
UNIVERSIDADE FEDERAL DE MINAS GERAIS

INSTITUTO DE CIENCIAS EXATAS

DEPARTAMENTO DE ESTATÍSTICA

BOOTSTRAP METHODS FOR GENERALIZED

AUTOREGRESSIVE MOVING AVERAGE MODELS

Matheus de Vasconcellos Barroso

Belo Horizonte

2018

Matheus de Vasconcellos Barroso

BOOTSTRAP METHODS FOR GENERALIZED

AUTOREGRESSIVE MOVING AVERAGE MODELS

Trabalho apresentada como requisito para

obtenção do título de Mestre em Estatística pela

Universidade Federal de Minas Gerais

Professora orientadora: Glaura da Conceição

Franco

Belo Horizonte

 2018

Folha de aprovação

Abstract

This final paper aims to find a suitable Bootstrap Method for the Generalized Autoregressive

Moving Average Model. The focus is on the Moving Block Bootstrap (MBB) resampling

scheme with its performance being evaluated through a Monte Carlo study and contrasted to

their asymptotic Gaussian counterpart. It is stablished that the aforementioned resampling

procedure can generate good estimates of parameters bias and confidence intervals. Though,

the results rely heavily on the simulated model parameters and block lengths used in the MBB

procedure.

Key-words: GARMA models, Time- Series BOOTSTRAP, MBB

FIGURES LIST

Figure 1: Poisson - GARMA (1, 0), 𝜙1 = 0.15, 𝐱𝑡′𝛃 = 𝐱𝑡 − 1′𝛃 ≡ 2, 1000 simulations MLE

parameters empirical distribution ... 21

Figure 2: Poisson - GARMA (1, 1), 𝜙1 = 0.50, 𝜃1 = 0.1, 𝐱𝑡′𝛃 = 𝐱𝑡 − 1′𝛃 ≡ 2 , 1000

simulations MLE parameters empirical distribution .. 22

Figure 3: Gamma - GARMA (1, 1), 𝜙1 = 0.50, 𝜃1 = 0.1, 𝜎2 = 2, 𝐱𝑡′𝛃 = 𝐱𝑡 − 1′𝛃 ≡ 2 ,

1000 simulations MLE parameters empirical distribution ... 23

Figure 4: Poisson - GARMA(1,0), 𝜙1 = 0.80, 𝐱𝑡′𝛃 = 𝐱𝑡 − 1′𝛃 ≡ 2, 1000 simulations MLE

parameters empirical distribution ... 24

Figure 5: Model 1 – 𝜙 original and bias corrected empirical distribution for 1000 simulations,

series of length 1000 ... 37

Figure 6: Model 1 - 𝜙 original and bias corrected empirical distribution for 1000 simulations,

series of length 30 ... 38

Figure 7: Model 3 – 𝜃 original and bias corrected empirical distribution for 1000 simulations,

series of length 30 ... 39

Figure 8: Model 2 optimal block length, series of length 30, n=30, β=2, ϕ=0.5, boxplot for

100MBB simulations .. 44

Figure 9: 𝜙 optimal block length under Hall, Horowitz and Jing (1995) algorithm, 100

simulations block length frequencies ... 45

Figure 10: ϕ optimal block length under Lahiri, Furukawa and Lee (2007) algorithm, 100

simulations block length frequencies ... 46

Figure 11: Bankruptcy Series plot .. 47

Figure 12: ACF and PACF plots of the Bankruptcy Filings Series.. 48

Figure 13: Residual Analysis of the Poisson-GARMA(1,0) model ... 49

Figure 14: Residual Analysis of the Poisson-GARMA(2,0) model ... 50

Figure 15: MBB 95% Confidence Intervals: Normal and Normal with bias correction term for

the Poisson-GARMA(2,0) model, from 1000 resamples... 51

Figure 16: ACF and PACF of the BPHA3 squared log-returns ... 52

Figure 17: Residual Analysis of the Gamma-GARMA/GARCH (1,0) model 53

Figure 18: MBB 95% Confidence Intervals: Normal and Normal with bias correction term

Gamma-GARMA/GARCH model, from 1000 resamples ... 55

Figure 19: Model 1 parameters distribution, series of length 1000 .. 66

Figure 20: Model 2 parameters distribution, series of length 1000 .. 67

Figure 21: Model 3 parameters distribution, series of length 1000 .. 68

Figure 22: Model 4 parameters distribution, series of length 1000 .. 69

Figure 23: Model 5 parameters distribution, series of length 1000 .. 70

Figure 24: Model 6 parameters distribution, series of length 1000 .. 71

Figure 25: Model 7 parameters distribution, series of length 1000 .. 72

Figure 26: Model 8 parameters distribution, series of length 1000 .. 73

Figure 27: Model 9 parameters distribution, series of length 1000 .. 74

Figure 28: Model 10 parameters distribution, series of length 1000 .. 75

Figure 29: Model 1 parameters distribution, series of length 30 .. 76

Figure 30: Model 2 parameters distribution, series of length 30 .. 77

Figure 31: Model 3 parameters distribution, series of length 30 .. 78

Figure 32: Model 4 parameters distribution, series of length 30 .. 79

Figure 33: Model 5 parameters distribution, series of length 30 .. 80

Figure 34: Model 6 parameters distribution, series of length 30 .. 81

Figure 35: Model 7 parameters distribution, series of length 30 .. 82

Figure 36: Model 8 parameters distribution, series of length 30 .. 83

Figure 37: Model 9 parameters distribution, series of length 30 .. 84

Figure 38: Model 10 parameters distribution, series of length 30 .. 85

TABLES LIST

Table 1: Models and Parameters .. 34

Table 2: Bootstrapped confidence intervals coverage, 1000 sim., 1000 boot. resamples, series

of length 1000 ... 40

Table 3: Bootstrapped confidence intervals coverage, 1000 sim., 1000 boot. resamples, series

of length 30 ... 41

Table 4: Optimal block length for all models and parameters ... 43

Table 5: Bootstrapped confidence intervals coverage, 1000 sim., 1000 boot. resamples, series

of length 1000. .. 61

Table 6: Bootstrapped confidence intervals coverage, 1000 sim., 1000 boot. resamples, series

of length 1000. .. 62

Table 7: Bootstrapped confidence intervals coverage, 1000 sim., 1000 boot. resamples, series

of length 30. .. 63

Table 8: Bootstrapped confidence intervals coverage, 1000 sim., 1000 boot. resamples, series

of length 30. .. 64

CONTENTS

Contents .. 7

1 INTRODUCTION .. 8

2 LITERATURE REVIEW ... 9

2.1 The GARMA model .. 9

2.2 BOOTSTRAP methods .. 12

2.2.1 Model-Based Bootstrap .. 14

2.2.2 Block-resampling Bootstrap ... 15

2.2.3 Other resampling procedures .. 16

3 The GARMA model .. 17

3.1.1 The POISSON – GARMA model .. 18

3.1.2 The GAMMA – GARMA model .. 19

3.1.3 Maximum likelihood estimation of model parameters 19

3.1.4 Some simulated models .. 20

3.1.5 Additional Properties .. 25

4 MOVING BLOCK BOOTSTRAP IN GARMA MODELS .. 26

4.1 On the optimal block length choice ... 27

4.1.1 Algorithms for MBB applied to GARMA models ... 29

4.2 Bootstrap bias correction and confidence interval estimation 31

4.2.1 Parameter bias and bias corrected estimates ... 31

4.2.2 Confidence Intervals ... 32

5 Simulation results ... 34

5.1 Optimal block length ... 42

6 Real data analysis ... 47

6.1 The Poisson – GARMA case .. 47

6.2 The Gamma – GARMA / GARCH case ... 52

7 Conclusion .. 56

References .. 58

Appendix I: Tables ... 61

Appendix II: Figures ... 65

Appendix III: R CODE ... 86

8

1 INTRODUCTION

This monograph is concerned with the implementation and evaluation of bootstrap

parameter bias (the difference between the parameter true value and its estimator expected

value) and confidence interval estimation in the context of the so-called Generalized

Autoregressive Moving Average models, henceforth GARMA models, proposed by Benjamin et

al. (2003). The estimation performance is accessed through a Monte Carlo simulation scheme.

GARMA models can be easily viewed as an extension of the linear regression model, to

accommodate both time-series and non-Gaussian observations. Taking into account the time

dependence between dependent and explanatory variables, one of the most used procedures is

the Gaussian Autoregressive Moving Average (ARMA) model (Box and Jenkins, 1976) and,

with regard to the non-gaussian behavior, the Generalized Linear Model (GLM) (McCullagh

and Nelder, 1989) is often employed. If we combine both previous procedures we arrive at the

GARMA model, that is, the GARMA model is simply the application of an ARMA process to

model the conditional mean (through an appropriate link function) of the dependent variable

within the exponential family of distributions.

Parameter estimation and inference in the GARMA model are based on maximum

likelihood asymptotic results, though, for small length series, those results might not hold. For

this reason, we employ bootstrap methods to help us access the accuracy of our estimates.

Traditional bootstrap methods rely on the independent observations assumption, and as such,

additional care must be taken when choosing a suitable resampling scheme that incorporates its

intrinsic temporal dependence. A wide range of bootstrap methods are available, however, the

implementation in the GARMA context is not easy and their performance is not homogenous.

Owing to this, the performance of parameter bias and confidence interval estimation is

evaluated in light of the Moving Block Bootstrap (MBB) (Kunsch, 1989) resampling scheme.

That is, our main goal is to examine whether the MBB can generate good and consistent results,

and as such, if it can be widely applied in the GARMA framework. Additionally, as the block

length is a relevant input for this class of resampling scheme, the algorithms of Hall, Horowitz

and Jing (1995) and Lahiri, Furukawa and Lee (2007) are implemented. Furthermore, a

modified version of the former algorithm is put forth and some remarks regarding the optimal

block length choice are made.

A Monte Carlo study with 1000 simulations for each model is used for parameter bias

and confidence interval evaluation. In the former, we check whether the bootstrap bias corrected

distribution is centered on its true value, whereas in the latter we compute the bootstrap

9

replications coverage rate (i.e. the count of intervals containing the parameter true value divided

by the number of simulations) and contrast it to the asymptotic Gaussian (Normal) interval.

We study a wide variety of models from both the continuous and discrete cases, with

simulations restricted to the Gamma and Poisson GARMA models, respectively.

The outline of this monograph is as follows: in Section 2 we provide some historical

references for both the GARMA model and the bootstrap method in the time-series perspective.

The third Section introduces the GARMA model, Section 4 the bootstrap schemes used in the

study, Section 5 analyzes the simulation results, Section 6 a real data example and Section 7

gives some concluding remarks. The Appendix provides additional information suppressed in

the text for the sake of concision.

2 LITERATURE REVIEW

This section is divided in two subsections; the first is about the GARMA model and the

second the bootstrap method applied in the time series framework.

2.1 The GARMA model

The GARMA model was introduced and formalized in the paper of Benjamin et al.

(2003); however, many ideas present in the model were introduced before in the time series

literature (see for example Zeger and Qaqish (1988)). Similar results applied in the context of

discrete time series can be found at Davis et al. (1999), where the Generalized Linear

Autoregressive Model (GLARMA) is developed. For applications of the latter the reader can

refer to Jung et al. (2006).

We will bear in mind Benjamin’s et. al. (2003) notion of the GARMA model as an

extension to the Gaussian ARMA model, which traces back to the work of Cox et al. (1981). In

the text, the author claims that in the non-Gaussian series perspective:

 It would be desirable to have a general exponential family formulation. Such models

could be formulated as 'observation driven', or as 'parameter driven', the latter being

instances of latent structure models. (Cox et al., 1981 p.101)

If we make use of Cox et al. (1981) terminology, the GARMA model suits the class of

observation driven models, as opposed to parameter driven (state-space) one.

10

Some of the advantages of the state-space approach are its flexibility and ability to

model the behavior of different components of the series separately and then aggregate the

submodels to form an overall model for the time series (Durbin and Koopman, 2000). On the

other hand, the improved flexibility comes at the expense of complicate estimation process and

crude approximations (Benjamin et al., 2003). The study of state-space models is beyond the

scope of this monograph and the reader is encouraged to recur to Durbin and Koopman (2000)

for further details.

The paper of Benjamin et al. (2003) extends the work of Zeger and Qaqish (1988) and

Li (1994). The former implements a Quasi-Likelihood Markov model in the conditional

moments, in the same sense of McCullagh and Nelder (1989) where the marginal moments are

employed. Nevertheless, their focus is on autoregressive models, such as autoregressive

conditionally heteroscedastic (ARCH) models for example. The latter emphasizes the moving

average perspective into the GLM context; their formulation is general enough to accommodate

both autoregressive and moving average processes, though no general formal treatment is

provided in this case.

With respect to non-Gaussian autoregressive models, we can also highlight the work of

Grunwald et al. (2000), in which the authors develop the class of conditional linear AR(1)

models (CLAR(1) models). This is a first-order conditional linear autoregressive structure, that

subsumes a wide variety of models previously proposed in the literature, regardless of their

generating method: innovation, conditional distribution, random coefficient, thinning and

random coefficient thinning. For instance, consider the model of Zeger and Qaqish (1988),

which is included in the conditional distribution method. The authors state the assumptions

under which the CLAR(1) stationary mean can be derived and also its stationary variance (given

a quadratic variance function premise). They also provide the conditions for a stationary

(ergodic) distribution.

A detailed analysis of the GARMA model can be found at the book of Kedem and

Fokianos (2002), where the authors explain in details the model, estimation process, residual

analysis, many applications to discrete process and an exposition of the main models in the

literature.

Some further developments have been proposed regarding GARMA models. Woodard

et al. (2011) have shown their strict stationarity (the distribution of the process does not depend

on time) from two perspectives. In the first approach they postulate under which conditions

GARMA models have a unique stationary distribution and in the second they show stationarity

and ergodicity of a perturbed version of the model. Subsequently, they relate the original to the

11

perturbed processes and conclude that the latter has parameter estimates arbitrarily close to the

former.

Afterwards, Briet et al. (2013) extended the GARMA class into the Generalized Seasonal

Autoregressive Integrated Moving Average models (GSARIMA class), in an analogy to the

Seasonal Autoregressive Integrated Moving Average models (SARIMA) extension of ARMA

models, thus including a multiplicative seasonal autoregressive integrated moving average

model. Their estimate is carried out through a full Bayesian inference procedure, on the grounds

of a weakly stationary model assumption and consequently constraining of the autoregressive

and moving average parameters. The outcome assumes a Negative Binomial distribution,

whereas the parameters follow Beta, Gaussian and Gamma priors. The model is subsequently

applied to a Malaria time series analyses.

Andrade, Leslow and Andrade (2016) proposed a Transformed GARMA model to cope

with non-additivity, non-normality and heteroscedasticity in time series; the transformation

ensures that the transformed series fulfill the GARMA model assumptions. Andrade, Andrade

and Ehlers (2016) also estimate this model under the Bayesian framework and a simulation

study is carried out followed by an analysis of fertility rates in Sweden.

Additionally, Andrade, Ehlers and Andrade (2016) developed a Bayesian GARMA

model for count data and applied it to three Brazilian datasets, one for automobile production,

other for dengue fever hospitalizations and another for number of deaths by dengue. They used

a Poisson, Binomial and Negative Binomial GARMA models, with multivariate Gaussian priors,

though non-informative (large variances resulting in flat densities), for each model parameter.

Zheng, Hiao and Chen (2015) propose an extension of the GARMA model, the

martingalized GARMA model (M-GARMA), in which the resulting transformed ARMA model

(through an appropriate link function) has a martingale difference sequence as its error

sequence. This property is only achieved in the original model (Benjamin et al., 2003) in the

case of the identity link function. The improvement of this new model is striking, as maximum

likelihood asymptotic distribution can be established. Simulations for a Log-Gamma-M-

GARMA and Logit-Beta-M-GARMA models are performed, followed by an application to High-

frequency realized volatility making usage of the Gamma-M-GARMA model with logarithmic

link function and another application studying the US personal saving rate through the Logit-

Beta-M-GARMA.

It is worth noting that the GARMA applications in the literature generally focused on the

discrete type of distributions, therefore we try to fill this gap applying the model to a continuous

financial time series. From the empirical finance point of view, time series such as assets returns

12

(difference of log prices) usually exhibit some stylized facts that result in a departure from the

Gaussian distribution assumption. Some of those facts are returns low serial correlation and

volatility (i.e. squared returns, as usually returns are centered at zero) clustering and asymmetry.

In this line of thought, Engle (1982) in his pioneer work, developed the autoregressive

conditional heteroscedasticity model, where returns are normally distributed but the volatility

process is from an autoregressive nature. Thus, he created a simple model that can cope with

variance changing over time as a function of past errors, whilst the unconditional variance

remains constant through time. Remarkably, in 1986, Tim Bollerslev extends Engle’s model

and introduces the class of Generalized Autoregressive Conditional Heteroscedasticity

(GARCH) models (Bollerslev, 1986), in the same sense that an ARMA process extends an AR

one. Small adaptations or simplifications to this model also took place; take the ARCH-M

(Engle et al., 1987) or TARCH (Glosten et al., 1993) for instance.

In this work we will take advantage of the relation between the Gamma-GARMA and

GARCH models, as presented in the paper of Benjamin et al. (2003), to analyze a financial time

series. Our real data examples bear a close resemblance to one of the applications present in the

work of Zheng, Hiao and Chen (2015), the difference being that we will not attempt to model

intraday high-frequency volatility, only daily prices keeping in mind the GARCH equivalence.

2.2 BOOTSTRAP methods

The term bootstrap was coined by Bradley Efron in his seminal paper “Bootstrap

Methods: Another Look at the Jackknife”, Efron (1979), where the author introduces the

bootstrap methodology and shows that the nonparametric jackknife can be viewed as a linear

approximation method for the bootstrap. In this work, Efron focused on estimating the sampling

distribution of a given statisic by its bootstrap distribution. This new tool is more widely

applicable than the jackknife, useful to estimate parameters bias, variance and also to construct

confidence intervals.

The problem of calculating the bootstrap distribution can be tackled by three methods:

direct theoretical calculation, Monte Carlo approximation and Taylor series expansion. The

second approach is often employed as it is easier to implement. The author also discusses the

problem of error rate estimation in the case of discriminant analysis and shows that the bootstrap

method outperforms the leave-one-out cross-validation (a method for estimating error rates by

13

leaving one observation out of the estimation process at a time and afterwards using it as

independent for estimating the error measure) approach.

