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Abstract 

 

This final paper aims to find a suitable Bootstrap Method for the Generalized Autoregressive 

Moving Average Model. The focus is on the Moving Block Bootstrap (MBB) resampling 

scheme with its performance being evaluated through a Monte Carlo study and contrasted to 

their asymptotic Gaussian counterpart. It is stablished that the aforementioned resampling 

procedure can generate good estimates of parameters bias and confidence intervals. Though, 

the results rely heavily on the simulated model parameters and block lengths used in the MBB 

procedure. 
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1 INTRODUCTION 
 

This monograph is concerned with the implementation and evaluation of bootstrap 

parameter bias (the difference between the parameter true value and its estimator expected 

value) and confidence interval estimation in the context of the so-called Generalized 

Autoregressive Moving Average models, henceforth GARMA models, proposed by Benjamin et 

al. (2003). The estimation performance is accessed through a Monte Carlo simulation scheme. 

GARMA models can be easily viewed as an extension of the linear regression model, to 

accommodate both time-series and non-Gaussian observations. Taking into account the time 

dependence between dependent and explanatory variables, one of the most used procedures is 

the Gaussian Autoregressive Moving Average (ARMA) model (Box and Jenkins, 1976) and, 

with regard to the non-gaussian behavior, the Generalized Linear Model (GLM) (McCullagh 

and Nelder, 1989) is often employed. If we combine both previous procedures we arrive at the 

GARMA model, that is, the GARMA model is simply the application of an ARMA process to 

model the conditional mean (through an appropriate link function) of the dependent variable 

within the exponential family of distributions. 

Parameter estimation and inference in the GARMA model are based on maximum 

likelihood asymptotic results, though, for small length series, those results might not hold. For 

this reason, we employ bootstrap methods to help us access the accuracy of our estimates. 

Traditional bootstrap methods rely on the independent observations assumption, and as such, 

additional care must be taken when choosing a suitable resampling scheme that incorporates its 

intrinsic temporal dependence. A wide range of bootstrap methods are available, however, the 

implementation in the GARMA context is not easy and their performance is not homogenous. 

Owing to this, the performance of parameter bias and confidence interval estimation is 

evaluated in light of the Moving Block Bootstrap (MBB) (Kunsch, 1989) resampling scheme. 

That is, our main goal is to examine whether the MBB can generate good and consistent results, 

and as such, if it can be widely applied in the GARMA framework. Additionally, as the block 

length is a relevant input for this class of resampling scheme, the algorithms of Hall, Horowitz 

and Jing (1995) and Lahiri, Furukawa and Lee (2007) are implemented. Furthermore, a 

modified version of the former algorithm is put forth and some remarks regarding the optimal 

block length choice are made.  

A Monte Carlo study with 1000 simulations for each model is used for parameter bias 

and confidence interval evaluation. In the former, we check whether the bootstrap bias corrected 

distribution is centered on its true value, whereas in the latter we compute the bootstrap 
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replications coverage rate (i.e. the count of intervals containing the parameter true value divided 

by the number of simulations) and contrast it to the asymptotic Gaussian (Normal) interval. 

We study a wide variety of models from both the continuous and discrete cases, with 

simulations restricted to the Gamma and Poisson GARMA models, respectively.  

The outline of this monograph is as follows: in Section 2 we provide some historical 

references for both the GARMA model and the bootstrap method in the time-series perspective. 

The third Section introduces the GARMA model, Section 4 the bootstrap schemes used in the 

study, Section 5 analyzes the simulation results, Section 6 a real data example and Section 7 

gives some concluding remarks. The Appendix provides additional information suppressed in 

the text for the sake of concision.  

 

 

2 LITERATURE REVIEW 
 

This section is divided in two subsections; the first is about the GARMA model and the 

second the bootstrap method applied in the time series framework. 

 

 

2.1 The GARMA model 

 

The GARMA model was introduced and formalized in the paper of Benjamin et al. 

(2003); however, many ideas present in the model were introduced before in the time series 

literature (see for example Zeger and Qaqish (1988)). Similar results applied in the context of 

discrete time series can be found at Davis et al. (1999), where the Generalized Linear 

Autoregressive Model (GLARMA) is developed. For applications of the latter the reader can 

refer to Jung et al. (2006).  

We will bear in mind Benjamin’s et. al. (2003) notion of the GARMA model as an 

extension to the Gaussian ARMA model, which traces back to the work of Cox et al. (1981). In 

the text, the author claims that in the non-Gaussian series perspective: 

 

 It would be desirable to have a general exponential family formulation. Such models 

could be formulated as 'observation driven', or as 'parameter driven', the latter being 

instances of latent structure models. (Cox et al., 1981 p.101) 

 

If we make use of Cox et al. (1981) terminology, the GARMA model suits the class of 

observation driven models, as opposed to parameter driven (state-space) one.  
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Some of the advantages of the state-space approach are its flexibility and ability to 

model the behavior of different components of the series separately and then aggregate the 

submodels to form an overall model for the time series (Durbin and Koopman, 2000). On the 

other hand, the improved flexibility comes at the expense of complicate estimation process and 

crude approximations (Benjamin et al., 2003). The study of state-space models is beyond the 

scope of this monograph and the reader is encouraged to recur to Durbin and Koopman (2000) 

for further details. 

The paper of Benjamin et al. (2003) extends the work of Zeger and Qaqish (1988) and 

Li (1994). The former implements a Quasi-Likelihood Markov model in the conditional 

moments, in the same sense of McCullagh and Nelder (1989) where the marginal moments are 

employed. Nevertheless, their focus is on autoregressive models, such as autoregressive 

conditionally heteroscedastic (ARCH) models for example.  The latter emphasizes the moving 

average perspective into the GLM context; their formulation is general enough to accommodate 

both autoregressive and moving average processes, though no general formal treatment is 

provided in this case.   

With respect to non-Gaussian autoregressive models, we can also highlight the work of 

Grunwald et al. (2000), in which the authors develop the class of conditional linear AR(1) 

models (CLAR(1) models). This is a first-order conditional linear autoregressive structure, that 

subsumes a wide variety of models previously proposed in the literature, regardless of their 

generating method: innovation, conditional distribution, random coefficient, thinning and 

random coefficient thinning. For instance, consider the model of Zeger and Qaqish (1988), 

which is included in the conditional distribution method. The authors state the assumptions 

under which the CLAR(1) stationary mean can be derived and also its stationary variance (given 

a quadratic variance function premise). They also provide the conditions for a stationary 

(ergodic) distribution. 

A detailed analysis of the GARMA model can be found at the book of Kedem and 

Fokianos (2002), where the authors explain in details the model, estimation process, residual 

analysis, many applications to discrete process and an exposition of the main models in the 

literature. 

Some further developments have been proposed regarding GARMA models. Woodard 

et al. (2011) have shown their strict stationarity (the distribution of the process does not depend 

on time) from two perspectives. In the first approach they postulate under which conditions 

GARMA models have a unique stationary distribution and in the second they show stationarity 

and ergodicity of a perturbed version of the model. Subsequently, they relate the original to the 
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perturbed processes and conclude that the latter has parameter estimates arbitrarily close to the 

former.   

Afterwards, Briet et al. (2013) extended the GARMA class into the Generalized Seasonal 

Autoregressive Integrated Moving Average models (GSARIMA class), in an analogy to the 

Seasonal Autoregressive Integrated Moving Average models (SARIMA) extension of ARMA 

models, thus including a multiplicative seasonal autoregressive integrated moving average 

model. Their estimate is carried out through a full Bayesian inference procedure, on the grounds 

of a weakly stationary model assumption and consequently constraining of the autoregressive 

and moving average parameters. The outcome assumes a Negative Binomial distribution, 

whereas the parameters follow Beta, Gaussian and Gamma priors. The model is subsequently 

applied to a Malaria time series analyses. 

Andrade, Leslow and Andrade (2016) proposed a Transformed GARMA model to cope 

with non-additivity, non-normality and heteroscedasticity in time series; the transformation 

ensures that the transformed series fulfill the GARMA model assumptions. Andrade, Andrade 

and Ehlers (2016) also estimate this model under the Bayesian framework and a simulation 

study is carried out followed by an analysis of fertility rates in Sweden.  

Additionally, Andrade, Ehlers and Andrade (2016) developed a Bayesian GARMA 

model for count data and applied it to three Brazilian datasets, one for automobile production, 

other for dengue fever hospitalizations and another for number of deaths by dengue. They used 

a Poisson, Binomial and Negative Binomial GARMA models, with multivariate Gaussian priors, 

though non-informative (large variances resulting in flat densities), for each model parameter.  

Zheng, Hiao and Chen (2015) propose an extension of the GARMA model, the 

martingalized GARMA model (M-GARMA), in which the resulting transformed ARMA model 

(through an appropriate link function) has a martingale difference sequence as its error 

sequence. This property is only achieved in the original model (Benjamin et al., 2003) in the 

case of the identity link function. The improvement of this new model is striking, as maximum 

likelihood asymptotic distribution can be established. Simulations for a Log-Gamma-M-

GARMA and Logit-Beta-M-GARMA models are performed, followed by an application to High-

frequency realized volatility making usage of the Gamma-M-GARMA model with logarithmic 

link function and another application studying the US personal saving rate through the Logit-

Beta-M-GARMA.  

It is worth noting that the GARMA applications in the literature generally focused on the 

discrete type of distributions, therefore we try to fill this gap applying the model to a continuous 

financial time series. From the empirical finance point of view, time series such as assets returns 
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(difference of log prices) usually exhibit some stylized facts that result in a departure from the 

Gaussian distribution assumption. Some of those facts are returns low serial correlation and 

volatility (i.e. squared returns, as usually returns are centered at zero) clustering and asymmetry. 

In this line of thought, Engle (1982) in his pioneer work, developed the autoregressive 

conditional heteroscedasticity model, where returns are normally distributed but the volatility 

process is from an autoregressive nature. Thus, he created a simple model that can cope with 

variance changing over time as a function of past errors, whilst the unconditional variance 

remains constant through time. Remarkably, in 1986, Tim Bollerslev extends Engle’s model 

and introduces the class of Generalized Autoregressive Conditional Heteroscedasticity 

(GARCH) models (Bollerslev, 1986), in the same sense that an ARMA process extends an AR 

one.  Small adaptations or simplifications to this model also took place; take the ARCH-M 

(Engle et al., 1987) or TARCH (Glosten et al., 1993) for instance. 

In this work we will take advantage of the relation between the Gamma-GARMA and 

GARCH models, as presented in the paper of Benjamin et al. (2003), to analyze a financial time 

series. Our real data examples bear a close resemblance to one of the applications present in the 

work of Zheng, Hiao and Chen (2015), the difference being that we will not attempt to model 

intraday high-frequency volatility, only daily prices keeping in mind the GARCH equivalence.  

 

 

2.2 BOOTSTRAP methods 

 

The term bootstrap was coined by Bradley Efron in his seminal paper “Bootstrap 

Methods: Another Look at the Jackknife”, Efron (1979), where the author introduces the 

bootstrap methodology and shows that the nonparametric jackknife can be viewed as a linear 

approximation method for the bootstrap. In this work, Efron focused on estimating the sampling 

distribution of a given statisic by its bootstrap distribution. This new tool is more widely 

applicable than the jackknife, useful to estimate parameters bias, variance and also to construct 

confidence intervals. 

The problem of calculating the bootstrap distribution can be tackled by three methods: 

direct theoretical calculation, Monte Carlo approximation and Taylor series expansion. The 

second approach is often employed as it is easier to implement. The author also discusses the 

problem of error rate estimation in the case of discriminant analysis and shows that the bootstrap 

method outperforms the leave-one-out cross-validation (a method for estimating error rates by 
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leaving one observation out of the estimation process at a time and afterwards using it as 

independent for estimating the error measure) approach.  

In theory, the bootstrap scheme is really simple, that is, in possession of the bootstrap 

resamples what one really has to do is to approximate the sampling distribution of the statistic 

of interest by its bootstrap one. Therefore, the tough part of this algorithm is how to compute 

the so-called bootstrap distribution. Due to its popularity and simplicity, the Monte Carlo 

approximation method is the one followed here.  

Efron (1980) gives a thorough account of the relation between the Jafkknife, Bootstrap, 

cross-validation, balanced repeated replications and random subsampling. Additionally, some 

nonparametric confidence intervals are employed, namely the percentile method, the bias-

corrected percentile method and the t-bootstrap.  

The matter of error rate estimation is developed further in Efron (1983), where the 

relation between the bootstrap and cross-validation estimation is analyzed. Some interesting 

ideas are proposed such as the double bootstrap and the 0.632 estimator. Subsequently, 

estimates of the downward bias of the apparent error rate are provided in Efron (1986), in which 

a theory in the GLM framework is stated. He also compares Mallow’s 𝐶𝑝, cross-validation, 

generalized cross-validation, bootstrap and Akaike’s information criterion (AIC).  

Moving beyond Efron’s work, we cannot understate the monograph of Hall (1992). It 

not only provides a systematic review of bootstrap methods but also a rigorous mathematical 

evaluation of the bootstrap performance through the usage of Edgeworth expansions. 

Despite its simple nature, when it comes to the Monte Carlo approximation to the 

bootstrap distribution in the time series framework some difficulties or specificities arise. This 

happens because the original bootstrap was conceived to deal with independent datasets and 

from the time series point of view this is an overly simplistic assumption (as correlation is 

frequently induced).  

From the time-series point of view, our work relies heavily on the work of Chernick 

(2008) and Chernick and LaBudde (2011). Both books give a description of the bootstrap and 

its relation to parameter bias, location and dispersion estimation. They also handle with 

confidence intervals and hypothesis testing. Also, and perhaps more important to our analysis, 

a survey of bootstrap methods in the time series framework is given. The content of the books 

concerning this topic is quite similar, with both covering the basics of model-based and block 

resampling bootstrap, the main difference between them being some additional bootstrap 

schemes in the newer book, namely the Dependent Wild Bootstrap. 
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Additionally, the book Resampling Methods for Dependent Data, from Lahiri (2003), is 

a keen source of information, where the author reviews some Block Bootstrap Methods, 

establishing their consistency, second-order properties, contrast their performance, he also 

approaches the problem of resampling methods for spatial data. Nonetheless, for this work, we 

highlight the importance of the chapter on the Empirical Choice of Block Size.  

The resampling methods in the time-series context usually fit two main categories: 

model-based or the block resampling. For completeness this chapter has two subsections 

dedicated to the aforementioned resampling schemes, followed by a third subsection with some 

methods that do not fall in these categories.  

 

 

2.2.1 Model-Based Bootstrap 

 

Model-based bootstrapped time-series consists of assuming a model, isolating its 

residuals in the model equation and bootstrapping the residuals. Thus, the bulk of model-based 

methods is the resample of the model residuals and, because of this, an explicit form of residual 

in the model equation is required (Chernick and LaBudde 2011 p. 118). Consequently, this is a 

model dependent method, in which its validity depends on the correctness of the specified 

model. The prime example in the literature is the first order autoregression, where an estimate 

of the autoregressive coefficient (usually through a Maximum Likelihood Estimation) is used 

in computing the model residuals. However, this is an overly simplified structure and more 

complex models are hard to handle in a similar fashion.  See for example Efron and Tibshirani 

(1986), Shao and Tu (1995), Chernick (2008) or Chernick and LaBudde (2011). 

A review of bootstrap ideas and applications can be found in Efron and Tibshirani 

(1986). From all examples present in their text, the more relevant to our work is the first-order 

autoregressive one, introducing the notion of bootstrap residuals in the times series context. The 

authors also introduce several approaches to calculate confidence intervals, such as the 

standard, percentile, bias-corrected percentile and BC𝛼 methods. 

Any of the methods described in the previously stated references in the case of model-

based bootstrap can be adapted into the GARMA context, the difference being that this is a dual 

stage process. In the first step the residuals are computed (e.g.: original scale, Pearson, predictor 

scale) and sampled with replacement entering the linear predictor. In step two, a random sample 

is drawn from the respective GARMA distribution with mean given by the inversion of the link 
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function evaluated at step 1. This process is repeated sequentially until the original series length 

is recovered.  

However, it is worth noting that this kind of bootstrap procedure is hard to develop in a 

general GARMA setting, as it will be seen in Section 4. Unlike ARMA models that can have 

an infinite autoregressive or moving average representation and consequently are prone to 

bootstrap residuals, GARMA models do not have this type of representation and cannot be 

directly bootstrapped in a general model-bootstrap perspective. Due to these aforementioned 

restrictions, in this work we will restrain ourselves to another class of bootstrap resampling in 

time series, known as Moving Block Bootstrap (MBB). 

 

 

2.2.2 Block-resampling Bootstrap 

 

Block-resampling bootstrap has been designed to deal with the model misspecification 

pitfall. Chernick and LaBudde (2011) pointed out that the moving block bootstrap has been the 

most successful attempt in the time domain approach. It was introduced by Carlstein (1986) 

and further developed by Kunsch (1989).  Some block resampling methods described in the 

book and documented by Lahiri (2003) are: 

 

The various types of block bootstrap approaches covered by Lahiri include(1) MBB, 

(2) nonoverlapping block bootstrap ( NBB ), (3) circular block bootstrap (CBB), (4)  

stationary block bootstrap ( SBB ), and (5) tapered block bootstrap (TBB)(very 

briefly) (Chernick and LaBudde, 2011 p.124). 

  

A theoretical comparison of the MBB, NBB, CBB and SBB can be found in Lahiri 

(1999). The simulation results show that for a moderate sample size the MBB and CBB are 

preferable over the NBB and SBB. 

