a2
2 V ar (Xt−1)︸ ︷︷ ︸

>0

= 0⇒

a2
1 = 0 and a2

2 = 0.

Then a1 = a2 = 0.

Condition 3: For θ ∈ Θ, there exist functions Gijk
t−1(X1, . . . , Xt−1) and H ijk

t (X1, . . . , Xt)

such that

(I3) : T ijkt−1(θ) =
∣∣∣∣∣∂E(Xt|Xt−1)

∂θi
(θ)∂

2E(Xt|Xt−1)
∂θj∂θk

(θ)
∣∣∣∣∣ ≤ Gijk

t−1, E
(
Gijk
t−1

)
<∞;

(II3) : Dijk
t (θ) =

∣∣∣∣∣{Xt − E(Xt|Xt−1)(θ)} ∂
3E(Xt|Xt−1)
∂θi∂θj∂θk

(θ)
∣∣∣∣∣ ≤ H ijk

t , E
(
Gijk
t

)
<∞

for i, j, k = 1, 2.

In (I3) note that T 111
t−1(θ) = T 122

t−1(θ) = T 211
t−1(θ) = T 222

t−1(θ) = 0 and that

T 112
t−1(θ) = T 121

t−1(θ) = |α− 1| < 1, and

T 212
t−1(θ) = T 221

t−1(θ) = |Xt−1 − µ|.

If we choose Gijk
t−1 = (Xt−1 − µ)2 + 1, ∀i, j, k = 1, 2 we guarantee that T ijkt−1(θ) ≤ Gijk

t−1;

besides E
(
Gijk
t−1

)
= V ar(Xt−1) + 1 <∞.

Concerning to (II3),
∂3E(Xt|Xt−1)
∂θi∂θj∂θk

(θ) = 0, ∀i, j, k = 1, 2.

So take H ijk
t = 0, ∀i, j, k = 1, 2 to satisfy the condition.

These three conditions ensure that θ̂CLS is a strongly consistent estimator for θ.

Theorem 3.2 from Tjostheim (1986) refers to the asymptotic distribution of θ̂CLS
and states that

√
n
(
θ̂CLS − θ

)
d−→ N (0,Σ) ,
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where Σ = U−1RU−1.

The elements involved in the calculation of Σ are:

• U :
U = E

{
∂E(Xt|Xt−1)T

∂θ
(θ) · ∂E(Xt|Xt−1)

∂θ
(θ)

}

= E


 1− α

Xt−1 − µ

( 1− α Xt−1 − µ
)

=

 (1− α)2 0

0 µ(1 + µ)

 .
• ft|t−1(θ):

ft|t−1(θ) = E
{

(Xt − E(Xt|Xt−1)) (Xt − E(Xt|Xt−1))T |Xt−1
}

= E
{

(Xt − E(Xt|Xt−1))2 |Xt−1
}

= V ar(Xt|Xt−1)

= α(1− α)(1 + 2µ)Xt−1 + σ2
ε .

• R:
R = E

{
∂E(Xt|Xt−1)T

∂θ
(θ)ft|t−1(θ)∂E(Xt|Xt−1)

∂θ
(θ)

}

= E

{
ft|t−1(θ)∂E(Xt|Xt−1)T

∂θ
(θ)∂E(Xt|Xt−1)

∂θ
(θ)

}

= E

ft|t−1(θ)

 (1− α)2 (Xt−1 − µ)(1− α)

(Xt−1 − µ)(1− α) (Xt−1 − µ)2


 .

r11:
r11 = E

{
ft|t−1(θ)(1− α)2

}
= E

{[
α(1− α)(1 + 2µ)Xt−1 + σ2

ε

]
(1− α)2

}
= (1− α)2 [α(1− α)(1 + 2µ)]E (Xt−1) + (1− α)2σ2

ε

= (1− α)3αµ+ 2(1− α)3αµ2 + (1− α)3µ [1 + (1− α)µ]

= (1− α)3µ [α(1 + µ) + (1 + µ)]

= µ(1 + µ)(1 + α)(1− α)3.
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r12=r21:

r12 = E
{
ft|t−1(θ)(Xt−1 − µ)(1− α)

}
= E

{[
α(1− α)(1 + 2µ)Xt−1 + σ2

ε

]
(Xt−1 − µ)(1− α)

}
= α(1− α)2(1 + 2µ)E {Xt−1(Xt−1 − µ)}+ σ2

ε(1− α)E {(Xt−1 − µ)}

= α(1− α)2(1 + 2µ)
[
E
(
X2
t−1

)
− E (Xt−1)2

]
= µ(1 + µ)(1 + 2µ)(1− α)2α.

r22:

r22 = E
{
ft|t−1(θ)(Xt−1 − µ)2

}
= E

{[
α(1− α)(1 + 2µ)Xt−1 + σ2

ε

]
(Xt−1 − µ)2

}
= α(1− α)(1 + 2µ)E

{
Xt−1(Xt−1 − µ)2

}
+ σ2

εE
{

(Xt−1 − µ)2
}

= α(1− α)(1 + 2µ)
[
E
(
X3
t−1

)
− 2µE

(
X2
t−1

)
+ µE (Xt−1)

]
+ σ2

εV ar(Xt−1)

= α(1− α)(1 + 2µ)
[
µ+ 4µ2 + 3µ3

]
+ (1− α)µ2(1 + µ) [1 + (1− α)µ]

= α(1− α)(1 + 2µ)µ(1 + µ)(1 + µ+ 2µ) + (1− α)µ2(1 + µ) [1 + (1− α)µ] .

• Σ:

Σ = U−1RU−1

=


r11

(1− α)4
r12

µ(1 + µ)(1− α)2
r21

µ(1 + µ)(1− α)2
r22

µ2(1 + µ)2



=


µ(1 + µ)(1 + α)

1− α (1 + 2µ)α

(1 + 2µ)α (1 + µ+ 2µ)σ2
G + σ2

ε

µ(1 + µ)

 .

4.2 Yule-Walker

The Yule-Walker (YW) estimators are based on the method of moments and are

obtained by solving the Yule-Walker equations, which estimate the parameters through
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the sample autocorrelations. We obtain an analytic expression for α̂YW as a function of

the autocorrelations. Since α = γ1/γ0, then

α̂YW = γ̂1

γ̂0
= Cov(Xt, Xt−1)

V ar(Xt)

=
∑n
i=2 (Xi − X̄)(Xi−1 − X̄)∑n

i=1 (Xi − X̄)2
,

(4.3)

where X̄ is the sample mean of the process {Xt}.

Moreover, since in the DGINAR(1) process µ = E(X), we naturally set

µ̂YW = X̄ = 1
n

n∑
i=1

Xi. (4.4)

In the DGINAR(1) process, the YW and the CLS estimators are asymptotically

equivalent. This fact comes from Freeland and McCabe (2005). Since in the DGINAR(1)

process the YW and CLS estimators are exactly the same of the Poisson INAR(1) process

considering the alternative parameterization proposed by Joe (1996), we can use directly

Theorem 3 from Freeland and McCabe (2005) as follow:

Proposition 4.2.1. In the DGINAR(1) process
 α̂YW − α̂CLS
µ̂YW − µ̂CLS

 = op(n−1/2).

This is sufficient for the CLS and YW estimators to have the same asymptotic distribution.