In theory, the bootstrap scheme is really simple, that is, in possession of the bootstrap

resamples what one really has to do is to approximate the sampling distribution of the statistic

of interest by its bootstrap one. Therefore, the tough part of this algorithm is how to compute

the so-called bootstrap distribution. Due to its popularity and simplicity, the Monte Carlo

approximation method is the one followed here.

Efron (1980) gives a thorough account of the relation between the Jafkknife, Bootstrap,

cross-validation, balanced repeated replications and random subsampling. Additionally, some

nonparametric confidence intervals are employed, namely the percentile method, the bias-

corrected percentile method and the t-bootstrap.

The matter of error rate estimation is developed further in Efron (1983), where the

relation between the bootstrap and cross-validation estimation is analyzed. Some interesting

ideas are proposed such as the double bootstrap and the 0.632 estimator. Subsequently,

estimates of the downward bias of the apparent error rate are provided in Efron (1986), in which

a theory in the GLM framework is stated. He also compares Mallow’s 𝐶𝑝, cross-validation,

generalized cross-validation, bootstrap and Akaike’s information criterion (AIC).

Moving beyond Efron’s work, we cannot understate the monograph of Hall (1992). It

not only provides a systematic review of bootstrap methods but also a rigorous mathematical

evaluation of the bootstrap performance through the usage of Edgeworth expansions.

Despite its simple nature, when it comes to the Monte Carlo approximation to the

bootstrap distribution in the time series framework some difficulties or specificities arise. This

happens because the original bootstrap was conceived to deal with independent datasets and

from the time series point of view this is an overly simplistic assumption (as correlation is

frequently induced).

From the time-series point of view, our work relies heavily on the work of Chernick

(2008) and Chernick and LaBudde (2011). Both books give a description of the bootstrap and

its relation to parameter bias, location and dispersion estimation. They also handle with

confidence intervals and hypothesis testing. Also, and perhaps more important to our analysis,

a survey of bootstrap methods in the time series framework is given. The content of the books

concerning this topic is quite similar, with both covering the basics of model-based and block

resampling bootstrap, the main difference between them being some additional bootstrap

schemes in the newer book, namely the Dependent Wild Bootstrap.

14

Additionally, the book Resampling Methods for Dependent Data, from Lahiri (2003), is

a keen source of information, where the author reviews some Block Bootstrap Methods,

establishing their consistency, second-order properties, contrast their performance, he also

approaches the problem of resampling methods for spatial data. Nonetheless, for this work, we

highlight the importance of the chapter on the Empirical Choice of Block Size.

The resampling methods in the time-series context usually fit two main categories:

model-based or the block resampling. For completeness this chapter has two subsections

dedicated to the aforementioned resampling schemes, followed by a third subsection with some

methods that do not fall in these categories.

2.2.1 Model-Based Bootstrap

Model-based bootstrapped time-series consists of assuming a model, isolating its

residuals in the model equation and bootstrapping the residuals. Thus, the bulk of model-based

methods is the resample of the model residuals and, because of this, an explicit form of residual

in the model equation is required (Chernick and LaBudde 2011 p. 118). Consequently, this is a

model dependent method, in which its validity depends on the correctness of the specified

model. The prime example in the literature is the first order autoregression, where an estimate

of the autoregressive coefficient (usually through a Maximum Likelihood Estimation) is used

in computing the model residuals. However, this is an overly simplified structure and more

complex models are hard to handle in a similar fashion. See for example Efron and Tibshirani

(1986), Shao and Tu (1995), Chernick (2008) or Chernick and LaBudde (2011).

A review of bootstrap ideas and applications can be found in Efron and Tibshirani

(1986). From all examples present in their text, the more relevant to our work is the first-order

autoregressive one, introducing the notion of bootstrap residuals in the times series context. The

authors also introduce several approaches to calculate confidence intervals, such as the

standard, percentile, bias-corrected percentile and BC𝛼 methods.

Any of the methods described in the previously stated references in the case of model-

based bootstrap can be adapted into the GARMA context, the difference being that this is a dual

stage process. In the first step the residuals are computed (e.g.: original scale, Pearson, predictor

scale) and sampled with replacement entering the linear predictor. In step two, a random sample

is drawn from the respective GARMA distribution with mean given by the inversion of the link

15

function evaluated at step 1. This process is repeated sequentially until the original series length

is recovered.

However, it is worth noting that this kind of bootstrap procedure is hard to develop in a

general GARMA setting, as it will be seen in Section 4. Unlike ARMA models that can have

an infinite autoregressive or moving average representation and consequently are prone to

bootstrap residuals, GARMA models do not have this type of representation and cannot be

directly bootstrapped in a general model-bootstrap perspective. Due to these aforementioned

restrictions, in this work we will restrain ourselves to another class of bootstrap resampling in

time series, known as Moving Block Bootstrap (MBB).

2.2.2 Block-resampling Bootstrap

Block-resampling bootstrap has been designed to deal with the model misspecification

pitfall. Chernick and LaBudde (2011) pointed out that the moving block bootstrap has been the

most successful attempt in the time domain approach. It was introduced by Carlstein (1986)

and further developed by Kunsch (1989). Some block resampling methods described in the

book and documented by Lahiri (2003) are:

The various types of block bootstrap approaches covered by Lahiri include(1) MBB,

(2) nonoverlapping block bootstrap (NBB), (3) circular block bootstrap (CBB), (4)

stationary block bootstrap (SBB), and (5) tapered block bootstrap (TBB)(very

briefly) (Chernick and LaBudde, 2011 p.124).

A theoretical comparison of the MBB, NBB, CBB and SBB can be found in Lahiri

(1999). The simulation results show that for a moderate sample size the MBB and CBB are

preferable over the NBB and SBB.

Lahiri (2003, p. 206) simulated two confidence intervals for the autoregressive bootstrap

(ARB), that is a p-order autoregression, and the moving block bootstrap (MBB) with four

different block lengths. Theoretically, this is a situation where ARB should perform better than

the MBB; however, for some block lengths the MBB gets close to the ARB. Thus, even though

the MBB is expected to have a poor performance when contrasted to the ARB it is in fact more

robust to model misspecification and might be better suited in cases where there is uncertainty

about the model correctness.

It is evident that there are many block bootstrapping schemes, though we focus mainly

on the MBB owing to its history of success and consistency property in the specific case of

16

GARMA models. Remarkably, despite the low number of papers based on the GARMA, Andrade

(2016) established the assumptions guaranteeing the consistency of the MBB for this specific

model. Here, consistency means that for an increasing sample size, the quantiles produced by

the MBB converge to the quantiles of the respective asymptotic distribution. One disadvantage

of the MBB is the heuristic nature of the block length selection process.

To tackle the block length issue, some estimators have been proposed, such as the one

by Hall, Horowitz and Jing (1995) (HHJ) and by Lahiri, Furukawa and Lee (2007) (generalized

plug-in rule or nonparametric plug-in method). The latter is based on a Jackknife-After-

Bootstrap (JAB) method while in the former the length depends on the context and can be a

simple function of the sample size. For a comparison of them, please refer to the original paper

of Lahiri, Furukawa and Lee (2007).

2.2.3 Other resampling procedures

Aside from model-based and block resampling schemes other procedures have been

proposed, though, a thorough literature reviewing those topics is beyond the scope of this

monograph and the reader might refer to Chernick (2008) or Chernick and LaBudde (2011), for

instance. Only a brief description of two methods is provided below.

One alternative to the model based and block resampling bootstrap is the Dependent

Wild Bootstrap (DWB), proposed by Shao (2010), that extends the wild bootstrap to the case

of stationary, weakly dependent, time series. No partitioning of the data into blocks is required

and it is applicable in the case of irregular time series. The method relies on the DWB pseudo

observations, which are simply a function of sample statistics.

Moving onto the GARMA – GARCH relation we might have to keep in mind the intrinsic

properties of assets returns, and as such, some bootstrap resampling methods might be

unsuitable. Vinod (2004) had put forth three properties that might render the traditional

bootstrap inappropriate and developed the Maximum entropy bootstrap (MEB) that can cope

with those drawbacks simultaneously. The latter is also simplified and extended into a panel-

data setting in Vinod (2006). The MEB comes as an alternative to the block resampling methods

and does not demand the block subsetting of the data. It is more general than the MBB, since it

does not require the stationarity assumption and does not need differencing (in an ARMA

context).

17

3 THE GARMA MODEL

Let 𝑌 be a stochastic process, i.e. a collection of random variables 𝑌 = {𝑌𝑡(𝜔), 𝑡 ∈ 𝒯,

𝜔 ∈ Ω }, defined in the probability space (Ω, ℱ, 𝑃), where Ω is the set of all possible states, ℱ

is a σ-field of all subsets of Ω, 𝑃 is a probability measure under ℱ and 𝒯 an arbitrary set. We

have for a fixed 𝑡 ∈ 𝒯 and for each fixed value of 𝜔 ∈ Ω that 𝑦𝑡(𝜔) is a realization or path

of the process. Also, 𝑌𝑡(𝜔) is a random variable for each 𝑡 and a fixed 𝜔 and for simplicity the

index 𝜔 will be subsumed.

The former definition of 𝑌 is too general for the GARMA model (Benjamin et al., 2003)

and some simplifications can be adopted. It is a discrete time process so 𝒯 is a finite or

enumerable set and is taken as the set of integers ℤ (𝑡 ∈ ℤ). Additionally, the process can be

redefined in the filtered probability space, (Ω, ℱ, {ℱ𝑡}𝑡≥0, 𝑃), where {ℱ𝑡}𝑡≥0 is a filtration. Here,

filtration is defined as an increasing sequence of sub σ-fields on the measurable space (Ω, ℱ),

that is, ℱ𝑡 ∈ ℱ and for 𝑡1 > 𝑡2 ⟹ ℱ𝑡1
⊆ ℱ𝑡2

. Leaving mathematical technicalities aside, one

can think of ℱ𝑡 as the information set available at time 𝑡 including all the previous information

until 𝑡.

In terms of the GARMA model we have that each realization of 𝑌𝑡 , 𝑡 = 1, … , 𝑛, has a

conditional distribution belonging to the same exponential family. The conditioning is with

respect to ℱ𝑡−1 , and in this case ℱ𝑡−1 = {𝐱1, … , 𝐱𝑡−1; 𝑦1, … , 𝑦𝑡−1; 𝜇1, … , 𝜇𝑡−1} . Thus, the

conditional density of 𝑌𝑡|ℱ𝑡−1 is of the form:

𝑓𝑌𝑡|ℱ𝑡−1

 (𝑦𝑡|ℱ𝑡−1) = 𝑒𝑥𝑝 {
𝑦𝑡𝜗𝑡 − 𝑎(𝜗𝑡)

φ
+ 𝑏 (𝑦𝑡, φ)} (1)

where 𝑎(∙) and b(∙) are specific functions defining the particular member of exponential family,

with 𝜗𝑡 as the canonical and φ as the scale parameters, 𝐱 is a r dimensional vector of

explanatory variables and μ is the mean vector. From standard GLM results (McCullagh and

Nelder, 1989) it can be shown that the term 𝜇𝑡 = 𝑎′(𝜗𝑡) = 𝐸𝑌𝑡|ℱ𝑡−1
(𝑦𝑡|ℱ𝑡−1)

and 𝑉𝑎𝑟𝑌𝑡|ℱ𝑡−1
(𝑦𝑡|ℱ𝑡−1) = φ𝑎′′(𝜗𝑡) , here ′ and ′′ denote the first and second derivatives

of 𝑎(∙), respectively.

Moreover, the predictor 𝜂𝑡 is such that 𝜂𝑡 = 𝑔(𝜇𝑡) and 𝑔 is the link function (a one-to-

one monotonic function), in resemblance to the GLM terminology. Parameter 𝜂𝑡 can be

generally defined but the following flexible and parsimonious submodel is more appropriate

(than the generally defined one):

18

𝜂𝑡 = 𝐱𝑡
′ 𝛃 + ∑ 𝜙𝑗{𝑔(𝑦𝑡−𝑗) − 𝐱𝑡−𝑗

′ 𝛃}

𝑝

𝑗=1

+ ∑ 𝜃𝑗{𝑔(𝑦𝑡−𝑗) − 𝜂𝑡−𝑗}

𝑞

𝑗=1

 (2)

where 𝛃′ = (𝛽1, 𝛽2, … , 𝛽𝑟), is the vector of parameters of the linear predictor 𝐱𝑡
′ 𝛃 of 𝜂𝑡, 𝛟′ =

(𝜙1, 𝜙2, … , 𝜙𝑝) the vector of autoregressive parameters, 𝛉′ = (𝜃1, 𝜃2, … , 𝜃𝑞) the vector of

moving average parameters. Equations (1) and (2) together define the GARMA model.

In the following two subsections, the Poisson and Gamma GARMA models are defined.

Note, however, that the GARMA class is not limited to these models and can be applied to any

member of the exponential family.

3.1.1 The POISSON – GARMA model

If 𝑌𝑡|ℱ𝑡−1follows a Poisson distribution with mean parameter 𝜇𝑡 then its p.m.f. is:

𝑓𝑌𝑡|ℱ𝑡−1
 (𝑦𝑡|ℱ𝑡−1) =

𝑒−𝜇𝑡𝜇𝑡
𝑦𝑡

𝑦𝑡!
= 𝑒𝑥𝑝{𝑦𝑡 log(𝜇𝑡) − 𝜇𝑡 − log (𝑦𝑡!)},

𝑦𝑡 = 0,1,2, ….

(3)

It is evident that 𝑌𝑡|ℱ𝑡−1belongs to the exponential family of distributions and also that

𝜗𝑡 = log(𝜇𝑡), 𝑎(𝜗𝑡) = 𝑒𝜇𝑡, 𝑏 (𝑦𝑡, φ) = −log (𝑦𝑡!) and φ = 1. The canonical link function in

this case is log ≡ 𝑙𝑛. Hence, 𝜂𝑡 is such that:

𝜂𝑡 = log(𝜇𝑡) = 𝐱𝑡
′ 𝛃 + ∑ 𝜙𝑗{log(𝑦𝑡−𝑗

∗) − 𝐱𝑡−𝑗
′ 𝛃}

𝑝

𝑗=1

+ ∑ 𝜃𝑗{log(𝑦𝑡−𝑗
∗ /𝜇𝑡−𝑗)},

𝑞

𝑗=1

 (4)

where 𝑦𝑡−𝑗
∗ = max (𝑦𝑡−𝑗, 𝛼), 0 < 𝛼 < 1. Here 𝛼 is taken as 0.1. As previously, the Poisson-

GARMA model is defined by equations (3) and (4).

19

3.1.2 The GAMMA – GARMA model

Likewise, if 𝑌𝑡|ℱ𝑡−1follows a Gamma distribution with shape parameter δ and scale

parameter γ (so a Γ(δ, γ) distribution), thus, its p.d.f. is given by:

𝑓𝑌𝑡|ℱ𝑡−1

 (𝑦𝑡|ℱ𝑡−1) =
𝑦𝑡

δ−1𝑒−𝑦𝑡 γ⁄

Γ(δ)γδ
. (5)

with 𝐸𝑌𝑡|ℱ𝑡−1
= δγ and 𝑉𝑎𝑟𝑌𝑡|ℱ𝑡−1

= δγ2. However, there is a more useful re-parametrization

of the Gamma density that makes it better suited to be applied in the GARMA model. Let δ =

1 𝜎2⁄ andγ = 𝜎2𝜇𝑡 , so that 𝐸𝑌𝑡|ℱ𝑡−1
= 𝜇𝑡 , 𝑉𝑎𝑟𝑌𝑡|ℱ𝑡−1

= 𝜎2𝜇𝑡
2 and the transformed p.d.f. is

equivalent to:

𝑓𝑌𝑡|ℱ𝑡−1
 (𝑦𝑡|ℱ𝑡−1) = 𝑒𝑥𝑝 {

1

𝜎2
(−

𝑦𝑡

𝜇𝑡

− 𝑙𝑜𝑔(𝜇𝑡)) + [−
𝑙𝑜𝑔(𝜎2)

𝜎2
− 𝑙𝑜𝑔 (Γ (

1

𝜎2
)) + 𝑙𝑜𝑔(𝑦𝑡) (

1

𝜎2
− 1)] }. (6)

Thus, 𝑌𝑡|ℱ𝑡−1 belongs to the exponential family of distributions with 𝜗𝑡 = −
1

𝜇𝑡
,

𝑎(𝜗𝑡) = 𝑙𝑜𝑔(𝜇𝑡), 𝑏 (𝑦𝑡, φ) = [∙] and φ = 𝜎2. The canonical link function in this case is the

reciprocal function, though, for simplicity, 𝑔(𝜇𝑡) is taken as log(𝜇𝑡). Hence, 𝜂𝑡 is the same

for the Gamma and Poisson model, so that equations (6) and (4) define the Gamma-GARMA

model, while here 𝑦𝑡−𝑗
∗ = 𝑦𝑡−𝑗.

3.1.3 Maximum likelihood estimation of model parameters

In the GARMA model, after observing a sample with 𝐱1, … , 𝐱𝑡; 𝑦1, … , 𝑦𝑡 , one can

estimate the given model parameters 𝛃′, 𝛟′and 𝛉′through the method of maximum likelihood.

The likelihood of the model 𝐿(𝛃, 𝛟, 𝛉) and the log-likelihood 𝑙(𝛃, 𝛟, 𝛉) = log (𝐿(𝛃, 𝛟, 𝛉)) can

be defined as:

𝐿(𝛃, 𝛟, 𝛉) = ∏ 𝑓𝑌𝑡|ℱ𝑡−1

 (𝑦𝑡|ℱ𝑡−1)

𝑛

𝑡=1

 (7)

20

 𝑙(𝛃, 𝛟, 𝛉) = ∑ log 𝑓𝑌𝑡|ℱ𝑡−1

 (𝑦𝑡|ℱ𝑡−1)

𝑛

𝑡=1

, 𝑤ℎ𝑒𝑟𝑒 𝑙𝑜𝑔 = 𝑙𝑛. (8)

As log is a one-to-one monotonic function the value that maximizes 𝐿(∙) is the same

that maximizes 𝑙(∙), and for computation simplicity the log-likelihood (LLH) estimates of the

parameters are computed. The maximum likelihood estimates (MLE) are such that: 𝐿𝐿𝐻 =

𝑙(𝛃, 𝛟, �̂�), where 𝛃, 𝛟, �̂� = argmax
𝛃,𝛟,𝛉

𝑙(𝛃, 𝛟, 𝛉). This task is carried out through a numerical

optimization routine.