Lahiri (2003, p. 206) simulated two confidence intervals for the autoregressive bootstrap 

(ARB), that is a p-order autoregression, and the moving block bootstrap (MBB) with four 

different block lengths. Theoretically, this is a situation where ARB should perform better than 

the MBB; however, for some block lengths the MBB gets close to the ARB. Thus, even though 

the MBB is expected to have a poor performance when contrasted to the ARB it is in fact more 

robust to model misspecification and might be better suited in cases where there is uncertainty 

about the model correctness.  

It is evident that there are many block bootstrapping schemes, though we focus mainly 

on the MBB owing to its history of success and consistency property in the specific case of 
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GARMA models. Remarkably, despite the low number of papers based on the GARMA, Andrade 

(2016) established the assumptions guaranteeing the consistency of the MBB for this specific 

model. Here, consistency means that for an increasing sample size, the quantiles produced by 

the MBB converge to the quantiles of the respective asymptotic distribution. One disadvantage 

of the MBB is the heuristic nature of the block length selection process.  

To tackle the block length issue, some estimators have been proposed, such as the one 

by Hall, Horowitz and Jing (1995) (HHJ) and by Lahiri, Furukawa and Lee (2007) (generalized 

plug-in rule or nonparametric plug-in method). The latter is based on a Jackknife-After-

Bootstrap (JAB) method while in the former the length depends on the context and can be a 

simple function of the sample size. For a comparison of them, please refer to the original paper 

of Lahiri, Furukawa and Lee (2007). 

 

 

2.2.3 Other resampling procedures 

 

Aside from model-based and block resampling schemes other procedures have been 

proposed, though, a thorough literature reviewing those topics is beyond the scope of this 

monograph and the reader might refer to Chernick (2008) or Chernick and LaBudde (2011), for 

instance. Only a brief description of two methods is provided below. 

One alternative to the model based and block resampling bootstrap is the Dependent 

Wild Bootstrap (DWB), proposed by Shao (2010), that extends the wild bootstrap to the case 

of stationary, weakly dependent, time series. No partitioning of the data into blocks is required 

and it is applicable in the case of irregular time series. The method relies on the DWB pseudo 

observations, which are simply a function of sample statistics.  

Moving onto the GARMA – GARCH relation we might have to keep in mind the intrinsic 

properties of assets returns, and as such, some bootstrap resampling methods might be 

unsuitable. Vinod (2004) had put forth three properties that might render the traditional 

bootstrap inappropriate and developed the Maximum entropy bootstrap (MEB) that can cope 

with those drawbacks simultaneously. The latter is also simplified and extended into a panel-

data setting in Vinod (2006). The MEB comes as an alternative to the block resampling methods 

and does not demand the block subsetting of the data. It is more general than the MBB, since it 

does not require the stationarity assumption and does not need differencing (in an ARMA 

context).  
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3 THE GARMA MODEL 
 

Let 𝑌 be a stochastic process, i.e. a collection of random variables 𝑌 = {𝑌𝑡(𝜔), 𝑡 ∈  𝒯,

𝜔 ∈  Ω }, defined in the probability space (Ω, ℱ, 𝑃), where Ω is the set of all possible states, ℱ 

is a σ-field of all subsets of Ω, 𝑃 is a probability measure under ℱ and 𝒯 an arbitrary set. We 

have for a fixed 𝑡 ∈  𝒯 and for each fixed value of 𝜔 ∈  Ω that 𝑦𝑡(𝜔) is a realization or path 

of the process. Also, 𝑌𝑡(𝜔) is a random variable for each 𝑡 and a fixed 𝜔 and for simplicity the 

index 𝜔 will be subsumed. 

The former definition of 𝑌 is too general for the GARMA model (Benjamin et al., 2003) 

and some simplifications can be adopted. It is a discrete time process so 𝒯  is a finite or 

enumerable set and is taken as the set of integers ℤ   (𝑡 ∈  ℤ). Additionally, the process can be 

redefined in the filtered probability space, (Ω, ℱ, {ℱ𝑡}𝑡≥0, 𝑃), where {ℱ𝑡}𝑡≥0 is a filtration. Here, 

filtration is defined as an increasing sequence of sub σ-fields on the measurable space (Ω, ℱ), 

that is,  ℱ𝑡 ∈  ℱ and for 𝑡1 > 𝑡2 ⟹ ℱ𝑡1
⊆ ℱ𝑡2

. Leaving mathematical technicalities aside, one 

can think of  ℱ𝑡 as the information set available at time 𝑡 including all the previous information 

until 𝑡. 

In terms of the GARMA model we have that each realization of 𝑌𝑡 , 𝑡 = 1, … , 𝑛, has a 

conditional distribution belonging to the same exponential family. The conditioning is with 

respect to ℱ𝑡−1 , and in this case ℱ𝑡−1 = {𝐱1, … , 𝐱𝑡−1; 𝑦1, … , 𝑦𝑡−1;  𝜇1, … , 𝜇𝑡−1} . Thus, the 

conditional density of 𝑌𝑡|ℱ𝑡−1  is of the form: 

 

 
𝑓𝑌𝑡|ℱ𝑡−1

 (𝑦𝑡|ℱ𝑡−1) = 𝑒𝑥𝑝 {
𝑦𝑡𝜗𝑡 − 𝑎(𝜗𝑡)

φ
+ 𝑏 (𝑦𝑡, φ)} (1)  

 

where 𝑎(∙) and b(∙) are specific functions defining the particular member of exponential family, 

with 𝜗𝑡  as the canonical and φ  as the scale parameters, 𝐱  is a r dimensional vector of 

explanatory variables and μ is the mean vector. From standard GLM results (McCullagh and 

Nelder, 1989) it can be shown that the term 𝜇𝑡 = 𝑎′(𝜗𝑡) = 𝐸𝑌𝑡|ℱ𝑡−1
(𝑦𝑡|ℱ𝑡−1) 

and  𝑉𝑎𝑟𝑌𝑡|ℱ𝑡−1
(𝑦𝑡|ℱ𝑡−1) = φ𝑎′′(𝜗𝑡) , here ′  and ′′  denote the first and second derivatives 

of 𝑎(∙), respectively.  

Moreover, the predictor 𝜂𝑡 is such that 𝜂𝑡 = 𝑔(𝜇𝑡) and 𝑔 is the link function (a one-to-

one monotonic function), in resemblance to the GLM terminology. Parameter 𝜂𝑡 can be 

generally defined but the following flexible and parsimonious submodel is more appropriate 

(than the generally defined one): 
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𝜂𝑡 = 𝐱𝑡
′ 𝛃 + ∑ 𝜙𝑗{𝑔(𝑦𝑡−𝑗) − 𝐱𝑡−𝑗

′  𝛃}

𝑝

𝑗=1

+ ∑ 𝜃𝑗{𝑔(𝑦𝑡−𝑗) − 𝜂𝑡−𝑗}

𝑞

𝑗=1

 (2)  

 

where 𝛃′ = (𝛽1, 𝛽2, … , 𝛽𝑟), is the vector of parameters of the linear predictor 𝐱𝑡
′ 𝛃 of 𝜂𝑡, 𝛟′ =

(𝜙1, 𝜙2, … , 𝜙𝑝)  the vector of autoregressive parameters, 𝛉′ = (𝜃1, 𝜃2, … , 𝜃𝑞)  the vector of 

moving average parameters. Equations (1) and (2) together define the GARMA model. 

In the following two subsections, the Poisson and Gamma GARMA models are defined. 

Note, however, that the GARMA class is not limited to these models and can be applied to any 

member of the exponential family.  

 

 

3.1.1 The POISSON – GARMA model 

 

If 𝑌𝑡|ℱ𝑡−1follows a Poisson distribution with mean parameter 𝜇𝑡 then its p.m.f. is: 

 

𝑓𝑌𝑡|ℱ𝑡−1
 (𝑦𝑡|ℱ𝑡−1) =

𝑒−𝜇𝑡𝜇𝑡
𝑦𝑡

𝑦𝑡!
= 𝑒𝑥𝑝{𝑦𝑡 log(𝜇𝑡) − 𝜇𝑡 − log (𝑦𝑡!)},

𝑦𝑡 = 0,1,2, …. 

(3)  

 

It is evident that 𝑌𝑡|ℱ𝑡−1belongs to the exponential family of distributions and also that 

𝜗𝑡 = log(𝜇𝑡), 𝑎(𝜗𝑡) = 𝑒𝜇𝑡, 𝑏 (𝑦𝑡, φ) = −log (𝑦𝑡!) and φ = 1. The canonical link function in 

this case is log ≡ 𝑙𝑛. Hence, 𝜂𝑡 is such that: 

 

𝜂𝑡 = log(𝜇𝑡) = 𝐱𝑡
′ 𝛃 + ∑ 𝜙𝑗{log(𝑦𝑡−𝑗

∗ ) − 𝐱𝑡−𝑗
′  𝛃}

𝑝

𝑗=1

+ ∑ 𝜃𝑗{log(𝑦𝑡−𝑗
∗ /𝜇𝑡−𝑗)},

𝑞

𝑗=1

 (4)  

 

where 𝑦𝑡−𝑗
∗ = max (𝑦𝑡−𝑗, 𝛼), 0 < 𝛼 < 1. Here 𝛼 is taken as 0.1. As previously, the Poisson-

GARMA model is defined by equations (3) and (4).  
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3.1.2 The GAMMA – GARMA model 

 

Likewise, if 𝑌𝑡|ℱ𝑡−1follows a Gamma distribution with shape parameter δ and scale 

parameter γ (so a Γ(δ, γ) distribution), thus, its p.d.f. is given by: 

 

 
𝑓𝑌𝑡|ℱ𝑡−1

 (𝑦𝑡|ℱ𝑡−1) =
𝑦𝑡

δ−1𝑒−𝑦𝑡 γ⁄

Γ(δ)γδ
. (5)  

 

with 𝐸𝑌𝑡|ℱ𝑡−1
= δγ and  𝑉𝑎𝑟𝑌𝑡|ℱ𝑡−1

= δγ2. However, there is a more useful re-parametrization 

of the Gamma density that makes it better suited to be applied in the GARMA model. Let δ =

1 𝜎2⁄ andγ = 𝜎2𝜇𝑡 , so that 𝐸𝑌𝑡|ℱ𝑡−1
= 𝜇𝑡  ,  𝑉𝑎𝑟𝑌𝑡|ℱ𝑡−1

= 𝜎2𝜇𝑡
2  and the transformed p.d.f. is 

equivalent to: 

 

𝑓𝑌𝑡|ℱ𝑡−1
 (𝑦𝑡|ℱ𝑡−1) = 𝑒𝑥𝑝 {

1

𝜎2
(−

𝑦𝑡

𝜇𝑡

− 𝑙𝑜𝑔(𝜇𝑡)) + [−
𝑙𝑜𝑔(𝜎2)

𝜎2
− 𝑙𝑜𝑔 (Γ (

1

𝜎2
)) + 𝑙𝑜𝑔(𝑦𝑡) (

1

𝜎2
− 1)] }. (6)  

 

Thus, 𝑌𝑡|ℱ𝑡−1 belongs to the exponential family of distributions with  𝜗𝑡 = −
1

𝜇𝑡
, 

𝑎(𝜗𝑡) = 𝑙𝑜𝑔(𝜇𝑡), 𝑏 (𝑦𝑡, φ) = [∙] and φ = 𝜎2. The canonical link function in this case is the 

reciprocal function, though, for simplicity,  𝑔(𝜇𝑡) is taken as log(𝜇𝑡).  Hence, 𝜂𝑡 is the same 

for the Gamma and Poisson model, so that equations (6) and (4) define the Gamma-GARMA 

model, while here 𝑦𝑡−𝑗
∗ = 𝑦𝑡−𝑗. 

 

 

3.1.3 Maximum likelihood estimation of model parameters 

 

In the GARMA model, after observing a sample with 𝐱1, … , 𝐱𝑡; 𝑦1, … , 𝑦𝑡 , one can 

estimate the given model parameters 𝛃′, 𝛟′and 𝛉′through the method of maximum likelihood. 

The likelihood of the model 𝐿(𝛃, 𝛟, 𝛉 ) and the log-likelihood 𝑙(𝛃, 𝛟, 𝛉) = log (𝐿(𝛃, 𝛟, 𝛉)) can 

be defined as: 

 

 
𝐿(𝛃, 𝛟, 𝛉 ) = ∏ 𝑓𝑌𝑡|ℱ𝑡−1

 (𝑦𝑡|ℱ𝑡−1)

𝑛

𝑡=1

   (7)  
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 𝑙(𝛃, 𝛟, 𝛉) = ∑ log 𝑓𝑌𝑡|ℱ𝑡−1

 (𝑦𝑡|ℱ𝑡−1)

𝑛

𝑡=1

, 𝑤ℎ𝑒𝑟𝑒 𝑙𝑜𝑔 = 𝑙𝑛.  (8)  

 

As log is a one-to-one monotonic function the value that maximizes 𝐿(∙) is the same 

that maximizes 𝑙(∙), and for computation simplicity the log-likelihood (LLH) estimates of the 

parameters are computed. The maximum likelihood estimates (MLE) are such that: 𝐿𝐿𝐻 =

𝑙(𝛃, 𝛟, �̂�), where 𝛃, 𝛟, �̂� = argmax
𝛃,𝛟,𝛉

𝑙(𝛃, 𝛟, 𝛉). This task is carried out through a numerical 

optimization routine. 

 

 

3.1.4 Some simulated models 

 

For illustration purpose, in this section, some models were simulated and estimated 

through maximum likelihood. First, consider 1000 simulations of a series of length 1000 of a 

Poisson – GARMA model, with an autoregressive term of value 0.15 (𝜙1 = 0.15) and constant 

intercept equals to 2. Figure 1 depicts the Monte Carlo MLE empirical distribution of the model 

parameters. The mean of 𝜙1 estimates is 0.14, while the true value is 0.15. If we compute an 

empirical 95% symmetrical confidence interval we have that �̂�1 ∈ [0.08, 0.19], a good result, 

as we should expect the true value of the parameter to be included in this interval. For β, the 

simulations show a fairly accurate estimate, where the mean of the simulations is 1.9991, 

contrasted to the true value of 2, which belongs to the 95% empirical confidence interval 

(1.97, 2.02). 
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Figure 1: Poisson - GARMA (1, 0), 𝜙1 = 0.15, 𝐱𝑡
′ 𝛃 = 𝐱𝑡−1

′ 𝛃 ≡ 2, 1000 simulations MLE parameters empirical 

distribution  

 

Second, we shall examine a model with more parameters and check whether this 

additional complexity can be well captured by the estimation process. As in the last example 

take into consideration 1000 simulations of a series of length 1000 of a Poisson – GARMA 

model, with an autoregressive term of value 0.50 (𝜙1 = 0.50), moving average term of 0.1 

(𝜃1 = 0.1) and constant intercept equals to 2. Figure 2 shows the parameters MLE empirical 

distribution. The mean estimate of 𝜙1 is 0.48 with an empirical 95% symmetrical confidence 

interval (0.39, 0.56). Likewise, in the case of  𝜃1, the mean of the Monte Carlo MLE estimates 

is 0.07 with the respective 95% confidence interval (0.02, 0.16). The same reasoning follows 
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for β, with mean value of 2.0001 and interval with inferior and superior limits of 1.94 and 2.05, 

respectively.  

 

 

 

Figure 2: Poisson - GARMA (1, 1), 𝜙1 = 0.50, 𝜃1 = 0.1, 𝐱𝑡
′ 𝛃 = 𝐱𝑡−1

′ 𝛃 ≡ 2, 1000 simulations MLE parameters 

empirical distribution  

 

Third, we consider a similar order Gamma – GARMA model with simulation 

characteristics similar to the last example, the difference being the additional parameter 𝜎2 =

2. This model is exhibited in Figure 3. Again, we see that the parameter estimates behave well, 

in the sense that all true values belong to their empirical 95% confidence interval. When 

contrasted to the previous models, the absolute difference between the mean values and true 

values are higher. This is a family specific phenomena, that is, the Poisson family GARMA 
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models are easier to estimate while the likelihood function of the Gamma is more complex, 

making the numerical optimization problem harder and thus more prone to failure and/or 

numerical instability. Consequently, this family behavior seems to worsen the overall 

estimation results of the Gamma – GARMA models when contrasted to their Poisson 

counterpart.  

 

 

Figure 3: Gamma - GARMA (1, 1), 𝜙1 = 0.50, 𝜃1 = 0.1,  𝜎2 = 2, 𝐱𝑡
′ 𝛃 = 𝐱𝑡−1

′ 𝛃 ≡ 2, 1000 simulations MLE 

parameters empirical distribution  

 

Lastly, in Figure 4, we examine the effect of increasing the coefficient absolute value in 

the first example, adopting 𝜙1 = 0.80. In this case, the mean of 𝜙1 estimates is 0.72, while the 

true value is 0.8. The empirical 95% symmetrical confidence interval is(0.67, 0.76), a poor 
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result, as we should expect that the true value of the parameter to be included in this interval. 

Additionally, the maximum of the distribution is 0.79, a value smaller than the true parameter 

value.  This relative poor performance might be explained due to the high value of the simulated 

model parameter, leading to non-stationarity of the simulated GARMA process. For β, the 

simulations show a fairly accurate estimate, where the mean of the simulations is 2.02, 

contrasted to the true value of 2, with the true value belonging to the 95% empirical confidence 

interval.  