Proof. Recall that the DGINAR(1) process is stationary. Divide the numerator and

denominator of both statistics by n and denote the denominators as quantities DYW and

DCLS, respectively. Both quantities converge to the same nonzero constant asymptotically

and so (DYW −DCLS) p−→ 0. By expanding the numerators we get

n1/2 (α̂YW − α̂CLS) = (DCLS −DYW )
DYWDCLS

∑n
i=2 XiXi−1

n1/2

− (DCLS
∑n
i=2 Xi/n−DYW

∑n
i=2 Xi/(n− 1))

DYWDCLS

n−1/2
n∑
i=1

Xi

− DYW

DYWDCLS

∑n
i=2 Xi

n− 1
Xt

n1/2 + DCLS

DYWDCLS

n−1
n∑
i=1

Xi
X1

n1/2 .
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Thus,

n1/2 (α̂YW − α̂CLS) = op(1)Op(1)− op(1)Op(1)−Op(1)Op(1)op(1) +Op(1)Op(1)op(1)

= op(1).

Finally, since

n1/2 (α̂YW − α)− n1/2 (α̂CLS − α) = n1/2 (α̂YW − α̂CLS) p−→ 0

we have that both estimators have asymptotically the same distribution. Similarly it is

straightforward to show µ̂YW = µ̂CLS + op(n−1/2).

4.3 Maximum Likelihood

The Maximum Likelihood (ML) estimators take into account the temporal depen-

dence between time series ordered records. The ML function is written as

L(θ;x) = Pr(X1 = x1, . . . , Xn = xn) = Pr(X1 = x1)
n∏
i=2

Pr(Xi = xi|Xi−1 = xi−1).

In the case of the DGINAR(1) process, the log-likelihood function is given by

l(θ;x) = x1 log(µ)− (1− x1) log(1 + µ) +
n∑
i=2

log pxi−1xi
,

where pxi−1xi
is the transition probabilities provided in Proposition 3.3.1.

Then, to obtain the ML estimators we solve the system of equations ∂l(θ;x)/∂θ = 0

through numerical methods, found in most statistical softwares. In the present work, we

use R (a language and environment for statistical computing and graphics, R Development

Core Team (2017)) and its function “optim”, which provides algorithms for general-purpose

optimizations based on Nelder-Mead, quasi-Newton and conjugate-gradient algorithms.

To maximize the log-likelihood function through “optim” we must, at first, provide

initial values to the parameters. It can be done by the CLS or YW estimation methods

or using the sample mean and sample autocorrelation. In this work, we selected the

CLS estimates as the initial values to the BFGS algorithm, an iterative quasi-Newton

method (also known as a variable metric algorithm) for solving unconstrained nonlinear

optimization problems.
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4.4 Monte Carlo Simulation

In this Section, a Monte Carlo simulation study is conducted to compare the three

estimation methods proposed in the previous sections. In this comparative study, we

simulate realizations of a predetermined DGINAR(1) process, by specifying true values to

the parameters µ and α. Then, we apply the three estimation methods to these realizations,

obtaining the estimators to both parameters. The results are compared through a chosen

metric. In this work, the chosen metric is the Root of the Mean Square Error (RMSE)

given by

RMSE(θ) =
√√√√ 1
n

n∑
i=1

(θ̂i − θ0)2,

where θ0 is the true value of the parameter under study and θ̂ is its estimate by a selected

estimation method. Note that the RMSE is an absolute measure and since we have several

scenarios and we wish to make comparisons between them, a transformation of the RMSE

into a relative measure is needed. For this, we consider the coefficient of variation of the

RMSE given by CV(RMSE) = RMSE/θ̄0.

Table 1 – Numerical results of the scenarios (a), (b), (c) and (d). The CV(RMSE) is
displayed in parentheses.

n µ̂cls α̂cls µ̂yw α̂yw µ̂ml α̂ml

a) True values: µ = 1 and α = 0.1
100 1.0094 (0.1573) 0.1265 (0.8948) 1.0096 (0.1564) 0.1252 (0.8811) 1.0098 (0.1566) 0.1355 (0.9341)
300 1.0030 (0.0905) 0.1032 (0.5893) 1.0031 (0.0903) 0.1029 (0.5871) 1.0031 (0.0903) 0.1052 (0.5648)
500 1.0014 (0.0692) 0.0989 (0.4878) 1.0013 (0.0692) 0.0987 (0.4869) 1.0013 (0.0692) 0.1002 (0.4652)
700 1.0016 (0.0579) 0.0989 (0.4273) 1.0017 (0.0579) 0.0988 (0.4268) 1.0017 (0.0579) 0.1002 (0.4075)
1000 1.0008 (0.0506) 0.0981 (0.3611) 1.0008 (0.0506) 0.0980 (0.3608) 1.0007 (0.0506) 0.0991 (0.3455)

b) True values: µ = 1 and α = 0.3
100 0.9975 (0.1926) 0.2672 (0.4055) 0.9971 (0.1907) 0.2644 (0.4041) 0.9972 (0.1908) 0.2854 (0.3608)
300 0.9985 (0.1125) 0.2887 (0.2547) 0.9983 (0.1120) 0.2878 (0.2544) 0.9983 (0.1120) 0.2949 (0.2156)
500 0.9988 (0.0869) 0.2929 (0.1997) 0.9988 (0.0867) 0.2923 (0.1996) 0.9988 (0.0868) 0.2971 (0.1647)
700 1.0002 (0.0730) 0.2933 (0.1690) 1.0003 (0.0729) 0.2929 (0.1690) 1.0002 (0.0728) 0.2974 (0.1394)
1000 0.9988 (0.0606) 0.2958 (0.1409) 0.9988 (0.0605) 0.2956 (0.1409) 0.9988 (0.0605) 0.2981 (0.1142)

c) True values: µ = 1 and α = 0.5
100 1.0064 (0.2491) 0.4535 (0.2640) 1.0052 (0.2440) 0.4487 (0.2652) 1.0057 (0.2440) 0.4844 (0.2066)
300 0.9945 (0.1400) 0.4808 (0.1521) 0.9944 (0.1393) 0.4790 (0.1527) 0.9945 (0.1392) 0.4929 (0.1139)
500 0.9976 (0.1088) 0.4884 (0.1195) 0.9976 (0.1086) 0.4874 (0.1198) 0.9977 (0.1087) 0.4962 (0.0890)
700 0.9998 (0.0944) 0.4928 (0.1025) 0.9999 (0.0943) 0.4920 (0.1027) 0.9999 (0.0943) 0.4976 (0.0756)
1000 0.9990 (0.0779) 0.4944 (0.0863) 0.9990 (0.0778) 0.4939 (0.0865) 0.9990 (0.0778) 0.4983 (0.0633)

d) True values: µ = 1 and α = 0.7
100 1.0055 (0.3395) 0.6400 (0.1780) 1.0047 (0.3313) 0.6328 (0.1828) 1.0061 (0.3294) 0.6813 (0.1252)
300 1.0013 (0.1984) 0.6771 (0.0979) 1.0009 (0.1967) 0.6748 (0.0991) 1.0010 (0.1957) 0.6937 (0.0668)
500 1.0000 (0.1526) 0.6860 (0.0755) 1.0001 (0.1521) 0.6846 (0.0762) 1.0001 (0.1518) 0.6963 (0.0524)
700 1.0016 (0.1277) 0.6903 (0.0636) 1.0016 (0.1275) 0.6892 (0.0641) 1.0017 (0.1274) 0.6971 (0.0438)
1000 1.0009 (0.1046) 0.6937 (0.0536) 1.0009 (0.1045) 0.6930 (0.0537) 1.0009 (0.1044) 0.6981 (0.0359)

We set up eight scenarios to the simulation. In the first four scenarios ((a), (b), (c),

and (d)), the value of the mean parameter is fixed as µ = 1. While in the last four scenarios
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((e), (f), (g), and (h)), the value of the mean parameter is set as µ = 5. The value of the

autocorrelation parameter in the scenarios (a) and (e) is α = 0.1, (b) and (f) is α = 0.3,

(c) and (g) is α = 0.5, and in (d) and (h) is α = 0.7. Then, for each scenario, we simulate

different sample sizes (n = 100, 300, 500, 700, 1000) of the DGINAR(1) process, thereafter

we apply the estimation methods to compare its results. This process is replicated 5,000

times, following the calculation of sample mean of the estimates, as well as the RMSE, for

each scenario.

