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Resumo 

 

 
O Modelo Aditivo Generalizado (GAM) tem sido muito utilizado em estudos 

epidemiológicos, nos quais frequentemente a variável resposta é uma série temporal de 

números inteiros não negativos. No entanto, o modelo GAM possui a suposição de 

independência das observações, o que em geral não ocorre em séries temporais. Sendo 

assim, nessa dissertação propõe-se o Modelo Aditivo Generalizado Autorregressivo 

Média Móvel (GAM-ARMA), o qual trata-se de uma extensão do GAM com um 

componente autorregressivo média móvel. O GAM-ARMA é fundamentado no Modelo 

Linear Generalizado Autorregressivo Média Móvel (GLARMA), com alguns 

componentes lineares do GLARMA sendo substituídos por splines naturais. Neste 

trabalho são apresentadas as estimações tanto dos elementos paramétricos quanto dos 

componentes não-paramétricos do modelo. Com o objetivo de avaliar a performance do 

modelo proposto, foram realizados dois estudos de simulação que mostraram que 

embora as estimativas apresentem pouco vício e valores baixos de erro quadrático 

médio, os componentes autorregressivo e média móvel influenciam as estimativas. De 

forma geral, melhores estimativas foram encontradas quando esses componentes 

assumiram valores pequenos. A análise de dados reais avaliou o impacto dos poluentes 

atmosféricos na ocorrência de doença respiratória na região metropolitana de Belo 

Horizonte, Brasil. O modelo GAM-ARMA apresentou um ajuste melhor que o obtido 

através do GAM, amplamente utilizado e que não leva em consideração a 

autocorrelação das observações. 

Essa dissertação será apresentada em inglês no formato de artigo. 
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Abstract

The Generalized Additive Model (GAM) has been used in many epidemiological

studies where frequently the response variable is a nonnegative integer-valued time se-

ries. However, GAM assumes that the observations are independent, which is generally

not the case in time series. Therefore, in this paper we propose the Generalized Ad-

ditive Autoregressive Moving Average (GAM-ARMA) model, which is an extension of

GAM with an autoregressive moving average component. The GAM-ARMA is based on

the Generalized Linear Autoregressive Moving Average Model (GLARMA), with some

linear components of GLARMA being replaced by natural splines. Here we focused

on the estimation either for the parametric elements, as well for the non-parametric

components. To evaluate the performance of the GAM-ARMA we performed two sim-

ulation studies which showed that, although the estimates present small bias and mean

squared error, the autoregressive and moving average components influence the esti-

mation. In general, we found better estimates when these components assume small

values. In a real data analysis of the effects of air pollution on respiratory disease in
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the metropolitan area of Belo Horizonte, Brazil, we observed that the proposed model

presented a better fit when compared to the widely used GAM approach, that do not

take into account the autocorrelation of the data.

Keywords: Autocorrelation, ARIMA models, Semiparametric Models, Respiratory dis-

eases, Principal component analysis, Relative Risk.

1. Introduction

Many epidemiological studies have been carried out to investigate the impact of atmospheric

pollution and meteorological conditions on human health. Pope et al. (1995), Dockery and

Pope (1996), Villeneuve et al. (2003) and other authors indicated a positive association

between mortality and particulate matter (PM). Ostro et al. (1999), Schwartz (2000) and

Chen et al. (2010) found a significant association between daily pollutant concentration levels

and hospital admission for respiratory and cardiovascular diseases. Besides that, McGeehin

and Mirabelli (2001), Ostro et al. (2009) and Hertel et al. (2009) analyzed temperature

effects on mortality in USA and Germany. Studies such as these provide support for health

departments in resource allocation and stakeholders in prevention.

Epidemiological data are frequently treated as time series of counts because they record

the relative frequency of certain events that occur in successive time intervals and have, as an

important characteristic, the dependency between observations. For modelling this type of

data it is necessary to use discrete probability distributions for non-negative integer numbers

as Poisson or Negative Binomial distributions.

Nelder and Wedderburn (1972) proposed the Generalized Linear Models (GLM), that

are an extension of the normal linear models. The basic idea consists in increasing the

possibilities for the distribution of the response variable. In this case, the response variable

can assume distributions belonging to the exponential family, e.g. Normal, Poisson, Gamma,

Negative Binomial, etc. We can also have more flexibility to the relation between the mean of

the dependent variable (µ) and the linear predictor (η), which can assume any monotonous
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non-linear function.

Nevertheless, the GLM are not able to capture time dependency structure, which are

a characteristic of time series. The Autoregressive Moving Average (ARMA) model, pro-

posed by Box and Jenkins (1976), is one of the most used procedures for modelling time

series. However, the ARMA models have the assumption that the series follows the Normal

distribution, which is not the case of count data.

New methodologies were then proposed to model time series of counts. Davis et al. (2003)

proposed the Generalized Linear Autoregressive Moving Average (GLARMA) model, that

relates the GLM and ARMA models. This methodology adds an autoregressive moving aver-

age structure to the GLM, thus being able to model time series belonging to the exponential

family.

Other methods for modelling non-gaussian series also were developed. Benjamin et al.

(2003) proposed the Generalized Autoregressive Moving Average (GARMA), another ex-

tension of GLM models, that presents a different autoregressive structure. Mckenzie(1985)

and Al-Osh and Alzaid (1987) introduced the Integer-valued autoregressive (INAR) model.