 

 

 

Figure 4: Poisson - GARMA(1,0), 𝜙1 = 0.80, 𝐱𝑡
′ 𝛃 = 𝐱𝑡−1

′ 𝛃 ≡ 2, 1000 simulations MLE parameters empirical 

distribution  
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The last example raises an important issue regarding the adequacy of the maximum 

likelihood estimates in the case of GARMA models when |𝛟| ≅ 1 or |𝛉| ≅ 1. For this reason, 

all subsequent estimated models avoid this problem by restricting the simulated parameter to 

values smaller than or equal to 0.5 in absolute value.  

 

 

3.1.5 Additional Properties 

 

In this section, some properties regarding the stationary conditions for the marginal 

mean and variance and the stationary mean and variance of 𝑌𝑡 are supplied for the case where 

the link function 𝑔  is the identity function. These properties are provided in the work of 

Benjamin et al. (2003). The marginal mean of 𝑌𝑡 is given by: 

 

 𝐸𝑌𝑡
(𝑦𝑡) = 𝐱𝑡

′ 𝛃 (9)  

 

conditional on the invertibility of  Φ(𝐵) = 1 − 𝜙1𝐵 − ⋯ − 𝜙𝑝𝐵𝑝. Thus, the marginal mean is 

stationary provided also that  𝐱𝑡
′ 𝛃 = 𝛽0 for all 𝑡. The marginal variance is: 

 

 𝑉𝑎𝑟𝑌𝑡
(𝑦𝑡) = 𝜑𝐸𝑌𝑡

[ψ2(𝐵)𝜈(𝜇𝑡)] (10)  

 

where ψ2(𝐵) = 1 + 𝜓1
2𝐵 + 𝜓2

2𝐵2 + ⋯ and ψ(𝐵) = Φ(𝐵)−1Θ(𝐵) = 1 +  𝜓1𝐵 + 𝜓1𝐵2 + ⋯, 

under the assumption that Φ(𝐵) is invertible and Θ(𝐵) = 1 + 𝜃1𝐵 + ⋯ + 𝜃𝑞𝐵𝑞.   

In the specific case of the Poisson – GARMA model we have that: 

 

 𝑉𝑎𝑟𝑌𝑡
(𝑦𝑡) = ψ2(1)𝛽0 (11)  

 

where ψ2(1) = 1 + ∑ 𝜓𝑗
2∞

𝑗=1 .  

Whilst, for the Gamma – GARMA model: 

 

 
𝑉𝑎𝑟𝑌𝑡

(𝑦𝑡) = 𝜑 ψ2(1) [1 + φ + φψ2(1)]
−1

𝛽0
2
 (12)  

 

provided that [1 + φ + φψ2(1)] is invertible. All the proofs for the previously stated results 

can be found at Benjamin et al. (2003). 
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Despite being readily available, stationarity results for identity link function are not 

general enough. As pointed out by Woodard et al. (2011), the latter case excludes many popular 

count-valued models, thus, a more general approach must be followed.  Additionally, Woodard 

et al. (2011) provide strict stationarity conditions for GARMA models in the absence of 

covariates (the term 𝐱𝑡
′ 𝛃). 

 

 

4 MOVING BLOCK BOOTSTRAP IN GARMA MODELS 
 

In the specific case of the GARMA model, Equation (2) shed some light into what is 

needed to construct a Model-Based bootstrap scheme. The only possible way to do it is when 

the moving average term is present, because only on it there is a residual term being formed. 

Thus, this restriction significantly reduces the range of applicability of the model-based 

bootstrap to the GARMA model, as pure autoregressive models are no longer feasible (if the 

purpose is to use this bootstrap method).  

In contrast to the Model–Based scheme, the Moving Block Bootstrap (MBB) method 

for stationary processes builds on the idea that while successive observations are correlated, 

observations separated far enough in time will be approximately uncorrelated and can be treated 

as exchangeable (Chernick, 2008 p. 104).  

For instance, consider the sample  𝐲 = 𝑦1, … , 𝑦𝑛 , a series of length 𝑛  and suppose 

that 𝑛 = 𝑏𝐿, where 𝑏 denotes the number of overlapping blocks and 𝐿 the respective block 

length and both are positive integers, that is, 𝑏 ∈ ℤ+and 𝐿 ∈ ℤ+. The MBB (Kunsch, 1989) 

consists of sampling 𝑏  blocks with replacement from the 𝑛 − 𝐿 + 1 blocks to generate the 

sequence 𝐲∗ = (𝑦1
∗, 𝑦2

∗, … , 𝑦𝑛
∗) of bootstrap resample, this process being repeated 𝐵 times.  

 Some care must be taken with the MBB as observed by Chernick: 

 

Some of the drawbacks of block methods in general are as follows: (1) Resampled 

blocks do not quite mimic the behavior of the time series, and (2) they have a tendency 

to weaken the dependency in the series. (Chernick, 2008 p. 105) 

 

Those downsides are directly related to the selection of the optimal block length. A 

higher value of 𝐿  is associated with a reduction in the bias of the bootstrap parameter 

estimation, when contrasted to a smaller value, as the replicates will more closely resemble the 

original series. So, the stronger the dependencies in 𝑌, the higher 𝐿 should be. Conversely, a 
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smaller value of 𝐿 translates into a variance reduction in the estimation as more replicates are 

available. (Carlstein, 1986 p. 1176) 

This Section is divided in two Sub-Sections, the first approaches the optimal block 

length issue and the second the bootstrap bias correction and confidence interval estimation 

process. 

 

  

4.1 On the optimal block length choice 

 

In this section, some remarks concerning the optimal block length choice in the context 

of MBB and GARMA models are made. Here, optimality is assessed in terms of closeness of 

the MBB resamples mean to the parameters true values. That is, the optimal length (𝐿𝑂𝑝𝑡𝑖𝑚)  

for a given parameter 𝜁 is defined as: 

 

 𝐿𝑂𝑝𝑡𝑖𝑚(𝜁) = min
𝐿

𝑎𝑏𝑠 (𝜁 −
1

𝐵
∑ 𝜁  𝑀𝐿𝐸

∗;𝐿; (𝑖)𝐵
𝑖=1 ) , 𝐿 ∈ 𝕃,  (13)  

 

where 𝕃 is the set of block lengths on which optimality is being evaluated. Here, 𝑎𝑏𝑠 is the 

absolute value function and 𝜁  represents any estimated parameter of a Poisson or Gamma 

GARMA model. It is worth noting that the optimal block length for a model is parameter 

specific, that is, the optimal value might be different for each parameter in the model. One could 

also derive a global measure of optimality (𝐿𝐺.
𝑂𝑝𝑡𝑖𝑚

) by simply computing the mean absolute 

deviation for all parameters and all 𝐿 ∈ 𝕃 and choose the one with the smallest average, that is 

 

 𝐿𝐺.
𝑂𝑝𝑡𝑖𝑚(𝜻) = min

𝐿
𝑎𝑏𝑠 ∑ (𝜁𝑘 −

1

𝐵
∑ 𝜁  𝑘,𝑀𝐿𝐸

∗;𝐿; (𝑖)𝐵
𝑖=1 )𝑘∈ 𝒦 , 𝐿 ∈ 𝕃,   (14)  

 

where 𝜻 is the vector of model parameters and 𝒦  is the set of all parameter values in the 

specified model. 𝐿𝐺.
𝑂𝑝𝑡𝑖𝑚

 is a reasonable metric if each 𝐿𝑂𝑝𝑡𝑖𝑚 in 𝜻 is close to one another, in 

other words, 𝐿𝐺.
𝑂𝑝𝑡𝑖𝑚

 is good if the variance of the optimal block lengths for each parameter in 

the model is small and around the same value.   

In the case of a small series, with length 30 for instance, 𝕃 can be taken as the set of the 

integers from one to thirty, where optimality for a specific model parameter can be precisely 

computed (if we are working with a simulated series or know ex-ante the true data generating 
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process and thus the parameters true values). On the other hand, in a large series, say with 𝑛 =

1000, computing all possible block lengths might be a cumbersome task. It is feasible, though 

it might take too much time. In this case, a smaller number of possible block lengths might be 

evaluated and optimality assessed heuristically.  If 𝜁  𝑘,𝑀𝐿𝐸
∗;𝐿; (𝑖)

 is a monotone function of 𝐿, an 

equally spaced grid of possible values of  𝐿 ∈ 𝕃 might give a first global measure of optimality 

and in a second step the grid might be evaluated in the region of better predictions in the first 

step, thus narrowing the search for  𝐿𝑂𝑝𝑡𝑖𝑚. 

Some of the approaches proposed in the literature employ a squared loss function, and 

the optimal search is measured with respect to 𝜁𝑀𝐿𝐸 . In those instances, the heuristic provided 

in the previous paragraph might be helpful.  

As previously stated, optimality can be locally or globally defined, which might lead to 

non-uniqueness in the chosen optimal block length. Additionally, the optimal block length 

might not be the same for bias and distribution function estimation. This, in turn, makes our 

task more difficult, as parameter bias and confidence interval estimation might require different 

optimal block lengths. For conciseness, optimality is only evaluated with regard to bias 

estimation, but the reasoning is easily extended to the confidence interval case.   

Hall, Horowitz and Jing (1995) proposed some rules for identifying the optimal block 

length in the bootstrap with dependent data. They point out that the optimal block length 

depends on the context, being of order equal to 𝑛1/3 for bias and variance estimation, 𝑛1/4 in 

the case of one-sided distribution function and 𝑛1/5  for the two-sided case. These results 

following a squared loss function. They also propose an empirical method for choosing the 

block length. This procedure is reviewed in Lahiri (2003) and explained below. 

Let �̂�𝑛 denote the estimate for the optimal block size for the entire series (given the 

statistic 𝑇(𝐲) of interest) and �̂�𝑚, 𝑚 < 𝑛, the optimal value for a series of smaller length than 

the original one.  Then, �̂�𝑛 = (𝑛 𝑚⁄ )1/𝑘  �̂�𝑚, 𝑓𝑜𝑟 𝑘 = 3, 4, 5, where 𝑘 is determined by the 

context (bias/ variance, one-sided or two-sided distribution functions). Denote by 𝕊 the set of 

all subseries of length 𝑚 from 𝐲. Apply the MBB to each element of 𝕊, with 𝐿′ ∈ ℤ+
𝑚, where 𝐿′ 

is the block length value and ℤ+
𝑚 is the set of all positive integers until 𝑚 (we might take all 

values in ℤ+
𝑚 or a smaller subset, the choice might rely on the computational burden), leading 

to �̂�𝐿′
𝕊  (�̂�𝐿′

𝕊  is the value of the statistic of interest computed with all the elements of 𝕊(𝑚)). 

Compute �̂�𝐿′
𝑛 (the statistic evaluated at the entire data set) and then the estimate of the mean 
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squared error(𝑀𝑆�̂�) given by: 𝑀𝑆�̂� = ∑ (�̂�𝐿′
𝑛 − �̂�𝐿′

𝕊′
 )

2 1

𝑛−𝑚+1𝕊′∈ 𝕊 . Take �̂�𝑚 = argmin
𝐿′   

(𝑀𝑆�̂�), 

with 𝐿′ ∈ ℤ+
𝑚 and obtain �̂�𝑛. This process can be (and in this monograph is) iterated.  

Building on the work of Hall, Horowitz and Jing (1995), Lahiri, Furukawa and Lee 

(2007) developed a nonparametric plug-in rule (NPPI), based on the Jackknife-After-Bootstrap 

(Lahiri, 2002), which is consistent not only for bias, variance and distribution estimation but 

also for bootstrap quantile estimation. In their approach, the authors employ the Jackknife-

After-Bootstrap for estimating the variance and an analytical formula for the bias of the 

parameter in focus. Those estimates are used as inputs in the first-order expansion of the optimal 

block length expression. The details of this method would require a different approach than the 

one followed here and for this reason the reader can refer to Lahiri, Furukawa and Lee (2007) 

or Lahiri (2003). The NPPI is given by:  

 

 

�̂�𝐍𝐏𝐏𝐈 = (
2�̂�2

2

𝑟�̂�1

)

1
𝑟+2

𝑛
1

𝑟+2 (15)  

 

 �̂�1 = (𝑛𝐿∗
−𝑟)𝑛2𝑎VAR̂ (16)  

 

 �̂�2 = (𝐿∗)𝑛𝑎BIAŜ (17)  

 

where 𝑟 = 1 𝑎𝑛𝑑 𝑎 = 0 for bias and variance estimation, 𝑟 = 2 𝑎𝑛𝑑 𝑎 = 1/2 in the case of 

distribution function. BIAŜ and VAR̂ are the parameter bias and variance consistent (as defined 

in Lahiri, Furukawa and Lee (2007)) estimates. 𝐿∗ is a initial block size. For a more 

comprehensive explanation in the estimation of VAR̂ the reader might refer to the original paper 

of Lahiri (2002). 

In this monograph, the empirical method for block choice of Hall, Horowitz and Jing 

(1995), and nonparametric plug-in rule of Lahiri, Furukawa and Lee (2007) are implemented 

and contrasted.  

 

 

4.1.1 Algorithms for MBB applied to GARMA models 

 

As usual, consider the random variable 𝑌 = {𝑌𝑡(𝜔), 𝑡 ∈  𝒯, 𝜔 ∈  Ω }, defined in the 

filtered probability space (Ω, ℱ, {ℱ𝑡}𝑡≥0, 𝑃), where all variables are as previously defined in 
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section 3.  Let 𝑌𝑡, 𝑡 = 1, … , 𝑛  denote the realization of the GARMA process defined in the 

filtered probability space where its conditional distribution 𝑓𝑌𝑡|ℱ𝑡−1
 belongs to the same member 

of the exponential family with linear predictor as a function of its mean (𝜂𝑡 = 𝑔(𝜇𝑡)), as given 

by equation 2.  

Once more, consider 𝐲 = 𝑦1, … , 𝑦𝑛 as a sample from this process. Further, suppose that 

 𝑛 = 𝑏𝐿, where 𝑏 denotes the number of blocks and 𝐿 the respective block lengths. Take B as 

the number of desired bootstrap replicates to perform the Monte Carlo approximation method.  

Algorithm 1 describes the steps required to perform the Moving Block Bootstrap for the 

GARMA process 𝑌𝑡. It can be broken down into six main steps from the creation of the 𝑏 blocks 

to the application of the statistic of interest.  

 

Algorithm 1: GARMA model MBB  

1. Sample 𝑏 elements, with replacement, from the collection ℬ, where ℬ = {𝑖 ∈  ℬ:  𝑖 ∈

ℕ, i ≤   𝑛 − 𝐿 + 1} , to form the set 𝒜 = {𝑗1, … , 𝑗𝑏}; 

2.  For k in 𝒜:  

Compute the blocks of length 𝐿 starting at the index k;  

3. Concatenate the elements obtained in step 2, keeping their indexing order 𝑗𝑖′𝑠, to form 

the series  𝐲∗ = y1
∗, … , y𝑛

∗ . This is the first moving block bootstrap replicate. 

4. Compute the maximum likelihood estimate of the GARMA model parameters evaluated 

at  𝐲∗; 

5. Repeat 1-4 B times; 

6. Compute the desired statistic, as the estimate of the parameter bias, standard errors, 

confidence intervals, etc. 

 

In light of the high reliance of the MBB procedure into the correct selection of the block 

length 𝐿,  a brief adaptation of the algorithm of Hall, Horowitz and Jing (1995) is proposed in 

order to make it faster and applicable on a multi-parameter setting, resulting in Algorithm 2. 

Speed is relevant when 𝑛 is large so that we have 𝑚 ≫ 3 having to repeat the MBB at least 𝑚 

times. To address this issue a sampling scheme is designed to restrict the number of MBB runs 

to 3 on each iteration while trying to cleverly search the parameter space (the possible values 

of 𝐿 given  ℤ+
𝑚). Another drawback of the Hall, Horowitz and Jing (1995) rule is that it is 

applied to a single parameter, and all the mean squared error estimates are minimized with 
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respect to one quantity. To overcome this problem a simple solution of a mean optimal block 

length estimate is adopted.  

 

Algorithm 2: modified Hall, Horowitz and Jing (1995), for 𝐿′ ∈ ℤ+
𝑚, 𝑚 > 3: 

1. Choose a value of 𝑚 < 𝑛, let �̂�𝑚 be the estimate of the optimal block length for the 

subseries of length 𝑚. For each element in 𝕊 apply the MBB with the value of 𝐿′ as 

defined in the next step. 

2. Take 𝐿′ as: 𝐿′ = {a, b, c}, where a is a sample from the quantile 1/3 of ℤ+
𝑚, b from 1/3-

2/3 and c 2/3-3/3. 

3. Obtain the value �̂�𝐿′
𝕊  of the statistic of interest and compute �̂�𝐿′

𝑛 and 𝑀𝑆𝐸 as defined in 

Section 4.1. 

4. For the step �̂�𝑚 = �̂�𝑚,𝑖 = argmin
𝑖 ∈ 𝐿′   

(𝑀𝑆�̂�),  choose �̂�𝑚 = ∑ �̂�𝑚,𝑘
𝑢
𝑘=1 /𝑢 , where u is the 

number of parameters in the model (this is useful in a multi-parameter setting, as for 

each parameter we have a specific �̂�𝑚 value). 