Table 2 – Numerical results of the scenarios (e), (f), (g) and (h). The CV(RMSE) is
displayed in parentheses.

n µ̂cls α̂cls µ̂yw α̂yw µ̂ml α̂ml

e) True values: µ = 5 and α = 0.1
100 5.0433 (0.1242) 0.1236 (0.8727) 5.0426 (0.1232) 0.1224 (0.8618) 5.0427 (0.1231) 0.1325 (0.9058)
300 5.0077 (0.0711) 0.1024 (0.5809) 5.0081 (0.0711) 0.1020 (0.5789) 5.0082 (0.0712) 0.1049 (0.5620)
500 5.0013 (0.0536) 0.0988 (0.4791) 5.0012 (0.0536) 0.0986 (0.4783) 5.0012 (0.0536) 0.1002 (0.4603)
700 5.0043 (0.0465) 0.0987 (0.4168) 5.0041 (0.0464) 0.0985 (0.4163) 5.0041 (0.0464) 0.0998 (0.3989)
1000 4.9949 (0.0380) 0.0979 (0.3659) 4.9948 (0.0380) 0.0978 (0.3656) 4.9948 (0.0380) 0.0984 (0.3484)

f) True values: µ = 5 and α = 0.3
100 5.0010 (0.1481) 0.2704 (0.4002) 5.0008 (0.1463) 0.2674 (0.3994) 5.0022 (0.1463) 0.2894 (0.3546)
300 5.0041 (0.0860) 0.2883 (0.2504) 5.0043 (0.0858) 0.2874 (0.2503) 5.0044 (0.0858) 0.2956 (0.2080)
500 4.9989 (0.0670) 0.2937 (0.1922) 4.9990 (0.0669) 0.2932 (0.1923) 4.9989 (0.0668) 0.2980 (0.1581)
700 4.9952 (0.0567) 0.2958 (0.1637) 4.9950 (0.0566) 0.2953 (0.1635) 4.9950 (0.0566) 0.2982 (0.1352)
1000 4.9961 (0.0474) 0.2972 (0.1357) 4.9960 (0.0474) 0.2969 (0.1356) 4.9960 (0.0474) 0.2992 (0.1094)

g) True values: µ = 5 and α = 0.5
100 5.0050 (0.1937) 0.4534 (0.2538) 5.0029 (0.1914) 0.4487 (0.2560) 5.0015 (0.1904) 0.4863 (0.1938)
300 5.0005 (0.1102) 0.4839 (0.1494) 5.0000 (0.1098) 0.4821 (0.1501) 5.0002 (0.1097) 0.4951 (0.1098)
500 5.0082 (0.0848) 0.4902 (0.1153) 5.0080 (0.0846) 0.4892 (0.1156) 5.0079 (0.0845) 0.4978 (0.0840)
700 5.0059 (0.0734) 0.4927 (0.0980) 5.0060 (0.0733) 0.4920 (0.0982) 5.0062 (0.0732) 0.4979 (0.0706)
1000 5.0017 (0.0601) 0.4945 (0.0829) 5.0018 (0.0601) 0.4940 (0.0829) 5.0020 (0.0601) 0.4987 (0.0589)

h) True values: µ = 5 and α = 0.7
100 5.0223 (0.2625) 0.6401 (0.1721) 5.0149 (0.2565) 0.6330 (0.1773) 5.0129 (0.2544) 0.6847 (0.1126)
300 5.0007 (0.1517) 0.6801 (0.0946) 5.0008 (0.1506) 0.6776 (0.0958) 5.0004 (0.1502) 0.6954 (0.0617)
500 4.9826 (0.1162) 0.6848 (0.0739) 4.9821 (0.1158) 0.6834 (0.0745) 4.9810 (0.1155) 0.6958 (0.0477)
700 4.9935 (0.0979) 0.6892 (0.0619) 4.9924 (0.0976) 0.6882 (0.0623) 4.9916 (0.0974) 0.6973 (0.0403)
1000 5.0022 (0.0828) 0.6934 (0.0512) 5.0020 (0.0827) 0.6926 (0.0513) 5.0018 (0.0826) 0.6992 (0.0335)

Table 1 and Table 2 present the results of the simulation study. First, as we can

see in both tables, we obtained convergent estimators in all cases with small CV(RMSE).

On one hand, in relation to the parameter µ, we can notice that the three estimation

methods behave equivalently, the estimates obtained by each estimation method are very

close to each other. On the other hand, in relation to the α parameter, we can note

that there is, virtually, no difference between the CLS and YW estimates, since they are

asymptotically equivalent. While the ML estimates are better than both CLS and YW

in all scenarios. Further, as the true value of α increases the better the ML estimator

becomes in comparison to CLS and YW estimators. In each scenario, the percentage mean

improvement on the CV(RMSE)(α) of the ML, in relation to the second best estimation
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method (in most of the cases the CLS estimator), is: (a) 2.2%, (b) 16.0%, (c) 25.1%, and

(d) 31.2%, when µ = 1; and is: (e) 2.1%, (f) 16.5%, (g) 26.8%, and (h) 34.9%, when µ = 5.

Figures 4 and 5 display the boxplots of the estimates to the 5,000 Monte Carlo

replicates, for each sample size and for each estimation method, for the parameters µ

and α, respectively. The horizontal dashed black line represents the true value of the

parameters. In both figures, as expected, we observe that as the sample size increases, the

variance decreases and the estimates become more concentrated around the true value of

the parameter.

Figure 4 – Boxplot of the µ estimates.

Note from Figure 4 that high α values impair the estimation of the µ parameter.

As α increases, the variance of the µ estimates becomes greater.

Figure 5 corroborates what we state about ML method producing better results for

α estimation. Note that ML estimates are closer to the true value of the parameter and as

the sample size increases its variance decreases and became lower than the variance of

CLS and YW estimates.

In this simulation study, we use a computer equipped with a 3.0GHz processor

(Intel i5-3330) and 4GB RAM. The mean computational time to simulate all Monte Carlo

replicates to all sample sizes and to all three estimation methods was 30 minutes to the

first four scenarios ((a) to (d) all at once) and 3 hours to the last four scenarios ((e) to
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(h) all at once). So, we may notice that higher values of µ require a longer computational

time, as expected.

Figure 5 – Boxplot of the α estimates.
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5 Real Data Examples

In this Chapter, the DGINAR(1) process is fitted to three distinct real datasets.

In addition, a comparison with the processes NGINAR(1) and PINAR(1) is performed.