3.1.4 Some simulated models

For illustration purpose, in this section, some models were simulated and estimated

through maximum likelihood. First, consider 1000 simulations of a series of length 1000 of a

Poisson – GARMA model, with an autoregressive term of value 0.15 (𝜙1 = 0.15) and constant

intercept equals to 2. Figure 1 depicts the Monte Carlo MLE empirical distribution of the model

parameters. The mean of 𝜙1 estimates is 0.14, while the true value is 0.15. If we compute an

empirical 95% symmetrical confidence interval we have that �̂�1 ∈ [0.08, 0.19], a good result,

as we should expect the true value of the parameter to be included in this interval. For β, the

simulations show a fairly accurate estimate, where the mean of the simulations is 1.9991,

contrasted to the true value of 2, which belongs to the 95% empirical confidence interval

(1.97, 2.02).

21

Figure 1: Poisson - GARMA (1, 0), 𝜙1 = 0.15, 𝐱𝑡
′ 𝛃 = 𝐱𝑡−1

′ 𝛃 ≡ 2, 1000 simulations MLE parameters empirical

distribution

Second, we shall examine a model with more parameters and check whether this

additional complexity can be well captured by the estimation process. As in the last example

take into consideration 1000 simulations of a series of length 1000 of a Poisson – GARMA

model, with an autoregressive term of value 0.50 (𝜙1 = 0.50), moving average term of 0.1

(𝜃1 = 0.1) and constant intercept equals to 2. Figure 2 shows the parameters MLE empirical

distribution. The mean estimate of 𝜙1 is 0.48 with an empirical 95% symmetrical confidence

interval (0.39, 0.56). Likewise, in the case of 𝜃1, the mean of the Monte Carlo MLE estimates

is 0.07 with the respective 95% confidence interval (0.02, 0.16). The same reasoning follows

22

for β, with mean value of 2.0001 and interval with inferior and superior limits of 1.94 and 2.05,

respectively.

Figure 2: Poisson - GARMA (1, 1), 𝜙1 = 0.50, 𝜃1 = 0.1, 𝐱𝑡
′ 𝛃 = 𝐱𝑡−1

′ 𝛃 ≡ 2, 1000 simulations MLE parameters

empirical distribution

Third, we consider a similar order Gamma – GARMA model with simulation

characteristics similar to the last example, the difference being the additional parameter 𝜎2 =

2. This model is exhibited in Figure 3. Again, we see that the parameter estimates behave well,

in the sense that all true values belong to their empirical 95% confidence interval. When

contrasted to the previous models, the absolute difference between the mean values and true

values are higher. This is a family specific phenomena, that is, the Poisson family GARMA

23

models are easier to estimate while the likelihood function of the Gamma is more complex,

making the numerical optimization problem harder and thus more prone to failure and/or

numerical instability. Consequently, this family behavior seems to worsen the overall

estimation results of the Gamma – GARMA models when contrasted to their Poisson

counterpart.

Figure 3: Gamma - GARMA (1, 1), 𝜙1 = 0.50, 𝜃1 = 0.1, 𝜎2 = 2, 𝐱𝑡
′ 𝛃 = 𝐱𝑡−1

′ 𝛃 ≡ 2, 1000 simulations MLE

parameters empirical distribution

Lastly, in Figure 4, we examine the effect of increasing the coefficient absolute value in

the first example, adopting 𝜙1 = 0.80. In this case, the mean of 𝜙1 estimates is 0.72, while the

true value is 0.8. The empirical 95% symmetrical confidence interval is(0.67, 0.76), a poor

24

result, as we should expect that the true value of the parameter to be included in this interval.

Additionally, the maximum of the distribution is 0.79, a value smaller than the true parameter

value. This relative poor performance might be explained due to the high value of the simulated

model parameter, leading to non-stationarity of the simulated GARMA process. For β, the

simulations show a fairly accurate estimate, where the mean of the simulations is 2.02,

contrasted to the true value of 2, with the true value belonging to the 95% empirical confidence

interval.

Figure 4: Poisson - GARMA(1,0), 𝜙1 = 0.80, 𝐱𝑡
′ 𝛃 = 𝐱𝑡−1

′ 𝛃 ≡ 2, 1000 simulations MLE parameters empirical

distribution

25

The last example raises an important issue regarding the adequacy of the maximum

likelihood estimates in the case of GARMA models when |𝛟| ≅ 1 or |𝛉| ≅ 1. For this reason,

all subsequent estimated models avoid this problem by restricting the simulated parameter to

values smaller than or equal to 0.5 in absolute value.

3.1.5 Additional Properties

In this section, some properties regarding the stationary conditions for the marginal

mean and variance and the stationary mean and variance of 𝑌𝑡 are supplied for the case where

the link function 𝑔 is the identity function. These properties are provided in the work of

Benjamin et al. (2003). The marginal mean of 𝑌𝑡 is given by:

 𝐸𝑌𝑡
(𝑦𝑡) = 𝐱𝑡

′ 𝛃 (9)

conditional on the invertibility of Φ(𝐵) = 1 − 𝜙1𝐵 − ⋯ − 𝜙𝑝𝐵𝑝. Thus, the marginal mean is

stationary provided also that 𝐱𝑡
′ 𝛃 = 𝛽0 for all 𝑡. The marginal variance is:

 𝑉𝑎𝑟𝑌𝑡
(𝑦𝑡) = 𝜑𝐸𝑌𝑡

[ψ2(𝐵)𝜈(𝜇𝑡)] (10)

where ψ2(𝐵) = 1 + 𝜓1
2𝐵 + 𝜓2

2𝐵2 + ⋯ and ψ(𝐵) = Φ(𝐵)−1Θ(𝐵) = 1 + 𝜓1𝐵 + 𝜓1𝐵2 + ⋯,

under the assumption that Φ(𝐵) is invertible and Θ(𝐵) = 1 + 𝜃1𝐵 + ⋯ + 𝜃𝑞𝐵𝑞.

In the specific case of the Poisson – GARMA model we have that:

 𝑉𝑎𝑟𝑌𝑡
(𝑦𝑡) = ψ2(1)𝛽0 (11)

where ψ2(1) = 1 + ∑ 𝜓𝑗
2∞

𝑗=1 .

Whilst, for the Gamma – GARMA model:

𝑉𝑎𝑟𝑌𝑡

(𝑦𝑡) = 𝜑 ψ2(1) [1 + φ + φψ2(1)]
−1

𝛽0
2
 (12)

provided that [1 + φ + φψ2(1)] is invertible. All the proofs for the previously stated results

can be found at Benjamin et al. (2003).

26

Despite being readily available, stationarity results for identity link function are not

general enough. As pointed out by Woodard et al. (2011), the latter case excludes many popular

count-valued models, thus, a more general approach must be followed. Additionally, Woodard

et al. (2011) provide strict stationarity conditions for GARMA models in the absence of

covariates (the term 𝐱𝑡
′ 𝛃).

4 MOVING BLOCK BOOTSTRAP IN GARMA MODELS

In the specific case of the GARMA model, Equation (2) shed some light into what is

needed to construct a Model-Based bootstrap scheme. The only possible way to do it is when

the moving average term is present, because only on it there is a residual term being formed.

Thus, this restriction significantly reduces the range of applicability of the model-based

bootstrap to the GARMA model, as pure autoregressive models are no longer feasible (if the

purpose is to use this bootstrap method).

In contrast to the Model–Based scheme, the Moving Block Bootstrap (MBB) method

for stationary processes builds on the idea that while successive observations are correlated,

observations separated far enough in time will be approximately uncorrelated and can be treated

as exchangeable (Chernick, 2008 p. 104).

For instance, consider the sample 𝐲 = 𝑦1, … , 𝑦𝑛 , a series of length 𝑛 and suppose

that 𝑛 = 𝑏𝐿, where 𝑏 denotes the number of overlapping blocks and 𝐿 the respective block

length and both are positive integers, that is, 𝑏 ∈ ℤ+and 𝐿 ∈ ℤ+. The MBB (Kunsch, 1989)

consists of sampling 𝑏 blocks with replacement from the 𝑛 − 𝐿 + 1 blocks to generate the

sequence 𝐲∗ = (𝑦1
∗, 𝑦2

∗, … , 𝑦𝑛
∗) of bootstrap resample, this process being repeated 𝐵 times.

 Some care must be taken with the MBB as observed by Chernick:

Some of the drawbacks of block methods in general are as follows: (1) Resampled

blocks do not quite mimic the behavior of the time series, and (2) they have a tendency

to weaken the dependency in the series. (Chernick, 2008 p. 105)

Those downsides are directly related to the selection of the optimal block length. A

higher value of 𝐿 is associated with a reduction in the bias of the bootstrap parameter

estimation, when contrasted to a smaller value, as the replicates will more closely resemble the

original series. So, the stronger the dependencies in 𝑌, the higher 𝐿 should be. Conversely, a

27

smaller value of 𝐿 translates into a variance reduction in the estimation as more replicates are

available. (Carlstein, 1986 p. 1176)

This Section is divided in two Sub-Sections, the first approaches the optimal block

length issue and the second the bootstrap bias correction and confidence interval estimation

process.

4.1 On the optimal block length choice

In this section, some remarks concerning the optimal block length choice in the context

of MBB and GARMA models are made. Here, optimality is assessed in terms of closeness of

the MBB resamples mean to the parameters true values. That is, the optimal length (𝐿𝑂𝑝𝑡𝑖𝑚)

for a given parameter 𝜁 is defined as:

 𝐿𝑂𝑝𝑡𝑖𝑚(𝜁) = min
𝐿

𝑎𝑏𝑠 (𝜁 −
1

𝐵
∑ 𝜁 𝑀𝐿𝐸

∗;𝐿; (𝑖)𝐵
𝑖=1) , 𝐿 ∈ 𝕃, (13)

where 𝕃 is the set of block lengths on which optimality is being evaluated. Here, 𝑎𝑏𝑠 is the

absolute value function and 𝜁 represents any estimated parameter of a Poisson or Gamma

GARMA model. It is worth noting that the optimal block length for a model is parameter

specific, that is, the optimal value might be different for each parameter in the model. One could

also derive a global measure of optimality (𝐿𝐺.
𝑂𝑝𝑡𝑖𝑚

) by simply computing the mean absolute

deviation for all parameters and all 𝐿 ∈ 𝕃 and choose the one with the smallest average, that is

 𝐿𝐺.
𝑂𝑝𝑡𝑖𝑚(𝜻) = min

𝐿
𝑎𝑏𝑠 ∑ (𝜁𝑘 −

1

𝐵
∑ 𝜁 𝑘,𝑀𝐿𝐸

∗;𝐿; (𝑖)𝐵
𝑖=1)𝑘∈ 𝒦 , 𝐿 ∈ 𝕃, (14)

where 𝜻 is the vector of model parameters and 𝒦 is the set of all parameter values in the

specified model. 𝐿𝐺.
𝑂𝑝𝑡𝑖𝑚

 is a reasonable metric if each 𝐿𝑂𝑝𝑡𝑖𝑚 in 𝜻 is close to one another, in

other words, 𝐿𝐺.
𝑂𝑝𝑡𝑖𝑚

 is good if the variance of the optimal block lengths for each parameter in

the model is small and around the same value.

In the case of a small series, with length 30 for instance, 𝕃 can be taken as the set of the

integers from one to thirty, where optimality for a specific model parameter can be precisely

computed (if we are working with a simulated series or know ex-ante the true data generating

28

process and thus the parameters true values). On the other hand, in a large series, say with 𝑛 =

1000, computing all possible block lengths might be a cumbersome task. It is feasible, though

it might take too much time. In this case, a smaller number of possible block lengths might be

evaluated and optimality assessed heuristically. If 𝜁 𝑘,𝑀𝐿𝐸
∗;𝐿; (𝑖)

 is a monotone function of 𝐿, an

equally spaced grid of possible values of 𝐿 ∈ 𝕃 might give a first global measure of optimality

and in a second step the grid might be evaluated in the region of better predictions in the first

step, thus narrowing the search for 𝐿𝑂𝑝𝑡𝑖𝑚.

Some of the approaches proposed in the literature employ a squared loss function, and

the optimal search is measured with respect to 𝜁𝑀𝐿𝐸 . In those instances, the heuristic provided

in the previous paragraph might be helpful.

As previously stated, optimality can be locally or globally defined, which might lead to

non-uniqueness in the chosen optimal block length. Additionally, the optimal block length

might not be the same for bias and distribution function estimation. This, in turn, makes our

task more difficult, as parameter bias and confidence interval estimation might require different

optimal block lengths. For conciseness, optimality is only evaluated with regard to bias

estimation, but the reasoning is easily extended to the confidence interval case.

Hall, Horowitz and Jing (1995) proposed some rules for identifying the optimal block

length in the bootstrap with dependent data. They point out that the optimal block length

depends on the context, being of order equal to 𝑛1/3 for bias and variance estimation, 𝑛1/4 in

the case of one-sided distribution function and 𝑛1/5 for the two-sided case. These results

following a squared loss function. They also propose an empirical method for choosing the

block length. This procedure is reviewed in Lahiri (2003) and explained below.

Let �̂�𝑛 denote the estimate for the optimal block size for the entire series (given the

statistic 𝑇(𝐲) of interest) and �̂�𝑚, 𝑚 < 𝑛, the optimal value for a series of smaller length than

the original one. Then, �̂�𝑛 = (𝑛 𝑚⁄)1/𝑘 �̂�𝑚, 𝑓𝑜𝑟 𝑘 = 3, 4, 5, where 𝑘 is determined by the

context (bias/ variance, one-sided or two-sided distribution functions). Denote by 𝕊 the set of

all subseries of length 𝑚 from 𝐲. Apply the MBB to each element of 𝕊, with 𝐿′ ∈ ℤ+
𝑚, where 𝐿′

is the block length value and ℤ+
𝑚 is the set of all positive integers until 𝑚 (we might take all

values in ℤ+
𝑚 or a smaller subset, the choice might rely on the computational burden), leading

to �̂�𝐿′
𝕊 (�̂�𝐿′

𝕊 is the value of the statistic of interest computed with all the elements of 𝕊(𝑚)).

Compute �̂�𝐿′
𝑛 (the statistic evaluated at the entire data set) and then the estimate of the mean

29

squared error(𝑀𝑆�̂�) given by: 𝑀𝑆�̂� = ∑ (�̂�𝐿′
𝑛 − �̂�𝐿′

𝕊′
)

2 1

𝑛−𝑚+1𝕊′∈ 𝕊 . Take �̂�𝑚 = argmin
𝐿′

(𝑀𝑆�̂�),

with 𝐿′ ∈ ℤ+
𝑚 and obtain �̂�𝑛. This process can be (and in this monograph is) iterated.

Building on the work of Hall, Horowitz and Jing (1995), Lahiri, Furukawa and Lee

(2007) developed a nonparametric plug-in rule (NPPI), based on the Jackknife-After-Bootstrap

(Lahiri, 2002), which is consistent not only for bias, variance and distribution estimation but

also for bootstrap quantile estimation. In their approach, the authors employ the Jackknife-

After-Bootstrap for estimating the variance and an analytical formula for the bias of the

parameter in focus. Those estimates are used as inputs in the first-order expansion of the optimal

block length expression. The details of this method would require a different approach than the

one followed here and for this reason the reader can refer to Lahiri, Furukawa and Lee (2007)

or Lahiri (2003). The NPPI is given by:

�̂�𝐍𝐏𝐏𝐈 = (
2�̂�2

2

𝑟�̂�1

)

1
𝑟+2

𝑛
1

𝑟+2 (15)

 �̂�1 = (𝑛𝐿∗
−𝑟)𝑛2𝑎VAR̂ (16)

 �̂�2 = (𝐿∗)𝑛𝑎BIAŜ (17)

where 𝑟 = 1 𝑎𝑛𝑑 𝑎 = 0 for bias and variance estimation, 𝑟 = 2 𝑎𝑛𝑑 𝑎 = 1/2 in the case of

distribution function. BIAŜ and VAR̂ are the parameter bias and variance consistent (as defined

in Lahiri, Furukawa and Lee (2007)) estimates. 𝐿∗ is a initial block size. For a more

comprehensive explanation in the estimation of VAR̂ the reader might refer to the original paper

of Lahiri (2002).

In this monograph, the empirical method for block choice of Hall, Horowitz and Jing

(1995), and nonparametric plug-in rule of Lahiri, Furukawa and Lee (2007) are implemented

and contrasted.

4.1.1 Algorithms for MBB applied to GARMA models

As usual, consider the random variable 𝑌 = {𝑌𝑡(𝜔), 𝑡 ∈ 𝒯, 𝜔 ∈ Ω }, defined in the

filtered probability space (Ω, ℱ, {ℱ𝑡}𝑡≥0, 𝑃), where all variables are as previously defined in

30

section 3. Let 𝑌𝑡, 𝑡 = 1, … , 𝑛 denote the realization of the GARMA process defined in the

filtered probability space where its conditional distribution 𝑓𝑌𝑡|ℱ𝑡−1
 belongs to the same member

of the exponential family with linear predictor as a function of its mean (𝜂𝑡 = 𝑔(𝜇𝑡)), as given

by equation 2.

Once more, consider 𝐲 = 𝑦1, … , 𝑦𝑛 as a sample from this process. Further, suppose that

 𝑛 = 𝑏𝐿, where 𝑏 denotes the number of blocks and 𝐿 the respective block lengths. Take B as

the number of desired bootstrap replicates to perform the Monte Carlo approximation method.

Algorithm 1 describes the steps required to perform the Moving Block Bootstrap for the

GARMA process 𝑌𝑡. It can be broken down into six main steps from the creation of the 𝑏 blocks

to the application of the statistic of interest.

Algorithm 1: GARMA model MBB

1. Sample 𝑏 elements, with replacement, from the collection ℬ, where ℬ = {𝑖 ∈ ℬ: 𝑖 ∈

ℕ, i ≤ 𝑛 − 𝐿 + 1} , to form the set 𝒜 = {𝑗1, … , 𝑗𝑏};

2. For k in 𝒜:

Compute the blocks of length 𝐿 starting at the index k;

3. Concatenate the elements obtained in step 2, keeping their indexing order 𝑗𝑖′𝑠, to form

the series 𝐲∗ = y1
∗, … , y𝑛

∗ . This is the first moving block bootstrap replicate.

4. Compute the maximum likelihood estimate of the GARMA model parameters evaluated

at 𝐲∗;

5. Repeat 1-4 B times;

6. Compute the desired statistic, as the estimate of the parameter bias, standard errors,

confidence intervals, etc.

In light of the high reliance of the MBB procedure into the correct selection of the block

length 𝐿, a brief adaptation of the algorithm of Hall, Horowitz and Jing (1995) is proposed in

order to make it faster and applicable on a multi-parameter setting, resulting in Algorithm 2.