Heinem (2003) proposed the ACP model class (Autoregressive Conditional Poisson) for

counting data, able to deal with time dependency and overdispersion. Harvey and Fer-

nandes (1989) used state-space models with conjugate prior distributions, where the counts

are modelled as a Poisson distribution whose mean is obtained from a gamma distribution.

However, the relation between the response variable and the covariates can be non-linear,

and the previous models were developed over the assumption of linearity. In this case, we have

to use some flexible techniques for modelling non-linear time series. Many authors have been

using the Generalized Additive Model (GAM) with Poisson marginal distribution in time

series to quantify the non-linear association between the effects of air pollution on health

and covariates, such as the concentration of air pollutants and meteorological conditions.

Proposed by Hastie and Tibishirani (1990), the GAM has been used in time series in many

recent studies. Schwartz (2000) analyzed the effect of air pollution in the number of deaths
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caused by diseases related to air quality. Aldrin and Haff (2005) employed a GAM in order

to model particulate matter concentrations, PM10, PM2.5 and PM10−PM2.5 (particle sizes

between 2.5 and 10 µm), based on meteorological predictors. Belusic et al. (2015) used GAM

to study the effects of pollutant concentrations for locations across the urban area of Zagreb,

Croatia. Despite its widespread use, care is required when the GAM is used in time series.

Souza et al. (2018) performed a literature review describing the main problems caused by

application of the GAM model in data with serial correlation, once GAM assumes that errors

are mutually independent. Besides that, many studies in the epidemiologic area have been

using the GAM on evaluating the effects associated with a single pollutant on human health,

because the air pollutants have a high correlation among them (the paper of Dionisio et al.

(2016) discuss some challenges of multipollutant exposure).

In this direction, Yang et al. (2012) proposed the Generalized Additive model with Au-

toregressive terms (GAMAR), a methodology for modelling data with time dependence, and

following some distributions belonging to the exponential family. The GAMAR model is a

GAM with autoregressive structure and with the moving average terms of ARMA method-

ology omitted. GAMAR is derived from the GARMA model and is a non-parametric model,

once all linear terms are replaced by smooth functions.

In the same way of GAMAR, we propose in this article the Generalized Additive Au-

toregressive Moving Average (GAM-ARMA) model. The GAM-ARMA is based on the

GLARMA model, proposed by Davis et al. (2003), allowing the fitting of semiparametric

models, which includes both linear and nonlinear components in the mean of the process.

The gain of GAM-ARMA over GAMAR is the addition of a moving average component,

besides the autoregressive term, which makes the model more flexible to capture the auto-

correlation structure of the data. Moreover, with GAM-ARMA we have the possibility to

adjust semiparametric models, instead of only nonlinear components, such as in the GAMAR

approach. The proposed model is presented here focusing on the estimation procedure, ei-

ther for the parametric counterpart, as well as for the non-parametric components, which are
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estimated through some smoothed functions, such as splines. We also derive some properties

of the GAM-ARMA model, concerning stationarity conditions.

With the purpose of evaluating the performance of the proposed model for small sample

size series, we have performed some simulation studies in order to access the accuracy of pa-

rameter estimation. The Monte Carlo studies included models with and without parametric

terms in the covariates, from time series generated under the Poisson distribution. We have

also analyzed a real time series and compared the fitting with models that do not take into

account the autocorrelation of the data. The example includes the fit of GAM-ARMA to

evaluate the impact of air pollutants and meteorological variables on the number of Chronic

obstructive pulmonary disease cases in the metropolitan area of Belo Horizonte, Brazil.

The paper is organized as follows. Section 2 presents the GLARMA in some detail and

the proposed GAM-ARMA model. In Section 3 we show some simulation studies and in

Section 4 we present the analysis of a real data set. Finally, section 5 concludes the work.

2. Methodology

In this section we present the GAM-ARMA model, which is based on the work of Davis

et al. (2003), who has proposed a procedure for modeling data with time dependence and

following distributions belonging to the exponential family. For a better understanding of

the proposed model, we will first present the GLARMA model and then the GAM-ARMA

model.

2.1 Generalized Linear Autoregressive Moving Average Model (GLARMA)

The class of GLARMA models was proposed by Shephard (1995) and generalized by Davis

et al. (2003). This methodology presents an alternative to model series with the structure

of time dependence, being an extension of GLM.

Let yt be the observations and Ft−1 = (y(t−1), x(t)), where y(t−1) is the past of the count
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process and x(t) is the past and present of the regressor variables. The conditional distribution

of yt|Ft−1 can follow any distribution belonging to the exponential family (EF):

yt|Ft−1 ∼ EF (µt),

where µt is the mean of the process.

The linear predictor is given by

ηt = g(µt) = xTt β + Zt = xTt β +
∞∑
i=1

τiεt−i, (1)

where g(.) is a link function, x is a vector of r explanatory variables, β = (β1, ..., βr) is a

vector of r parameters and τi are the parameters of the error component εt. The εt term

allows the modelling of the autocorrelation structure present in the time series.

The component Zt =
∑∞

i=1 τiεt−i can be specified in terms of a finite number of parameters

using the methodology of Box and Jenkins (1976),

γ(B) =
∞∑
i=1

τiB
i =

θ(B)

φ(B)
− 1, (2)

where B is the backshift operator of the form Bk(Zt) = Zt−k. The autoregressive and moving

average components φ(B) and θ(B) are polynomials that have their roots outside the unit

circle. This model is known as ARMA(p,q). If q = 0 we have an AR(p). Thus, based on

Equation (2), Zt can be written as

Zt = φ1(Zt−1 + εt−1) + ...+ φp(Zt−p + εt−p) + θ1εt−1 + ...+ θqεt−q (3)

where εt is defined as:

εt =
(yt − µt)

µλt
, (4)

with λ ∈ (0, 1].