5.  Repeat steps 1-4 𝑗 times for 𝑗 iterations.  

 

If the Hall, Horowitz and Jing (1995) rules and its modified version Algorithm 2 can 

generate accurate estimates of 𝐿𝑂𝑝𝑡𝑖𝑚 for the MBB case, we can safely combine them with 

Algorithm 1 and remove arbitrary choices of  𝐿 in the MBB estimation process.  

  

 

4.2 Bootstrap bias correction and confidence interval estimation 

 

In this section, the parameter bias and confidence interval estimates are defined. Each 

topic is approached in its designated subsection for the sake of clarity.   

 

 

4.2.1 Parameter bias and bias corrected estimates 

 

Let 𝐲∗ = (𝑦1
∗, 𝑦2

∗, … , 𝑦𝑛
∗) be a bootstrapped sample from the original sample of 𝑌𝑡. If we 

have 𝐵 of those samples, and we wish to estimate for example the bias of the parameter 𝜁 (any 

of the parameters in a GARMA model), we should simply compute its value for 𝑖 = 1, … , 𝐵 and 

subtract the value of  𝜁 𝑀𝐿𝐸  from the mean of the bootstrap estimates, that is: 
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𝑏𝑖𝑎𝑠(𝜁𝑀𝐿𝐸) =

1

𝐵
∑ 𝜁𝑀𝐿𝐸

∗; (𝑖)
𝐵

𝑖=1
− 𝜁𝑀𝐿𝐸  (18)  

 

where 𝜁𝑀𝐿𝐸  denotes the MLE estimate of 𝜁  in the original sample and 𝜁  𝑀𝐿𝐸
∗; (𝑖)

 in the i-th 

bootstrapped sample. Here, 𝑏𝑖𝑎𝑠(𝜁𝑀𝐿𝐸) is the bootstrap bias estimate of the MLE estimate of 

𝜁. This procedure is the same for all the parameters 𝛃, 𝛟, 𝛉 in the respective GARMA model. 

Thus, we have that 
1

𝐵
∑ 𝜁 𝑀𝐿𝐸

∗; (𝑖)𝐵
𝑖=1  is the bootstrap estimate of 𝜁 and we could also have 

the bias corrected estimate of the parameter 𝜁, i.e. 𝜁𝐵𝑂𝑂𝑇
𝑏𝑖𝑎𝑠 𝑐., that would be:  

 

 𝜁𝐵𝑂𝑂𝑇
𝑏𝑖𝑎𝑠 𝑐.. = 𝜁𝑀𝐿𝐸 − 𝑏𝑖𝑎𝑠(𝜁𝑀𝐿𝐸) = 2(𝜁𝑀𝐿𝐸) −

1

𝐵
∑ 𝜁 𝑀𝐿𝐸

∗; (𝑖)𝐵
𝑖=1 . (19)  

 

 

4.2.2 Confidence Intervals 

 

With regards to confidence interval estimation for a given parameter (𝜁 for instance), 

besides the standard Gaussian asymptotic one, there are some useful bootstrap confidence 

intervals, such as the percentile method, the bias corrected percentile method, the basic 

method, among others.   

Let ℋ̂be the cumulative distribution function of the parametric bootstrap distribution of 

𝜁∗, so that 

 ℋ̂(𝑠) = 𝑃𝑟𝑜𝑏∗{𝜁∗ ≤ 𝑠}. (20)  

 

The percentile method:  

 This is the simplest method to construct a bootstrapped confidence interval for a given 

parameter and as the Monte Carlo approximation is employed, ℋ̂(𝑠) is approximated by: 

 

 ℋ̂(𝑠) ≅ #{𝜁∗ ≤ 𝑠}/𝐵, (21)  

 

where B  denotes the number of bootstrap resamples. 

Taking 𝜁∗ ∈ [ℋ̂−1(𝜏), ℋ̂−1(1 − 𝜏)] gives an approximate  1 − 2𝜏 confidence interval 

for  𝜁 , being this the percentile method confidence interval.  

Chernick and LaBudde (2011 p. 78) provide some remarks regarding this method : 
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But asymptotically, the bootstrap samples behave more and more like the subsamples, 

and the percentile interval estimate does approach the 90% level. Unfortunately, in 

small to moderate samples for asymmetric or heavy - tailed distributions, the 

percentile method is not very good and so modifications are required to improve it.  

 

The bias corrected percentile method:  

In the bias corrected case, take  𝜁∗ ∈ [ℋ̂−1(Φ(2𝑧0 − 𝑧𝜏)), ℋ̂−1(Φ(2𝑧0 + 𝑧𝜏))], where 

𝑧0 ≡ Φ−1 (ℋ̂(𝜁∗)) and 𝑧𝜏 = Φ−1(𝜏). Similarly, ℋ̂(𝑠) is assessed by (18).  More specifically, 

through the Monte Carlo approximation to the bootstrap distribution, what is performed is the 

selection of the 50th percentile of the bootstrap distribution, namely �̂� 50
∗ , and the bias correction 

is taken as 𝑏𝑖𝑎𝑠 𝑐. = 𝜁∗ −  �̂� 50
∗  (Chernick, 2008 p. 60).  

 

The basic method:  

The basic bootstrap method is similar to the percentile method, the difference between 

then being that in the latter the hypothesis is that the distribution of 𝜁∗  approximates the 

sampling distribution of 𝜁 , while in the former the distribution of 𝜁∗ − 𝜁𝑀𝐿𝐸 ≡ 𝜁𝑏𝑎𝑠𝑖𝑐 

approximates the true sampling distribution of 𝜁𝑀𝐿𝐸 − 𝜁. This method is expected to perform 

better than the percentile when the distribution symmetry condition is not satisfied. The 

confidence interval construction is analogous to the percentile with the replacement of 𝜁∗by 

𝜁𝑏𝑎𝑠𝑖𝑐. 

 

Efron and Tibshirani (1986, p. 68) provided a useful table specifying the conditions for 

each of the previously stated methods to be accurate. For further information regarding those 

methods, the reader can refer to Efron (1980), Hall (1992), Chernick (2008) and DiCiccio and 

Efron (1996), just to name a few. 

Even though the Gaussian method does not belong to the class of bootstrap confidence 

intervals we briefly describe it for completeness, as it will be our benchmark for comparison. 

 

The Gaussian method:  

The Normal case is straightforward and a confidence interval for  𝜁∗ is  𝜁∗ ∈

[𝜁∗ − �̂�Φ−1(𝜏), 𝜁∗ +  𝜎 ̂Φ−1(1 − 𝜏)] , where Φ−1(𝜏)  denotes the inverse cumulative 

distribution function of the Gaussian distribution at 𝜏 (for a two-sided 95% confidence interval, 

with 𝜏=2.5% , Φ−1(𝜏) = −1.96) and �̂� is the MLE estimate of the standard deviation of 𝜁. 
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The reader acquainted with the theory of bootstrap confidence interval estimation might 

also acknowledge the use of the bias corrected and acceleration, the bootstrap-t and the ABC 

(approximate bootstrap confidence interval, which is an analytical version of the bias corrected 

and acceleration method) intervals. The first requires the estimation of the acceleration 

parameter, which amounts to evaluate the skewness of the score function and for this reason is 

not employed. The second requires an estimate of the standard deviation of the parameter of 

interest in each bootstrap replication, which could be carried out through the delta method or a 

double bootstrap scheme (increasing the computational cost). The third relies on an analytical 

approximation as opposed to the Monte Carlo approximation. Therefore, the Gaussian, the 

basic, the percentile and the bias corrected percentile methods are chosen given their easiness 

of computation and widespread usage.  

Usually, for parameter estimates 𝐵 =100 works fine, as there is little improvement past 

it, however, for bootstrap confidence interval, a minimal value of 𝐵 =1000 is required (Efron 

and Tibshirani, 1986, p. 72). 

 

 

5 SIMULATION RESULTS 
 

After a previous examination of several initial GARMA models (half from the Poisson 

and the other half from the Gamma) the final simulation and results were constrained to the 

scenarios exhibited in  

 

 

Table 1. As all the proposed models are at most of order one, the respective subscript is 

omitted (for example, 𝜃1 is referred simply as 𝜃). This choice of order is made regarding the 

scope of this work, trying to keep the model structure simpler and easier to interpret. 

Nevertheless, models with higher order are important and further research is of paramount 

importance to shed more light into their behavior. Moreover, the initial mean value to generate 

all models was set to 𝜇𝑖𝑛𝑖𝑡 = 10 and in the Poisson case the offset parameter to 𝛼 = 0.1 . 

 

 

Table 1: Models and Parameters 

     Parameters 

Model Family   𝜙 θ β σ 

1 Poisson   0.15 0.00 2  
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2 Poisson   0.50 0.00 2  

3 Poisson   0.00 0.50 2  

4 Poisson   0.00 0.15 2  

5 Poisson   0.50 0.10 2  

6 Gamma   0.15 0.00 2 1.41 

7 Gamma   0.50 0.00 2 1.41 

8 Gamma   0.00 0.50 2 1.41 

9 Gamma   0.00 0.15 2 1.41 

10 Gamma   0.50 0.10 2 1.41 

 

 

As formerly anticipated, this study is concerned with evaluating the performance of the 

MBB, through a Monte Carlo study, applied to GARMA models with respect to bias and 

confidence interval estimation. In addition, for the models with a moving average term there 

was an attempt to implement the Model-Based bootstrap, although, due to the restrict 

applicability of the methodology and its poor performance no results will be displayed.  

Here, a heuristic approach is followed in the selection of the MBB block length, where 

three different values are evaluated for each simulated series length (1000 and 30). 

In the case of parameter bias estimation, a graphical evaluation is done, that is, the 

empirical density (Histogram) of the estimates obtained in the MBB is contrasted to the ones 

with the bias correction. In this fashion we wish to access whether their empirical distributions 

look alike and if the introduction of the bias correction term improves the performance of the 

estimates.  

For confidence intervals, the empirical coverage rate of the bootstrap and asymptotic 

intervals are compared considering a nominal level of 95%, this significance level is chosen 

regarding its widespread usage in the literature. We understand that the bootstrap performance 

might be related to the chosen significance level and consider this a fruitful field for future 

research. In the simulation study a total of 1000 Monte Carlo repetitions and 1000 bootstrap 

replications will be performed. All the codes are built in R and are presented in Appendix III: 

R CODE. 

As the discussion of all the scenarios described in Table 1 would be a little cumbersome, 

only the results of some models are presented here. But the performance for all models can be 

found at the Appendix I: Tables and Appendix II: Figures. 

We will take Model 1 as example. Figure 5 presents the results for n=1000. There are 

three plots in the same figure and their interpretation is the same, the difference is their block 

length, being the first for the length of 20, the second 50 and the last for 100. For instance, 
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consider the second graph in this figure; the red area depicts the histogram of the density of the 

original 1000 MLE estimates for the parameter 𝜙 in Model 1, while the blue area shows the 

density of the respective bias corrected estimates. In this case there is almost a complete 

overlapping between then, meaning that the distributions are approximately the same. This 

distinction is made clear because in some cases provided in the Appendix there is no 

overlapping at all. For this reason, three vertical lines are added to the plot in order to assist the 

visual diagnosis. The black line represents the parameter true value (on which the estimates 

distributions are expected to be centered), and the red and blue the respective original and bias 

corrected mean MLE parameter estimates. In the case in analysis, increasing the block length 

improves the point estimates of 𝜙, but does not affect the estimates of β. Besides, the bias 

corrected estimates present the same performance as the case without the correction. 
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Figure 5: Model 1 – �̂� original and bias corrected empirical distribution for 1000 simulations, series of length 1000 

 

Small sample properties of the estimates are also evaluated, with a Monte Carlo 

simulation performed for a series of length 30 (see Figure 6). Results for the smaller series are 

worse than the larger one, as expected, with both original and bias corrected empirical 

distribution showing a larger variability. Moreover, we see that the mean bias corrected 

estimates are closer (in Euclidian distance) to the true value of 𝜙 compared to their counterpart 

without the correction, and it improves as the block length increases.  

An example with a larger value of the parameter is presented in Figure 7 for Model 3. 

We have perceived that the results are worse when we increase the parameter values, and this 

is probably due to the fact that the MBB was built for stationary series. Thus, a slight departure 

from this assumption can imply in estimates farther from the real values. Nevertheless, there 
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are some cases when the bias correction can improve the results, as shows the graphs in Figure 

7. We see that the bias correction brings the estimates of θ closer to the real one when we 

decrease the block length. 

 

Figure 6: Model 1 - �̂� original and bias corrected empirical distribution for 1000 simulations, series of length 30 

 

In general, increasing the block length improves the performance of the estimates, 

except for MA models in Poisson GARMA. 

In spite of the superiority of the bias corrected parameter estimate detected in Model 3, 

in some models this might not be the case. For example, in Model 5, for 𝜙, the original estimates 

are better than the corrected ones. Likewise, in Model 9 for 𝛽, no clear distinction can be made 

between them (see Figure 23 and Figure 27 in the Appendix II: Figures).  
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Figure 7: Model 3 – 𝜃 original and bias corrected empirical distribution for 1000 simulations, series of length 30 

 

With respect to coverage rates, some selected models are analyzed and a classification 

is proposed to simplify the exposition and understanding, but the tables with the data for all the 

models can be found at Table 5 to 8 at the Appendix I: Tables. 
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Table 2: Bootstrapped confidence intervals coverage, 1000 sim., 1000 boot. resamples, series of length 1000 

   Model 3: Poisson-GARMA (0,1) 

   β=2; θ=0,5 

length parameter norm bias c. perc. basic 

20 
β 93.7% 93.3% 93.9% * 93.2% 

θ 79.6% 93.3% * 30.1% 92.8% * 

       

50 
β 93.7% 92.7% 93.3% 92.9% 

θ 79.6% 85.7% * 72.0% 86.3% * 

       

100 
β 93.7% 91.2% 92.6% 91.7% 

θ 79.6% 75.6% 79.1% 75.8% 
Legend: fields marked with * are used to denote a coverage rate higher (in absolute difference to the 95% target) 

than the respective asymptotic normal  

 

 

Table 2, displays the coverage rate for the confidence intervals of 1000 Monte Carlo 

simulations from a Poisson-GARMA (0,1) model, with 𝛽 = 2 and 𝜃 = 0.5. The column labels 

have the following meaning: length denotes de block length from the moving block bootstrap; 

norm is the Gaussian confidence interval and it reads normal confidence interval without bias 

correction; bias.c indicates the normal confidence interval with the bias correction term; perc. 

stands for the percentile confidence interval and basic designates the basic confidence interval. 

All previous intervals are as defined in Section 4.2.. 

For this model, the asymptotic interval had an erratic behavior, as displayed in Table 2. 

In fact, we see that the asymptotic interval fails for the parameter 𝜃, with a 79.6% coverage 

rate, indeed a poor performance. On the other hand, the bias corrected normal interval and the 

percentile method do a good job for some block lengths, where the coverage rate is closer to 

95%. Moreover, for some values of block length the percentile method had a better performance 

regarding 𝛽.  

However, the results from Model 3 do not tell the whole picture. In some instances, the 

MBB failed at all for some parameters and for others it worked better for a specific block length. 

For models 2, 6 and 7 there is a complete failure, that is, no single block length and confidence 

interval had a higher coverage rate than the asymptotic one. The outcome for models 1, 4, 5, 8, 

9 and 10 are analogous to the case of 𝛽 in model three. That is the case because there is no 

failure in the asymptotic interval; it only has a poorer performance than the others confidence 

intervals in terms of coverage rates do. 
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It is worth mentioning that this is a partial failure, as for models with coefficients of 

0.15 (models: 1, 4, 6 and 9) their performance is superior to the one’s with 0.5 (models: 2, 

3,5,7,8 and 10). Actually, their coverage rates are above 90% (except one case in model 9, 

89.5%) for all block lengths and confidence intervals and for specific combinations, this value 

gets arbitrarily closer to the target of 95%. Thus, this is a strong evidence in favor of the 

hypothesis of using the MBB for parameter bias and confidence interval estimation. The poor 

performance of the other models was already expected, as a value of 𝜙 or 𝜃 of 0.5 (closer to 1) 

is usually associated with non-stationarity and non-invertibility of the series. However, even in 

the latter cases, we do observe some models where there is a combination of block length and 

confidence interval that leads to values close to the 95% threshold (for instance, consider model 

5 with block length of 50 for the percentile ci).  

Additionally, the relative better performance of the MBB confidence interval estimation 

over the asymptotic one is associated with the presence of a moving average term in the model. 

The only pure autoregressive model that had higher coverage rates than the Gaussian was model 

1, though, the asymptotic interval clearly is better, as it is closer to the desired 95% coverage 

rate for a majority of block lengths. Pure moving average model 3 and 8 and the ARMA models 

5 and 10 do exhibit higher coverage rates than the reference, whereas in some instances the 

asymptotic one is favored.  

 

 
Table 3: Bootstrapped confidence intervals coverage, 1000 sim., 1000 boot. resamples, series of length 30 

   Model 3: Poisson-GARMA (0,1) 

   β=2; θ=0,5 

length parameter norm bias.c perc. basic 

4 
β 85.1% 83.9% 89.1% * 85.3% * 

θ 11.4% 48.5% * 6,0% 54.5% * 

       

7 
β 85.1% 81.6% 86% * 82.9% 

θ 11.4% 40.9% * 12.4% * 47.7% * 

       

10 
β 85.1% 76.9% 82.4% 77,0% 

θ 11.4% 36.6% * 14.6% * 42.1% * 
Legend: fields marked with * are used to denote a coverage rate higher (in absolute difference to the 95% target) 

than the respective asymptotic normal  

 

 

This behavior is observable in small samples. Table 7 and Table 8 at the Appendix I: 

Tables exhibit the coverage rate for the same models with a series of length 30 and block length 

of 4,7 and 10. Similarly, model 3 seems to fail for the asymptotic case and the bootstrapped 

results can improve the estimation of the parameter 𝛽, as we can see in Table 3. However, for 
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the parameter 𝜃  the bootstrapped confidence intervals show little improvement over the 

Gaussian, with low coverage rates. In general, for models with a moving average term, there 

might be a benefit from using the bootstrap ci for some models and parameters. 