Speed is relevant when 𝑛 is large so that we have 𝑚 ≫ 3 having to repeat the MBB at least 𝑚

times. To address this issue a sampling scheme is designed to restrict the number of MBB runs

to 3 on each iteration while trying to cleverly search the parameter space (the possible values

of 𝐿 given ℤ+
𝑚). Another drawback of the Hall, Horowitz and Jing (1995) rule is that it is

applied to a single parameter, and all the mean squared error estimates are minimized with

31

respect to one quantity. To overcome this problem a simple solution of a mean optimal block

length estimate is adopted.

Algorithm 2: modified Hall, Horowitz and Jing (1995), for 𝐿′ ∈ ℤ+
𝑚, 𝑚 > 3:

1. Choose a value of 𝑚 < 𝑛, let �̂�𝑚 be the estimate of the optimal block length for the

subseries of length 𝑚. For each element in 𝕊 apply the MBB with the value of 𝐿′ as

defined in the next step.

2. Take 𝐿′ as: 𝐿′ = {a, b, c}, where a is a sample from the quantile 1/3 of ℤ+
𝑚, b from 1/3-

2/3 and c 2/3-3/3.

3. Obtain the value �̂�𝐿′
𝕊 of the statistic of interest and compute �̂�𝐿′

𝑛 and 𝑀𝑆𝐸 as defined in

Section 4.1.

4. For the step �̂�𝑚 = �̂�𝑚,𝑖 = argmin
𝑖 ∈ 𝐿′

(𝑀𝑆�̂�), choose �̂�𝑚 = ∑ �̂�𝑚,𝑘
𝑢
𝑘=1 /𝑢 , where u is the

number of parameters in the model (this is useful in a multi-parameter setting, as for

each parameter we have a specific �̂�𝑚 value).

5. Repeat steps 1-4 𝑗 times for 𝑗 iterations.

If the Hall, Horowitz and Jing (1995) rules and its modified version Algorithm 2 can

generate accurate estimates of 𝐿𝑂𝑝𝑡𝑖𝑚 for the MBB case, we can safely combine them with

Algorithm 1 and remove arbitrary choices of 𝐿 in the MBB estimation process.

4.2 Bootstrap bias correction and confidence interval estimation

In this section, the parameter bias and confidence interval estimates are defined. Each

topic is approached in its designated subsection for the sake of clarity.

4.2.1 Parameter bias and bias corrected estimates

Let 𝐲∗ = (𝑦1
∗, 𝑦2

∗, … , 𝑦𝑛
∗) be a bootstrapped sample from the original sample of 𝑌𝑡. If we

have 𝐵 of those samples, and we wish to estimate for example the bias of the parameter 𝜁 (any

of the parameters in a GARMA model), we should simply compute its value for 𝑖 = 1, … , 𝐵 and

subtract the value of 𝜁 𝑀𝐿𝐸 from the mean of the bootstrap estimates, that is:

32

𝑏𝑖𝑎𝑠(𝜁𝑀𝐿𝐸) =

1

𝐵
∑ 𝜁𝑀𝐿𝐸

∗; (𝑖)
𝐵

𝑖=1
− 𝜁𝑀𝐿𝐸 (18)

where 𝜁𝑀𝐿𝐸 denotes the MLE estimate of 𝜁 in the original sample and 𝜁 𝑀𝐿𝐸
∗; (𝑖)

 in the i-th

bootstrapped sample. Here, 𝑏𝑖𝑎𝑠(𝜁𝑀𝐿𝐸) is the bootstrap bias estimate of the MLE estimate of

𝜁. This procedure is the same for all the parameters 𝛃, 𝛟, 𝛉 in the respective GARMA model.

Thus, we have that
1

𝐵
∑ 𝜁 𝑀𝐿𝐸

∗; (𝑖)𝐵
𝑖=1 is the bootstrap estimate of 𝜁 and we could also have

the bias corrected estimate of the parameter 𝜁, i.e. 𝜁𝐵𝑂𝑂𝑇
𝑏𝑖𝑎𝑠 𝑐., that would be:

 𝜁𝐵𝑂𝑂𝑇
𝑏𝑖𝑎𝑠 𝑐.. = 𝜁𝑀𝐿𝐸 − 𝑏𝑖𝑎𝑠(𝜁𝑀𝐿𝐸) = 2(𝜁𝑀𝐿𝐸) −

1

𝐵
∑ 𝜁 𝑀𝐿𝐸

∗; (𝑖)𝐵
𝑖=1 . (19)

4.2.2 Confidence Intervals

With regards to confidence interval estimation for a given parameter (𝜁 for instance),

besides the standard Gaussian asymptotic one, there are some useful bootstrap confidence

intervals, such as the percentile method, the bias corrected percentile method, the basic

method, among others.

Let ℋ̂be the cumulative distribution function of the parametric bootstrap distribution of

𝜁∗, so that

 ℋ̂(𝑠) = 𝑃𝑟𝑜𝑏∗{𝜁∗ ≤ 𝑠}. (20)

The percentile method:

 This is the simplest method to construct a bootstrapped confidence interval for a given

parameter and as the Monte Carlo approximation is employed, ℋ̂(𝑠) is approximated by:

 ℋ̂(𝑠) ≅ #{𝜁∗ ≤ 𝑠}/𝐵, (21)

where B denotes the number of bootstrap resamples.

Taking 𝜁∗ ∈ [ℋ̂−1(𝜏), ℋ̂−1(1 − 𝜏)] gives an approximate 1 − 2𝜏 confidence interval

for 𝜁 , being this the percentile method confidence interval.

Chernick and LaBudde (2011 p. 78) provide some remarks regarding this method :

33

But asymptotically, the bootstrap samples behave more and more like the subsamples,

and the percentile interval estimate does approach the 90% level. Unfortunately, in

small to moderate samples for asymmetric or heavy - tailed distributions, the

percentile method is not very good and so modifications are required to improve it.

The bias corrected percentile method:

In the bias corrected case, take 𝜁∗ ∈ [ℋ̂−1(Φ(2𝑧0 − 𝑧𝜏)), ℋ̂−1(Φ(2𝑧0 + 𝑧𝜏))], where

𝑧0 ≡ Φ−1 (ℋ̂(𝜁∗)) and 𝑧𝜏 = Φ−1(𝜏). Similarly, ℋ̂(𝑠) is assessed by (18). More specifically,

through the Monte Carlo approximation to the bootstrap distribution, what is performed is the

selection of the 50th percentile of the bootstrap distribution, namely �̂� 50
∗ , and the bias correction

is taken as 𝑏𝑖𝑎𝑠 𝑐. = 𝜁∗ − �̂� 50
∗ (Chernick, 2008 p. 60).

The basic method:

The basic bootstrap method is similar to the percentile method, the difference between

then being that in the latter the hypothesis is that the distribution of 𝜁∗ approximates the

sampling distribution of 𝜁 , while in the former the distribution of 𝜁∗ − 𝜁𝑀𝐿𝐸 ≡ 𝜁𝑏𝑎𝑠𝑖𝑐

approximates the true sampling distribution of 𝜁𝑀𝐿𝐸 − 𝜁. This method is expected to perform

better than the percentile when the distribution symmetry condition is not satisfied. The

confidence interval construction is analogous to the percentile with the replacement of 𝜁∗by

𝜁𝑏𝑎𝑠𝑖𝑐.

Efron and Tibshirani (1986, p. 68) provided a useful table specifying the conditions for

each of the previously stated methods to be accurate. For further information regarding those

methods, the reader can refer to Efron (1980), Hall (1992), Chernick (2008) and DiCiccio and

Efron (1996), just to name a few.

Even though the Gaussian method does not belong to the class of bootstrap confidence

intervals we briefly describe it for completeness, as it will be our benchmark for comparison.

The Gaussian method:

The Normal case is straightforward and a confidence interval for 𝜁∗ is 𝜁∗ ∈

[𝜁∗ − �̂�Φ−1(𝜏), 𝜁∗ + 𝜎 ̂Φ−1(1 − 𝜏)] , where Φ−1(𝜏) denotes the inverse cumulative

distribution function of the Gaussian distribution at 𝜏 (for a two-sided 95% confidence interval,

with 𝜏=2.5% , Φ−1(𝜏) = −1.96) and �̂� is the MLE estimate of the standard deviation of 𝜁.

34

The reader acquainted with the theory of bootstrap confidence interval estimation might

also acknowledge the use of the bias corrected and acceleration, the bootstrap-t and the ABC

(approximate bootstrap confidence interval, which is an analytical version of the bias corrected

and acceleration method) intervals. The first requires the estimation of the acceleration

parameter, which amounts to evaluate the skewness of the score function and for this reason is

not employed. The second requires an estimate of the standard deviation of the parameter of

interest in each bootstrap replication, which could be carried out through the delta method or a

double bootstrap scheme (increasing the computational cost). The third relies on an analytical

approximation as opposed to the Monte Carlo approximation. Therefore, the Gaussian, the

basic, the percentile and the bias corrected percentile methods are chosen given their easiness

of computation and widespread usage.

Usually, for parameter estimates 𝐵 =100 works fine, as there is little improvement past

it, however, for bootstrap confidence interval, a minimal value of 𝐵 =1000 is required (Efron

and Tibshirani, 1986, p. 72).

5 SIMULATION RESULTS

After a previous examination of several initial GARMA models (half from the Poisson

and the other half from the Gamma) the final simulation and results were constrained to the

scenarios exhibited in

Table 1. As all the proposed models are at most of order one, the respective subscript is

omitted (for example, 𝜃1 is referred simply as 𝜃). This choice of order is made regarding the

scope of this work, trying to keep the model structure simpler and easier to interpret.

Nevertheless, models with higher order are important and further research is of paramount

importance to shed more light into their behavior. Moreover, the initial mean value to generate

all models was set to 𝜇𝑖𝑛𝑖𝑡 = 10 and in the Poisson case the offset parameter to 𝛼 = 0.1 .

Table 1: Models and Parameters

 Parameters

Model Family 𝜙 θ β σ

1 Poisson 0.15 0.00 2

35

2 Poisson 0.50 0.00 2

3 Poisson 0.00 0.50 2

4 Poisson 0.00 0.15 2

5 Poisson 0.50 0.10 2

6 Gamma 0.15 0.00 2 1.41

7 Gamma 0.50 0.00 2 1.41

8 Gamma 0.00 0.50 2 1.41

9 Gamma 0.00 0.15 2 1.41

10 Gamma 0.50 0.10 2 1.41

As formerly anticipated, this study is concerned with evaluating the performance of the

MBB, through a Monte Carlo study, applied to GARMA models with respect to bias and

confidence interval estimation. In addition, for the models with a moving average term there

was an attempt to implement the Model-Based bootstrap, although, due to the restrict

applicability of the methodology and its poor performance no results will be displayed.

Here, a heuristic approach is followed in the selection of the MBB block length, where

three different values are evaluated for each simulated series length (1000 and 30).

In the case of parameter bias estimation, a graphical evaluation is done, that is, the

empirical density (Histogram) of the estimates obtained in the MBB is contrasted to the ones

with the bias correction. In this fashion we wish to access whether their empirical distributions

look alike and if the introduction of the bias correction term improves the performance of the

estimates.

For confidence intervals, the empirical coverage rate of the bootstrap and asymptotic

intervals are compared considering a nominal level of 95%, this significance level is chosen

regarding its widespread usage in the literature. We understand that the bootstrap performance

might be related to the chosen significance level and consider this a fruitful field for future

research. In the simulation study a total of 1000 Monte Carlo repetitions and 1000 bootstrap

replications will be performed. All the codes are built in R and are presented in Appendix III:

R CODE.

As the discussion of all the scenarios described in Table 1 would be a little cumbersome,

only the results of some models are presented here. But the performance for all models can be

found at the Appendix I: Tables and Appendix II: Figures.

We will take Model 1 as example. Figure 5 presents the results for n=1000. There are

three plots in the same figure and their interpretation is the same, the difference is their block

length, being the first for the length of 20, the second 50 and the last for 100. For instance,

36

consider the second graph in this figure; the red area depicts the histogram of the density of the

original 1000 MLE estimates for the parameter 𝜙 in Model 1, while the blue area shows the

density of the respective bias corrected estimates. In this case there is almost a complete

overlapping between then, meaning that the distributions are approximately the same. This

distinction is made clear because in some cases provided in the Appendix there is no

overlapping at all. For this reason, three vertical lines are added to the plot in order to assist the

visual diagnosis. The black line represents the parameter true value (on which the estimates

distributions are expected to be centered), and the red and blue the respective original and bias

corrected mean MLE parameter estimates. In the case in analysis, increasing the block length

improves the point estimates of 𝜙, but does not affect the estimates of β. Besides, the bias

corrected estimates present the same performance as the case without the correction.

37

Figure 5: Model 1 – �̂� original and bias corrected empirical distribution for 1000 simulations, series of length 1000

Small sample properties of the estimates are also evaluated, with a Monte Carlo

simulation performed for a series of length 30 (see Figure 6). Results for the smaller series are

worse than the larger one, as expected, with both original and bias corrected empirical

distribution showing a larger variability. Moreover, we see that the mean bias corrected

estimates are closer (in Euclidian distance) to the true value of 𝜙 compared to their counterpart

without the correction, and it improves as the block length increases.

An example with a larger value of the parameter is presented in Figure 7 for Model 3.

We have perceived that the results are worse when we increase the parameter values, and this

is probably due to the fact that the MBB was built for stationary series. Thus, a slight departure

from this assumption can imply in estimates farther from the real values. Nevertheless, there

38

are some cases when the bias correction can improve the results, as shows the graphs in Figure

7. We see that the bias correction brings the estimates of θ closer to the real one when we

decrease the block length.

Figure 6: Model 1 - �̂� original and bias corrected empirical distribution for 1000 simulations, series of length 30

In general, increasing the block length improves the performance of the estimates,

except for MA models in Poisson GARMA.

In spite of the superiority of the bias corrected parameter estimate detected in Model 3,

in some models this might not be the case. For example, in Model 5, for 𝜙, the original estimates

are better than the corrected ones. Likewise, in Model 9 for 𝛽, no clear distinction can be made

between them (see Figure 23 and Figure 27 in the Appendix II: Figures).

39

Figure 7: Model 3 – 𝜃 original and bias corrected empirical distribution for 1000 simulations, series of length 30

With respect to coverage rates, some selected models are analyzed and a classification

is proposed to simplify the exposition and understanding, but the tables with the data for all the

models can be found at Table 5 to 8 at the Appendix I: Tables.

40

Table 2: Bootstrapped confidence intervals coverage, 1000 sim., 1000 boot. resamples, series of length 1000

 Model 3: Poisson-GARMA (0,1)

 β=2; θ=0,5

length parameter norm bias c. perc. basic

20
β 93.7% 93.3% 93.9% * 93.2%

θ 79.6% 93.3% * 30.1% 92.8% *

50
β 93.7% 92.7% 93.3% 92.9%

θ 79.6% 85.7% * 72.0% 86.3% *

100
β 93.7% 91.2% 92.6% 91.7%

θ 79.6% 75.6% 79.1% 75.8%
Legend: fields marked with * are used to denote a coverage rate higher (in absolute difference to the 95% target)

than the respective asymptotic normal

Table 2, displays the coverage rate for the confidence intervals of 1000 Monte Carlo

simulations from a Poisson-GARMA (0,1) model, with 𝛽 = 2 and 𝜃 = 0.5. The column labels

have the following meaning: length denotes de block length from the moving block bootstrap;

norm is the Gaussian confidence interval and it reads normal confidence interval without bias

correction; bias.c indicates the normal confidence interval with the bias correction term; perc.

stands for the percentile confidence interval and basic designates the basic confidence interval.

All previous intervals are as defined in Section 4.2..

For this model, the asymptotic interval had an erratic behavior, as displayed in Table 2.

In fact, we see that the asymptotic interval fails for the parameter 𝜃, with a 79.6% coverage

rate, indeed a poor performance. On the other hand, the bias corrected normal interval and the

percentile method do a good job for some block lengths, where the coverage rate is closer to

95%. Moreover, for some values of block length the percentile method had a better performance

regarding 𝛽.

However, the results from Model 3 do not tell the whole picture. In some instances, the

MBB failed at all for some parameters and for others it worked better for a specific block length.

For models 2, 6 and 7 there is a complete failure, that is, no single block length and confidence

interval had a higher coverage rate than the asymptotic one. The outcome for models 1, 4, 5, 8,

9 and 10 are analogous to the case of 𝛽 in model three. That is the case because there is no

failure in the asymptotic interval; it only has a poorer performance than the others confidence

intervals in terms of coverage rates do.

41

It is worth mentioning that this is a partial failure, as for models with coefficients of

0.15 (models: 1, 4, 6 and 9) their performance is superior to the one’s with 0.5 (models: 2,

3,5,7,8 and 10). Actually, their coverage rates are above 90% (except one case in model 9,

89.5%) for all block lengths and confidence intervals and for specific combinations, this value

gets arbitrarily closer to the target of 95%. Thus, this is a strong evidence in favor of the

hypothesis of using the MBB for parameter bias and confidence interval estimation. The poor

performance of the other models was already expected, as a value of 𝜙 or 𝜃 of 0.5 (closer to 1)

is usually associated with non-stationarity and non-invertibility of the series. However, even in

the latter cases, we do observe some models where there is a combination of block length and

confidence interval that leads to values close to the 95% threshold (for instance, consider model

5 with block length of 50 for the percentile ci).

Additionally, the relative better performance of the MBB confidence interval estimation

over the asymptotic one is associated with the presence of a moving average term in the model.

The only pure autoregressive model that had higher coverage rates than the Gaussian was model

1, though, the asymptotic interval clearly is better, as it is closer to the desired 95% coverage

rate for a majority of block lengths. Pure moving average model 3 and 8 and the ARMA models

5 and 10 do exhibit higher coverage rates than the reference, whereas in some instances the

asymptotic one is favored.

Table 3: Bootstrapped confidence intervals coverage, 1000 sim., 1000 boot. resamples, series of length 30

 Model 3: Poisson-GARMA (0,1)

 β=2; θ=0,5

length parameter norm bias.c perc. basic

4
β 85.1% 83.9% 89.1% * 85.3% *

θ 11.4% 48.5% * 6,0% 54.5% *

7
β 85.1% 81.6% 86% * 82.9%

θ 11.4% 40.9% * 12.4% * 47.7% *

10
β 85.1% 76.9% 82.4% 77,0%

θ 11.4% 36.6% * 14.6% * 42.1% *
Legend: fields marked with * are used to denote a coverage rate higher (in absolute difference to the 95% target)

than the respective asymptotic normal

This behavior is observable in small samples. Table 7 and Table 8 at the Appendix I:

Tables exhibit the coverage rate for the same models with a series of length 30 and block length

of 4,7 and 10. Similarly, model 3 seems to fail for the asymptotic case and the bootstrapped

results can improve the estimation of the parameter 𝛽, as we can see in Table 3. However, for

42

the parameter 𝜃 the bootstrapped confidence intervals show little improvement over the

Gaussian, with low coverage rates. In general, for models with a moving average term, there

might be a benefit from using the bootstrap ci for some models and parameters.