One of the most frequent suppositions in relation to the time series is stationarity, that
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is, it develops randomly in time around a constant mean, reflecting some form of stable

equilibrium (Moretin and Toloi, 1985). Davis et al. (2003) proved some properties of the

GLARMA model, such as stationarity and ergodicity. They presented only the case of a Pois-

son distribution and estimated the parameters through the maximum likelihood approach.

The authors concluded that the stationarity of the process ηt depends on parameter λ. For

λ = 0.5 there exists a stationary distribution for ηt even if µt is not strictly stationarity.

2.2 Generalized Additive Autoregressive Moving Average Model

(GAM-ARMA)

In this section, we extend the results of Davis et al. (2003) in order to allow the modelling not

only of linear terms but also the possibility to include covariates with non-linear correlation

with the response variable.

Thus, instead of GLM, we will use the GAM methodology, proposed by Hastie and

Tibishirani (1990), combined with the ARMA model, proposed by Box and Jenkins (1976).

This model will be denominated GAM-ARMA and the advantage of this proposed method-

ology is the possibility to adjust semiparametric and non-parametric models to the data,

capturing either linear and non-linear relationships, and obtaining better estimates.

As in the GLARMA model, the observations, yt given the past information, possess any

distribution belonging to the exponential family,

yt|Ft−1 ∼ EF (µt),

where µt is the mean of the process.

Following the idea of GLARMA models, the predictor in a GAM-ARMA(p,q) model is

written with the addition of an autoregressive moving average structure of order p and q to

the general form of a GAM predictor. Considering semiparametric form, the predictor ηt

combines k variables (x1, ..., xk) related linearly with the response variable and r variables

(w1, ..., wr) related with the response variable through some smooth function, in the following
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way:

ηt = β0 + β1xt,1 + ...+ βkxt,k + s1(wt,1) + ...+ sr(wt,r) +
∞∑
i=1

τiεt−i, (5)

where s is a smooth function.

The structure of component
∑∞

i=1 τiεt−i is defined similarly to the GLARMA model in

(3) and (4).

There are several approaches in the literature to estimate the functions s. Recent studies

have been using reduced rank approaches due to the low computational cost and facilities to

obtain good estimators of the smoothing terms. In his book, Wood (2006) presents a review

about the estimation of these terms through the GAM methodology proposed by Hastie and

Tibishirani (1990), and some approaches as Thin Plate Regression Splines (Wood, 2003),

B-splines or Basis Splines (De Boor, 1978; Dierckx, 1993), among others.

In this work we use B-spline curves given their simplicity to obtain flexible smoothing.

B-splines are constructed from polynomial pieces, joined at control points called knots. By

definition the B-spline Bj,d depends on the knots tj, ..., tj+1+d, where d is the order of poly-

nomial piece. If the knot vector is given by t = (tj)
m+d+1
j=1 for some positive integer number

m, we can form m B-splines {Bj,d}mj=1 of degree d associated with this knot vector. A linear

combination of B-splines is called spline function and is given by

s =
m∑
j=1

αjBj,d, (6)

where α = (αj)
m
j=1 are m real numbers called the B-spline coefficients or control points of s.

For more properties, see De Boor (1978).

The most common spline is a cubic spline because it is of low degree, fairly smooth

assuming continuity restrictions up to the second derivative, and yet has the power to incor-

porate several different trends in data simply by increasing the number of knots. A function

s is called cubic spline on [a, b], if s is a cubic polynomial si in each interval [wt, wt+1]. We

use in this paper the natural cubic splines, which is a restriction of cubic splines. In this
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case, the polynomials before the first knot and after the last knot are modeled through linear

functions, which means the second derivative at the two end points are zero. In terms of

basis splines, it means that B-splines are constructed from cubic polynomials (d = 3) with

restrictions before and after of the knots at the ends.

General accounts about splines can be found in the books by Hastie et al. (2008), and

Ahlberg et al. (1967). Wegman and Wright (1983) wrote an important paper about splines

in Statistics.

Choosing the optimal number and positions of knots in splines approach, through B-

splines, is a complex task. Eilers and Marx (1996) do a review about the main challenges

involving the choose of knots. Too many knots lead to the overfitting problem, while few

knots lead to the underfitting of data. Friedman and Silverman (1989), and Kooperberg and

Stone (1991,1992) proposed automatic methods to optimizing the number and positions of

knots, which in general is a difficult numerical problem. Some authors as O’Sullivan (1986,

1988) proposed some penalty to prevent the overfitting, and Eilers and Marx (1986) proposed

a simplify and generalized penalty based on O’Sullivan’s work called P-spline. In general,

the quality of the approach depends more on the number of knots, than their positions.

Popularly, a good method is the use of tertiles, quartiles, and percentiles. Harrell (2004)

recommends that the number of knots is decided based on the sample size available. For a

sample size less than 100, three or four knots usually generate good fitting and a balanced

model in relation to flexibility and loss of accuracy. For big samples, five knots is a good

starting point. We can use the Akaike’s information criterion (AIC), see Akaike (1973), to

chose the number of knots, which is defined as:

AIC = −2ln(L) + 2p, (7)

where p is the number of parameters in the model, and L is the likelihood function of the

model.

So the parameter vector of GAM-ARMA is defined as δ = (αT , βT , τT )T , with τ =
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(φT , θT )T , and the parameter estimation is realized jointly by maximizing the likelihood

function by numerical methods.