Notwithstanding, for other models (e.g. model 1) the asymptotic ci coverage rate is closer to 

the expected and superior to the bootstrapped ones. In contrast to the large sample case, in small 

samples, models 4, 6 and 9 do exhibit a combination of block length and confidence intervals 

that are superior to the Gaussian counterpart. 

Generally, the results support the thesis that the moving block bootstrap, with a given 

block length, can improve the results for confidence interval estimation, when contrasted to the 

Gaussian asymptotic ones, in the specific case of failure of the asymptotic in the simulated 

GARMA models. In small samples, the benefit from using block-resampling methods is superior 

to the asymptotic Gaussian, as an increased number of models display higher coverage rates 

than the reference.  Again, models with parameters with values closer to unit do exhibit 

coverage rates inferior to the ones with lower values (0.15 for instance), reinforcing that non-

stationarity and non-invertibility is one of the main concerns when dealing with bootstrap 

procedures in GARMA models. Nevertheless, care must be taken in choosing the appropriate 

block length ensuring the desired results. Perhaps a plug-in estimate of it might lead to a less 

heuristic and empirical work and even better results. 

The general guideline regarding confidence interval, their coverage rates and GARMA 

models can be divided in two categories: large and small samples. In the case of a large time 

series (e.g. n=1000) the reader should favor the asymptotic approximate confidence interval. 

On the other hand, for small time series (e.g. n=30) the reader is advised against the usage of 

the basic confidence interval and should focus on using the percentile or bias corrected 

percentile ci’s. 

 

 

5.1 Optimal block length 

 

In this section, the optimal block length is evaluated and, as the examples provided 

bellow show, 𝐿𝐺.
𝑂𝑝𝑡𝑖𝑚

 might not be a plausible measure. First, optimality for the model with 𝑛 =

30 is assessed, with 100 replications for each block length from 1 to 20, and a summary of the 

𝐿𝑂𝑝𝑡𝑖𝑚 values for all model parameters is presented in Table 4. The results support the 

hypothesis that  𝐿𝐺.
𝑂𝑝𝑡𝑖𝑚

 is not a good measure, as each parameter optimal values differ, for 

instance, consider model 2, where 𝐿𝑂𝑝𝑡𝑖𝑚(𝛽) = 10 and 𝐿𝑂𝑝𝑡𝑖𝑚(𝜙) = 15.  
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Another interesting perspective can be seen in Figure 8 where the boxplots for 100 MBB 

simulations of Model 2 for every block length are computed, alongside with the mean values 

(blue dots) and optimal block length (orange dots, 𝐿𝑂𝑝𝑡𝑖𝑚(𝛽) = 10  and 𝐿𝑂𝑝𝑡𝑖𝑚(𝜙) = 15 ). 

Small block lengths leads to higher dispersion and higher block lengths to a smaller dispersion 

of bootstrap resample estimates. For 𝜙, the mean MBB resample parameter values can roughly 

be seen as a monotone increasing function of 𝐿.  

 

 

Table 4: Optimal block length for all models and parameters 

  Parameter 

Model β 𝜙 θ σ 

1 8 8 - - 

2 10 15 - - 

3 1 - 1 - 

4 1 - 1 - 

5 19 15 20 - 

6 15 5 - 1 

7 18 9 - 1 

8 15 - 15 1 

9 15 - 11 1 

10 16 12 13 5 

 

 

Overall, the estimation of β seems more stable (with respect to 𝐿) than the other model 

parameters. This means that one might eventually neglect the effect of the chosen block length 

on estimating 𝛽, and consequently focus only on the remaining parameters. Thus, 𝐿𝐺.
𝑂𝑝𝑡𝑖𝑚

, might 

be redefined in 𝒦\𝛃. In this fashion, one could also put in second place the block length effect 

for the estimation of σ. For this reason, it is safe to restrict the attention to 𝛟′ and  𝛉′. 
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Figure 8: Model 2 optimal block length, series of length 30, n=30, β=2, ϕ=0.5, boxplot for 100MBB simulations 

 

For a simulated series, it is possible to know the optimal block length for a given 

parameter (though for long series it might take too long to compute it), however, with real 

datasets, some heuristic or algorithm must be employed. In this fashion, in Figure 9 the method 

proposed by Hall, Horowitz and Jing (1995) (henceforth HHJ) is iterated (as suggested by the 

authors) 100 times and the frequencies of the optimal 𝐿 on each step are tabulated for models 

with an AR component. The optimization is taken with respect to 𝜙. The results of the algorithm 

do not always agree with the optimal behavior depicted in Table 4. The results can be grouped 

into two cases: oscillatory behavior and convergence, the former indicates that the algorithm 

oscillates between a group of values, while the in the latter after a number of iterations we have 

a convergence of the algorithm to a unique solution. It was established that 𝐿𝑀𝑜𝑑𝑒𝑙 1
𝑂𝑝𝑡𝑖𝑚 (𝜙) = 8, 

but the algorithm oscillates between 2 and 3, though no step points to the true value. The same 

reasoning of oscillatory can be applied for Model 6 and 10. Still in the first case we have that  

𝐿𝑀𝑜𝑑𝑒𝑙  2
𝑂𝑝𝑡𝑖𝑚 (𝜙) = 15 and the HHJ steps have high frequency at 𝐿 = {7,8,9}. In the second case, 

the HHJ converges fast (though not to the true optimal value) as in Model 5 that converged to 

an optimal block length of 19 and in Model 7 to 17.  
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Figure 9: 𝜙 optimal block length under Hall, Horowitz and Jing (1995) algorithm, 100 simulations block length 

frequencies 

 

The previous results show that the HHJ did not have a satisfactory result. Overall, this 

algorithm does not seem appropriate for selecting the optimal block length for the MBB in the 

Poisson and Gamma GARMA models context. It is worth noting that the implementation here 

was with respect to 𝜙 and to bias and variance estimation, thus there could be a different value 

of  𝐿 for estimating other model parameters and confidence intervals.  Additionally, the results 

of the HHJ algorithm rely on the initial value and random seed, so there might be no unicity 

on the chosen block length values. This multiplicity of block length possible values increases 

the parameter space and favor the heuristic approach. Also, this hypothesis is corroborated if 

we take into account the approximate monotone behavior of the block length distribution (as in 

Figure 8). 
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Figure 10: ϕ optimal block length under Lahiri, Furukawa and Lee (2007) algorithm, 100 simulations block length 

frequencies 

 

Repeating the same analysis for the NPPI algorithm, after 100 iterations we have that 

𝐿 = 2 in all instances. All models had a constant optimal block length estimate (with respect to 

the iteration span). It is clear that the NPPI algorithm does not work properly in these models, 

as we know from Table 4, above, that the true optimal block length is 𝐿𝑀𝑜𝑑𝑒𝑙  𝑖
𝑂𝑝𝑡𝑖𝑚 (𝜙) =

{25, 25, 30, 5, 25, 12}, 𝑓𝑜𝑟 𝑖 = 1, 2 , 5, 6, 7, 10.  
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6 REAL DATA ANALYSIS 
 

In this Section two examples are provided, one for the Poisson and the other for the 

Gamma – GARMA models. 

 

 

6.1 The Poisson – GARMA case 

 

A dataset with the number of monthly bankruptcy filings in the USA from the UCLA-

LoPucki Bankruptcy Research Database was used as an example of modelling a Poisson time 

series.  It encompasses public companies with Annual Report reporting assets worth 100 million 

of U$ dollars or more and can be downloaded at Federal Reserve Bank of St. Louis website 

(https://www.stlouisfed.org/). The analysis is restricted to the period of January of 1980 to 

December of 1999 and a plot of the series is provided in Figure 11.  

 

 

Figure 11: Bankruptcy Series plot 

 

This topic is relevant as the number of bankruptcy filings is a key economic outlook 

variable, helping to diagnosis the current status of the economy and also working as a lagging 

indicator in the business cycle. Figure 11 displays the number of bankruptcy filings by month 

over the years, there is an upward increasing trend. As the intention is only to demonstrate the 

https://www.stlouisfed.org/
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application of the GARMA model, no more economic digressions will be made. Thus, a plot of 

the autocorrelation function (ACF) and the partial autocorrelation function (PACF) is required 

to assist in the ARMA order detection. This is a standard procedure in the Gaussian framework, 

the interest reader might refer to Penã, Tiao and Tsay (2001). 

Figure 12 shows the ACF and PACF of the bankruptcy filings time series. The high first 

order autocorrelation value with its slowly decaying pattern, associated with the high first order 

partial autocorrelation and zero autocorrelation from higher order lags indicates a AR(1) or 

even an AR(2) model. 

After identifying the models and proceeding with the estimation of the Poisson-

GARMA(1,0) model, the parameter estimates are: �̂� = 0.6132 and �̂� = 0.3396 ; both 

statistically significant at the level of significance of 1%. Moreover, the AIC statistic for this 

model is 758.323.  

 

 

Figure 12: ACF and PACF plots of the Bankruptcy Filings Series 

 

 

In Figure 13 there are some plots for the residual diagnostic. The Residual X Index plot 

shows no discernible pattern of the residuals. In addition, the Normal Q-Q Plot highlights the 

approximately Gaussian behavior of the residuals, except for the distribution tails. Those facts 

support the hypothesis of no model misspecification.  
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Figure 13: Residual Analysis of the Poisson-GARMA(1,0) model 

 

Alternatively, we can also attempt to estimate a Poisson-GARMA(2,0) model. Here we 

have that �̂� = 0.7534 , �̂�1 = 0.2612  and �̂�2 = 0.1790 , all the parameters are statically 

different from zero at the significance level of 1%. The AIC off the model is 735.597, which 

indicates that model 2 is preferable over model 1, as it minimizes the information criteria.  As 

usual, in Figure 14, the residual analysis shows that the data fits the model accurately, with no 

severe deviation from the Gaussian hypothesis in the Normal Q-Q plot and also there is no clear 

pattern in the residual X index plot.  
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Figure 14: Residual Analysis of the Poisson-GARMA(2,0) model 

 

In terms of confidence intervals, Figure 15 exhibit the mean value of 1000 bootstrap 

resamples for model 2 alongside with the error bars for the 95% confidence interval. Both the 

Normal asymptotic and the one with the bias correction term are displayed. Note that the MBB 

has been computed for a grid of 16 possible block lengths, with values ranging from 5 to 160, 

with a constant difference of 10. In addition, the ci’s with the bias correction term are much 

wider than the Gaussian ones, though, the mean of the bootstrap resamples belongs to all of 

them in the former, whilst in the latter, in some instances, the mean of the bootstrap resamples 

does not belong to the interval.  
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Figure 15: MBB 95% Confidence Intervals: Normal and Normal with bias correction term for the Poisson-

GARMA(2,0) model, from 1000 resamples 

 

As there are 240 observations in the time series, computing the MBB for all possible 

block lengths can take a considerable amount of time. Owing to this, the analysis will be 

restricted to Algorithm 2. In the case of bias/variance and confidence intervals (two sided 

distributions) estimates, Algorithm 2, for an initial value of 𝑚 = 30, in 10 steps, all resulted in 

a value of 𝐿 = 13 (𝑅 = 100). Besides, monotone convergence for high values, close to the 

number of observations, or in the opposite case, for small values, is not the best possible 

outcome. The former results in low bias and increased variance, while the latter decreases the 

variance and increase the bias of the estimates. What we wish to achieve is an appropriate 

balance between bias and variance in the bootstrap resamples. 
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6.2 The Gamma – GARMA / GARCH case 

 

For the final GARCH model, 180 observations from the series of log-returns (difference 

of log prices) of Brasil Pharma S.A. (ticker BPHA3.SA), a pharmaceutical company, were used, 

with dates ranging from 2017-05-30 to 2018-02-22. In order to check whether there are ARCH 

effects or not in the time series two tests were performed, the ARCH test and the Ljung-Box 

statistic to the squared log-returns (or volatility if we assume a zero mean). Both are standard 

procedures and can be found at Tsay (2002). Both tests were performed using 1, 4, 8, 12 and 

24 lags, with the series length equal to the last (chronological order) 30,60,90,180,360,504 

business days. At the level of confidence of 10%, for the ARCH test, only at length 30, lags 

8,12,24, length 60, lag 24 and length 360, lags 4,12,24 we do not reject the null hypothesis of 

no ARCH effects. By the same token, for the Ljung-Box test, only for the length 360 and lags 

4,8,24 that the null of no autocorrelation is not rejected (actually the test is for all joint lags, and 

that is why six different values were used).  

Thus, knowing that in the majority of combination of series length and test lags we do 

not reject the presence of ARCH effects we can proceed in the estimation of the GARCH model. 

A useful procedure in selecting the process order is a graphical inspection of the Autocorrelation 

Function and the Partial Autocorrelation Function of the squared log-returns  

 

 

Figure 16: ACF and PACF of the BPHA3 squared log-returns 
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One of the possible models to be estimated is a Gamma GARMA/GARCH (1, 0) process, 

as we have a decreasing behavior in the ACF and another one at lag 1 of the PACF, see Figure 

16. The significative spike at lag 2 might indicate an AR(2) process, though, due to the 

widespread usage of the GARCH(1,0) we will restrict the attention to the aforementioned 

model. The parameters estimated values are: �̂� = 1.9886, �̂� = 0.0247 and �̂� = 1.2959, with 

all of them significant at the level of 1%. After 1000 replications of the estimation process, the 

mean estimates are  �̅̂� = 1.9887 , �̅̂� = 0.0247  and  �̂̅� = 1.2960 , with no differences in 

maximum and minimum with four decimal points.  

A first model diagnostic is the residual analysis, in Figure 17. We see that some 

observations in the tail of the distribution in the Normal Q-Q Plot do not behave like a Gaussian 

distribution. From the theory of financial time series, we know that this is a possible behavior 

that can be generated by abnormal returns. Additionally, returns usually have higher probability 

at the tails of its distribution when contrasted to a Normal distribution and even GARCH models 

with normal errors might fail to capture the series true data generating process. Modern 

GARCH processes incorporate other distributions other than the Normal, such as the Student t 

distribution, the generalized error distribution and the generalized hyperbolic distribution.   

 

 

Figure 17: Residual Analysis of the Gamma-GARMA/GARCH (1,0) model 

Furthermore, another useful estimation diagnostic is the computation of the ARCH and 

Ljung-Box tests on the model residuals to check if there are any ARCH effects left. For lags 
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1,4,8,12 and 24 all tests do not reject the null hypothesis of no ARCH effects / autocorrelation 

statistically different from zero.  This simple procedure is a strong evidence in favor of the 

estimated model adequacy (at least in terms of ARCH effects that was the main concern for 

estimating a conditional volatility model).  

For Algorithm 2, bias/variance and confidence interval estimation, for an initial value 

of 𝑚 = 10, 𝑅 = 100, in 10 steps, there was a convergence for 𝐿 = 12 after one iteration. In 

Figure 18 are the charts of the Gaussian and bias corrected ci estimates using a grid of values 

for 𝐿. Both mean estimated values are contained in the respective ci’s except that the bias 

corrected is wider than the Normal. We see that the estimates are relatively stable over the set 

of chosen block lengths and chosen confidence interval type. 

After examining both real data examples we achieve the same conclusion, that is, 

Algorithm 2 is a powerful tool in assisting in choosing the block length for the MBB algorithm, 

yet it is also prone to non-unicity. This drawback reinforces the importance of the heuristic 

approach, by which we should always estimate the MBB over a grid of values to check the 

model estimates variability.  
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Figure 18: MBB 95% Confidence Intervals: Normal and Normal with bias correction term Gamma-

GARMA/GARCH model, from 1000 resamples 
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7 CONCLUSION 
 

In conclusion, bootstrap application in the context of the GARMA model is nonstandard 

and as such, suitable modifications must be employed. The Moving Block Bootstrap seems like 

a reasonable solution to tackle this problem, and the bias corrected parameter estimates and 

confidence intervals might work in cases where the Gaussian counterpart fail. This phenomena 

happens even in large samples from selected Poisson and Gamma GARMA process, where the 

coverage rates of the MBB surpass the asymptotic ones. Remarkably, in small samples, from 

size of 30, these properties hold.  

Furthermore, the performance of the MBB is related to the nature of the terms present 

in the model, as models containing a moving average term showed improvement over their 

references. In the other hand, pure autoregressive models generally performed poorer than the 

benchmark. More importantly, models with coefficients near unit (which leads to non-

stationarity and non-invertibility) considerably decreased the performance of the bootstrap 

procedures. Though, MBB applied to models with lower parameter values seems to exhibit 

good properties.  

In short, the Moving Block Bootstrap bias corrected estimate of confidence intervals 

seems to provide similar results than their bias corrected parameter estimate counterpart. This 

work can be improved by considering shorter block lengths where the Gaussian interval is 

expected to fail. However, an improvement might be achieved through the selection of an 

appropriate block length. Nevertheless, this is a cumbersome task, as the number of models to 

test is considerable and the choices for 𝐿 increase with the length of the series. Thus, plug-in 

estimates or other formal devices for estimating the optimal value of 𝐿  are of paramount 

importance.   