Notwithstanding, for other models (e.g. model 1) the asymptotic ci coverage rate is closer to

the expected and superior to the bootstrapped ones. In contrast to the large sample case, in small

samples, models 4, 6 and 9 do exhibit a combination of block length and confidence intervals

that are superior to the Gaussian counterpart.

Generally, the results support the thesis that the moving block bootstrap, with a given

block length, can improve the results for confidence interval estimation, when contrasted to the

Gaussian asymptotic ones, in the specific case of failure of the asymptotic in the simulated

GARMA models. In small samples, the benefit from using block-resampling methods is superior

to the asymptotic Gaussian, as an increased number of models display higher coverage rates

than the reference. Again, models with parameters with values closer to unit do exhibit

coverage rates inferior to the ones with lower values (0.15 for instance), reinforcing that non-

stationarity and non-invertibility is one of the main concerns when dealing with bootstrap

procedures in GARMA models. Nevertheless, care must be taken in choosing the appropriate

block length ensuring the desired results. Perhaps a plug-in estimate of it might lead to a less

heuristic and empirical work and even better results.

The general guideline regarding confidence interval, their coverage rates and GARMA

models can be divided in two categories: large and small samples. In the case of a large time

series (e.g. n=1000) the reader should favor the asymptotic approximate confidence interval.

On the other hand, for small time series (e.g. n=30) the reader is advised against the usage of

the basic confidence interval and should focus on using the percentile or bias corrected

percentile ci’s.

5.1 Optimal block length

In this section, the optimal block length is evaluated and, as the examples provided

bellow show, 𝐿𝐺.
𝑂𝑝𝑡𝑖𝑚

 might not be a plausible measure. First, optimality for the model with 𝑛 =

30 is assessed, with 100 replications for each block length from 1 to 20, and a summary of the

𝐿𝑂𝑝𝑡𝑖𝑚 values for all model parameters is presented in Table 4. The results support the

hypothesis that 𝐿𝐺.
𝑂𝑝𝑡𝑖𝑚

 is not a good measure, as each parameter optimal values differ, for

instance, consider model 2, where 𝐿𝑂𝑝𝑡𝑖𝑚(𝛽) = 10 and 𝐿𝑂𝑝𝑡𝑖𝑚(𝜙) = 15.

43

Another interesting perspective can be seen in Figure 8 where the boxplots for 100 MBB

simulations of Model 2 for every block length are computed, alongside with the mean values

(blue dots) and optimal block length (orange dots, 𝐿𝑂𝑝𝑡𝑖𝑚(𝛽) = 10 and 𝐿𝑂𝑝𝑡𝑖𝑚(𝜙) = 15).

Small block lengths leads to higher dispersion and higher block lengths to a smaller dispersion

of bootstrap resample estimates. For 𝜙, the mean MBB resample parameter values can roughly

be seen as a monotone increasing function of 𝐿.

Table 4: Optimal block length for all models and parameters

 Parameter

Model β 𝜙 θ σ

1 8 8 - -

2 10 15 - -

3 1 - 1 -

4 1 - 1 -

5 19 15 20 -

6 15 5 - 1

7 18 9 - 1

8 15 - 15 1

9 15 - 11 1

10 16 12 13 5

Overall, the estimation of β seems more stable (with respect to 𝐿) than the other model

parameters. This means that one might eventually neglect the effect of the chosen block length

on estimating 𝛽, and consequently focus only on the remaining parameters. Thus, 𝐿𝐺.
𝑂𝑝𝑡𝑖𝑚

, might

be redefined in 𝒦\𝛃. In this fashion, one could also put in second place the block length effect

for the estimation of σ. For this reason, it is safe to restrict the attention to 𝛟′ and 𝛉′.

44

Figure 8: Model 2 optimal block length, series of length 30, n=30, β=2, ϕ=0.5, boxplot for 100MBB simulations

For a simulated series, it is possible to know the optimal block length for a given

parameter (though for long series it might take too long to compute it), however, with real

datasets, some heuristic or algorithm must be employed. In this fashion, in Figure 9 the method

proposed by Hall, Horowitz and Jing (1995) (henceforth HHJ) is iterated (as suggested by the

authors) 100 times and the frequencies of the optimal 𝐿 on each step are tabulated for models

with an AR component. The optimization is taken with respect to 𝜙. The results of the algorithm

do not always agree with the optimal behavior depicted in Table 4. The results can be grouped

into two cases: oscillatory behavior and convergence, the former indicates that the algorithm

oscillates between a group of values, while the in the latter after a number of iterations we have

a convergence of the algorithm to a unique solution. It was established that 𝐿𝑀𝑜𝑑𝑒𝑙 1
𝑂𝑝𝑡𝑖𝑚 (𝜙) = 8,

but the algorithm oscillates between 2 and 3, though no step points to the true value. The same

reasoning of oscillatory can be applied for Model 6 and 10. Still in the first case we have that

𝐿𝑀𝑜𝑑𝑒𝑙 2
𝑂𝑝𝑡𝑖𝑚 (𝜙) = 15 and the HHJ steps have high frequency at 𝐿 = {7,8,9}. In the second case,

the HHJ converges fast (though not to the true optimal value) as in Model 5 that converged to

an optimal block length of 19 and in Model 7 to 17.

45

Figure 9: 𝜙 optimal block length under Hall, Horowitz and Jing (1995) algorithm, 100 simulations block length

frequencies

The previous results show that the HHJ did not have a satisfactory result. Overall, this

algorithm does not seem appropriate for selecting the optimal block length for the MBB in the

Poisson and Gamma GARMA models context. It is worth noting that the implementation here

was with respect to 𝜙 and to bias and variance estimation, thus there could be a different value

of 𝐿 for estimating other model parameters and confidence intervals. Additionally, the results

of the HHJ algorithm rely on the initial value and random seed, so there might be no unicity

on the chosen block length values. This multiplicity of block length possible values increases

the parameter space and favor the heuristic approach. Also, this hypothesis is corroborated if

we take into account the approximate monotone behavior of the block length distribution (as in

Figure 8).

46

Figure 10: ϕ optimal block length under Lahiri, Furukawa and Lee (2007) algorithm, 100 simulations block length

frequencies

Repeating the same analysis for the NPPI algorithm, after 100 iterations we have that

𝐿 = 2 in all instances. All models had a constant optimal block length estimate (with respect to

the iteration span). It is clear that the NPPI algorithm does not work properly in these models,

as we know from Table 4, above, that the true optimal block length is 𝐿𝑀𝑜𝑑𝑒𝑙 𝑖
𝑂𝑝𝑡𝑖𝑚 (𝜙) =

{25, 25, 30, 5, 25, 12}, 𝑓𝑜𝑟 𝑖 = 1, 2 , 5, 6, 7, 10.

47

6 REAL DATA ANALYSIS

In this Section two examples are provided, one for the Poisson and the other for the

Gamma – GARMA models.

6.1 The Poisson – GARMA case

A dataset with the number of monthly bankruptcy filings in the USA from the UCLA-

LoPucki Bankruptcy Research Database was used as an example of modelling a Poisson time

series. It encompasses public companies with Annual Report reporting assets worth 100 million

of U$ dollars or more and can be downloaded at Federal Reserve Bank of St. Louis website

(https://www.stlouisfed.org/). The analysis is restricted to the period of January of 1980 to

December of 1999 and a plot of the series is provided in Figure 11.

Figure 11: Bankruptcy Series plot

This topic is relevant as the number of bankruptcy filings is a key economic outlook

variable, helping to diagnosis the current status of the economy and also working as a lagging

indicator in the business cycle. Figure 11 displays the number of bankruptcy filings by month

over the years, there is an upward increasing trend. As the intention is only to demonstrate the

https://www.stlouisfed.org/

48

application of the GARMA model, no more economic digressions will be made. Thus, a plot of

the autocorrelation function (ACF) and the partial autocorrelation function (PACF) is required

to assist in the ARMA order detection. This is a standard procedure in the Gaussian framework,

the interest reader might refer to Penã, Tiao and Tsay (2001).

Figure 12 shows the ACF and PACF of the bankruptcy filings time series. The high first

order autocorrelation value with its slowly decaying pattern, associated with the high first order

partial autocorrelation and zero autocorrelation from higher order lags indicates a AR(1) or

even an AR(2) model.

After identifying the models and proceeding with the estimation of the Poisson-

GARMA(1,0) model, the parameter estimates are: �̂� = 0.6132 and �̂� = 0.3396 ; both

statistically significant at the level of significance of 1%. Moreover, the AIC statistic for this

model is 758.323.

Figure 12: ACF and PACF plots of the Bankruptcy Filings Series

In Figure 13 there are some plots for the residual diagnostic. The Residual X Index plot

shows no discernible pattern of the residuals. In addition, the Normal Q-Q Plot highlights the

approximately Gaussian behavior of the residuals, except for the distribution tails. Those facts

support the hypothesis of no model misspecification.

49

Figure 13: Residual Analysis of the Poisson-GARMA(1,0) model

Alternatively, we can also attempt to estimate a Poisson-GARMA(2,0) model. Here we

have that �̂� = 0.7534 , �̂�1 = 0.2612 and �̂�2 = 0.1790 , all the parameters are statically

different from zero at the significance level of 1%. The AIC off the model is 735.597, which

indicates that model 2 is preferable over model 1, as it minimizes the information criteria. As

usual, in Figure 14, the residual analysis shows that the data fits the model accurately, with no

severe deviation from the Gaussian hypothesis in the Normal Q-Q plot and also there is no clear

pattern in the residual X index plot.

50

Figure 14: Residual Analysis of the Poisson-GARMA(2,0) model

In terms of confidence intervals, Figure 15 exhibit the mean value of 1000 bootstrap

resamples for model 2 alongside with the error bars for the 95% confidence interval. Both the

Normal asymptotic and the one with the bias correction term are displayed. Note that the MBB

has been computed for a grid of 16 possible block lengths, with values ranging from 5 to 160,

with a constant difference of 10. In addition, the ci’s with the bias correction term are much

wider than the Gaussian ones, though, the mean of the bootstrap resamples belongs to all of

them in the former, whilst in the latter, in some instances, the mean of the bootstrap resamples

does not belong to the interval.

51

Figure 15: MBB 95% Confidence Intervals: Normal and Normal with bias correction term for the Poisson-

GARMA(2,0) model, from 1000 resamples

As there are 240 observations in the time series, computing the MBB for all possible

block lengths can take a considerable amount of time. Owing to this, the analysis will be

restricted to Algorithm 2. In the case of bias/variance and confidence intervals (two sided

distributions) estimates, Algorithm 2, for an initial value of 𝑚 = 30, in 10 steps, all resulted in

a value of 𝐿 = 13 (𝑅 = 100). Besides, monotone convergence for high values, close to the

number of observations, or in the opposite case, for small values, is not the best possible

outcome. The former results in low bias and increased variance, while the latter decreases the

variance and increase the bias of the estimates. What we wish to achieve is an appropriate

balance between bias and variance in the bootstrap resamples.

52

6.2 The Gamma – GARMA / GARCH case

For the final GARCH model, 180 observations from the series of log-returns (difference

of log prices) of Brasil Pharma S.A. (ticker BPHA3.SA), a pharmaceutical company, were used,

with dates ranging from 2017-05-30 to 2018-02-22. In order to check whether there are ARCH

effects or not in the time series two tests were performed, the ARCH test and the Ljung-Box

statistic to the squared log-returns (or volatility if we assume a zero mean). Both are standard

procedures and can be found at Tsay (2002). Both tests were performed using 1, 4, 8, 12 and

24 lags, with the series length equal to the last (chronological order) 30,60,90,180,360,504

business days. At the level of confidence of 10%, for the ARCH test, only at length 30, lags

8,12,24, length 60, lag 24 and length 360, lags 4,12,24 we do not reject the null hypothesis of

no ARCH effects. By the same token, for the Ljung-Box test, only for the length 360 and lags

4,8,24 that the null of no autocorrelation is not rejected (actually the test is for all joint lags, and

that is why six different values were used).

Thus, knowing that in the majority of combination of series length and test lags we do

not reject the presence of ARCH effects we can proceed in the estimation of the GARCH model.

A useful procedure in selecting the process order is a graphical inspection of the Autocorrelation

Function and the Partial Autocorrelation Function of the squared log-returns

Figure 16: ACF and PACF of the BPHA3 squared log-returns

53

One of the possible models to be estimated is a Gamma GARMA/GARCH (1, 0) process,

as we have a decreasing behavior in the ACF and another one at lag 1 of the PACF, see Figure

16. The significative spike at lag 2 might indicate an AR(2) process, though, due to the

widespread usage of the GARCH(1,0) we will restrict the attention to the aforementioned

model. The parameters estimated values are: �̂� = 1.9886, �̂� = 0.0247 and �̂� = 1.2959, with

all of them significant at the level of 1%. After 1000 replications of the estimation process, the

mean estimates are �̅̂� = 1.9887 , �̅̂� = 0.0247 and �̂̅� = 1.2960 , with no differences in

maximum and minimum with four decimal points.

A first model diagnostic is the residual analysis, in Figure 17. We see that some

observations in the tail of the distribution in the Normal Q-Q Plot do not behave like a Gaussian

distribution. From the theory of financial time series, we know that this is a possible behavior

that can be generated by abnormal returns. Additionally, returns usually have higher probability

at the tails of its distribution when contrasted to a Normal distribution and even GARCH models

with normal errors might fail to capture the series true data generating process. Modern

GARCH processes incorporate other distributions other than the Normal, such as the Student t

distribution, the generalized error distribution and the generalized hyperbolic distribution.

Figure 17: Residual Analysis of the Gamma-GARMA/GARCH (1,0) model

Furthermore, another useful estimation diagnostic is the computation of the ARCH and

Ljung-Box tests on the model residuals to check if there are any ARCH effects left. For lags

54

1,4,8,12 and 24 all tests do not reject the null hypothesis of no ARCH effects / autocorrelation

statistically different from zero. This simple procedure is a strong evidence in favor of the

estimated model adequacy (at least in terms of ARCH effects that was the main concern for

estimating a conditional volatility model).

For Algorithm 2, bias/variance and confidence interval estimation, for an initial value

of 𝑚 = 10, 𝑅 = 100, in 10 steps, there was a convergence for 𝐿 = 12 after one iteration. In

Figure 18 are the charts of the Gaussian and bias corrected ci estimates using a grid of values

for 𝐿. Both mean estimated values are contained in the respective ci’s except that the bias

corrected is wider than the Normal. We see that the estimates are relatively stable over the set

of chosen block lengths and chosen confidence interval type.

After examining both real data examples we achieve the same conclusion, that is,

Algorithm 2 is a powerful tool in assisting in choosing the block length for the MBB algorithm,

yet it is also prone to non-unicity. This drawback reinforces the importance of the heuristic

approach, by which we should always estimate the MBB over a grid of values to check the

model estimates variability.

55

Figure 18: MBB 95% Confidence Intervals: Normal and Normal with bias correction term Gamma-

GARMA/GARCH model, from 1000 resamples

56

7 CONCLUSION

In conclusion, bootstrap application in the context of the GARMA model is nonstandard

and as such, suitable modifications must be employed. The Moving Block Bootstrap seems like

a reasonable solution to tackle this problem, and the bias corrected parameter estimates and

confidence intervals might work in cases where the Gaussian counterpart fail. This phenomena

happens even in large samples from selected Poisson and Gamma GARMA process, where the

coverage rates of the MBB surpass the asymptotic ones. Remarkably, in small samples, from

size of 30, these properties hold.

Furthermore, the performance of the MBB is related to the nature of the terms present

in the model, as models containing a moving average term showed improvement over their

references. In the other hand, pure autoregressive models generally performed poorer than the

benchmark. More importantly, models with coefficients near unit (which leads to non-

stationarity and non-invertibility) considerably decreased the performance of the bootstrap

procedures. Though, MBB applied to models with lower parameter values seems to exhibit

good properties.

In short, the Moving Block Bootstrap bias corrected estimate of confidence intervals

seems to provide similar results than their bias corrected parameter estimate counterpart. This

work can be improved by considering shorter block lengths where the Gaussian interval is

expected to fail. However, an improvement might be achieved through the selection of an

appropriate block length. Nevertheless, this is a cumbersome task, as the number of models to

test is considerable and the choices for 𝐿 increase with the length of the series. Thus, plug-in

estimates or other formal devices for estimating the optimal value of 𝐿 are of paramount

importance.

Moreover, other resampling schemes might do a better job than the MBB. Therefore,

research could focus not only on the other block resampling methods, but also on the DWB or

MEB for instance. However, the empirical work must be followed by sound theoretical grounds

and for this reason consistency properties of those different approaches must be established in

the specific case of the GARMA model. In the case of confidence interval estimation, other

procedures, besides the ones followed here, might me more suited.

Remarkably, the proposed Algorithm 2 seems as a useful tool in selecting the optimal

block length in the context of the MBB and multi-parameter estimation setting. The achieved

decrease in computing time seems to outweigh the possible loss in estimating the HHJ

algorithm in a restricted parameter space. This line of work is useful in areas such as Machine

57

Learning, where an automatized selection process is usually desired. In this line of work, the

NPPI estimator of Lahiri, Furukawa and Lee (2007) can also be applied in nonparametric curve

estimation problems, where there is a widespread usage of cross-validation.

The real data examples reinforce the utility of the MBB resampling scheme, however,

when dealing with time series special care must be taken when estimating model parameters,

as we might have to cope with non-stationarity and non-invertibility of the underlying stochastic

processes. Moreover, as the second example shows, further research in the field of dependent

bootstrap methods in relation to GARMA models have clear spill-over effects over other areas,

for instance take the case of Finance/Econometrics with the GARCH family of models relation.

Notwithstanding, plug-in methods for block length selection might enhance the

performance of the MBB confidence intervals and parameter bias estimation. In addition, other

resampling schemes might also achieve this desired result, regarded that they are followed by

theoretical grounds. Further, in terms of coverage rates, different bootstrap confidence interval

procedures might show a clear improvement over the asymptotic one. In this line of work the

sequential Monte Carlo method of Silva (2017) for interval estimation could be employed and

intervals with guaranteed confidence coefficients stablished.