Let f(yt|Ft−1) be the conditional density of Yt given Ft−1, where f is any distribution in

the exponential family. Thus the log-likelihood function can be written as

l(δ, yt) =
∑n

t=1 logf(yt|Ft−1).

To facilitate the understanding, the dependence of εt and δ are suppressed. The max-

imization of the log-likelihood is performed by Newton’s method, and the initialization is

performed with zero initial values for all parameters, including the autoregressive and moving

average terms. Most of the times, the convergence occurs approximately within 10 iterations.

For inference in the GAM-ARMA model, the central limit theorem holds, so the asymp-

totic distribution of the maximum likelihood estimators is

δ̂ ≈ N(δ, Ω̂), (8)

where the approximate covariance matrix of the estimators is:

Ω̂ = −(
∂2L(δ̂)

∂δ∂δT
)−1. (9)

As the GAM-ARMA is based on the GLARMA model, more details about stationarity,

properties and inference can be found in Davis et al. (2003).

For illustration, we will use the case where the count time series follows the Poisson

distribution. The GAM-ARMA Poisson is defined as

yt|Ft−1 ∼ Poisson(µt).

Omitting terms which do not involve parameters, the log-likelihood for the Poisson dis-

tribution is

l(δ, y) =
n∑
t=1

(ytηt − eηt), (10)
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where

ηt = ln(µt) = β0 +
k∑
j=1

βjxt,j +
r∑
j=1

sj(wt,j) + Zt, (11)

with Zt defined in (3) and

εt =
yt − µt
µλt

= (yt − eηt)e−ληt . (12)

If εv = 0 and Yv = 0 for v ≤ 0, then εt have mean

E(εt|F εt−1) = 0, (13)

variance given by

V ar(εt) = E(ε2t ) = E[E(ε2t |µt)] =

E[µ−2λt E[((yt − µt)2|µt]] = E(µ−2λt µt) = E(µ1−2λ), t ≥ 1

(14)

and covariance

Cov(εt, εv) = 0, t 6= v. (15)

From the properties above, the mean and variance for ηt in the Poisson GAM-ARMA are

E(ηt) = β0 +
k∑
j=1

βjxt,j +
r∑
j=1

sj(wt,j), (16)

and

V ar(ηt) = V ar[β0 +
k∑
j=1

βjxt,j +
r∑
j=1

sj(wt,j)] + V ar[
∞∑
i=1

τiεt−i] =
∞∑
i=1

τ 2i E(µ1−2λ
t ), (17)

and for v = t+ h, h > 0,

Cov(ηt, ηt+h) =
∞∑
i=1

τiτi+hE(µ1−2λ
t−i ). (18)
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If λ = 0.5, we have V ar(εt) = 1 and the covariances are not dependent of time t. So we

have a stationary distribution for ηt, even if µt is not strictly stationary.

In relation to the analysis of the goodness-of-fit of the GAM-ARMA, this can be per-

formed through the Akaike Information Criterion (AIC), defined in (7), and by the Bayesian

Information Criterion (BIC), which is most used in time series models and is defined as

BIC = −2ln(L) + kln(n), (19)

where L is the likelihood function of the model, k is the number of parameters to be estimated

and n is the number of observations or the sample size.

3. Simulation study

In order to evaluate the performance of the proposed model with respect to the parameters

estimation, some simulation studies were developed. As the Poisson distribution is the most

used in practical examples, the simulation studies are considering just this distribution. The

first simulation study considers the Poisson GAM-ARMA model with only non-parametric

components in the covariates. In the second study, we evaluate semiparametric models, with

parametric and non-parametric terms in the covariates, but only with autoregressive terms.

The R codes for simulations are included in the Appendix.

3.1 Non-parametric Models

For this simulation, we generated 1000 samples of size 100. The model is given by:

Yt|Ft−1 ∼ Poisson(µt)

ηt = ln(µt) = β0 + ns(wt, 5) +
∞∑
i=1

γiεt−i,

where, ns(wt, 5) =
5∑
i=1

αiBi(wt),

(20)
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with ns being a natural cubic spline, and wt is the series of minimum temperature in Vitoria,

Brazil, between April 10, 2005 and July 19, 2005. The data set is available on the IEMA

website: https://iema.es.gov.br/qualidadedoar/dadosdemonitoramento/automatica.

Model 1: Autoregressive Case

In this case, the Zt =
∑∞

i=1 γiεt−i term is an AR(1), where:

Zt = φ[Zt−1 + (Yt−1 − eηt−1)e−ληt−1 ]. (21)

The values of φ were fixed at 0.1, 0.4, and 0.6. The parameter λ assumed the value 0.5,

based on the conclusions about stationarity in Section 2.2 and due to distinct values implied

in different estimates. The terms Bi, i = 1, ..., 5 composed the B-spline basis for the natural

cubic spline. The parameters used in this simulation were

β0 = 0.8, α1 = 0.1, α2 = −0.2, α3 = 0.5, α4 = −1.0, α5 = 0.8

Table 1 shows the mean of parameter estimates in 1000 replicates of Model 1. The values

in parenthesis are the Mean Squared Error.