These two processes are natural contestants of the DGINAR(1) process. The PINAR(1)

process has marginals and innovations in the same Poisson family of distributions. Despite

the parsimony of this model be an advantage, it is inadequate to deal with overdispersion.

The NGINAR(1) process has geometric marginals and a mixture of geometric distributions

for the innovations, allowing it to deal with the overdispersion problem. However, it has a

constricted parameter space, which may restrain its application to some specific datasets.

5.1 Sex Offence Data

In this application, we consider offence data. When an officer believes that a crime

has been committed, he/she should write an offense report giving the crime type (or all

crime types if multiple offenses were committed), the address, date and time (or date and

time interval), and many other variables. Offence data are the best indicator of crimes with

victims such as homicide, robbery, aggravated assault, burglary, larceny, motor vehicle

theft, etc. Usually, statistics from offence reports are thought to under-represent the true

levels of crime; for example, police might not report crimes with low solvability factors to

keep case closure rates high. Also, victims sometimes do not report crimes such as rapes.

Despite this natural underreporting, offence data remain the best indicator of crimes with

victims and that is why we analyze a sex offence data series. The data are available on-line

at The Forecasting Principles site (http://www.forecastingprinciples.com), in the section

about Crime Data. For this count series, an observation corresponds to a monthly count of

sex offences reported to the 21st police car beat in Pittsburgh. These data contain n = 144

observations starting in January 1990 and ending in December 2001. This data is listed in

Table 12 in Appendix D.

Figure 6 shows the time series data, sample ACF and PACF. From these plots,

we see that a first-order autoregressive model may be suitable for modeling the monthly

count of sex offences since there is a clear cut-off after lag 1 in the PACF. Moreover, the
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behavior of the series indicates that it may be mean stationary.

Figure 6 – Plots of the time series, sample ACF and PACF for the sex offences dataset.

The sample mean, variance and autocorrelation of the data are 0.5903, 1.0268 and

0.2348, respectively. Once the sample variance is much larger than the sample mean the

data seem to be overdispersed, the Poisson distribution is not appropriate and so the

PINAR(1) process would be a poor choice to model the data. In order to properly check

this affirmation, we perform an overdispersion test proposed by Schweer and Weiß (2014),

where the test statistic is based on the empirical index of dispersion Îd := S2/X̄, where X̄

and S2 are the sample mean and variance, respectively. The null hypothesis H0: X1, . . . , Xn

stem from an equidispersed PINAR(1) process against the alternative H1: X1, . . . , Xn stem

from an overdispersed INAR(1) process [as in the case of the DGINAR(1) process]. For

the sex offence data, we have that Îd = 1.7394. The associated p-value is

pvalue = 1− Φ
√n

2
1− α2

1 + α2 · (Îd − 1)
 = 1.45× 10−9,

where Φ denotes the distribution function of the standard normal distribution and if a

hypothetical value for the dependence parameter α is not available, Schweer and Weiß

(2014) recommends to use a plug-in approach, i.e., to replace α by ρ̂1 = 0.2348. So, this

value of the p-value, using any usual significance level (for instance 5%), leads to the

rejection of the null hypothesis in favor of the alternative hypothesis that states that an

overdispersed INAR(1) process is more adequate for modeling this dataset.
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With this results in hand we fit to the data the DGINAR(1), the NGINAR(1), and

the PINAR(1) models. Despite the PINAR(1) model be rejected by the previous hypothesis

test, we fit it for means of comparison. Table 3 lists the estimates of the parameters based

on the CLS and ML estimation methods presented in Chapter 4. Additionally, we exhibit

in this table the associated standard errors and confidence intervals of the parameters

with significance level at 5%. Regarding the CLS method, we observe that the estimates of

both parameters (µ and α) are the same for all models since the estimation is based only

on the first moment that is equal for all of them. The standard error for the parameter µ is

the same to the DGINAR(1) and to the NGINAR(1) models since its asymptotic variance

is equal. The PINAR(1) model has the smallest standard error for the parameters µ and α

between all models. In the ML method, because the maximum likelihood functions differs,

we have different results to all estimates. Again, the PINAR(1) model presents smaller

standard errors for both parameters, followed by the DGINAR(1) model.

Table 3 – Estimates of the parameters and its associated standard errors and confidence
intervals for the monthly count of sex offences time series data.

Method Model Parameter Estimate Stand. Error Inf. Bound Sup. Bound
CLS DGINAR(1) µ 0.5944 0.1031 0.3923 0.7965

α 0.2354 0.1135 0.0130 0.4578
NGINAR(1) µ 0.5944 0.1031 0.3923 0.7965

α 0.2354 0.1059 0.0278 0.4430
PINAR(1) µ 0.5944 0.0817 0.4343 0.7545

α 0.2354 0.0998 0.0398 0.4310
ML DGINAR(1) µ 0.5886 0.0958 0.4008 0.7764

α 0.1746 0.0908 0.0000 0.3525
NGINAR(1) µ 0.5872 0.1422 0.3084 0.8660

α 0.1650 0.0944 0.0000 0.3500
PINAR(1) µ 0.5890 0.0735 0.4449 0.7331

α 0.1404 0.0643 0.0144 0.2664

In order to perform a more accurate comparison between the models, Table 4

presents some empirical and estimated quantities - plugged-in the ML estimates. Since the

DGINAR(1) and the NGINAR(1) models have geometric marginal distributions, quantities

based only on the first moments are insufficient to make a good comparison. Thus, we use

mixed moments up to order 4 of an INAR(1) process given by Schweer and Weiß (2014).

Empirically, the mixed moments up to order 4 are defined through the following notation

µ(s1, . . . , sr−1) := E(Xt ·Xt+s1 · · ·Xt+sr−1), with 0 ≤ s1 ≤ . . . ≤ sr−1 and r ∈ N.
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So the case r = 1 corresponds to the marginal mean µX = E(Xt). In the case of a

stationary INAR(1) process Schweer and Weiß (2014) prove that the first and second

higher-order moments are given by

µ(k) = σ2
Xα

k + µ2
X , and

µ(k, l) = (µ̄X,3 − σ2
X)αl+k + (1 + µX)σ2

Xα
l + µXσ

2
X(αl−k + αk) + µ3

X ,

respectively, for any 0 ≤ k ≤ l, where µ̄X,r := E[(X − µX)r] denotes the central moments

of X, and the innovations εt have existing moments µε,r := E(εrt ), for r ≤ 4.

In Table 4 consider the following quantities: mean, variance, skewness, kurtosis,

index of dispersion (ration of the variance to the mean), probability of zero, first higher-order

moment with lag 1, first higher-order moment with lag 2, and second high-order moment

with lag 1, denoted by κ1, κ2, skwe., kurt., Id, p0, µ(1), µ(2), and µ(1, 1), respectively.

Note that the DGINAR(1) model has the estimated quantities closer to the empirical

ones, the exceptions occurring only for the mean, skewness and kurtosis. As expected,

the PINAR(1) model presents poor results, reinforcing its inadequacy to modeling this

dataset.

Table 4 – Comparison among the models based on empirical and estimated quantities for
the monthly count of sex offences time series data.