It is important to acknowledge that the conclusions of this work are limited to the class

of GARMA models and more strictly to the low complexity models studied here. Owing to this,

further research could focus on models of higher order shedding light into more general

properties of the MBB in the context of the GARMA model. Besides, the effect of a varying

linear term could also be studied, regarding the possible correlation between exogenous

regressors and autoregressive or moving average terms.

This work can also be extended by an application of the procedures adopted here to the

other members of the exponential family. Additionally, not only Bayesian estimation can be

implemented, building on the work of Andrade (2016), but also a Bayesian Bootstrap (Rubin,

1981) framework. In the latter, a simulation of the posterior distribution of the parameter is

computed, being operationally and inferentially similar to the traditional bootstrap.

58

REFERENCES

Andrade, B. S., Leslow, J. and Andrade, M. G. 2016. Transformed GARMA model:

Properties and simulations. Communications in Statistics - Simulation and Computation. 2016.

Andrade, B. S., Andrade, M. G. and Ehlers, R. S. 2016. Bayesian Transformed GARMA

Models. Cornell University Library. [Online] 2016. [Cited: 10 25, 2017.]

https://arxiv.org/abs/1612.09561.

Andrade, B. S. 2016. GARMA models, a new perspective using Bayesian methods and

transformations. São Carlos : Estatística Interinstitucional do ICMC e UFSCarr. [Online]

Universidade de São Paulo, 2016. [Cited: 10 19, 2017.]

http://www.teses.usp.br/teses/disponiveis/104/104131/tde-27032017-161141/.

Andrade, M. G., Ehlers, R. S. and Andrade, B. S. 2016. Bayesian GARMA Models for Count

Data. Communications in Statistics: Case Studies, Data Analysis and Applications. 1, 2016, pp.

192-205.

Benjamin, M. A., Rigby, R. A. and Stasinopoulos, D. M. 2003. Generalized Autoregressive

Moving Average Models. Journal of the American Statistical Association. Mar, 2003, Vol. 98,

461, pp. 214-223.

Bollerslev, T. 1986. GENERALIZED AUTOREGRESSIVE CONDITIONAL

HETEROSKEDASTICITY. Journal of Econometrics. 31, 1986, pp. 307-327.

Box, G.E.P. and Jenkins, G.M. 1976. Time Series Analysis: Forecasting and Control, Revised

Edition. San Francisco : Holden-Day, 1976.

Briet, O. J.T., Amerasinghe, P. H. and Vounatsou, P. 2013. Generalized Seasonal

Autoregressive Integrated Moving Average Models for Count Data with Application to Malaria

Time Series with Low Case Numbers. PLOS ONE. June, 2013, Vol. 8, 6.

Carlstein, E. 1986. THE USE OF SUBSERIES VALUES FOR ESTIMATING THE

VARIANCE OF A GENERAL STATISTIC FROM A STATIONARY SEQUENCE. The

Annals of Statistics. 1986, Vol. 14, 3, pp. 1171-1179.

Chernick, M. R. and LaBudde, R. A. 2011. An introduction to bootstrap methods with

applications to R. New Jersey : John Wiley & Sons, Inc, 2011. ISBN 978-0-470-46704-6.

Chernick, M. R. 2008. Bootstrap Methods: a guide for practitioners and researchers. 2nd ed.

New Jersey : John Wiley & Sons, 2008. ISBN 978-0-471-75621-7.

Cox, D. R., Gudmundsson, G., Lindgren, G., Bondesson, L., Harsaae, E., Laake, P.,

Juselius, K. and Lauritzen, S. L. 1981. Statistical Analysis of Time Series: Some Recent

Developments [with Discussion and Reply]. Scandinavian Journal of Statistics. 1981, Vol. 8,

2, pp. 93-115.

Davis, R. A., Dunsmuir, T. M. and Wang, Y. 1999. Modelling time series of cunt data. [book

auth.] S. Ghosh. Asymptotics, Nomparametric & Time Series. New York : Marcel Dekker,

1999, pp. 63-114.

DiCiccio, T. J. e Efron, B. 1996. Bootstrap Confidence Intervals. Statistical Science. 1996,

Vol. 11, 3, pp. 189-228.

Durbin, J. and Koopman, S. J. 1197. Monte Carlo Maximum Likelihood Estimation for Non-

Gaussian State Space Models. Biometrika. Sep., 1197, Vol. 84, 3, pp. 669-684.

—. 2000. Time series analysis of non-Gaussian observations based on state space models from

both classical and Bayesian perspectives. Journal of the Royal Statistical Society Series B. 2000,

Vol. 62, 1, pp. 3-56.

Efron, B. and Tibshirani, R. 1986. Bootstrap Methods for Standard Errors, Confidente

Intervals, and Other Measures of Statistical Accuracy. Statistical Science. Feb., 1986, Vol. 1,

1, pp. 54-75.

59

Efron, B. 1979. Bootstrap Methods: Another Look at the Jackknife. The Annals of Statistics.

Jan, 1979, Vol. 7, 1, pp. 1-26.

—. 1980. THE JACKKNIFE, THE BOOTSTRAP, AND OTHER RESAMPLING PLANS.

STANFORD : TECHNICAL REPORT NO. 163, 1980.

—. 1983. Estimating the Error Rate of a Prediction Rule: Improvement on Cross-Validation.

Journal of the American Statistical Association. Jun., 1983, Vol. 78, 382, pp. 316-334.

—. 1986. How Biased is the Apparent Error Rate of a Prediction Rule? Journal of the American

Statistical Association. Jun., 1986, Vol. 81, 394, pp. 461-470.

Engle, R. F. 1982. Autoregressive Conditional Heteroscedasticity with Estimates of the

Variance of UnitedKingdom Inflation. Econometrica. Jul., 1982, Vol. 50, 4, pp. 987-1007.

Engle, R. F., Lilien, D. M. e Robins, R. P. 1987. ESTIMATING TIME VARYING RISK

PREMIA IN THE TERM STRUCTURE: THE ARCH-M MODEL. Econometrica. March,

1987, Vol. 55, 2.

Glosten, L. R., Jagannathan, R. e Runkle, D. E. 1993. On the Relation between the Expected

Value and the Volatility of the Nominal ExcessReturn on Stocks. The Journal of Finance,.

Dec., 1993, Vol. 48, 5.

Grunwald, G. K., Hyndma, R. J., Tedesco, L. and Tweedie, R. L. . 2000. NON-GAUSSIAN

CONDITIONAL LINEAR AR(1) MODELS. Australian & New Zealand Journal of Statistics.

December, 2000, Vol. 42, 4, pp. 479-495.

Hall, P., Horowitz, J. L e Jing, B-Y. 1995. On blocking rules for the bootstrap with dependent

data. Biometrika. 82, 1995, pp. 561-574.

Hall, P. 1992. The Bootstrap and Edgeworth Expansion. New York : Springer-Verlag, 1992.

ISBN 0-387-94508-3.

Jung, R. C., Kukuk, M, e Liesenfeld, R. 2006. Time series of count data: modeling, estimation

and diagnostics. Computational Statistics & Data Analysis. 51, 2006, pp. 2350-2364.

Kedem, B. e Fokianos, K. 2002. Regression Models for Time Series Analysis. New Jersey :

John Wiley & Sons, 2002. ISBN 0-471-36355-3.

Kunsch, Hans R. 1989. The Jakknife and the Bootstrap For General Stationary Observations.

The Annals of Statistics. 1989, Vol. 17, 3, pp. 1217-1241.

Lahiri, S. N. 1999. THEORETICAL COMPARISONS OF BLOCK BOOTSTRAP

METHODS. The Annals of Statistics. 1, 1999, Vol. 27, pp. 386-404.

—.2002. ON THE JACKKNIFE-AFTER-BOOTSTRAP METHOD FOR DEPENDENT

DATA AND ITS CONSISTENCY PROPERTIES. Econometric Theory. 18, 2002, pp. 79-98.

—. 2003. Resampling Methods for Dependent Data. New York : Springer-Verlag, 2003.

Lahiri, S., Furukawa, K. and Lee, Yd. 2007. A nonparametric plug-in rule for selecting

optimal block lengths for block bootstrap methods. Statistical Methodology. July, 2007, Vol. 4,

3, pp. 292-321.

Li, W. K. 1994. Time Series Models Based on Generalized Linear Models: Some Further

Results. Biometrics. Jun., 1994, Vol. 50, 2, pp. 506-5011.

McCullagh, P. and Nelder, J. A. 1989. Generalized Linear Models. 2nd ed. s.l. : Chapman

and Hall, 1989.

Peña, D., Tiao, G. C. and Tsay, R. S. 2001. A course in time series analysis. New York : John

Wiley & Sons, 2001. ISBN 0-471-36164-X.

Rubin, D. B. 1981. The Bayesian Bootstrap. The Annals of Statistics. Vol. 9, 1, pp. 130-134

Shao, J. and Tu, D. 1995. The Jakknife and Bootstrap. New York : Springer-Verlag, 1995.

ISBN 978-1-4612-6903-8.

Shao, X. 2010. The Dependent Wild Bootstrap. Journal of the American Statistical Association.

March, 2010, Vol. 105, 489, pp. 218-235.

Silva, I. R. 2017. Confidece intervals through sequential Monte Carlo. Computational Statistics

and Data Analysis. August, 2017, Vol. 105, 489, pp. 112-124.

60

Tsay, R. S. 2002. Analysis of Financial Time Series. s.l. : John Wiley & Sons, Inc, 2002. ISBN

0-471-41544-8.

Vinod, H. D. 2004. Ranking mutual funds using unconventional utility theory and stochastic

dominance. Journal of Empirical Finance. 11, 2004, pp. 353-377.

Vinod, H. D. 2006. Maximum entropy ensembles for time series inference in economics.

Journal of Asian Economics. 17, 2006, pp. 955-978.

Woodard, D. B., Matterson, D. S. e Henderson, S. G. 2011. Stationarity of generalized

autoregressive moving average models. Electronic Journal of Statistics. 2011, Vol. 5, pp. 800-

826.

Zeger, S. L. and Qaqish, B. 1988. Markov Regression Models for Time Series: A Quasi-

Likelihood Approach. BIOMETRICS. December, 1988, Vol. 44, pp. 1019-1031.

Zheng, T., Xiao, H. and Chen, R. 2015. Generalized ARMA models with martingale

difference errors. Journal of Econometrics. 2015, Vol. 189, 2, pp. 492-506.

61

APPENDIX I: TABLES

Table 5: Bootstrapped confidence intervals coverage, 1000 sim., 1000 boot. resamples, series of length 1000.

 Model 1: Poisson-GARMA (1,0) Model 2: Poisson-GARMA (1,0)

 β=2; φ=0,15 β=2; φ=0,5

length norm bias c. perc. basic length norm bias c. perc. basic

20
95.3% 94.5% 94.8% * 94.3%

20
94.2% 92.3% 93.5% 92.1%

95.5% 92.4% 94.5% 92.6% 93.8% 74.5% 74.8% 73%

50
95.3% 94.1% 94.3% 93.8%

50
94.2% 92.3% 92.7% 92.2%

95.5% 93.1% 93.7% 93.0% 93.8% 88.1% 89.7% 87.5%

100
95.3% 91.8% 91.8% 91.6%

100
94.2% 90.7% 91% 90.9%

95.5% 91.4% 92.2% 91.3% 93.8% 89.8% 90.5% 88.7%

 Model 3: Poisson-GARMA (0,1) Model 4: Poisson-GARMA (0,1)

 β=2; θ=0,5 β=2; θ=0,15

length norm bias c. perc. basic length norm bias c. perc. basic

20 93.7% 93.3% 93.9% * 93.2% 20 95.5% 94.79% * 95.3% * 94.59% *

79.6% 93.3% * 30.1% 92.8% * 94.6% 93.4% 93.3% 92.7%

50
93.7% 92.7% 93.3% 92.9%

50
95.5% 93.4% 94.4% 93.6%

79.6% 85.7% * 72.0% 86.3% * 94.6% 92.8% 93.5% 92.0%

100
93.7% 91.2% 92.6% 91.7%

100
95.5% 92.0% 92.0% 91.6%

79.6% 75.6% 79.1% 75.8% 94.6% 90.9% 92.1% 90.2%

 Model 5: Poisson-GARMA (1,1) Model 6: Gamma-GARMA (1,0)

 β=2; φ=0,5; θ=0,1 β=2; φ=0,15; σ=1,41

length norm bias c. perc. basic length norm bias c. perc. basic

20

94.4% 93.3% 93.5% 92.6%

20

94.1% 93.9% 93.2% 93.4%

94.0% 78.7% 90.7% 76.2% 95.1% 92.6% 94.4% 92.5%

95.5% 92.5% 98.4% 92.5% 95.2% 94.2% 94.7% 94.3%

50

94.4% 92.6% 93.2% 92.6%

50

94.1% 93.4% 92.8% 93.1%

94.0% 87.7% 94.7% * 86.1% 95.1% 93.6% 93.8% 93.4%

95.5% 92.3% 96.8% 92.2% 95.2% 93.3% 94.0% 93.0%

100

94.4% 91.8% 91.9% 91.2%

100

94.1% 91.7% 91.6% 91.2%

94.0% 88.5% 93.9% 86.6% 95.1% 91.9% 91.8% 91.7%

95.5% 91.6% 95.7% 91.1% 95.2% 91.6% 91.5% 91.9%
 Legend: fields marked with * are used to denote a coverage rate higher (in absolute difference to the 95% target)

than the respective asymptotic normal (i.e. norm.wbc)

62

Table 6: Bootstrapped confidence intervals coverage, 1000 sim., 1000 boot. resamples, series of length 1000.

 Model 7: Gamma-GARMA (1,0) Model 8: Gamma-GARMA (0,1)

 β=2; φ=0,5; σ=1,41 β=2; θ=0,5; σ=1,41

length norm bias c. perc. basic length norm bias c. perc. basic

20

94.1% 90.8% 89% 91.3%

20

93.4% 93.5% * 93.8% * 93.9% *

95.1% 82.8% 75.1% 75.8% 94.4% 87.1% 61.5% 58.0%

95.1% 87.6% 89.8% 86.8% 94.3% 87.0% 87.2% 84.7%

50

94.1% 92.9% 91.3% 92.8%

50

93.4% 94.3% * 93.6% * 93.8% *

95.1% 93.0% 90.1% 91.3% 94.4% 97.6% 91.1% 86.2%

95.1% 93.0% 93.8% 92.6% 94.3% 93.4% 93.3% 92.4%

100

94.1% 91.7% 90.7% 91.6%

100

93.4% 91.6% 91.5% 91.1%

95.1% 94.2% 90.8% 92.6% 94.4% 98.4% 93.9% 90.4%

95.1% 92.4% 92.3% 92.0% 94.3% 93.3% 92.7% 91.1%

 Model 9: Gamma-GARMA (0,1) Model 10: Gamma-GARMA (1,1)

 β=2; θ=0,15; σ=1,41 β=2; φ=0,5; θ=0,1; σ=1,41

length norm bias c. perc. basic length norm bias c. perc. basic

20

91.9% 92.9% * 93.8% * 91.8%

20

93.8% 90.4% 93.5% 90.6%

93.2% 95.4% * 94.5% * 91.2% 92.9% 94.2% * 98.4% 90.9%

95.0% 94.4% 94.5% 94.0% 92.1% 96.6% * 99.9% 95.4% *

 95.2% 83.8% 85.4% 81.9%

50

91.9% 92.6% * 92.5% * 92% *
93.2% 96.1% * 95.1% * 93.5% *

50

93.8% 91.0% 93.2% 90.6%

95.0% 93.0% 93.9% 92.5% 92.9% 94.1% * 98.4% 92.3%

 92.1% 94.2% * 99.1% 93.3% *

100

91.9% 91.0% 91.6% 89.5% 95.2% 92.3% 93.5% 91.6%

93.2% 95.4% * 94.1% * 92.3%
95.0% 92.5% 91.4% 91.9%

100

93.8% 90.1% 92.4% 90.0%

 92.9% 92.3% 97.4% 90.4%

 92.1% 92.7% * 97.7% * 90.6%

 95.2% 92.5% 92.9% 91.8%
 Legend: fields marked with * are used to denote a coverage rate higher (in absolute difference to the 95% target)

than the respective asymptotic normal (i.e. norm.wbc)

63

Table 7: Bootstrapped confidence intervals coverage, 1000 sim., 1000 boot. resamples, series of length 30.

 Model 1: Poisson-GARMA (1,0) Model 2: Poisson-GARMA (1,0)

 β=2; φ=0,15 β=2; φ=0,5

length norm bias c. perc. basic length norm bias c. perc. basic

4
92.3% 86.1% 88.6% 85.7%

4
90.7% 80.9% 83.9% 80.8%

95.6% 82% 93% 81.3% 94.5% 76.4% 65.6% 72.4%

7
92.3% 84% 86% 84.5%

7
90.7% 80.7% 82.8% 80%

95.6% 82.2% 89.5% 79.8% 94.5% 82.4% 69.1% 75.1%

10
92.3% 80.8% 82% 79.9%

10
90.7% 77.2% 79.4% 76.9%

95.6% 80.9% 86.2% 77.8% 94.5% 81.5% 66.8% 74%

 Model 3: Poisson-GARMA (0,1) Model 4: Poisson-GARMA (0,1)

 β=2; θ=0,5 β=2; θ=0,15

length norm bias c. perc. basic length norm bias c. perc. basic

4
85.1% 83.9% 89.1% * 85.3% *

4
90.9% 87.1% 89.2% 87.4%

11.4% 48.5% * 6% 54.5% * 89.2% 81.7% 97.2% * 83.1%

7
85.1% 81.6% 86% * 82.9%

7
90.9% 84.9% 86% 85%

11.4% 40.9% * 12.4% * 47.7% * 89.2% 80.9% 95.4% * 82.8%

10
85.1% 76.9% 82.4% 77%

10
90.9% 80% 81.9% 80.3%

11.4% 36.6% * 14.6% * 42.1% * 89.2% 80.1% 93.6% * 81%

 Model 5: Poisson-GARMA (1,1) Model 6: Gamma-GARMA (1,0)

 β=2; φ=0,5; θ=0,1 β=2; φ=0,15; σ=1,41

length norm bias c. perc. basic length norm bias c. perc. basic

4

90.4% 79.3% 85.1% 78.4%

4

90.4% 84.4% 85.6% 84.3%

95.5% 72.4% 97.6% 69.5% 94.1% 83.4% 94.8% * 80.4%

93.7% 86.5% 100% 86.1% 90.9% 87.3% 84% 88.2%

7

90.4% 79.8% 84.1% 78.4%

7

90.4% 83.3% 84.3% 82.5%

95.5% 75.4% 95.9% 69.3% 94.1% 83.4% 92.1% 79.9%

93.7% 84.9% 100% 85.4% 90.9% 85.1% 80.3% 85%

10

90.4% 76.3% 80.8% 75.1%

10

90.4% 79.9% 80.7% 77.4%

95.5% 74.2% 95% * 67.4% 94.1% 82.1% 89.5% 77.5%

93.7% 84.3% 100% 84.5% 90.9% 81.2% 77.4% 80.9%
 Legend: fields marked with * are used to denote a coverage rate higher (in absolute difference to the 95% target)

than the respective asymptotic normal (i.e. norm.wbc)

64

Table 8: Bootstrapped confidence intervals coverage, 1000 sim., 1000 boot. resamples, series of length 30.