Table 1: Results of parameter estimates in 1000 replicates of size 100 of Model 1

φ β0 α1 α2 α3 α4 α5

φ = 0.1
0.0894

(0.0070)
0.7506

(0.2030)
0.1465

(0.2208)
-0.1794
(0.3245)

0.5465
(0.1961)

-0.9709
(1.1107)

0.8078
(0.1506)

φ = 0.4
0.3985

(0.0048)
0.6878

(0.1974)
0.1897

(0.1891)
-0.1002
(0.2739)

0.5461
(0.1591)

-0.8822
(0.8773)

0.8314
(0.1314)

φ = 0.6
0.5161

(0.0149)
0.6706

(0.2599)
0.2579

(0.2774)
0.0007

(0.3628)
0.8259

(0.3544)
-0.6242
(1.1667)

0.7959
(0.1982)

In general, the estimates were close to the real values, but the worst estimates, and

consequently the biggest MSE, were obtained when φ = 0.6. So, we had better estimates

when φ assumed smaller values. This occurred for the estimates of φ, as well as to the

components of the basis expansion.
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Figure 1: Histograms of parameters estimates β0 and φ - Model 1

In Figure 1 we have the histograms of simulations for parameters β0 and φ relative to

the Model 1. For parameter β0, the parameter distribution was approximately asymmetric

in all cases and centered around 0.8, the true value of this parameter. Already regarding φ,

the distribution was approximately symmetric around the true value when φ was equal to

0.1 and 0.4. However, to φ equal 0.6 the distribution was not centered around the true value

of the parameter and was relatively asymmetric.

Model 2: Moving Average Case

In the Model 2, the Zt term is a MA(1), where

Zt = θ(Yt−1 − eηt−1)e−ληt−1 . (22)

The parameter θ was fixed at values 0.1, 0.4, and 0.6, and λ assumed the value 0.5.

The same parameters were used for the basis:
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β0 = 0.8, α1 = 0.1, α2 = −0.2, α3 = 0.5, α4 = −1.0, α5 = 0.8

Table 2: Results of parameter estimates in 1000 replicates of size 100 of Model 2

θ β0 α1 α2 α3 α4 α5

θ = 0.1
0.0935

(0.0077)
0.7357

(0.2221)
0.1520

(0.2367)
-0.1656
(0.3437)

0.5639
(0.1927)

-0.9208
(1.2603)

0.8086
(0.1513)

θ = 0.4
0.4281

(0.0052)
0.7123

(0.2805)
0.1675

(0.2689)
-0.1335
(0.3357)

0.5438
(0.1723)

-0.8659
(1.2629)

0.8056
(0.1508)

θ = 0.6
0.6260

(0.0062)
0.7419

(0.1408)
0.1176

(0.1204)
-0.1752
(0.1667)

0.5095
(0.0889)

-0.8776
(0.5815)

0.7536
(0.1042)

From Table 2, we can observe that the estimates are close to the real values, for all values

of θ. Differently than observed in the autoregressive case, the estimates do not become worse

as θ increases.

Figure 2: Histograms of parameters estimates β0 and θ - Model 2

Figure 2 shows the histograms of the simulations for the parameter θ in Model 2. Regard-

ing β0, the parameter distribution was asymmetric in all cases and centered approximately

in 0.8, the true value of this parameter. For parameter θ equal to 0.1 and 0.4 the distribution
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was approximately symmetric around the true value of this parameter, while for θ = 0.6 we

observed some asymmetry in this parameter distribution.

3.2 Semiparametric Models

In this Monte Carlo study, the model was evaluated with parametric and non-parametric

terms in the covariates. Again we simulated 1000 samples of size 100.

Model 3 was generated as:

Yt|Ft−1 ∼ Poisson(µt)

ln(µt) = β0 + β1x1,t + β2x2,t + ns(wt, 3) +
∞∑
i=1

γiεt−i

where, ns(wt, 3) =
3∑
i=1

αiBi(wt),

(23)

In the Model 3, the terms Bi, i = 1, 2, 3 composed the B-spline basis for natural cubic

spline. The term wt was the same of the non-parametric models, and the x1,t and x2,t

were simulated time series. The series x1,t was generated from an ARMA(1,1) process with

φ = 0.42 and θ = 0.13, and x2,t was an ARMA(1,2), with φ = 0.30, θ1 = −0.76 and

θ2 = −0.17. The autoregressive term was the same as in (21), evaluated when φ assumed

values equal to 0.1, 0.4 and 0.6. The parameter λ was 0.5, and the parameters α and β were

β0 = 0.8, β1 = 0.1, β2 = −0.2, α1 = 0.5, α2 = −1.0, α3 = 0.8.

In Table 3, the results of parameter estimation were close to the original values of the

parameters. In general, the values of MSE were small, but for smaller values of φ we found

better estimates, however the estimates are worse (MSE larger) when φ = 0.6.
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Table 3: Results of parameter estimates in 1000 replicates of size 100 of Model 3

φ β0 β1 β2 α1 α2 α3

φ = 0.1
0.0845

(0.0074)
0.7637

(0.1795)
0.0986

(0.0078)
-0.1953
(0.0036)

0.5455
(0.1264)

-0.9812
(0.9071)

0.8134
(0.0917)

φ = 0.4
0.3927

(0.0055)
0.6907

(0.1852)
0.0945

(0.0067)
-0.1956
(0.0028)

0.5332
(0.1236)

-0.8401
(0.7623)

0.9035
(0.0985)

φ = 0.6
0.5311

(0.0128)
0.7078

(0.2084)
0.0362

(0.0145)
-0.2443
(0.0049)

0.2491
(0.2183)

-0.6168
(0.9690)

0.9289
(0.1587)

Figure 3: Histograms of parameters estimates β’s and φ - Model 3

In Figure 3 we have the histograms of the simulations for parameters φ and β’s relative

to the Model 3. The parameter distribution of φ was approximately symmetric around the

true value when φ was equal 0.1 and 0.4. For φ equal to 0.6 the parameter distribution

was asymmetric. Regarding β0, the parameter distribution was asymmetric in all cases and

centered around 0.8, the true value of this parameter. Already regarding β1 and β2, we
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observed distributions approximately symmetric around the true values of the parameters,

even for higher values of φ.