Moreover, other resampling schemes might do a better job than the MBB. Therefore, 

research could focus not only on the other block resampling methods, but also on the DWB or 

MEB for instance. However, the empirical work must be followed by sound theoretical grounds 

and for this reason consistency properties of those different approaches must be established in 

the specific case of the GARMA model. In the case of confidence interval estimation, other 

procedures, besides the ones followed here, might me more suited. 

Remarkably, the proposed Algorithm 2 seems as a useful tool in selecting the optimal 

block length in the context of the MBB and multi-parameter estimation setting. The achieved 

decrease in computing time seems to outweigh the possible loss in estimating the HHJ 

algorithm in a restricted parameter space. This line of work is useful in areas such as Machine 
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Learning, where an automatized selection process is usually desired. In this line of work, the 

NPPI estimator of Lahiri, Furukawa and Lee (2007) can also be applied in nonparametric curve 

estimation problems, where there is a widespread usage of cross-validation. 

The real data examples reinforce the utility of the MBB resampling scheme, however, 

when dealing with time series special care must be taken when estimating model parameters, 

as we might have to cope with non-stationarity and non-invertibility of the underlying stochastic 

processes. Moreover, as the second example shows, further research in the field of dependent 

bootstrap methods in relation to GARMA models have clear spill-over effects over other areas, 

for instance take the case of Finance/Econometrics with the GARCH family of models relation.  

Notwithstanding, plug-in methods for block length selection might enhance the 

performance of the MBB confidence intervals and parameter bias estimation. In addition, other 

resampling schemes might also achieve this desired result, regarded that they are followed by 

theoretical grounds. Further, in terms of coverage rates, different bootstrap confidence interval 

procedures might show a clear improvement over the asymptotic one. In this line of work the 

sequential Monte Carlo method of Silva (2017) for interval estimation could be employed and 

intervals with guaranteed confidence coefficients stablished.  

It is important to acknowledge that the conclusions of this work are limited to the class 

of GARMA models and more strictly to the low complexity models studied here. Owing to this, 

further research could focus on models of higher order shedding light into more general 

properties of the MBB in the context of the GARMA model. Besides, the effect of a varying 

linear term could also be studied, regarding the possible correlation between exogenous 

regressors and autoregressive or moving average terms.  

This work can also be extended by an application of the procedures adopted here to the 

other members of the exponential family. Additionally, not only Bayesian estimation can be 

implemented, building on the work of Andrade (2016), but also a Bayesian Bootstrap (Rubin, 

1981) framework. In the latter, a simulation of the posterior distribution of the parameter is 

computed, being operationally and inferentially similar to the traditional bootstrap.  
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APPENDIX I: TABLES 
 

Table 5: Bootstrapped confidence intervals coverage, 1000 sim., 1000 boot. resamples, series of length 1000. 

  Model 1:  Poisson-GARMA (1,0)   Model 2:  Poisson-GARMA (1,0) 

  β=2; φ=0,15   β=2; φ=0,5 

length norm bias c. perc. basic length norm bias c. perc. basic 

20 
95.3% 94.5% 94.8% * 94.3% 

20 
94.2% 92.3% 93.5% 92.1% 

95.5% 92.4% 94.5% 92.6% 93.8% 74.5% 74.8% 73% 

                

50 
95.3% 94.1% 94.3% 93.8% 

50 
94.2% 92.3% 92.7% 92.2% 

95.5% 93.1% 93.7% 93.0% 93.8% 88.1% 89.7% 87.5% 

                

100 
95.3% 91.8% 91.8% 91.6% 

100 
94.2% 90.7% 91% 90.9% 

95.5% 91.4% 92.2% 91.3% 93.8% 89.8% 90.5% 88.7% 

                    

  Model 3:  Poisson-GARMA (0,1)   Model 4:  Poisson-GARMA (0,1) 

  β=2; θ=0,5   β=2; θ=0,15 

length norm bias c. perc. basic length norm bias c. perc. basic 

20 93.7% 93.3% 93.9% * 93.2% 20 95.5% 94.79% * 95.3% * 94.59% * 

79.6% 93.3% * 30.1% 92.8% * 94.6% 93.4% 93.3% 92.7% 

            

50 
93.7% 92.7% 93.3% 92.9% 

50 
95.5% 93.4% 94.4% 93.6% 

79.6% 85.7% * 72.0% 86.3% * 94.6% 92.8% 93.5% 92.0% 

            

100 
93.7% 91.2% 92.6% 91.7% 

100 
95.5% 92.0% 92.0% 91.6% 

79.6% 75.6% 79.1% 75.8% 94.6% 90.9% 92.1% 90.2% 

                    

  Model 5:  Poisson-GARMA (1,1)   Model 6:  Gamma-GARMA (1,0) 

  β=2; φ=0,5; θ=0,1   β=2; φ=0,15; σ=1,41 

length norm bias c. perc. basic length norm bias c. perc. basic 

20 

94.4% 93.3% 93.5% 92.6% 

20 

94.1% 93.9% 93.2% 93.4% 

94.0% 78.7% 90.7% 76.2% 95.1% 92.6% 94.4% 92.5% 

95.5% 92.5% 98.4% 92.5% 95.2% 94.2% 94.7% 94.3% 

            

50 

94.4% 92.6% 93.2% 92.6% 

50 

94.1% 93.4% 92.8% 93.1% 

94.0% 87.7% 94.7% * 86.1% 95.1% 93.6% 93.8% 93.4% 

95.5% 92.3% 96.8% 92.2% 95.2% 93.3% 94.0% 93.0% 

            

100 

94.4% 91.8% 91.9% 91.2% 

100 

94.1% 91.7% 91.6% 91.2% 

94.0% 88.5% 93.9% 86.6% 95.1% 91.9% 91.8% 91.7% 

95.5% 91.6% 95.7% 91.1% 95.2% 91.6% 91.5% 91.9% 
 Legend: fields marked with * are used to denote a coverage rate higher (in absolute difference to the 95% target) 

than the respective asymptotic normal (i.e. norm.wbc) 
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Table 6: Bootstrapped confidence intervals coverage, 1000 sim., 1000 boot. resamples, series of length 1000. 

  Model 7:  Gamma-GARMA (1,0)   Model 8:  Gamma-GARMA (0,1) 

  β=2; φ=0,5; σ=1,41   β=2; θ=0,5; σ=1,41 

length norm bias c. perc. basic length norm bias c. perc. basic 

20 

94.1% 90.8% 89% 91.3% 

20 

93.4% 93.5% * 93.8% * 93.9% * 

95.1% 82.8% 75.1% 75.8% 94.4% 87.1% 61.5% 58.0% 

95.1% 87.6% 89.8% 86.8% 94.3% 87.0% 87.2% 84.7% 

            

50 

94.1% 92.9% 91.3% 92.8% 

50 

93.4% 94.3% * 93.6% * 93.8% * 

95.1% 93.0% 90.1% 91.3% 94.4% 97.6% 91.1% 86.2% 

95.1% 93.0% 93.8% 92.6% 94.3% 93.4% 93.3% 92.4% 

            

100 

94.1% 91.7% 90.7% 91.6% 

100 

93.4% 91.6% 91.5% 91.1% 

95.1% 94.2% 90.8% 92.6% 94.4% 98.4% 93.9% 90.4% 

95.1% 92.4% 92.3% 92.0% 94.3% 93.3% 92.7% 91.1% 

                
                    

  Model 9:  Gamma-GARMA (0,1)   Model 10:  Gamma-GARMA (1,1) 

  β=2; θ=0,15; σ=1,41   β=2; φ=0,5; θ=0,1; σ=1,41 

length norm bias c. perc. basic length norm bias c. perc. basic 

20 

91.9% 92.9% * 93.8% * 91.8% 

20 

93.8% 90.4% 93.5% 90.6% 

93.2% 95.4% * 94.5% * 91.2% 92.9% 94.2% * 98.4% 90.9% 

95.0% 94.4% 94.5% 94.0% 92.1% 96.6% * 99.9% 95.4% * 

      95.2% 83.8% 85.4% 81.9% 

50 

91.9% 92.6% * 92.5% * 92% *       
93.2% 96.1% * 95.1% * 93.5% * 

50 

93.8% 91.0% 93.2% 90.6% 

95.0% 93.0% 93.9% 92.5% 92.9% 94.1% * 98.4% 92.3% 

      92.1% 94.2% * 99.1% 93.3% * 

100 

91.9% 91.0% 91.6% 89.5% 95.2% 92.3% 93.5% 91.6% 

93.2% 95.4% * 94.1% * 92.3%       
95.0% 92.5% 91.4% 91.9% 

100 

93.8% 90.1% 92.4% 90.0% 

          92.9% 92.3% 97.4% 90.4% 

          92.1% 92.7% * 97.7% * 90.6% 

          95.2% 92.5% 92.9% 91.8% 
 Legend: fields marked with * are used to denote a coverage rate higher (in absolute difference to the 95% target) 

than the respective asymptotic normal (i.e. norm.wbc) 
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Table 7: Bootstrapped confidence intervals coverage, 1000 sim., 1000 boot. resamples, series of length 30. 

  Model 1:  Poisson-GARMA (1,0)   Model 2:  Poisson-GARMA (1,0) 

  β=2; φ=0,15   β=2; φ=0,5 

length norm bias c. perc. basic length norm bias c. perc. basic 

4 
92.3% 86.1% 88.6% 85.7% 

4 
90.7% 80.9% 83.9% 80.8% 

95.6% 82% 93% 81.3% 94.5% 76.4% 65.6% 72.4% 

            

7 
92.3% 84% 86% 84.5% 

7 
90.7% 80.7% 82.8% 80% 

95.6% 82.2% 89.5% 79.8% 94.5% 82.4% 69.1% 75.1% 

            

10 
92.3% 80.8% 82% 79.9% 

10 
90.7% 77.2% 79.4% 76.9% 

95.6% 80.9% 86.2% 77.8% 94.5% 81.5% 66.8% 74% 

                

  Model 3:  Poisson-GARMA (0,1)   Model 4:  Poisson-GARMA (0,1) 

  β=2; θ=0,5   β=2; θ=0,15 

length norm bias c. perc. basic length norm bias c. perc. basic 

4 
85.1% 83.9% 89.1% * 85.3% * 

4 
90.9% 87.1% 89.2% 87.4% 

11.4% 48.5% * 6% 54.5% * 89.2% 81.7% 97.2% * 83.1% 

            

7 
85.1% 81.6% 86% * 82.9% 

7 
90.9% 84.9% 86% 85% 

11.4% 40.9% * 12.4% * 47.7% * 89.2% 80.9% 95.4% * 82.8% 

            

10 
85.1% 76.9% 82.4% 77% 

10 
90.9% 80% 81.9% 80.3% 

11.4% 36.6% * 14.6% * 42.1% * 89.2% 80.1% 93.6% * 81% 

                    

  Model 5:  Poisson-GARMA (1,1)   Model 6:  Gamma-GARMA (1,0) 

  β=2; φ=0,5; θ=0,1   β=2; φ=0,15; σ=1,41 

length norm bias c. perc. basic length norm bias c. perc. basic 

4 

90.4% 79.3% 85.1% 78.4% 

4 

90.4% 84.4% 85.6% 84.3% 

95.5% 72.4% 97.6% 69.5% 94.1% 83.4% 94.8% * 80.4% 

93.7% 86.5% 100% 86.1% 90.9% 87.3% 84% 88.2% 

            

7 

90.4% 79.8% 84.1% 78.4% 

7 

90.4% 83.3% 84.3% 82.5% 

95.5% 75.4% 95.9% 69.3% 94.1% 83.4% 92.1% 79.9% 

93.7% 84.9% 100% 85.4% 90.9% 85.1% 80.3% 85% 

            

10 

90.4% 76.3% 80.8% 75.1% 

10 

90.4% 79.9% 80.7% 77.4% 

95.5% 74.2% 95% * 67.4% 94.1% 82.1% 89.5% 77.5% 

93.7% 84.3% 100% 84.5% 90.9% 81.2% 77.4% 80.9% 
 Legend: fields marked with * are used to denote a coverage rate higher (in absolute difference to the 95% target) 

than the respective asymptotic normal (i.e. norm.wbc) 
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Table 8: Bootstrapped confidence intervals coverage, 1000 sim., 1000 boot. resamples, series of length 30. 

  Model 7:  Gamma-GARMA (1,0)   Model 8:  Gamma-GARMA (0,1) 

  β=2; φ=0,5; σ=1,41   β=2; θ=0,5; σ=1,41 

length norm bias c. perc. basic length norm bias c. perc. basic 

4 

84.3% 76.7% 75.1% 73.5% 

4 

90.1% 86.3% 83.1% 86.2% 

92.4% 85.7% 78.6% 81.5% 89.9% 84.9% 96% * 82.5% 

90.1% 83.5% 90.3% * 84.1% 91.3% 85.7% 90.2% 86% 

            

7 

84.3% 76.2% 76.1% 75.5% 

7 

90.1% 84.8% 82.8% 84.3% 

92.4% 87% 79.4% 82.2% 89.9% 89.4% 95.7% * 87.2% 

90.1% 83.1% 87.6% 84% 91.3% 84.8% 86.8% 84.9% 

            

10 

84.3% 72.3% 74.2% 71.1% 

10 

90.1% 82.4% 80.1% 82.2% 

92.4% 85.2% 76.8% 78.7% 89.9% 90.4% * 93.4% * 88.3% 

90.1% 81% 84.8% 80.9% 91.3% 82.1% 83.7% 81.5% 

            
            
  Model 9:  Gamma-GARMA (0,1)   Model 10:  Gamma-GARMA (1,1) 

  β=2; θ=0,15; σ=1,41   β=2; φ=0,5; θ=0,1; σ=1,41 

length norm bias c. perc. basic length norm bias c. perc. basic 

4 

90.1% 86.9% 85.4% 84.3% 

4 

82.6% 98.2% * 85.3% * 82% 

91.3% 88% 97.4% * 87.8% 88.4% 88.5% * 100% * 82.3% 

90.9% 88.4% 84.2% 88.5% 84% 87.7% * 100% * 81.7% 

      88.6% 80.3% 88.4% 81.1% 

7 

90.1% 85.9% 83.7% 83.9%       
91.3% 89.5% 94.9% * 88.3% 

7 

82.6% 95.4% * 82.5% 81% 

90.9% 86% 79.8% 85.2% 88.4% 87.1% 100% * 80.3% 

      84% 86.9% * 100% * 80.4% 

10 

90.1% 83% 81.3% 80.2% 88.6% 80.2% 85.1% 80.6% 

91.3% 89% 93.1% * 85.8%       
90.9% 82.3% 77.7% 81.1% 

10 

82.6% 88.7% * 77.8% 76.8% 

      88.4% 85.2% 98.9% * 77% 

      84% 86.8% * 100% * 79.5% 

      88.6% 78.2% 82.8% 78.2% 
Legend: fields marked with * are used to denote a coverage rate higher (in absolute difference to the 95% target) 

than the respective asymptotic normal (i.e. norm.wbc) 
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APPENDIX II: FIGURES 
 



66 

 

Figure 19: Model 1 parameters distribution, series of length 1000 
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Figure 20: Model 2 parameters distribution, series of length 1000 
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Figure 21: Model 3 parameters distribution, series of length 1000 
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Figure 22: Model 4 parameters distribution, series of length 1000 
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Figure 23: Model 5 parameters distribution, series of length 1000 
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Figure 24: Model 6 parameters distribution, series of length 1000 
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Figure 25: Model 7 parameters distribution, series of length 1000 
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Figure 26: Model 8 parameters distribution, series of length 1000 
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Figure 27: Model 9 parameters distribution, series of length 1000 
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Figure 28: Model 10 parameters distribution, series of length 1000 
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Figure 29: Model 1 parameters distribution, series of length 30 
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Figure 30: Model 2 parameters distribution, series of length 30 
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Figure 31: Model 3 parameters distribution, series of length 30 
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Figure 32: Model 4 parameters distribution, series of length 30 
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Figure 33: Model 5 parameters distribution, series of length 30 
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Figure 34: Model 6 parameters distribution, series of length 30 
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Figure 35: Model 7 parameters distribution, series of length 30 

 



83 

 

Figure 36: Model 8 parameters distribution, series of length 30 
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Figure 37: Model 9 parameters distribution, series of length 30 
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Figure 38: Model 10 parameters distribution, series of length 30 
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APPENDIX III: R CODE 
 

R Code Master Thesis 

Matheus de Vasconcellos Barroso 

March 12, 2018 

INTRODUCTION 

The original code for the Master thesis was not really tidy, with almots 4000 lines of code in the main 

file. Also, with Monte Carlo simulations and MBB the number of failures in the estimation process was 

leaving tracktability difficult. To organize the ideas this R markdown file was generated in order to mimic 

all the steps required to recreate the thesis. Additionaly, two package were created: garma and dboot, that 

will be used througout this file.  

 The first step is to load both packages, their installation and help files can be found at 

https://github.com/matheusbarroso/garma and https://github.com/matheusbarroso/dboot. 