 Model 7: Gamma-GARMA (1,0) Model 8: Gamma-GARMA (0,1)

 β=2; φ=0,5; σ=1,41 β=2; θ=0,5; σ=1,41

length norm bias c. perc. basic length norm bias c. perc. basic

4

84.3% 76.7% 75.1% 73.5%

4

90.1% 86.3% 83.1% 86.2%

92.4% 85.7% 78.6% 81.5% 89.9% 84.9% 96% * 82.5%

90.1% 83.5% 90.3% * 84.1% 91.3% 85.7% 90.2% 86%

7

84.3% 76.2% 76.1% 75.5%

7

90.1% 84.8% 82.8% 84.3%

92.4% 87% 79.4% 82.2% 89.9% 89.4% 95.7% * 87.2%

90.1% 83.1% 87.6% 84% 91.3% 84.8% 86.8% 84.9%

10

84.3% 72.3% 74.2% 71.1%

10

90.1% 82.4% 80.1% 82.2%

92.4% 85.2% 76.8% 78.7% 89.9% 90.4% * 93.4% * 88.3%

90.1% 81% 84.8% 80.9% 91.3% 82.1% 83.7% 81.5%

 Model 9: Gamma-GARMA (0,1) Model 10: Gamma-GARMA (1,1)

 β=2; θ=0,15; σ=1,41 β=2; φ=0,5; θ=0,1; σ=1,41

length norm bias c. perc. basic length norm bias c. perc. basic

4

90.1% 86.9% 85.4% 84.3%

4

82.6% 98.2% * 85.3% * 82%

91.3% 88% 97.4% * 87.8% 88.4% 88.5% * 100% * 82.3%

90.9% 88.4% 84.2% 88.5% 84% 87.7% * 100% * 81.7%

 88.6% 80.3% 88.4% 81.1%

7

90.1% 85.9% 83.7% 83.9%
91.3% 89.5% 94.9% * 88.3%

7

82.6% 95.4% * 82.5% 81%

90.9% 86% 79.8% 85.2% 88.4% 87.1% 100% * 80.3%

 84% 86.9% * 100% * 80.4%

10

90.1% 83% 81.3% 80.2% 88.6% 80.2% 85.1% 80.6%

91.3% 89% 93.1% * 85.8%
90.9% 82.3% 77.7% 81.1%

10

82.6% 88.7% * 77.8% 76.8%

 88.4% 85.2% 98.9% * 77%

 84% 86.8% * 100% * 79.5%

 88.6% 78.2% 82.8% 78.2%
Legend: fields marked with * are used to denote a coverage rate higher (in absolute difference to the 95% target)

than the respective asymptotic normal (i.e. norm.wbc)

65

APPENDIX II: FIGURES

66

Figure 19: Model 1 parameters distribution, series of length 1000

67

Figure 20: Model 2 parameters distribution, series of length 1000

68

Figure 21: Model 3 parameters distribution, series of length 1000

69

Figure 22: Model 4 parameters distribution, series of length 1000

70

Figure 23: Model 5 parameters distribution, series of length 1000

71

Figure 24: Model 6 parameters distribution, series of length 1000

72

Figure 25: Model 7 parameters distribution, series of length 1000

73

Figure 26: Model 8 parameters distribution, series of length 1000

74

Figure 27: Model 9 parameters distribution, series of length 1000

75

Figure 28: Model 10 parameters distribution, series of length 1000

76

Figure 29: Model 1 parameters distribution, series of length 30

77

Figure 30: Model 2 parameters distribution, series of length 30

78

Figure 31: Model 3 parameters distribution, series of length 30

79

Figure 32: Model 4 parameters distribution, series of length 30

80

Figure 33: Model 5 parameters distribution, series of length 30

81

Figure 34: Model 6 parameters distribution, series of length 30

82

Figure 35: Model 7 parameters distribution, series of length 30

83

Figure 36: Model 8 parameters distribution, series of length 30

84

Figure 37: Model 9 parameters distribution, series of length 30

85

Figure 38: Model 10 parameters distribution, series of length 30

86

APPENDIX III: R CODE

R Code Master Thesis

Matheus de Vasconcellos Barroso

March 12, 2018

INTRODUCTION

The original code for the Master thesis was not really tidy, with almots 4000 lines of code in the main

file. Also, with Monte Carlo simulations and MBB the number of failures in the estimation process was

leaving tracktability difficult. To organize the ideas this R markdown file was generated in order to mimic

all the steps required to recreate the thesis. Additionaly, two package were created: garma and dboot, that

will be used througout this file.

 The first step is to load both packages, their installation and help files can be found at

https://github.com/matheusbarroso/garma and https://github.com/matheusbarroso/dboot.

1. Install:
install.packages('devtools')
library(devtools)
install_github("matheusbarroso/garma@v.1.0.2")
install_github("matheusbarroso/dboot@v.1.0.1")

2. Load:

library(dboot)
library(garma)

 The second step is to come up with a list of models to use:

model phi theta beta.x mu0 sigma2 sigma alpha familia

1 0.15 0.00 2 10 NA NA 0.1 PO

2 0.50 0.00 2 10 NA NA 0.1 PO

3 0.00 0.50 2 10 NA NA 0.1 PO

4 0.00 0.15 2 10 NA NA 0.1 PO

5 0.50 0.10 2 10 NA NA 0.1 PO

6 0.15 0.00 2 10 2 1.414214 0.1 GA

7 0.50 0.00 2 10 2 1.414214 0.1 GA

8 0.00 0.50 2 10 2 1.414214 0.1 GA

9 0.00 0.15 2 10 2 1.414214 0.1 GA

10 0.20 0.10 2 10 2 1.414214 0.1 GA

https://github.com/matheusbarroso/garma
https://github.com/matheusbarroso/dboot

87

ANALYSIS SERIES OF LENGTH 1000

The last table was assigned to the object models (a data.frame), so that we can easily specify them as

(note that nrow(X) = 1001, so we will be working with a series of length 1000):

specs <- lapply(seq_len(nrow(models)), function (j)
 switch(family = models$familia[j],
 "PO"={
 garma::GarmaSpec(family = "PO",
 beta.x = 2,
 phi = models$phi[j],
 theta = models$theta[j],
 mu0 = models$mu0[j],
 X = as.matrix(data.frame(intercept = rep(1,1001)))
)

 },
 "GA"={
 garma::GarmaSpec(family = "GA",
 beta.x = 2,
 phi = models$phi[j],
 theta = models$theta[j],
 mu0 = models$mu0[j],
 sigma2 = models$sigma2[j] ,
 X = as.matrix(data.frame(intercept = rep(1,1001)))
)
 })

)

Generating 1000 Monte Carlo simulatins for each spec, series of length 1000:

#register the parallel back-end:

no_cores <- if(detectCores() == 1) 1 else detectCores() -1
registerDoParallel(no_cores)

sims <- lapply(specs, function (j)
 GarmaSim(spec = j,
 nmonte = 1000,
 nsteps = 1000,
 burnin = 0
)
)

 The estimation is straightforward and also the Coefficients Distribution plots:

fits <- lapply(sims, garma::GarmaFit)

#for the first model:
plot(fits[[1]])
summary(fits[[1]])

#for the fitfh model:

88

plot(fits[[5]])
summary(fits[[5]])

#for the fitfh model:
plot(fits[[10]])
summary(fits[[10]])

#the final plot:
fig.4 <- GarmaFit(
 GarmaSim(
 GarmaSpec(
 family = "PO",
 beta.x = 2,
 phi = 0.8,
 mu0 = 10,
 X = as.matrix(data.frame(intercept = rep(1,1001)))
),
 nmonte = 1000,
 nsteps = 1000,
 burnin = 0
)
)

plot(fig.4)
summary(fig.4)

 Moving on to the MBB replicates: (Read the warning message bellow)

boot.out <- lapply(sims,
 GarmaSimBoot,
 l = c(20,50,100),
 R = 1000)

model <- 1

plot(boot.out[[model]], type = 'original-bias')
summary(boot.out[[model]])

Warning: please note that this task will take too long to execute, you should try a smaller example

(nmonte < 100 and/or nsteps < 100and/or R < 100. Also, the easiest way to go is to simply estimate one

model). Here, we provide a ‘toy’ example:

no_cores <- if(detectCores() == 1) 1 else detectCores() -1
registerDoParallel(no_cores)

toy <- GarmaSimBoot(
 GarmaSim(
 GarmaSpec(
 family = "PO",
 beta.x = 2,
 phi = 0.2,
 mu0 = 10,
 X = as.matrix(data.frame(intercept = rep(1,1001)))
),
 nmonte = 10,
 nsteps = 1000,

89

 burnin = 0
),
 l = c(20,50,100),
 R = 30)

plot(toy, type='original-bias')
summary(toy)

 The last step for the series of length 1000 is to estimate the coverage rates:

ci <- ConfidenceInterval(toy)
coverage(ci)

ANALYSIS SERIES OF LENGTH 30

Now to generete the series of length 30:

specs <- lapply(seq_len(nrow(models)), function (j)
 switch(family = models$familia[j],
 "PO"={
 garma::GarmaSpec(family = "PO",
 beta.x = 2,
 phi = models$phi[j],
 theta = models$theta[j],
 mu0 = models$mu0[j],
 X = as.matrix(data.frame(intercept = rep(1,31)))
)

 },
 "GA"={
 garma::GarmaSpec(family = "GA",
 beta.x = 2,
 phi = models$phi[j],
 theta = models$theta[j],
 mu0 = models$mu0[j],
 sigma2 = models$sigma2[j] ,
 X = as.matrix(data.frame(intercept = rep(1,31)))
)
 })

)

sims <- lapply(specs, function (j)
 GarmaSim(spec = j,
 nmonte = 1,
 nsteps = 30,
 burnin = 0
)
)

 Once more we are faced with the task of generating the MBB resamples / plots, be aware that the

following code should take long to execute:

boot.out <- lapply(sims,
 GarmaSimBoot,
 l = c(4,7,10),

90

 R = 1000)

model <- 1 # change here to produce the information for a #different model

plot(boot.out[[model]], type='original-bias')
summary(boot.out[[model]])

 Now, to estimate the coverage rates:

ci <- lapply(boot.out, ConfidenceInterval)
coverage(ci[[model]]) #model 1...

 Finally to generate all the MBB resamples from 1 to 20 (as the GarmaSimBoot already is working on

parallel use simple outer nested loops):

resamp <- lapply(seq_len(20),
 function(j)
 lapply(sims, GarmaSimBoot, l = j))

 The plots (note that you should change the model flag with values from 1 to 10 to the individuals plot,

you can also loop for all plots):

library(plyr)
temp <- lapply(seq_len(10),
 function(i) {
 ldply(seq_len(20),
 .fun = function(j) {
 resamp[[j]][[i]]@print.out
 }
)
 }
)
for (i in seq_len(10)) names(temp[[i]])[3] <- "value"

model <- 2 #switch from 1 to 10 to a different plot or loop #through them...

temp[[model]]$length <- factor(
 as.numeric (
 substr(
 temp[[model]]$length,
 start=3,
 stop=5)))

means <- ddply(temp[[model]],
 .variables = c('length','parameter'),
 'summarise',
 mean = mean(value))

k <- resamp[[1]][[model]]@plot.out$db2[,c("parameter","value")]

best <- ldply(k$parameter, function(j) {
 db <- subset(means, subset=(parameter == j))
 true.value <- k$value[k$parameter == j]
 best <- db$length[which.min(abs(true.value-db$summarise))]
 data.frame(length = as.numeric(best),
 parameter = j,
 value = db$summarise[best])
 })

91

library(ggplot2)

ggplot(temp[[model]], aes(length,value)) +

 geom_boxplot() +

 geom_hline(aes(yintercept = value), data = k, linetype = "dashed",size = 1) +

 facet_grid(parameter ~., scales = "free") +

 geom_point(data = means, aes(length, summarise, colour = "mean values")) +

 geom_point(data = best,aes(length,value,colour = "best length")) + labs(colour = "legend"
) +

 scale_colour_hue() +

 ggtitle("Boxplot 100 MBB resamples") +

 theme(plot.title =
 element_text(hjust = 0.5)) +

 theme(legend.position = "bottom",
 legend.title =
 element_text(face = "bold"))

 In the same fashion we can obtain a table with all the best values:

best.table <- ldply(seq_len(10), function(j) {
 db <- temp[[j]]
 db$length <- factor(
 as.numeric(
 substr(db$length,start=3,stop=5)))

 means <- ddply(db,
 .variables = c('length','parameter'),
 'summarise',
 mean = mean(value))

 k <- resamp[[1]][[j]]@plot.out$db2[,c("parameter","value")]

 best <- ldply(k$parameter, function(j) {
 db <- subset(means, subset = (parameter == j))
 true.value <- k$value[k$parameter == j]
 best <- db$length[which.min(abs(true.value-db$summarise))]
 data.frame(length = as.numeric(best),parameter = j)
})
 cbind(best,modelo = j)

})

b.table <- sapply(unique(best.table$modelo), function(j){
 db <- subset(best.table, subset = (modelo == j))
 sapply(levels(best.table$parameter), function(i) {
 x <- db$length[db$parameter == i]
 if(identical(x, numeric(0))) NA else x
 })

92

 })

best.table <- cbind(model = unique(best.table$modelo), t(b.table))

knitr::kable(best.table)

HHJ

Now, we proceed to the Hall, Horowitz and Jing (1995) algorithm, as the estimation process is prone to

errors, specially with l = 1:3, I strongly advise saving the results.

names(sims) <- paste("model", 1:10)

loop <- models[models$phi != 0 ,]

for (i in as.numeric(rownames(loop))[4:6]) {
 chosen.model <- paste("model",i)
 ord <- sims[[chosen.model]]@order
 fam <- sims[[chosen.model]]@spec@family
 db <- sims[[chosen.model]]@value[[1]]
 db <- data.frame(yt = db$yt)
 db$x <- 1

 opt <- HHJ(db, dboot::bootf, ord = ord,
 fam = fam,
 export = c("garmaFit2"),
 package = c("gamlss"),
 nsteps = 100,
 type.optm = 2,
 type.sub.blocks = "complete",
 n.try = 200,
 seed = 1010)

 save(opt, file = paste("HHJ_model100_",i,".RData" ,sep=""))
}

 lapply(as.numeric(rownames(loop)), function(j) {
 load(paste("HHJ_model_",j,".RData", sep = ""))
 opt
 })

now to the plot:

 xx <- lapply(as.numeric(rownames(loop)), function(j) {
 load(paste("HHJ_model_",j,".RData", sep = ""))
 list(tab=table(opt$l.optm),ind=j)})
x <- data.frame()

 for (i in (1:6)) {
 x2 <- data.frame(n.optm=xx[[i]]$tab,model=factor(xx[[i]]$ind))
 x <- rbind(x,x2)
 }
)

names(x) <- c('L.optim',"Freq.","model")

93

x$L.optim <- as.numeric(x$L.optim)

indice <- setdiff(1:10,c(1,2,5,6,7,10))
indice <-(x$model!=indice[1])&(x$model!=indice[2])&(x$model!=indice[3])&(x$model!=indice[4])

library(ggplot2)
ggplot(x[indice,], aes(x=L.optim, y = Freq.,shape=model,colour=model)) + geom_point() +scal
e_shape_manual(values=c(0,1,2,3,4,6,8,15,16,17)) +
scale_x_continuous(breaks=1:30)+scale_y_continuous(breaks=seq(from=0,to=100,by=10))+
ggtitle(bquote(atop("L optimal of Hall, Horowitz and Jing (1995), 100 iterations for"~phi)))

LFL

Now the Lahiri, Furukawa and Lee (2007) algorithm:

for (i in as.numeric(rownames(loop))) {
 chosen.model <- paste("model",i)
 ord <- sims[[chosen.model]]@order
 fam <- sims[[chosen.model]]@spec@family
 db <- sims[[chosen.model]]@value[[1]]

 opt <- LFL(db,bootf,ord = ord,
 fam = fam,
 export = c("garmaFit2"),
 package = c("gamlss"),
 nsteps = 100,
 type.optm = 2)

 save(opt, file = paste("LFL_model_",i,".RData" ,sep=""))

}

 Given the saved files all there is to be done is to manipulate them and produce the plot:

lst <- lapply(as.numeric(rownames(loop)), function (j) {
 load(paste("LFL_model_",j,".RData" ,sep=""))
 opt$l.adj[2:101]
 })

serie <- lapply(lst, function(j) {
 len <- length(j[[1]])
 db <- matrix(unlist(j),nrow=100, byrow=T)
 db[,2]
 })

x <- lapply(serie, function(i) {
 data.frame(L.optim = unique(i), Freq. =
 sapply(unique(i),
 function(j) {
 x <- rep(0,100)
 x[rep(j,100)==i] <- 1
 sum(x)
 }))
 })

94

x <- lapply(1:6, function(j)
 cbind(x[[j]],model = factor((1:10)[models$phi != 0][j])))
x <- ldply(x, function(j)j)

ggplot(x, aes(x=L.optim, y = Freq., shape = model, colour = model)) +
geom_point() +
scale_shape_manual(values = c(0,1,2,3,4,6,8,15,16,17)) +
scale_x_continuous(breaks = 1:30) + scale_y_continuous(breaks = seq(from = 0, to = 100, by
=10)) +
ggtitle(bquote(atop("L optimal of Lahiri, Furukawa and Lee (2007), 100 iterations for" ~ phi
)))

REAL DATA ANALYSIS:

The Poisson case:
#Reading the data:
db <- read.table("Series.txt")
db <- db[1:grep("12/1999", db$data),]