We present histograms with the empirical distribution of the other estimated parameters

of the previous models in the Appendix.

4. Real Data Analysis

In this section, the GAM-ARMA was applied to monthly numbers of Chronic obstructive

pulmonary disease (COPD) cases, popularly known as acute bronchitis, in the metropolitan

area of Belo Horizonte, Brazil, between the years of 2007 and 2013 (n = 84). According to

DATASUS, the department of information technology of the Brazilian public health system,

each hour three Brazilian citizens die as a result of this disease. The objective of this

analysis is to evaluate the association among the concentration of atmospheric pollutants

and meteorological conditions with the occurrence of Chronic obstructive pulmonary disease

in Belo Horizonte.

Studies concerning air pollution in Belo Horizonte are relatively rare, and even more

relating pollutant series with respiratory diseases. Information about the concentration of

pollutants in this region is very limited, with all the series presenting a large number of

missing observations. Thus, we had to perform some data imputation before proceeding

to the analysis. Therefore this work brings not only a theoretical, but also a practical

contribution to the study of this important problem that affects the health of inhabitants of

the metropolitan area of Belo Horizonte.
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Figure 4: Time series of the number of COPD cases and concetrations of air pollutants in
the metropolitan area of Belo Horizonte, Brazil

Figure 4 presents the time series of COPD cases between 2007 and 2013 and the time series

of the concentrations of the following pollutants in the metropolitan area of Belo Horizonte:

Particulate Matter (PM10), Nitrogen Monoxide (NO), Nitrogen Dioxide (NO2), Carbon

Monoxide (CO) and Ozone (O3). Besides that, meteorological information, as temperature

and relative humidity of the air, were investigated. The information about the concentration

of pollutants and meteorological information was collected from State Environment and

Water Resources Institute (IEMA) and the number of cases of COPD were collected from

DATASUS (http://datasus.saude.gov.br/).

Some descriptive statistics are in Table 4. The average number of COPD cases are 54.93

monthly, with a standard deviation of 42.3. Moreover, the minimum number of monthly cases

is 10.00 and the maximum 196.00. The average minimum temperature (Tmin) is 17.89◦C,

with a standard deviation of 1.90◦C. The average relative humidity (RH) is 61.60%, with a

standard deviation of 7.48%.
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Table 4: Descriptive statistics for the air pollutants concentrations on Chronic obstructive
pulmonary cases

Percentile
Mean Standard Deviation Minimum 25 50 75 Maximum

CO 0.44 0.19 0.02 0.35 0.41 0.51 1.50
PM10 30.97 9.51 16.16 25.21 29.88 35.32 70.83
NO 12.97 5.80 0.57 9.05 12.01 15.52 33.11
NO2 16.59 4.18 0.52 13.74 16.07 19.76 27.90
O3 15.038 5.33 5.294 11.49 13.77 17.44 32.10
Tmin 17.89 1.90 13.87 16.43 18.27 19.62 21.15
RH 61.60 7.48 45.83 56.17 61.60 67.55 77.63

Cases 54.93 42.3 10.00 27.00 41.00 66.00 196.00

In Table 5 we present the correlation matrix among air pollutants and the number of

Chronic obstructive pulmonary cases. We can observe a significant correlation among some

air pollutants, and between air pollutants and meteorological variables. The pollutants O3

and NO presented the highest correlation with the response variable COPD.

Table 5: Correlation among pollutants and Chronic
obstructive pulmonary disease cases

COPD CO PM10 NO NO2 O3

COPD 1.00
CO 0.03 1.00
PM10 0.08 0.15 1.00
NO 0.30* 0.10 0.47 1.00
NO2 -0.03 0.15 0.29 0.52 1.00
O3 -0.35* 0.07 0.37 -0.19 0.24 1.00

* Correlations with COPD significant at a 5% level

4.1 Adjustment with a single pollutant

As discussed in the introduction, most of the works that evaluates the impact of air pollutants

on human health employ the GAM model, but with only a single pollutant, once the air

pollutants have time dependence and also posses interdependence among themselves (see
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the papers of Pope et al. (1995), Schwartz (2000) and Bell et al. (2006)). To show the gain

of GAM-ARMA over the GAM model in this case, we first adjusted these two procedures

considering only the nitrogen monoxide (NO) as a covariate, once this pollutant posses a

positive and significant correlation with the response variable (COPD). In the adjustment

of all models in this section, the minimum temperature (Temp) and the relative humidity

(RH) of the air were considered as having a non-linear relation with COPD. We observed an

annual and semi-annual seasonality in the response variable, which was incorporated in the

model with sine and cosine functions. The trend was also incorporated into the modelling.

The linear preditor of GAM-ARMA Poisson adjusted with a single pollutant was defined

as

ηt = β1 ∗NOt + β2 ∗ sen12t + β3 ∗ cos12t + β4 ∗ sen6t+

β5 ∗ cos6t + β6 ∗ trendt + ns(Tempt, 3) + ns(RHt, 3) +
∞∑
i=1

τiεt−i,
(24)

and the GAM model follow the same structure in (24) without
∑∞

i=1 τiεt−i, the autoregressive

moving average component. The chose of the optimal number of knots was based on the

sample size, for this, as recommended in Section 2.2, we tested adjustments with three and

four knots, and comparing the AIC the best model was obtained with just three knots.