Quantity Empirical DGINAR(1) NGINAR(1) PINAR(1)
κ1 0.5903 0.5886 0.5872 0.5890
κ2 1.0268 0.9350 0.9320 0.5890
skew. 2.5990 2.2515 2.2523 1.3030
kurt. 11.6804 7.0695 7.0730 1.6978
Id 1.7394 1.5886 1.5872 1.0000
p0 0.6250 0.6295 0.6300 0.5549
µ(1) 0.5944 0.5097 0.4986 0.4296
µ(2) 0.3944 0.3750 0.3702 0.3585
µ(1, 1) 1.9371 1.1433 1.1139 0.7314

Another way to compare models is by calculating the Akaike Information Criterion

(AIC) and the Root Mean Square (RMS) statistics. The AIC is given by AIC = 2k −

2 log (L(θ̂,x)), where k is the number of estimated parameters in the model and L(θ̂,x)

is the maximum value of the likelihood function for the model. The AIC is an estimator of

the relative quality of the statistical models for a given dataset, assuming the existence of

a “real” unknown model that describes the data. Given a collection of models for the data,

the AIC estimates the quality of each model, relative to each of the other models. The
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smaller the AIC of a model, closer to the “real” model it is, so the better the model is.

The RMS is obtained as the square root of the average value of [Xt − Ê(Xt|Xt−1)]2, for

t = 2, . . . , n, and is frequently used to measure the differences between values predicted

by a model and the values actually observed. The smaller the RMS of a model, lower its

prediction error is, so the better the model is. Thus, the AIC and RMS provide means for

model selection. Table 5 shows that the DGINAR(1) model presents smaller values of the

AIC and RMS statistics than the other models. Therefore, the DGINAR(1) model is a

more appropriate choice for modeling the dataset of sex offences.

Table 5 – AIC and RMS statistics for the fitted models to the monthly count of sex offences
time series data.

Statistic DGINAR(1) NGINAR(1) PINAR(1)
AIC 293.30 294.70 308.90
RMS 0.9856 0.9862 0.9883

We now proceed to discuss the goodness-of-fit of DGINAR(1) model based on

the residuals Rt := Xt − Ê(Xt|Xt−1) and on the jumps Jt := Xt −Xt−1, for t = 2, . . . , n.

Note that E(Jt) = 0 and V ar(Jt) = 2µ(1 + µ)(1 − α). In Figure 7, we present plots of

the sample ACF of the residuals and the jumps against time (Shewhart control chart)

with ±3σJ limits chosen as the benchmark chart as proposed by Weiß (2009), where

σJ =
√
V ar(Jt) = 1.2424. These plots indicate that the residuals R2, . . . , Rn are not

correlated, indicating that our fitted model seems to have captured well the dependence of

the count time series and that there is not a particular point causing a huge impact in the

model. Note from the Shewhart control chart that around 97% of the points are within

the control limits.

Additionally, we perform the Ljung-Box test to ensure the independence of the

residuals. In this test, the null hypothesis is H0: R2, . . . , Rn are independently distributed

against the alternative hypothesis H1: R2, . . . , Rn are not independently distributed (i.e.

they exhibit serial correlation). More details about this test are found in Box et al. (2015).

The associated p-value is 0.4463, thus we accept the null hypothesis that the residuals are

independently distributed, using any usual significance level.

To finalize the data analysis, we calculate the standardized Pearson residuals,

rt := Xt − Ê(Xt|Xt−1)√
V̂ ar(Xt|Xt−1)

, for t = 2, . . . , n,
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Figure 7 – Plots of the sample ACF of the residuals and jumps against time for the sex
offence counts dateset.

to check if the DGINAR(1) model has well captured the overdispersion present in the

count time series considered. According to Harvey and Fernandes (1989), a sample variance

of the residuals greater than 1 indicates overdispersion with respect to the model that is

being fitted. Since we have that V ar(rt) = 1.0195, there is evidence that our DGINAR (1)

model successfully captured the overdispersion of the data.

After all, we conclude that the proposed DGINAR(1) model fitted the data well

and that it is a better choice than the NGINAR(1) and PINAR(1) model.

5.2 Skin Lesions Data

In this second application, we analyze a dataset first presented by Jazi et al. (2012).

The data consists of animal health laboratory submissions; provided by the Ministry of

Agriculture and Forestry from New Zealand. The data give numbers of monthly submissions

to animal health laboratories, starting in January 2003 and ending in December 2009

in a total of n = 84 observations, from a region in New Zealand. The submissions are

categorized in various ways, such as by animal type, diseases, and health symptoms. Here,

we analyze a monthly series giving the total number of bovine cases with skin lesions. The

dataset is given in Table 13 in Appendix D.

Figure 8 shows the time series data and its sample ACF and PACF. From the plots,

we see that a first-order autoregressive model may be suitable for modeling the monthly

count of skin lesions since there is a clear cut-off after lag 1 in the PACF. Moreover, the
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behavior of the series indicates that it may be mean stationary.

Figure 8 – Plots of the time series, sample ACF and PACF for the skin lesions dataset.

The sample mean, variance and autocorrelation of the data are 1.4286, 3.3563 and

0.2347, respectively. As in the case of the first application, here we also have that the

sample variance is much larger than the sample mean, so the data may be overdispersed

and the Poisson distribution is not appropriate to fit the marginal distribution of the

process. Thus, we compute the empirical index of dispersion obtaining that Îd = 2.3494.

Applying the test for overdispersion proposed by Schweer and Weiß (2014), we find that

the associated p-value is 1.11× 10−16, rejecting the null hypothesis at a significance level

of 5% in favor of the alternative hypothesis which states that an overdispersed INAR(1)

process is more appropriate for modeling this dataset.

Table 6 presents the CLS and ML estimates of the parameters for the DGINAR(1),

NGINAR(1) and PINAR(1) models fitted to the dataset. Again, we fit the PINAR(1)

model just to show its inadequacy to the dataset. As explained in the previous application,

the CLS estimates for the parameters µ and α are the same for all models. However,

because the asymptotic distribution is different for each model, the standard errors are

distinct. In relation to the ML estimates, the estimates of the parameter µ are close for

all models, whereas the estimates of the parameter α are somewhat very different in the

DGINAR(1) model.
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Table 6 – Estimates of the parameters and its associated standard errors and confidence
intervals for the monthly count of skin lesions time series data.

Method Model Parameter Estimate Stand. Error Inf. Bound Sup. Bound
CLS DGINAR(1) µ 1.4142 0.2566 0.9113 1.9171

α 0.2365 0.1431 0.0000 0.5169
NGINAR(1) µ 1.4142 0.2566 0.9113 1.9171

α 0.2365 0.1231 0.0000 0.4777
PINAR(1) µ 1.4142 0.1651 1.0906 1.7378

α 0.2365 0.1171 0.0071 0.4659
ML DGINAR(1) µ 1.4239 0.2784 0.8782 1.9696

α 0.3137 0.1178 0.0828 0.5446
NGINAR(1) µ 1.4149 0.2423 0.9400 1.8898

α 0.1717 0.1105 0.0000 0.3882
PINAR(1) µ 1.4264 0.1548 1.1230 1.7298

α 0.1736 0.0682 0.0399 0.3073

To better compare the models, we compute empirical and estimated quantities

based on the marginal distributions (plugged-in the ML estimates) of the models. Again,

the quantities estimated for the DGINAR(1) model are close to the empirical ones. Table

7 presents this results. Note that for the DGINAR(1) model, the estimates of the higher-

order moments are much closer to the empirical values than those of the NGINAR(1) and

PINAR(1) models. Further, the PINAR(1) model performs very poorly.

Table 7 – Comparison among the models based on empirical and estimated quantities for
the monthly count of skin lesions time series data.