1. Install: 
install.packages('devtools') 
library(devtools) 
install_github("matheusbarroso/garma@v.1.0.2") 
install_github("matheusbarroso/dboot@v.1.0.1") 

2. Load: 

library(dboot) 
library(garma) 

 The second step is to come up with a list of models to use: 

model phi theta beta.x mu0 sigma2 sigma alpha familia 

1 0.15 0.00 2 10 NA NA 0.1 PO 

2 0.50 0.00 2 10 NA NA 0.1 PO 

3 0.00 0.50 2 10 NA NA 0.1 PO 

4 0.00 0.15 2 10 NA NA 0.1 PO 

5 0.50 0.10 2 10 NA NA 0.1 PO 

6 0.15 0.00 2 10 2 1.414214 0.1 GA 

7 0.50 0.00 2 10 2 1.414214 0.1 GA 

8 0.00 0.50 2 10 2 1.414214 0.1 GA 

9 0.00 0.15 2 10 2 1.414214 0.1 GA 

10 0.20 0.10 2 10 2 1.414214 0.1 GA 

         

https://github.com/matheusbarroso/garma
https://github.com/matheusbarroso/dboot
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ANALYSIS SERIES OF LENGTH 1000 

The last table was assigned to the object models (a data.frame), so that we can easily specify them as 

(note that nrow(X) = 1001, so we will be working with a series of length 1000): 

specs <- lapply(seq_len(nrow(models)), function (j)  
  switch(family = models$familia[j], 
         "PO"={ 
           garma::GarmaSpec(family = "PO", 
                     beta.x = 2,  
                     phi = models$phi[j], 
                     theta = models$theta[j], 
                     mu0 = models$mu0[j], 
                     X = as.matrix(data.frame(intercept = rep(1,1001))) 
           ) 
            
         }, 
         "GA"={ 
           garma::GarmaSpec(family = "GA", 
                     beta.x = 2,  
                     phi = models$phi[j], 
                     theta = models$theta[j], 
                     mu0 = models$mu0[j], 
                     sigma2 = models$sigma2[j] , 
                     X = as.matrix(data.frame(intercept = rep(1,1001))) 
           )         
         }) 
   
) 

 

Generating 1000 Monte Carlo simulatins for each spec, series of length 1000: 

#register the parallel back-end: 
 
no_cores <- if(detectCores() == 1) 1 else detectCores() -1 
registerDoParallel(no_cores) 
 
sims <- lapply(specs, function (j) 
  GarmaSim(spec = j, 
             nmonte = 1000, 
             nsteps = 1000, 
             burnin = 0 
             ) 
    ) 

 The estimation is straightforward and also the Coefficients Distribution plots: 

fits <- lapply(sims, garma::GarmaFit) 
 
#for the first model: 
plot(fits[[1]]) 
summary(fits[[1]]) 
 
#for the fitfh model: 
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plot(fits[[5]]) 
summary(fits[[5]]) 
 
#for the fitfh model: 
plot(fits[[10]]) 
summary(fits[[10]]) 
 
#the final plot: 
fig.4 <- GarmaFit( 
  GarmaSim( 
    GarmaSpec( 
      family = "PO", 
      beta.x = 2, 
      phi = 0.8, 
      mu0 = 10, 
      X = as.matrix(data.frame(intercept = rep(1,1001))) 
      ), 
    nmonte = 1000, 
    nsteps = 1000, 
    burnin = 0 
    ) 
  ) 
   
   
plot(fig.4) 
summary(fig.4) 

 Moving on to the MBB replicates: (Read the warning message bellow) 

boot.out <- lapply(sims, 
                   GarmaSimBoot, 
                   l = c(20,50,100), 
                   R = 1000) 
 
model <- 1 
 
plot(boot.out[[model]], type = 'original-bias') 
summary(boot.out[[model]]) 

Warning: please note that this task will take too long to execute, you should try a smaller example 

(nmonte < 100 and/or nsteps < 100and/or R < 100. Also, the easiest way to go is to simply estimate one 

model). Here, we provide a ‘toy’ example: 

no_cores <- if(detectCores() == 1) 1 else detectCores() -1 
registerDoParallel(no_cores) 
 
toy <- GarmaSimBoot( 
  GarmaSim( 
    GarmaSpec( 
      family = "PO", 
      beta.x = 2, 
      phi = 0.2, 
      mu0 = 10, 
      X = as.matrix(data.frame(intercept = rep(1,1001))) 
      ), 
    nmonte = 10, 
    nsteps = 1000, 
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    burnin = 0 
    ), 
  l = c(20,50,100), 
  R = 30) 
   
plot(toy, type='original-bias') 
summary(toy) 

 The last step for the series of length 1000 is to estimate the coverage rates: 

ci <- ConfidenceInterval(toy) 
coverage(ci) 

 

ANALYSIS SERIES OF LENGTH 30 

Now to generete the series of length 30: 

specs <- lapply(seq_len(nrow(models)), function (j)  
  switch(family = models$familia[j], 
         "PO"={ 
           garma::GarmaSpec(family = "PO", 
                     beta.x = 2,  
                     phi = models$phi[j], 
                     theta = models$theta[j], 
                     mu0 = models$mu0[j], 
                     X = as.matrix(data.frame(intercept = rep(1,31))) 
           ) 
            
         }, 
         "GA"={ 
           garma::GarmaSpec(family = "GA", 
                     beta.x = 2,  
                     phi = models$phi[j], 
                     theta = models$theta[j], 
                     mu0 = models$mu0[j], 
                     sigma2 = models$sigma2[j] , 
                     X = as.matrix(data.frame(intercept = rep(1,31))) 
           )         
         }) 
   
) 

sims <- lapply(specs, function (j) 
  GarmaSim(spec = j, 
             nmonte = 1, 
             nsteps = 30, 
             burnin = 0 
             ) 
    ) 

 Once more we are faced with the task of generating the MBB resamples / plots, be aware that the 

following code should take long to execute: 

boot.out <- lapply(sims, 
                   GarmaSimBoot, 
                   l = c(4,7,10), 
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                   R = 1000) 
 
model <- 1 # change here to produce the information for a #different model 
 
plot(boot.out[[model]], type='original-bias') 
summary(boot.out[[model]]) 

 Now, to estimate the coverage rates: 

ci <- lapply(boot.out, ConfidenceInterval) 
coverage(ci[[model]]) #model 1... 

 Finally to generate all the MBB resamples from 1 to 20 (as the GarmaSimBoot already is working on 

parallel use simple outer nested loops): 

resamp <- lapply(seq_len(20),  
                 function(j)  
                   lapply(sims, GarmaSimBoot, l = j)) 

 The plots (note that you should change the model flag with values from 1 to 10 to the individuals plot, 

you can also loop for all plots): 

library(plyr) 
temp <- lapply(seq_len(10),  
               function(i) { 
                 ldply(seq_len(20), 
                       .fun = function(j) { 
                         resamp[[j]][[i]]@print.out 
                         } 
                 ) 
                            } 
               ) 
for (i in seq_len(10)) names(temp[[i]])[3] <- "value" 
 
model <- 2 #switch from 1 to 10 to a different plot or loop #through them... 
 
temp[[model]]$length <- factor( 
  as.numeric ( 
    substr( 
      temp[[model]]$length, 
      start=3, 
      stop=5))) 
 
means <- ddply(temp[[model]],  
                .variables = c('length','parameter'), 
                'summarise', 
                mean = mean(value)) 
 
k <- resamp[[1]][[model]]@plot.out$db2[,c("parameter","value")] 
 
best <- ldply(k$parameter, function(j)  { 
    db <- subset(means,  subset=(parameter == j)) 
    true.value <- k$value[k$parameter == j] 
    best <- db$length[which.min(abs(true.value-db$summarise))] 
    data.frame(length = as.numeric(best),  
               parameter = j,  
               value = db$summarise[best]) 
    }) 
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library(ggplot2) 
 
ggplot(temp[[model]], aes(length,value)) +  
   
  geom_boxplot() +  
   
  geom_hline(aes(yintercept = value), data = k, linetype = "dashed",size = 1) + 
   
  facet_grid(parameter ~., scales = "free") +  
   
  geom_point(data = means, aes(length, summarise, colour = "mean values")) + 
   
  geom_point(data = best,aes(length,value,colour = "best length") ) + labs(colour = "legend"
) + 
   
  scale_colour_hue() +  
   
  ggtitle("Boxplot 100 MBB resamples") +  
   
  theme(plot.title =  
          element_text(hjust = 0.5)) +   
   
  theme(legend.position = "bottom", 
        legend.title =  
          element_text(face = "bold")) 

 In the same fashion we can obtain a table with all the best values: 

best.table <-  ldply(seq_len(10), function(j) { 
  db <- temp[[j]] 
  db$length <- factor( 
    as.numeric( 
      substr(db$length,start=3,stop=5))) 
 
  means <- ddply(db, 
                 .variables = c('length','parameter'),  
                 'summarise', 
                 mean = mean(value)) 
 
  k <- resamp[[1]][[j]]@plot.out$db2[,c("parameter","value")] 
 
  best <- ldply(k$parameter, function(j)  { 
      db <- subset(means,  subset = (parameter == j)) 
      true.value <- k$value[k$parameter == j] 
      best <- db$length[which.min(abs(true.value-db$summarise))] 
      data.frame(length = as.numeric(best),parameter = j) 
}) 
  cbind(best,modelo = j) 
     
}) 
 
b.table <- sapply(unique(best.table$modelo), function(j){ 
  db <- subset(best.table,  subset = (modelo == j)) 
  sapply(levels(best.table$parameter), function(i) { 
    x <- db$length[db$parameter == i] 
    if(identical(x, numeric(0))) NA else x 
    }) 
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  }) 
 
best.table <- cbind(model = unique(best.table$modelo), t(b.table)) 
 
knitr::kable(best.table) 

 

HHJ 

Now, we proceed to the Hall, Horowitz and Jing (1995) algorithm, as the estimation process is prone to 

errors, specially with l = 1:3, I strongly advise saving the results. 

names(sims) <- paste("model", 1:10)             
 
loop <- models[models$phi != 0 ,] 

for (i in as.numeric(rownames(loop))[4:6]) {  
  chosen.model <- paste("model",i) 
  ord <- sims[[chosen.model]]@order 
  fam <- sims[[chosen.model]]@spec@family 
  db <- sims[[chosen.model]]@value[[1]] 
  db <- data.frame(yt = db$yt) 
  db$x <- 1 
   
  opt <- HHJ(db, dboot::bootf, ord = ord, 
            fam = fam, 
            export = c("garmaFit2"), 
            package = c("gamlss"), 
            nsteps = 100,  
            type.optm = 2, 
            type.sub.blocks = "complete", 
            n.try = 200,  
            seed = 1010)   
 
  save(opt, file = paste("HHJ_model100_",i,".RData" ,sep=""))  
} 
 
  lapply(as.numeric(rownames(loop)), function(j) { 
    load(paste("HHJ_model_",j,".RData", sep = "")) 
    opt 
  }) 
 
   
# now to the plot: 
   
  xx <- lapply(as.numeric(rownames(loop)), function(j) { 
    load(paste("HHJ_model_",j,".RData", sep = "")) 
    list(tab=table(opt$l.optm),ind=j)}) 
x <- data.frame() 
   
  for (i in (1:6))  { 
    x2 <- data.frame(n.optm=xx[[i]]$tab,model=factor(xx[[i]]$ind)) 
    x <- rbind(x,x2) 
    } 
  ) 
 
names(x) <- c('L.optim',"Freq.","model") 
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x$L.optim <- as.numeric(x$L.optim) 
 
indice <- setdiff(1:10,c(1,2,5,6,7,10)) 
indice <-(x$model!=indice[1])&(x$model!=indice[2])&(x$model!=indice[3])&(x$model!=indice[4]) 
 
library(ggplot2) 
ggplot(x[indice,], aes(x=L.optim, y = Freq.,shape=model,colour=model)) +  geom_point() +scal
e_shape_manual(values=c(0,1,2,3,4,6,8,15,16,17)) + 
scale_x_continuous(breaks=1:30)+scale_y_continuous(breaks=seq(from=0,to=100,by=10))+ 
ggtitle(bquote(atop("L optimal of Hall, Horowitz and Jing (1995), 100 iterations for"~phi))) 

 

LFL 

Now the Lahiri, Furukawa and Lee (2007) algorithm: 

for (i in as.numeric(rownames(loop))) { 
  chosen.model <- paste("model",i) 
  ord <- sims[[chosen.model]]@order 
  fam <- sims[[chosen.model]]@spec@family 
  db  <- sims[[chosen.model]]@value[[1]] 
 
  opt <- LFL(db,bootf,ord = ord, 
             fam = fam,  
             export = c("garmaFit2"), 
             package = c("gamlss"),  
             nsteps = 100,  
             type.optm = 2) 
 
  save(opt, file = paste("LFL_model_",i,".RData" ,sep=""))  
 
}    

 Given the saved files all there is to be done is to manipulate them and produce the plot: 

lst <- lapply(as.numeric(rownames(loop)), function (j)  { 
  load(paste("LFL_model_",j,".RData" ,sep="")) 
  opt$l.adj[2:101] 
  }) 
 
serie <- lapply(lst, function(j) { 
  len <- length(j[[1]]) 
  db <- matrix(unlist(j),nrow=100, byrow=T) 
  db[,2] 
  }) 
 
 
x <- lapply(serie, function(i) { 
  data.frame(L.optim = unique(i), Freq. =  
               sapply(unique(i), 
                      function(j) { 
                        x <- rep(0,100) 
                        x[rep(j,100)==i] <- 1 
                        sum(x) 
                        }) ) 
  }) 
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x <- lapply(1:6, function(j) 
  cbind(x[[j]],model = factor((1:10)[models$phi != 0][j]))) 
x <- ldply(x, function(j)j) 
 
ggplot(x, aes(x=L.optim, y = Freq., shape = model, colour = model)) +  
geom_point() +  
scale_shape_manual(values = c(0,1,2,3,4,6,8,15,16,17)) + 
scale_x_continuous(breaks = 1:30) + scale_y_continuous(breaks = seq(from = 0, to = 100, by  
=10)) +  
ggtitle(bquote(atop("L optimal of Lahiri, Furukawa and Lee (2007), 100 iterations for" ~ phi
))) 

 

REAL DATA ANALYSIS: 
 

The Poisson case: 
#Reading the data: 
db <- read.table("Series.txt") 
db <- db[1:grep("12/1999", db$data),] 
 
#declaring the time series variable: 
bankruptcy <- ts(data = db$falencia, start = 1980, frequency = 12) 
bankruptcy 
 
#Basic plots, ACF/PACF: 
plot(bankruptcy ,type="p",pch=19,col="red", main="The UCLA-LoPucki Bankruptcy Research Datab
ase",ylab="Number bankruptcy filings ") 
par(mfrow=c(2,1)) 
acf(bankruptcy) 
pacf(bankruptcy) 

 

The Poisson - GARMA(1,0) model: 
library(timeSeries) 
library(gamlss.util) 
 
fit <- garmaFit2(bankruptcy ~ intercept-1,  
                 data = data.frame(bankruptcy = db$falencia,  
                                   intercept = rep(1,nrow(db))), 
                 order = c(1,0), 
                 family = "PO", 
                 tail = 0, 
                 control = list(iter.max=1000)) 
plot(fit) 
 
summary(fit) 
 
residuo <- fit$residuals 
 
#residual plots: 
par(mfrow=c(3,1)) 
hist(residuo, freq=FALSE, xlab="Density", main="Residual", col="orange") 
curve(dnorm(x, mean=mean(residuo), sd=sd(residuo)), add=TRUE, col="darkblue", lwd=2) 
qqnorm(as.timeSeries(residuo), col="red", pch=19) 
qqline(as.timeSeries(residuo)) 
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plot(y=residuo,x=rownames(db), xlab="Time",ylab = "Residual",  col="red", pch=19, main="Resi
dual X Index ") 
 
par(mfrow=c(2,1)) 
acf(residuo) 
pacf(residuo) 

 

The Poisson - GARMA(2,0) model: 
set.seed(123) 
fit2 <- garmaFit2(bankruptcy ~ intercept-1,  
                  data = data.frame(bankruptcy = db$falencia,  
                                    intercept = rep(1,nrow(db))), 
                  order = c(2,0), 
                  family = "PO", 
                  tail = 0, 
                  control = list(iter.max=1000)) 
plot(fit2) 
summary(fit2) 
residuo <- fit2$residuals 
 
#residual plots: 
par(mfrow=c(3,1)) 
hist(residuo, freq=FALSE, xlab="Density", main="Residual", col="orange") 
curve(dnorm(x, mean=mean(residuo), sd=sd(residuo)), add=TRUE, col="darkblue", lwd=2) 
qqnorm(as.timeSeries(residuo), col="red",pch=19) 
qqline(as.timeSeries(residuo)) 
plot(y=residuo,x=rownames(db), xlab="Tempo",  col="red", pch=19, main="Residual X Index ") 
 
par(mfrow=c(2,1)) 
acf(residuo) 
pacf(residuo) 

 

Now the MBB: 
db2 <- data.frame(bankruptcy = db$falencia,  
                  intercept = rep(1,nrow(db))) 
 
# function to bootstrap 
bootf <- function (db) { 
   
  fit <- garmaFit2(bankruptcy~intercept-1,  
                   data = db, 
                   order = c(2,0), 
                   family = "PO", 
                   tail = 0,  
                   control = list(iter.max = 1000)) 
   
  return(fit$coef) 
   
  } 
 
nsims <- 1000 
lengths <- seq(from = 5, to = 160, by = 10) 
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MBB <- lapply(lengths, 
              function(j) tsboot2(db2,  
                                  statistic = bootf,  
                                  R = nsims,  
                                  l = j, 
                                  packages = "gamlss",  
                                  export = 'garmaFit2') 
              ) 
 