We first present the estimates of the fitted GAM model (Table 6), where all coefficients

were significant (p-value < 0.05). The criterion to compare the goodness-of-fit was the BIC,

and for this model the value obtained was 1297.514.
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Table 6: Results of the GAM model to estimate
the effect of NO concentration on the number of
Chronic obstructive pulmonary disease cases

Variable Estimates Standard Error p-value
NO 0.0545 0.0032 0.0000

sen12 0.2470 0.0415 0.0000
cos12 -0.5562 0.0611 0.0000
sen6 -0.3137 0.0306 0.0000
cos6 -0.2522 0.0326 0.0000
trend 0.0096 0.0007 0.0000

Figure 5 shows the ACF and PACF graphs for the residuals in the GAM model. The white

noise was not obtained, once there are peaks outside the confidence bands in the initial lags.

This behavior indicates the need for an adjustment considering the autoregressive structure

of the series. For this, we adjusted the proposed model GAM-ARMA.

Figure 5: ACF and PACF of residuals - GAM model

Applying the GAM-ARMA methodology, the best fit was obtained with a GAM-AR(1),

which means the coefficient of order 1 in the autoregressive polynomial was significant. Table

7 shows the estimates of the adjusted model, with all coefficients significant (p-value < 0.05).
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The BIC obtained was 1155.059, which is a lower value than those obtained with the GAM

model with only a single covariate (NO).

The ACF and PACF plots in Figure 6 reveal a good adjustment of GAM-AR(1) model,

once we obtained white noise residuals, with a smaller BIC.

Figure 6: ACF and PACF of residuals - GAM-AR(1) model

Table 7: Results of GAM-AR(1) model to estimate
the effect of NO concentration on the number of
Chronic obstructive pulmonary disease cases

Variable Estimates Standard Error p-value
NO 0.0515 0.0029 0.0000

sen12 0.3271 0.0499 0.0000
cos12 -0.5221 0.0615 0.0000
cos6 -0.2324 0.0362 0.0000
trend 0.0127 0.0010 0.0000
φ1 0.0700 0.0053 0.0000

The comparison among the adjustments of GAM and GAM-AR(1) models in Figure 7

revealed that the fitting of GAM-AR(1) described better the number of COPD cases.
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Figure 7: Comparing the fit of GAM-AR(1) and GAM models

We also calculate the relative risk (RR) for the NO pollutant, as this is an important

information for the regulatory agencies to measure the impact of this component in the

population health. Table 8 presents the comparison of the relative risks and 95% intervals for

interquartile variation in the NO pollutant among the GAM and GAM-AR(1) models. The

estimate of RR per interquartile variation (ξ) in the pollutant concentrations Xj, j = 1, ..., k,

is

R̂RXj
(ξ) = exp(β̂jξ), (25)

where β̂j is the estimated coefficient of the j-th pollutant. The confidence interval (CI) is

given by

CI(RRXi
(ξ)) = exp(β̂jξ ± zα/2se(β̂j)ξ), (26)

where zα/2 denotes the 1 − α/2 quantile of the standard normal distribution, and se(β̂j) is

the standard error of β̂j.

24



Table 8: Comparison of the Relative Risk and 95% confidence intervals for an interquartile
variation of the NO concentrations among GAM and GAM-AR(1) models

NO Relative Risk CI
GAM 1.0627 [1.0553;1.0702]

GAM-AR(1) 1.0591 [1.0524;1.0658]

In Table 8, the RR estimates were significant for the NO pollutant, which means that

this pollutant contributed significantly to the increase in the number of Chronic obstructive

pulmonary disease cases. Comparing the relative risks (RR) of GAM and GAM-AR(1) we

can observe that the RR is slightly smaller for the GAM-AR(1) model. As the adjustment

obtained with this model was better, i.e., smaller BIC and with noise residuals, the relative

risk of GAM-AR(1) is more reliable.

4.2 Adjustment with all pollutants

The study including only a single pollutant is very restrictive, mainly when there is more

information available about other pollutants that can impact the number of respiratory

diseases. However, a high number of covariates can lead to identification problems, and the

correlation between them may imply multicollinearity. A possible solution to this problem

is the Principal Component Analysis (PCA), which is a methodology where the variance

and covariance of a random vector are explained through linear combinations of the original

variables (Pearson, 1901), and the combinations called Principal Components (PC), are

not correlated with each other. Wang and Pham (2011) proposed an hybrid method called

GAM-PCA considering the combined use of the PCA technique and the GAM model without

considering the temporal effect in the estimation.

The main problem with this approach is that PCA requires independent observations.

Zamprogno (2013), showed that the Principal Components are autocorrelated if the covari-

ates are autocorrelated because they preserve the structure of the original variables. To
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remove the time correlation structure, Matteson and Tsay (2011), and Hu and Tsay (2014)

applied the Vector Autoregression (VAR) to the covariates and realized the PCA in the resid-

uals of the model. Based on this, Souza et al. (2018) proposed a model in which the time

dependency of data is removed through the VAR methodology, then Principal Components

are derivated from the residuals of VAR, and finally, the GAM model is applied to the PCs

as covariates. Although this procedure presents a gain over the methodologies employed

in the area literature, it still does not include the autocorrelation structure present in the

response variable.