Quantity Empirical DGINAR(1) NGINAR(1) PINAR(1)
κ1 1.4286 1.4239 1.4149 1.4264
κ2 3.3563 3.4514 3.4168 1.4264
skew. 1.8378 2.0712 2.0719 0.8373
kurt. 6.8999 6.2897 6.2927 0.7011
Id 2.3494 2.4239 2.4149 1.0000
p0 0.4048 0.4126 0.4141 0.2402
µ(1) 2.8434 3.1102 2.5886 2.2822
µ(2) 2.7683 2.3671 2.1027 2.0776
µ(1, 1) 12.1205 12.9346 10.1989 5.8908
µ(1, 2) 6.9756 7.0969 4.7849 3.7129

The model selection is performed through the AIC and RMS statistics. As shown

in Table 8, the DGINAR(1) model presents the smallest AIC; whereas the RMS value is

virtually the same for all models. Hence, based on the AIC and with the additional help

of the results from Table 7, we select the DGINAR(1) model to discuss its goodness-of-fit.
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Table 8 – AIC and RMS statistics for the fitted models to the monthly count of skin
lesions time series data.

Statistic DGINAR(1) NGINAR(1) PINAR(1)
AIC 266.10 269.10 298.20
RMS 1.7849 1.7832 1.7830

In Figure 9, we present plots of the ACF of the residuals and the Shewhart control

chart to the jumps with ±3σJ control limits, where σJ = 2.1766. These plots indicate that

the residuals are not correlated (the p-value of the Ljung-Box test is 0.2017) and that there

is not a particular point causing a huge impact on the model. Furthermore, the Shewhart

control chart shows that around 98% of the points are within the control limits. In contrast,

the variance of the standardized Pearson residuals, V ar(rt) = 0.9606 < 1, gives evidence

that the DGINAR(1) model may not have captured well the overdispersion of the skin

lesion count time series; the same goes for the NGINAR(1) model where V ar(rt) = 0.9143.

Altogether, we have strong evidence that the DGINAR (1) model is suitable for modeling

this dataset.

Figure 9 – Plots of the sample ACF of the residuals and jumps against time for the skin
lesion counts dataset.

5.3 Public Drunkenness Data

In this final application, we again work on the offence data available online at The

Forecasting Principles website. Here, considering cases of public drunkenness reported to

the 17th police car beat in Pittsburgh. The data series consists of n = 144 monthly counts,

starting in January 1990 and ending in December 2001. Figure 10 plots the time series
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and the associated ACF and PACF. Note that an INAR process of first-order may be

suitable for modeling the monthly count of public drunkenness; there exists a cut-off after

lag 1 in the PACF. Moreover, the behavior of the series indicates that it may be mean

stationary. Table 14 in the Appendix D provides this dataset.

Figure 10 – Plots of the time series, sample ACF and PACF for the public drunkenness
dataset.

The sample mean, variance and autocorrelation of the data are 0.5, 1.2448 and

0.4621, respectively. Again, the data indicates overdispersion since the sample variance is

larger than the sample mean. Thus, we compute the empirical index of dispersion obtaining

Îd = 2.4895 and checking overdispersion from the test proposed by Schweer and Weiß

(2014). We find that the associated p-value is very close to zero. So, we reject the null

hypothesis, at any usual level of significance, in favor of the alternative hypothesis stating

that an overdispersed INAR(1) process is more appropriate for modeling this dataset.

We mention in Chapter 3 that one of the advantages of the DGINAR(1) process is

that the autocorrelation parameter α varies freely in the interval (0, 1), not being limited

by any imposed constraint dependent on the mean parameter µ. This is not the case in the

NGINAR(1) process, wherein the autocorrelation parameter is top bounded by µ/(1 + µ).

In the case of this data on public drunkenness, we obtain that the CLS estimates for the

NGINAR(1) model are µ̂ = 0.5095 and α̂ = 0.4627, so the estimate of α is out of the

parameter space (0, 0.3375). Therefore, the NGINAR(1) process is not defined for these
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values of the parameters and hence this model cannot be used for fitting the present count

time series. So, we proceed to analyze just the DGINAR(1) model, comparing it with the

PINAR(1) model.

Table 9 presents the CLS and ML estimates of the parameters and the associated

standard errors to this estimates. Note that almost all estimates are close to each other, the

exception is the ML estimate of α. Confidence intervals of the parameters with significance

level at 5% are also displayed.

Table 9 – Estimates of the parameters and its associated standard errors for the monthly
count of public drunkenness time series data.

Method Model Parameter Estimate Stand. Error Inf. Bound Sup. Bound
CLS DGINAR(1) µ 0.5095 0.1206 0.2732 0.7458

α 0.4627 0.1209 0.2258 0.6996
PINAR(1) µ 0.5095 0.0981 0.3171 0.7019

α 0.4627 0.1212 0.2252 0.7002
ML DGINAR(1) µ 0.5000 0.1149 0.2748 0.7252

α 0.4386 0.0880 0.2660 0.6112
PINAR(1) µ 0.5000 0.0882 0.3272 0.6728

α 0.3861 0.0691 0.2507 0.5215

Table 10 provides the empirical and estimated quantities based on the geometric

and Poisson marginal distributions of the DGINAR(1) and PINAR(1) models, respectively.

These quantities are the same in previous applications. Note from the table that the

estimated quantities based on the DGINAR(1) model have a major concordance with the

empirical quantities than the PINAR(1) model.

Table 10 – Comparison of empirical and estimated quantities for the monthly count of
public drunkenness time series data.

Quantity Empirical DGINAR(1) PINAR(1)
κ1 0.5000 0.5000 0.5000
κ2 1.2448 0.7500 0.5000
skew. 2.6253 2.3094 1.4142
kurt. 10.0217 7.3333 2.0000
Id 2.4895 1.5000 1.0000
p0 0.7639 0.6667 0.6065
µ(1) 0.8252 0.5790 0.4430
µ(2) 0.5704 0.3943 0.3245
µ(1, 1) 2.8671 1.3022 0.7611
µ(1, 2) 1.2535 0.7336 0.4299
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Model selection is presented in Table 11. The DGINAR(1) model have the smallest

AIC and RMS values, so it is the best choice to model the data.

Table 11 – AIC and RMS statistics for the fitted models to the monthly count of public
drunkenness time series data.

Statistic DGINAR(1) PINAR(1)
AIC 236.23 271.67
RMS 0.9887 0.9920

As in previous applications, we plot in Figure 11 the sample ACF of the residuals

and the jumps against time in a Shewhart control chart with ±3σJ as the control limits,

where σJ = 0.9177; 95% of the points are within the bounds. These plots indicate that

the residuals are not correlated (moreover, the p-value to the Ljung-Box test is 0.9536)

and that there is no particular point causing a huge impact in the model. Additionally,

the variance of the standardized Pearson residuals, V ar(rt) = 1.2547, gives evidence that

our model have captured with success the overdispersion of the data. With this, the

DGINAR(1) model seems to be well fitted to the monthly count of public drunkenness.

Figure 11 – Plots of the sample ACF of the residuals and jumps against time for the public
drunkenness counts dataset.
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6 Conclusions

A new approach to modeling INAR processes was proposed, namely, to prespecify in

the same distribution family the marginal distributions and the innovations of the process.