 
 
names(MBB) <- paste("l.", lengths, sep = "") 
 
resumo <- t(sapply(seq_len(length(lengths)), 
                   function(p)  
                     apply(MBB[[p]]$t, 
                           2, 
                           mean) 
                   ) 
            ) 
 
colnames(resumo) <- attr(MBB[[1]]$t0,"names") 
resumo <- as.data.frame(resumo) 
resumo$"length" <- lengths 
 
#function to bootstrap and return the Gaussian confidence interval: 
 
bootf2 <- function (db) { 
   
  fit7 <-  garmaFit2(bankruptcy ~ intercept-1,  
                     data = db, 
                     order = c(2,0), 
                     family = "PO", 
                     tail = 0, 
                     control = list(iter.max = 1000) 
                     ) 
   
  ci <- data.frame( lb = fit7$coef - sqrt(diag(fit7$vcov))*1.96, 
                    ub = fit7$coef + sqrt(diag(fit7$vcov))*1.96 
                    ) 
  return(ci) 
} 
 
set.seed(123)                              
norm.teste <- bootf2(db2) 
colnames(norm.teste) <- c("norm.LB","norm.UB") 
 
##bootstraped ci's: 
 
conf.interv <- function(data,block.length,par.names) { 
   
  dados <- foreach(j = seq_len(length(par.names))) %:% foreach(i = block.length, .combine = 
"rbind") %dopar% { 
     
    norm <- boot:::norm.ci(t0 = data[[i]]$t0[j],  
                           t = data[[i]]$t[j,]) 
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    basic <- boot:::basic.ci(t0 = data[[i]]$t0[j], 
                             t = data[[i]]$t[j,]) 
     
    perc <- boot:::perc.ci(t = data[[i]]$t[j,]) 
     
    dados <- data.frame(conf = norm[1],  
                        bias.cor.LB = norm[2], #LB = lower bound 
                        bias.cor.UB = norm[3], #UB = upper bound 
                        basic.LB = basic[4], 
                        basic.UB = basic[5], 
                        perc.LB = perc[4], 
                        perc.UB = perc[5] 
                        ) 
     
    rownames(dados) <- i 
    dados 
     
    } 
  names(dados) <- par.names 
  dados 
} 
 
intervals <- conf.interv(MBB, 
                              block.length = paste("l.",lengths,sep=""), 
                              par.names = names(coef(fit2))) 
 
##Manipulating for plotting: 
intervals <- lapply(seq_len(length(intervals)), function(j) { 
   
  temp <- rdply(length(lengths), 
                norm.teste[j,])[-1]  
  rownames(temp) <- NULL  
   
  db <- cbind(conf = intervals[[j]][,1], 
              temp, 
              intervals[[j]][,-1]) 
   
  db$length <- rownames(db) 
  db 
  } 
  ) 
 
names(intervals) <- names(coef(fit2)) 
 
temp <- ldply(intervals) 
names(temp) [1] <- "parameter" 
temp <- reshape2::melt(temp) 
xx <- reshape2::melt(resumo,id.vars = "length") 
names(xx)[2] <- "parameter" 
xx$variable <- "mean.value" 
 
x <- temp 
x <- reshape2::melt(x) 
 
##Plots: 
 
type.ci <- "bias.cor"  # 'norm', 'bias.cor', 'basic', 'perc' 



98 

 

temp <- cbind(xx, 
              LB = subset(x,  
                          variable == paste(type.ci,".LB", sep = ""))$value, 
              UB = subset(x, 
                          variable == paste(type.ci,".UB", sep = ""))$value)  
 
p2 <- ggplot(temp, aes(x = length, y = value, colour = parameter)) + 
  geom_point() + 
  geom_errorbar(aes(ymin = LB, ymax = UB, x = length)) + 
  facet_grid(parameter ~.,scale = "free") +  
  ylim(-1,2) +   
  ggtitle(paste("1000 MBB resamples: 
                Parameter mean values and 95% Bias Corrected CI  estimates")) +  
  theme(legend.position = "bottom", plot.title = element_text( hjust = 0.5 ))  
 
type.ci <- "norm"  # 'norm', 'bias.cor', 'basic', 'perc' 
temp <- cbind(xx, 
              LB = subset(x,  
                          variable == paste(type.ci,".LB", sep = ""))$value, 
              UB = subset(x, 
                        variable == paste(type.ci,".UB", sep = ""))$value)  
 
p1 <- ggplot(temp, aes(x = length, y = value, colour = parameter)) +  
  geom_point() + 
  geom_errorbar(aes(ymin = LB, ymax = UB, x = length))+ 
  facet_grid(parameter ~., scale="free") +  
  ylim(-1,2) +   
  ggtitle(paste("1000 MBB resamples: 
                Parameter mean values and 95% Gaussian CI  estimates")) +  
  theme(legend.position = "none", plot.title = element_text( hjust = 0.5 ))  
 
library(gridExtra)  
grid.arrange(p1,p2,ncol=1) 

 

HHJ: 
bootf3 <-function (data, ord, fam) { 
   
  fit7 <- garmaFit2(formula(bankruptcy ~ intercept - 1), 
                    data = data, 
                    order = ord, 
                    family = fam, 
                    tail = 0, 
                    control = list( iter.max = 1000 ) 
                    ) 
  return(fit7$coef)  
  } 
 
ord <-  c(2,0) 
fam <- "PO" 
 
algo2_bias <- HHJ(db2, 
                  bootf3, 
                  R = 100, 
                  nsteps = 10, 
                  ord = ord, 
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                  fam = fam, 
                  export = c("garmaFit2"),  
                  packages = c("gamlss"),  
                  m.init = 30)  
 
algo2_ci   <- HHJ(db2, 
                  bootf3, 
                  R = 100, 
                  nsteps = 10, 
                  ord = ord, 
                  fam = fam, 
                  export = c("garmaFit2"), 
                  packages = c("gamlss"), 
                  m.init = 30,  
                  type.est = 'two.sided.distribution')  
 
hhj       <-  HHJ(db2, 
                  bootf3, 
                  R = 100, 
                  nsteps = 10, 
                  ord = ord, 
                  fam = fam,  
                  export = c("garmaFit2"),  
                  packages = c("gamlss"),  
                  m.init = 30,  
                  type.est = "two.sided.distribution", 
                  type.optm = 1,                         ####optimizing for the intercept te
rm 
                  type.sub.blocks = "complete"           #### perform the HHJ algorithm 
                  )  

 

The Gamma case: 
#Reading the data: 
load("quotes.RData") 
tik <- quotes[["BPHA3.SA"]]  
y <-  pmax(diff(log(tik))^2,1e-4)*1e+4 
 
#declaring the time series variable: 
log.return <- as.ts(as.vector(y))  
 
#Basic plots, ACF/PACF: 
par(mfrow = c(2,1)) 
acf(log.return) 
pacf(log.return) 
 
#ARCH and Ljung-Box tests: 
 
lags <- c(1,4,8,12,24) 
alpha <- 0.1 
len <- c(30,60,90,180,360,504) 
 
foreach (n =  1, .packages = c("FinTS")) %:% foreach(lags = lags,.combine="rbind") %dopar%{ 
  a <- y 
  arch <- ArchTest(a, lags)$p.value <= alpha                                       ### H0: n
o Arch effect 
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  ljung.box <- Box.test(a^2, lag = lags,type = c("Ljung-Box"))$p.value <= alpha    ### H0: n
o autocorrelation different of zero  
  db <- data.frame(lag = lags, arch = arch, ljung.box = ljung.box) 
  rownames(db) <- NULL 
  db                                                                               ### data.
frame with H0 rejection = TRUE/FALSE for arch and ljung.box 
 } 

 

The Gamma - GARMA(1,0) model: 
source("garmagarchFit.R")        
library(gamlss.util) 
library(timeSeries) 
 
set.seed(1234) 
fit.garch <- garmagarchFit(yt ~ ., 
                           order = c(1,0), 
                           data = data.frame(yt = tail(y,180)), 
                           family = "GA")  
 
summary(fit.garch) 
 
residuo <- fit.garch$residuals 
 
#Model parameter estimation stability: 
 
library('doRNG') 
 
set.seed(123) 
mc.gamma <- foreach(i = seq_len(1000), .packages = c("gamlss.util")) %dorng% { 
   
  fit.gamgarch <- garmagarchFit(yt ~ ., 
                                order = c(1,0),  
                                data = data.frame(yt = tail(y,180)),  
                                family ="GA")  
  return(list(param = fit.gamgarch$coef, aic = fit.gamgarch$aic)) 
  } 
 
library(plyr) 
 
mc.gamma <- ldply(mc.gamma,.fun = function(j) c(j$param,j$aic)) 
names(mc.gamma)[4] <- "AIC" 
mc.gamma<- reshape2::melt(mc.gamma) 
 
p1 <- ggplot(subset(mc.gamma,variable ==  "beta.(Intercept)")) +  
  aes(value)+ 
  geom_density(alpha = 0.2) + 
  ggtitle(paste("Histogram 1000 fits", "beta.(Intercept)"))  
 
p2 <- ggplot(subset(mc.gamma,variable == "phi" ), aes(value)) +  
  geom_density(alpha = 0.2) + 
  ggtitle(paste("Histogram 1000 fits","phi")) +  
  theme(legend.position = "bottom", plot.title = element_text( hjust = 0.5 )) 
 
p3 <- ggplot(subset(mc.gamma,variable == "AIC"), aes(value, fill = model)) +  
  geom_density(alpha = 0.2) + 
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  ggtitle(paste("Histogram 1000 fits","AIC")) 
 
stats <- ddply(mc.gamma, 
               .variable=c('variable'), 
               "summarise",   
               Median = median(value),  
               Mean = mean(value),  
               Min= min(value),  
               Max=max(value)) 
 
stats <- reshape2::melt(stats) 
 
stats$value <- round(stats$value,4) 
 
#residual plots: 
 
par(mfrow = c(3,1)) 
hist(residuo, freq = FALSE, xlab = "Density", main = "Residual", col = "orange") 
curve(dnorm(x, mean = mean(residuo), sd = sd(residuo)), add = TRUE, col = "darkblue", lwd = 
2) 
qqnorm(as.timeSeries(residuo), col = "red", pch = 19) 
qqline(as.timeSeries(residuo)) 
plot(y = residuo, x = seq_len(length(residuo)), xlab = "Tempo",  col = "red", pch = 19, main
 = "Residual X Index") 
 
par(mfrow = c(2,1)) 
acf(residuo) 
pacf(residuo) 
 
#Arch Test & Ljung-Box for the residuals: 
 
foreach (n =  1, .packages = c("FinTS")) %:% foreach(lags = lags,.combine="rbind") %dopar%{ 
  a <- residuo 
  arch <- ArchTest(a, lags)$p.value <= alpha                                       ### H0: n
o Arch effect 
  ljung.box <- Box.test(a^2, lag = lags,type = c("Ljung-Box"))$p.value <= alpha    ### H0: n
o autocorrelation different of zero  
  db <- data.frame(lag = lags, arch = arch, ljung.box = ljung.box) 
  rownames(db) <- NULL 
  db                                                                               ### data.
frame with H0 rejection = TRUE/FALSE for arch and ljung.box 
 } 

 

Now the MBB: 
#function to bootstrap: 
bootf <- function (db) { 
  fit <- garmagarchFit(formula(yt ~ x - 1), 
                       data = db, 
                       order = c(1,0), 
                       family = "GA", 
                       tail = 0, 
                       control = list( iter.max = 1000) 
  ) 
  return(fit$coef) 
  } 
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db3 <- data.frame(yt = tail(y, 180)) 
db3$x <- 1 
 
nsims <- 1000 
 
lengths <- sort(c(12, seq( from = 5, to = 60, by = 5)))[-c(6,9,10,12,13)]   
 
set.seed(123) 
 
MBB <- lapply(lengths, function(j) { 
  print(j) 
   
  tsboot2(db3,  
          statistic = bootf,  
          R = nsims,  
          l = j, 
          packages = "gamlss",  
          export = 'garmagarchFit') 
  } 
  ) 
 
resumo <- t(sapply(seq_len(length(lengths)), function(p) apply(MBB[[p]]$t, 2, mean))) 
names(MBB) <- paste("l.",lengths, sep = "") 
 
tsboot2(db3, statistic = bootf, R = nsims, l = 10, packages = "gamlss", export = 'garmagarch
Fit') 
 
resumo <- t(sapply(seq_len(length(lengths)),function(p) apply(MBB[[p]]$t,2,mean))) 
colnames(resumo) <- attr(MBB[[1]]$t0,"names") 
resumo <- as.data.frame(resumo) 
resumo$"length" <- lengths 
names(resumo)[1] <- "Intercept" 
 
#function to bootstrap and return the Gaussian confidence interval: 
bootf2 <- function (db) { 
   
  fit <- garmagarchFit(formula( yt ~ x - 1), 
                       data = db, 
                       order = c(1,0), 
                       family = "GA", 
                       tail = 0, 
                       control = list( iter.max = 1000)) 
   
  ci <- data.frame( lb=fit$coef - sqrt(diag(fit$vcov))*1.96, 
                    ub=fit$coef + sqrt(diag(fit$vcov))*1.96) 
return(ci) 
} 
 
set.seed(123)                              
norm.teste <- bootf2(db3) 
colnames(norm.teste) <- c("norm.LB", "norm.UB") 
 
intervals <- conf.interv(MBB,  
                          block.length = paste("l.",lengths,sep=""), 
                          par.names = c(names(coef(fit.teste)), names(fit.teste$sigma))) 
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intervals <- lapply(seq_len(length(intervals)), function(j) { 
  temp <- rdply(length(lengths), norm.teste[j,])[-1]  
  rownames(temp) <- NULL  
  db <- cbind(conf = intervals[[j]][,1], temp,intervals[[j]][,-1]) 
  db$length <- rownames(db) 
  db 
}) 
names(intervals) <- c(names(coef(fit.garch)),names(fit.garch$sigma)) 
 
temp <- ldply(intervals) 
names(temp) [1] <- "parameter" 
temp <- reshape2::melt(temp) 
x <- temp 
x <- reshape2::melt(x) 
xx <- reshape2::melt(resumo, id.vars = "length") 
names(xx)[2] <- "parameter" 
xx$variable <- "mean.value" 
xx$tag <- "normal" 
xx$tag[xx$length == 12] <- "Algorithm 2" 
 
type.ci <- 'bias.cor'  # 'norm', 'bias.cor', 'basic', 'perc' 
temp <- cbind(xx,  
              LB = subset(x, variable == paste(type.ci, ".LB", sep=""))$value, 
              UB = subset(x, variable == paste(type.ci, ".UB", sep=""))$value)  
  
p2 <- ggplot(temp, aes(x = length, y = value, colour=parameter)) +  
  geom_point() + 
  geom_errorbar(aes(ymin = LB, ymax = UB, x = length))+ 
  facet_grid(parameter ~.,scale = "fixed") +  
ggtitle(paste("1000 MBB resamples: 
 Parameter mean values and 95% Bias Corrected CI  estimates")) +  
  theme(legend.position = "bottom", plot.title = element_text( hjust = 0.5))  
 
type.ci <- 'norm'  # 'norm', 'bias.cor', 'basic', 'perc' 
temp <- cbind(xx, 
              LB = subset(x, variable == paste(type.ci, ".LB", sep=""))$value, 
              UB = subset(x, variable == paste(type.ci, ".UB", sep=""))$value)  
  
p1 <- ggplot(temp, aes(x = length, y = value, colour=parameter)) +  
  geom_point() + 
  geom_errorbar(aes(ymin=LB, ymax=UB, x= length)) + 
  ylim(-3,5)+   
  facet_grid(parameter ~., scale = "fixed") +  
ggtitle(paste("1000 MBB resamples: 
 Parameter mean values and 95% Gaussian CI  estimates")) +  
  theme(legend.position = "none", plot.title  =element_text( hjust= 0.5))  
  
library(gridExtra)  
grid.arrange(p1,p2,ncol=1) 

 

HHJ: 
bootf3 <-function (data, ord, fam) { 
   
  fit <- garmagarchFit(formula( yt~ x - 1), 
                       data = data, 



104 

 

                       order = ord, 
                       family = fam, 
                       tail = 0, 
                       control = list( iter.max = 1000 )) 
 
    return(fit$coef)     
  } 
 
ord <-  c(1,0) 
fam <- "GA" 
 
algo2_bias <- HHJ(db3, 
                  bootf3, 
                  R = 100, 
                  nsteps = 10, 
                  ord = ord, 
                  fam = fam, 
                  export = c("garmagarchFit"),  
                  packages = c("gamlss"),  
                  m.init = 10)  
 
algo2_ci <- HHJ(db3, 
                bootf3, 
                R = 100, 
                nsteps = 10, 
                ord = ord, 
                fam = fam, 
                export = c("garmagarchFit"), 
                packages = c("gamlss"),  
                m.init = 10,  
                type.est = 'two.sided.distribution')  
 
hhj_intercept <- HHJ(db3, 
                     bootf3, 
                     R = 100, 
                     nsteps = 10, 
                     ord = ord, 
                     fam = fam, 
                     export = c("garmagarchFit"), 
                     packages = c("gamlss"), 
                     m.init = 10, 
                     type.est = "two.sided.distribution", 
                     type.optm = 1, #1,2,3 
                     type.sub.blocks = "complete")  

 

Final Step: 

As we have finished working with a parallel environment it is a good practice to finish the parallel 

workers if we will keep the current R session: 

doParallel::stopImplicitCluster() 

 

 