#declaring the time series variable:
bankruptcy <- ts(data = db$falencia, start = 1980, frequency = 12)
bankruptcy

#Basic plots, ACF/PACF:
plot(bankruptcy ,type="p",pch=19,col="red", main="The UCLA-LoPucki Bankruptcy Research Datab
ase",ylab="Number bankruptcy filings ")
par(mfrow=c(2,1))
acf(bankruptcy)
pacf(bankruptcy)

The Poisson - GARMA(1,0) model:
library(timeSeries)
library(gamlss.util)

fit <- garmaFit2(bankruptcy ~ intercept-1,
 data = data.frame(bankruptcy = db$falencia,
 intercept = rep(1,nrow(db))),
 order = c(1,0),
 family = "PO",
 tail = 0,
 control = list(iter.max=1000))
plot(fit)

summary(fit)

residuo <- fit$residuals

#residual plots:
par(mfrow=c(3,1))
hist(residuo, freq=FALSE, xlab="Density", main="Residual", col="orange")
curve(dnorm(x, mean=mean(residuo), sd=sd(residuo)), add=TRUE, col="darkblue", lwd=2)
qqnorm(as.timeSeries(residuo), col="red", pch=19)
qqline(as.timeSeries(residuo))

95

plot(y=residuo,x=rownames(db), xlab="Time",ylab = "Residual", col="red", pch=19, main="Resi
dual X Index ")

par(mfrow=c(2,1))
acf(residuo)
pacf(residuo)

The Poisson - GARMA(2,0) model:
set.seed(123)
fit2 <- garmaFit2(bankruptcy ~ intercept-1,
 data = data.frame(bankruptcy = db$falencia,
 intercept = rep(1,nrow(db))),
 order = c(2,0),
 family = "PO",
 tail = 0,
 control = list(iter.max=1000))
plot(fit2)
summary(fit2)
residuo <- fit2$residuals

#residual plots:
par(mfrow=c(3,1))
hist(residuo, freq=FALSE, xlab="Density", main="Residual", col="orange")
curve(dnorm(x, mean=mean(residuo), sd=sd(residuo)), add=TRUE, col="darkblue", lwd=2)
qqnorm(as.timeSeries(residuo), col="red",pch=19)
qqline(as.timeSeries(residuo))
plot(y=residuo,x=rownames(db), xlab="Tempo", col="red", pch=19, main="Residual X Index ")

par(mfrow=c(2,1))
acf(residuo)
pacf(residuo)

Now the MBB:
db2 <- data.frame(bankruptcy = db$falencia,
 intercept = rep(1,nrow(db)))

function to bootstrap
bootf <- function (db) {

 fit <- garmaFit2(bankruptcy~intercept-1,
 data = db,
 order = c(2,0),
 family = "PO",
 tail = 0,
 control = list(iter.max = 1000))

 return(fit$coef)

 }

nsims <- 1000
lengths <- seq(from = 5, to = 160, by = 10)

96

MBB <- lapply(lengths,
 function(j) tsboot2(db2,
 statistic = bootf,
 R = nsims,
 l = j,
 packages = "gamlss",
 export = 'garmaFit2')
)

names(MBB) <- paste("l.", lengths, sep = "")

resumo <- t(sapply(seq_len(length(lengths)),
 function(p)
 apply(MBB[[p]]$t,
 2,
 mean)
)
)

colnames(resumo) <- attr(MBB[[1]]$t0,"names")
resumo <- as.data.frame(resumo)
resumo$"length" <- lengths

#function to bootstrap and return the Gaussian confidence interval:

bootf2 <- function (db) {

 fit7 <- garmaFit2(bankruptcy ~ intercept-1,
 data = db,
 order = c(2,0),
 family = "PO",
 tail = 0,
 control = list(iter.max = 1000)
)

 ci <- data.frame(lb = fit7$coef - sqrt(diag(fit7$vcov))*1.96,
 ub = fit7$coef + sqrt(diag(fit7$vcov))*1.96
)
 return(ci)
}

set.seed(123)
norm.teste <- bootf2(db2)
colnames(norm.teste) <- c("norm.LB","norm.UB")

##bootstraped ci's:

conf.interv <- function(data,block.length,par.names) {

 dados <- foreach(j = seq_len(length(par.names))) %:% foreach(i = block.length, .combine =
"rbind") %dopar% {

 norm <- boot:::norm.ci(t0 = data[[i]]$t0[j],
 t = data[[i]]$t[j,])

97

 basic <- boot:::basic.ci(t0 = data[[i]]$t0[j],
 t = data[[i]]$t[j,])

 perc <- boot:::perc.ci(t = data[[i]]$t[j,])

 dados <- data.frame(conf = norm[1],
 bias.cor.LB = norm[2], #LB = lower bound
 bias.cor.UB = norm[3], #UB = upper bound
 basic.LB = basic[4],
 basic.UB = basic[5],
 perc.LB = perc[4],
 perc.UB = perc[5]
)

 rownames(dados) <- i
 dados

 }
 names(dados) <- par.names
 dados
}

intervals <- conf.interv(MBB,
 block.length = paste("l.",lengths,sep=""),
 par.names = names(coef(fit2)))

##Manipulating for plotting:
intervals <- lapply(seq_len(length(intervals)), function(j) {

 temp <- rdply(length(lengths),
 norm.teste[j,])[-1]
 rownames(temp) <- NULL

 db <- cbind(conf = intervals[[j]][,1],
 temp,
 intervals[[j]][,-1])

 db$length <- rownames(db)
 db
 }
)

names(intervals) <- names(coef(fit2))

temp <- ldply(intervals)
names(temp) [1] <- "parameter"
temp <- reshape2::melt(temp)
xx <- reshape2::melt(resumo,id.vars = "length")
names(xx)[2] <- "parameter"
xx$variable <- "mean.value"

x <- temp
x <- reshape2::melt(x)

##Plots:

type.ci <- "bias.cor" # 'norm', 'bias.cor', 'basic', 'perc'

98

temp <- cbind(xx,
 LB = subset(x,
 variable == paste(type.ci,".LB", sep = ""))$value,
 UB = subset(x,
 variable == paste(type.ci,".UB", sep = ""))$value)

p2 <- ggplot(temp, aes(x = length, y = value, colour = parameter)) +
 geom_point() +
 geom_errorbar(aes(ymin = LB, ymax = UB, x = length)) +
 facet_grid(parameter ~.,scale = "free") +
 ylim(-1,2) +
 ggtitle(paste("1000 MBB resamples:
 Parameter mean values and 95% Bias Corrected CI estimates")) +
 theme(legend.position = "bottom", plot.title = element_text(hjust = 0.5))

type.ci <- "norm" # 'norm', 'bias.cor', 'basic', 'perc'
temp <- cbind(xx,
 LB = subset(x,
 variable == paste(type.ci,".LB", sep = ""))$value,
 UB = subset(x,
 variable == paste(type.ci,".UB", sep = ""))$value)

p1 <- ggplot(temp, aes(x = length, y = value, colour = parameter)) +
 geom_point() +
 geom_errorbar(aes(ymin = LB, ymax = UB, x = length))+
 facet_grid(parameter ~., scale="free") +
 ylim(-1,2) +
 ggtitle(paste("1000 MBB resamples:
 Parameter mean values and 95% Gaussian CI estimates")) +
 theme(legend.position = "none", plot.title = element_text(hjust = 0.5))

library(gridExtra)
grid.arrange(p1,p2,ncol=1)

HHJ:
bootf3 <-function (data, ord, fam) {

 fit7 <- garmaFit2(formula(bankruptcy ~ intercept - 1),
 data = data,
 order = ord,
 family = fam,
 tail = 0,
 control = list(iter.max = 1000)
)
 return(fit7$coef)
 }

ord <- c(2,0)
fam <- "PO"

algo2_bias <- HHJ(db2,
 bootf3,
 R = 100,
 nsteps = 10,
 ord = ord,

99

 fam = fam,
 export = c("garmaFit2"),
 packages = c("gamlss"),
 m.init = 30)

algo2_ci <- HHJ(db2,
 bootf3,
 R = 100,
 nsteps = 10,
 ord = ord,
 fam = fam,
 export = c("garmaFit2"),
 packages = c("gamlss"),
 m.init = 30,
 type.est = 'two.sided.distribution')

hhj <- HHJ(db2,
 bootf3,
 R = 100,
 nsteps = 10,
 ord = ord,
 fam = fam,
 export = c("garmaFit2"),
 packages = c("gamlss"),
 m.init = 30,
 type.est = "two.sided.distribution",
 type.optm = 1, ####optimizing for the intercept te
rm
 type.sub.blocks = "complete" #### perform the HHJ algorithm
)

The Gamma case:
#Reading the data:
load("quotes.RData")
tik <- quotes[["BPHA3.SA"]]
y <- pmax(diff(log(tik))^2,1e-4)*1e+4

#declaring the time series variable:
log.return <- as.ts(as.vector(y))

#Basic plots, ACF/PACF:
par(mfrow = c(2,1))
acf(log.return)
pacf(log.return)

#ARCH and Ljung-Box tests:

lags <- c(1,4,8,12,24)
alpha <- 0.1
len <- c(30,60,90,180,360,504)

foreach (n = 1, .packages = c("FinTS")) %:% foreach(lags = lags,.combine="rbind") %dopar%{
 a <- y
 arch <- ArchTest(a, lags)$p.value <= alpha ### H0: n
o Arch effect

100

 ljung.box <- Box.test(a^2, lag = lags,type = c("Ljung-Box"))$p.value <= alpha ### H0: n
o autocorrelation different of zero
 db <- data.frame(lag = lags, arch = arch, ljung.box = ljung.box)
 rownames(db) <- NULL
 db ### data.
frame with H0 rejection = TRUE/FALSE for arch and ljung.box
 }

The Gamma - GARMA(1,0) model:
source("garmagarchFit.R")
library(gamlss.util)
library(timeSeries)

set.seed(1234)
fit.garch <- garmagarchFit(yt ~ .,
 order = c(1,0),
 data = data.frame(yt = tail(y,180)),
 family = "GA")

summary(fit.garch)

residuo <- fit.garch$residuals

#Model parameter estimation stability:

library('doRNG')

set.seed(123)
mc.gamma <- foreach(i = seq_len(1000), .packages = c("gamlss.util")) %dorng% {

 fit.gamgarch <- garmagarchFit(yt ~ .,
 order = c(1,0),
 data = data.frame(yt = tail(y,180)),
 family ="GA")
 return(list(param = fit.gamgarch$coef, aic = fit.gamgarch$aic))
 }

library(plyr)

mc.gamma <- ldply(mc.gamma,.fun = function(j) c(j$param,j$aic))
names(mc.gamma)[4] <- "AIC"
mc.gamma<- reshape2::melt(mc.gamma)

p1 <- ggplot(subset(mc.gamma,variable == "beta.(Intercept)")) +
 aes(value)+
 geom_density(alpha = 0.2) +
 ggtitle(paste("Histogram 1000 fits", "beta.(Intercept)"))

p2 <- ggplot(subset(mc.gamma,variable == "phi"), aes(value)) +
 geom_density(alpha = 0.2) +
 ggtitle(paste("Histogram 1000 fits","phi")) +
 theme(legend.position = "bottom", plot.title = element_text(hjust = 0.5))

p3 <- ggplot(subset(mc.gamma,variable == "AIC"), aes(value, fill = model)) +
 geom_density(alpha = 0.2) +

101

 ggtitle(paste("Histogram 1000 fits","AIC"))

stats <- ddply(mc.gamma,
 .variable=c('variable'),
 "summarise",
 Median = median(value),
 Mean = mean(value),
 Min= min(value),
 Max=max(value))

stats <- reshape2::melt(stats)

stats$value <- round(stats$value,4)

#residual plots:

par(mfrow = c(3,1))
hist(residuo, freq = FALSE, xlab = "Density", main = "Residual", col = "orange")
curve(dnorm(x, mean = mean(residuo), sd = sd(residuo)), add = TRUE, col = "darkblue", lwd =
2)
qqnorm(as.timeSeries(residuo), col = "red", pch = 19)
qqline(as.timeSeries(residuo))
plot(y = residuo, x = seq_len(length(residuo)), xlab = "Tempo", col = "red", pch = 19, main
 = "Residual X Index")

par(mfrow = c(2,1))
acf(residuo)
pacf(residuo)

#Arch Test & Ljung-Box for the residuals:

foreach (n = 1, .packages = c("FinTS")) %:% foreach(lags = lags,.combine="rbind") %dopar%{
 a <- residuo
 arch <- ArchTest(a, lags)$p.value <= alpha ### H0: n
o Arch effect
 ljung.box <- Box.test(a^2, lag = lags,type = c("Ljung-Box"))$p.value <= alpha ### H0: n
o autocorrelation different of zero
 db <- data.frame(lag = lags, arch = arch, ljung.box = ljung.box)
 rownames(db) <- NULL
 db ### data.
frame with H0 rejection = TRUE/FALSE for arch and ljung.box
 }

Now the MBB:
#function to bootstrap:
bootf <- function (db) {
 fit <- garmagarchFit(formula(yt ~ x - 1),
 data = db,
 order = c(1,0),
 family = "GA",
 tail = 0,
 control = list(iter.max = 1000)
)
 return(fit$coef)
 }

102

db3 <- data.frame(yt = tail(y, 180))
db3$x <- 1

nsims <- 1000

lengths <- sort(c(12, seq(from = 5, to = 60, by = 5)))[-c(6,9,10,12,13)]

set.seed(123)

MBB <- lapply(lengths, function(j) {
 print(j)

 tsboot2(db3,
 statistic = bootf,
 R = nsims,
 l = j,
 packages = "gamlss",
 export = 'garmagarchFit')
 }
)

resumo <- t(sapply(seq_len(length(lengths)), function(p) apply(MBB[[p]]$t, 2, mean)))
names(MBB) <- paste("l.",lengths, sep = "")

tsboot2(db3, statistic = bootf, R = nsims, l = 10, packages = "gamlss", export = 'garmagarch
Fit')

resumo <- t(sapply(seq_len(length(lengths)),function(p) apply(MBB[[p]]$t,2,mean)))
colnames(resumo) <- attr(MBB[[1]]$t0,"names")
resumo <- as.data.frame(resumo)
resumo$"length" <- lengths
names(resumo)[1] <- "Intercept"

#function to bootstrap and return the Gaussian confidence interval:
bootf2 <- function (db) {

 fit <- garmagarchFit(formula(yt ~ x - 1),
 data = db,
 order = c(1,0),
 family = "GA",
 tail = 0,
 control = list(iter.max = 1000))

 ci <- data.frame(lb=fit$coef - sqrt(diag(fit$vcov))*1.96,
 ub=fit$coef + sqrt(diag(fit$vcov))*1.96)
return(ci)
}

set.seed(123)
norm.teste <- bootf2(db3)
colnames(norm.teste) <- c("norm.LB", "norm.UB")

intervals <- conf.interv(MBB,
 block.length = paste("l.",lengths,sep=""),
 par.names = c(names(coef(fit.teste)), names(fit.teste$sigma)))

103

intervals <- lapply(seq_len(length(intervals)), function(j) {
 temp <- rdply(length(lengths), norm.teste[j,])[-1]
 rownames(temp) <- NULL
 db <- cbind(conf = intervals[[j]][,1], temp,intervals[[j]][,-1])
 db$length <- rownames(db)
 db
})
names(intervals) <- c(names(coef(fit.garch)),names(fit.garch$sigma))

temp <- ldply(intervals)
names(temp) [1] <- "parameter"
temp <- reshape2::melt(temp)
x <- temp
x <- reshape2::melt(x)
xx <- reshape2::melt(resumo, id.vars = "length")
names(xx)[2] <- "parameter"
xx$variable <- "mean.value"
xx$tag <- "normal"
xx$tag[xx$length == 12] <- "Algorithm 2"

type.ci <- 'bias.cor' # 'norm', 'bias.cor', 'basic', 'perc'
temp <- cbind(xx,
 LB = subset(x, variable == paste(type.ci, ".LB", sep=""))$value,
 UB = subset(x, variable == paste(type.ci, ".UB", sep=""))$value)

p2 <- ggplot(temp, aes(x = length, y = value, colour=parameter)) +
 geom_point() +
 geom_errorbar(aes(ymin = LB, ymax = UB, x = length))+
 facet_grid(parameter ~.,scale = "fixed") +
ggtitle(paste("1000 MBB resamples:
 Parameter mean values and 95% Bias Corrected CI estimates")) +
 theme(legend.position = "bottom", plot.title = element_text(hjust = 0.5))

type.ci <- 'norm' # 'norm', 'bias.cor', 'basic', 'perc'
temp <- cbind(xx,
 LB = subset(x, variable == paste(type.ci, ".LB", sep=""))$value,
 UB = subset(x, variable == paste(type.ci, ".UB", sep=""))$value)

p1 <- ggplot(temp, aes(x = length, y = value, colour=parameter)) +
 geom_point() +
 geom_errorbar(aes(ymin=LB, ymax=UB, x= length)) +
 ylim(-3,5)+
 facet_grid(parameter ~., scale = "fixed") +
ggtitle(paste("1000 MBB resamples:
 Parameter mean values and 95% Gaussian CI estimates")) +
 theme(legend.position = "none", plot.title =element_text(hjust= 0.5))

library(gridExtra)
grid.arrange(p1,p2,ncol=1)

HHJ:
bootf3 <-function (data, ord, fam) {

 fit <- garmagarchFit(formula(yt~ x - 1),
 data = data,

104

 order = ord,
 family = fam,
 tail = 0,
 control = list(iter.max = 1000))

 return(fit$coef)
 }

ord <- c(1,0)
fam <- "GA"

algo2_bias <- HHJ(db3,
 bootf3,
 R = 100,
 nsteps = 10,
 ord = ord,
 fam = fam,
 export = c("garmagarchFit"),
 packages = c("gamlss"),
 m.init = 10)

algo2_ci <- HHJ(db3,
 bootf3,
 R = 100,
 nsteps = 10,
 ord = ord,
 fam = fam,
 export = c("garmagarchFit"),
 packages = c("gamlss"),
 m.init = 10,
 type.est = 'two.sided.distribution')

hhj_intercept <- HHJ(db3,
 bootf3,
 R = 100,
 nsteps = 10,
 ord = ord,
 fam = fam,
 export = c("garmagarchFit"),
 packages = c("gamlss"),
 m.init = 10,
 type.est = "two.sided.distribution",
 type.optm = 1, #1,2,3
 type.sub.blocks = "complete")

Final Step:

As we have finished working with a parallel environment it is a good practice to finish the parallel

workers if we will keep the current R session:

doParallel::stopImplicitCluster()