The DGINAR(1) process, introduced through this new modeling, sets the geometric

distribution for the marginal distributions and for the innovations, implying that a

compounding operator dependent on a ZMG distribution should be used. The DGINAR(1)

process was characterized and its statistical properties presented. Several advantages of

our model were highlighted, especially the analytical simplifications, the non-restriction of

the parameter space and the time reversibility. In addition, it was discussed the estimation

of the unknown parameters and the conditions to ensure consistency and asymptotic

normality for the estimators. Numerical simulations through Monte Carlo methods showed

the good performance of the estimators presented for all virtual scenarios considered. Also,

applications to real datasets were performed and a comparison with competing models was

made, proving not only the practical relevance of the model but also its competitiveness

and efficiency.

Possible points of future research are:

a) define and study a natural extension to the DGINAR(1) process: the DGINAR(p)

process, p > 1, where p is the order of the autocorrelation;

b) generalize our innovative approach of jointly prespecifies the marginal distributions

and the innovations of the process, replacing the geometric distribution by a more

flexible and wider class of distributions, e.g., the power series family or the mixed

Poisson distribution.
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APPENDIX A – Properties of the Binomial

Thinning Operator

In this Appendix we prove the four basic properties about the binomial thinning

operator given in Subsection 2.2.

i) 0 ◦X a.s.= 0 and 1 ◦X a.s.= X.

Here we prove only case 0 ◦X a.s.= 0 since case 1 ◦X a.s.= X is analogous.

We need to prove that Pr(0 ◦X = 0) = 1.

Let the set SX be the support of the discrete rv X. Note that SX ∈ N ∪ {0}.

Remember that X is independent of the sequence {Yi} iid∼ Bernoulli(α) and that, in

this case, α = 0.

Pr(0 ◦X = 0) = Pr
(

X∑
i=1

Yi = 0
)

= Pr
(

X∑
i=1

Yi = 0, X ∈ SX
)

= Pr
 X∑
i=1

Yi = 0, X ∈
⋃

x∈SX

{x}



=
∑
x∈SX

Pr
(

X∑
i=1

Yi = 0, X = x

)

=
∑
x∈SX

Pr
(

X∑
i=1

Yi = 0
∣∣∣∣∣X = x

)
Pr(X = x)

=
∑
x∈SX

Pr
(

x∑
i=1

Yi = 0
)

Pr(X = x)

=
∑
x∈SX

Pr (Y1 = 0, . . . , Yx = 0) Pr(X = x)

=
∑
x∈SX

x∏
i=1

Pr (Yi = 0) Pr(X = x)

=
∑
x∈SX

Pr(X = x)

= 1.
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ii) E(α ◦X) = αE(X).

By the definition of conditional expectation we have that

E(α ◦X) = E [E(α ◦X)|X] = E

[
E

(
X∑
i=1

Yi

) ∣∣∣∣∣X
]

= E

[
X∑
i=1

E(Yi|X)
]

= E

[
X∑
i=1

E(Yi)
]

= E

(
X∑
i=1

α

)
= E(αX)

= αE(X).

iii) Associative Law: for any β ∈ [0, 1], β ◦ (α ◦X) d= (βα) ◦X.

We use the concept of pgf presented in Subsection 2.4 and the result presented in

Example 2.4.1 regarding a Bernoulli rv. Additionally, we need the following lemma.

Lemma: Let Z =
X∑
i=1

Yi, where X is a discrete rv with pgf ϕX and {Yi} is a sequence

of rvs iid with pgf ϕY independent of X. Then, the pgf of Z is given by

ϕZ(s) = ϕX (ϕY (s)) , s in the domain of convergence of ϕZ .

To prove this property is sufficient to show that each side of the equality has the

same pgf.

Note that (βα) ◦X =
X∑
i=1

Yi, with {Yi} iid∼ Bernoulli(βα). Then,

ϕ(βα)◦X(s) (∗)= ϕX (ϕY (s)) = ϕX(1− βα + βαs).

Similarly, as ϕα◦X(s) = ϕX(1 − α + αs) and since β ◦ (α ◦ X) =
α◦X∑
i=1

Yi, with

{Yi}
iid∼ Bernoulli(β), we have that

ϕβ◦(α◦X)(s)
(∗)= ϕα◦X (ϕY (s))

= ϕα◦X (1− β + βs)

(∗)= ϕX(1− α + α(1− β + βs))

= ϕX(1− βα + βαs).

(∗): Lemma.
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iv) Distributive Law: if Z, independent of X, is a non-negative integer-valued rv, then

α ◦ (X + Z) d= α ◦X + α ◦ Z.

As in the case of the previous property, it is sufficient to prove that both sides of the

equality has the same pgf.

Note that α ◦ (X + Z) =
X+Z∑
i=1

Yi, where {Yi} iid∼ Bernoulli(α) and independent of

X + Z. Then,

ϕα◦(X+Z)(s) = ϕX+Z(1− α + αs) = ϕX(1− α + αs)ϕZ(1− α + αs).

Now, α ◦ X =
X∑
i=1

Yi, where {Yi} iid∼ Bernoulli(α). Similarly, α ◦ Z =
Z∑
i=1

Y ′i , where

{Y ′i }
iid∼ Bernoulli(α).

Assume without loss of generality that {Yi} and {Y ′i } are independent. Hence, α ◦X

and α ◦ Z are independent. So

ϕα◦X+α◦Z(s) = ϕα◦X(s)ϕα◦Z(s) = ϕX(1− α + αs)ϕZ(1− α + αs).
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APPENDIX B – Properties of the ?

Operator

In this Appendix we prove Proposition 3.2.1 regarding the properties of the ?

operator as given in Subsection 3.2.

Proposition 3.2.1. Let {Gi}
iid∼ G ∼ ZMG(π, µε). Let X and Y be discrete non-negative

rvs, not necessarily independent of each other, but independent of Gi, ∀i. Then,

i) E(θ ? X) = E(G)E(X).

ii) E((θ ? X)2) = V ar(G)E(X) + E2(G)E(X2).

iii) E ((θ ? X)Y ) = E(G)E(XY ).

iv) V ar(θ ? X) = V ar(G)E(X) + E2(G)V ar(X).

v) Cov(θ ? X,X) = E(G)V ar(X).

Proof. i) Use the definition of the ? operator and the properties of expectation.

E(θ ? X) = E [E (θ ? X|X)] = E

[
E

(
X∑
i=1

Gi

∣∣∣∣∣X
)]

= E

[
X∑
i=1

E(Gi|X)
]

= E

(
X∑
i=1

E(Gi)
)

[Gi ⊥ X, ∀i = 1, 2, . . .]

= E

(
X∑
i=1

E(G)
)

[Gi is iid]

= E (XE(G))

= E(G)E(X).

ii) Here some additional algebraic manipulations are required.

E((θ ? X)2) = E
[
E
(
(θ ? X)2 |X

)]
= E

E
( X∑

i=1
Gi

) X∑
j=1

Gj

 ∣∣∣∣∣X
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= E

E

 X∑
i=1

G2
i +

X∑
i=1

X∑
j=1
i 6=j

GiGj


∣∣∣∣∣X



= E

[
E

(
X∑
i=1

G2
i

∣∣∣∣∣X
)]

+ E

E
 X∑
i=1

X∑
j=1
i 6=j

GiGj

∣∣∣∣∣X



= E

[
X∑
i=1

E
(
G2
i |X

)]
+ E

 X∑
i=1

X∑
j=1
i 6=j

E (GiGj|X)



= E

[
X∑
i=1

E
(
G2
i

)]
+ E

 X∑
i=1

X∑
j=1
i 6=j

E (GiGj)



= E

[
X∑
i=1

E
(
G2
)]

+ E

 X∑
i=1

X∑
j=1
i 6=j

E2(G)


= E

[
XE(G2)

]
+ E

[
(X2 −X)E2(G)

]
= (E(G2)− E2(G))E(X) + E2(G)E(X2)

= V ar(G)E(X) + E2(G)E(X2).

iii) Remember that X and Y are not necessarily independent.

E ((θ ? X)Y ) = E

[
E

((
X∑
i=1

Gi

)
Y

∣∣∣∣∣X, Y
)]

= E

[
Y

X∑
i=1

E(Gi|X, Y )
]

= E

[
Y

X∑
i=1

E(Gi)
]

= E

[
Y

X∑
i=1

E(G)
]

= E [XY E(G)]

= E(G)E(XY ).

iv) It follows from the application of i) and ii) in the variance formula.

V ar(θ ? X) = E((θ ? X)2)− E2(θ ? X)

= V ar(G)E(X) + E2(G)
[
E(X2)− E2(X)

]
= V ar(G)E(X) + E2(G)V ar(X).

v) It follows from the definition of covariance and from i) and iii).

Cov(θ ? X,X) = E [(θ ? X)X]− E(X) · E(θ ? X)

= E(G)
[
E(X2)− E2(X)

]
= E(G)V ar(X).
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APPENDIX C – Obtaining the CLS

Estimators

In this Appendix we present the solution of the system of equations ∂Qn(θ)/∂θ = 0

in order to obtain the CLS estimators given by Eq. (4.1) and Eq. (4.2).

Obtaining the estimators:

Note that since Qn(θ) = ∑n
i=2 (Xi − αXi−1 − (1− α)µ)2, then

∂Qn(θ)
∂µ

= −2(1− α)
n∑
i=2

(Xi − αXi−1 − (1− α)µ)

and
∂Qn(θ)
∂α

= 2
n∑
i=2

(Xi − αXi−1 − (1− α)µ) (µ−Xi−1).

Therefore
∂Qn(θ)
∂θ

= 0⇒
n∑
i=2

Xi − α∗
n∑
i=2

Xi−1 − (n− 1)(1− α∗)µ∗ = 0
n∑
i=2

(Xi − α∗Xi−1 − (1− α∗)µ∗)µ∗ =
n∑
i=2

(Xi − α∗Xi−1 − (1− α∗)µ∗)Xi−1

⇒



µ∗ =
∑n
i=2 Xi − α∗

∑n
i=2 Xi−1

(n− 1)(1− α∗)
n∑
i=2

(Xi − α∗Xi−1 − (1− α∗)µ∗)µ∗︸ ︷︷ ︸
(A)

=
n∑
i=2

(Xi − α∗Xi−1 − (1− α∗)µ∗)Xi−1︸ ︷︷ ︸
(B)

.

Perceive that (A) = 0 by rearranging it and replacing µ∗ inside the parentheses as

follow
(A) = µ∗

(
n∑
i=2

Xi − α∗
n∑
i=2

Xi−1 − (n− 1)(1− α∗)µ∗
)

= µ∗
[
n∑
i=2

Xi − α∗
n∑
i=2

Xi−1 −
(

n∑
i=2

Xi − α∗
n∑
i=2

Xi−1

)]

= 0.

Now, replacing µ∗ in (B) it is not difficult to see that

(B) =
n∑
i=2

XiXi−1 −
1

n− 1

n∑
i=2

Xi

n∑
i=2

Xi−1 − α∗
 n∑
i=2

X2
i −

(
n∑
i=2

Xi−1

)2
 .
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Hence, as 0 = (A) = (B),

α∗ =

∑n
i=2 XiXi−1 −

1
n− 1

∑n
i=2 Xi

∑n
i=2 Xi−1∑n

i=2 X
2
i−1 −

1
n− 1 (∑n

i=2 Xi−1)2
.

Once in the Hessian matrix, H, we have that:

• at (µ∗, α∗) the matrix is positive (H(µ∗, α∗) > 0); and

• ∂2Qn(θ)
∂µ2

∣∣∣∣∣
(µ∗,α∗)

> 0.

So, the critical point (µ∗, α∗) is a local minimum of Qn(θ). Hence, θ̂CLS = (µ̂CLS, α̂CLS)

given by Eq. (4.1) and Eq. (4.2) minimizes Qn(θ).
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APPENDIX D – Datasets

This Appendix presents the datasets used in Chapter 5.

Sex Offence Dataset

At this count time series, an observation corresponds to a monthly count of sex

offences reported to the 21st police car beat in Pittsburgh. These data contain n = 144

observations starting in January 1990 and ending in December 2001.

Table 12 – Sex offences dataset.
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1990 0 0 1 0 0 0 1 0 0 0 1 0
1991 0 0 0 0 0 1 1 0 0 0 1 0
1992 0 0 0 0 1 1 2 1 0 1 0 0
1993 1 2 0 0 0 0 1 0 2 0 0 0
1994 0 0 0 2 0 2 0 1 0 3 1 0
1995 1 1 1 0 3 1 0 0 1 2 2 0
1996 0 0 0 0 0 1 1 0 0 0 0 0
1997 0 0 0 1 0 0 0 0 1 0 0 0
1998 0 0 0 0 0 1 2 2 0 2 0 0
1999 1 1 0 3 2 0 0 2 0 0 0 0
2000 1 1 6 5 1 1 0 1 0 0 1 0
2001 0 1 1 0 1 0 1 5 0 0 0 0

Skin Lesions Dataset

The data give numbers of submissions to animal health laboratories (provided by

the Ministry of Agriculture and Forestry from New Zealand), monthly, starting in January

2003 and ending in December 2009 in a total of n = 84 observations, from a region in New

Zealand.

Table 13 – Skin lesions dataset.
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2003 2 5 0 0 1 0 1 3 0 3 0 1
2004 3 3 6 3 1 0 0 0 0 0 0 1
2005 0 0 1 3 0 1 0 0 0 0 2 1
2006 3 1 1 2 3 1 0 2 2 1 6 0
2007 1 0 0 1 0 2 0 0 0 2 3 0
2008 2 4 1 1 0 0 1 1 1 8 1 3
2009 2 4 9 3 4 2 0 1 0 0 0 0
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Public Drunkenness Dataset

This dataset considers the cases of public drunkenness reported to the 17th police

car beat in Pittsburgh. The data series consists of n = 144 monthly counts, starting in

January 1990 and ending in December 2001.

Table 14 – Public drunkness dataset.
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1990 0 0 3 3 3 6 0 0 0 1 2 4
1991 3 1 1 0 0 0 0 0 0 0 0 0
1992 0 0 0 0 0 0 0 2 3 1 0 0
1993 0 0 0 0 0 0 0 0 0 0 0 0
1994 0 0 0 0 0 0 0 0 0 0 0 0
1995 0 0 0 0 0 0 0 0 0 0 0 0
1996 0 0 0 0 0 0 0 0 0 0 0 0
1997 0 0 1 0 0 0 0 0 0 0 0 0
1998 0 0 0 0 0 0 0 0 0 0 0 0
1999 0 1 0 0 0 0 1 1 0 0 0 1
2000 0 1 1 5 0 1 0 2 5 3 0 1
2001 1 3 2 0 1 2 0 0 2 0 3 1
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