To analyze the impact of the air pollutants under study on the occurrence of Chronic

obstructive pulmonary disease in Belo Horizonte, we have followed a similar procedure to

that proposed by Souza et al. (2018), but adding the moving average autoregressive structure

described in Section 2.2. We call this model a GAM-PCA-ARMA. For this, we removed

the time dependency of the pollutant series using the VAR methodology, then derived the

Principal Components (PC) from the residuals of the VAR model. Finally, we applied the

proposed methodology to the data set of COPD with PCs, meteorological variables, sine and

cosine functions, and trend as covariates.

Table 9 presents the results of applying the PCA to the residuals of the pollutant series

obtained from the VAR model. The first three components correspond to 81.16% of the

total variability. Following the parsimony criterium, the simplest model, with the first three

principal components (PC’s) as covariates, can handle with the complex structure of the

data. As a complement, a cluster division was performed for each component group. In

Table 9, the (*) symbol indicates the possible clusters for each principal component.
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Table 9: Results of factor loadings and statistics applying PCA for the
pollutants

PC1 PC2 PC3 PC4 PC5
Standard deviation** 1.4063 1.0979 0.9355 0.8052 0.5416
Proportion of variance 0.3956 0.2411 0.1750 0.1297 0.0587
Cumulative proportion
of variance

0.3956 0.6366 0.8116 0.9413 1.0000

CO -0.3194 0.3321 0.8270* 0.3198 -0.0383
PM10 -0.4823 0.1953 -0.4924* 0.6256 0.3088
NO -0.5486* -0.4651 -0.0627 0.0143 -0.6918
NO2 -0.5751* -0.1540 0.0923 -0.5886 0.5390
O3 -0.1834 0.7821* -0.2473 -0.3994 -0.3661

** Standard deviation is the square root of the eigenvalue

The linear preditor of GAM-ARMA Poisson adjusted with the first three principal com-

ponents was defined as

ηt = β1 ∗ PC1t + β2 ∗ PC2t + β3 ∗ PC3t + β4 ∗ sen12t + β5 ∗ cos12t + β6 ∗ sen6t+

β7 ∗ cos6t + β8 ∗ trendt + ns(Tempt, 3) + ns(RHt, 3) +
∞∑
i=1

τiεt−i,
(27)

and the GAM model follows the same structure in (27) without the autoregressive moving

average component. As in section 4.1 the chose of the optimal number of knots was based

on the sample size and the best model was obtained with three knots.

Applying the proposed methodology, the best fit was obtained with a GAM-PCA-AR(2),

where the coefficients of order 1 and 2 in the autoregressive polynomial were significant.

Table 10 reveals that all coefficients were significant (p-value < 0.05) and the BIC was

1257.422.
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Table 10: Results of GAM-AR-PCA(2) model to
estimate the effect of pollutants concentrations on
the number of Chronic obstructive pulmonary dis-
ease cases

Variable Estimates Standard Error p-value
PC1 -0.0758 0.0131 0.0000
PC2 0.0400 0.0183 0.0287
PC3 -0.1699 0.0199 0.0000
sen12 0.1626 0.0544 0.0028
cos12 -0.9668 0.0595 0.0000
sen6 -0.2339 0.0347 0.0000
cos6 -0.1927 0.0398 0.0000
trend 0.0162 0.0020 0.0000
φ1 0.0724 0.0077 0.0000
φ2 0.0351 0.0095 0.0000

Figure 8 presents the ACF and PACF graphs, revealing a good adjustment of the GAM-

PCA-AR(2), once we found white noise.

Figure 8: ACF and PACF of residuals - GAM-AR-PCA(2)

To asses the gain of our model over the one proposed by Souza et al. (2018), i.e., without

the autocorrelation structure, we adjusted their model to the same data set. Table 11
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presents the results, where we can see that the coefficients of ”PC2” and ”sen12” were not

significant. The ACF and PACF graphs in Figure 8 reveal that the residuals are not white

noise. Added to this, the BIC was equal to 1397.059, larger than the one obtained with the

GAM-PCA-AR(2) model. Then, we can conclude that the addition of the autoregressive

component leads to a better fit of the data.

Table 11: Results of GAM-PCA-VAR model to
estimate the effect of pollutants concentrations on
the number of Chronic obstructive pulmonary dis-
ease cases

Variable Estimates Standard Error p-value
PC1 -0.1217 0.0125 0.0000
PC2 0.0234 0.0209 0.263
PC3 -0.2222 0.0225 0.0000
sen12 0.0582 0.0396 0.141
cos12 -0.9291 0.0564 0.0000
sen6 -0.2213 0.0302 0.0000
cos6 -0.2894 0.0348 0.0000
trend 0.0093 0.0007 0.0000

The ACF and PACF graphs in Figure 9 reveal that the residuals were not white noise.

Added to this, the BIC of GAM-PCA-VAR was larger than obtained with the GAM-AR-

PCA(2). Then, we can conclude that the addition of the autoregressive component leads to

the best adjustment of the data.
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Figure 9: ACF and PACF of residuals - GAM-PCA-VAR

In Figure 10 we have the comparison among the adjustments of GAM-PCA-VAR and

GAM-AR-PCA(2) models, revealing that the fitting of GAM-AR-PCA(2) described better

the number of COPD cases.

Figure 10: Comparing the fit of GAM-AR-PCA(2) and GAM-PCA-VAR models

Table 12 presents the comparison among the relative risks (RR) of the GAM-AR-PCA(2)

and GAM-PCA-VAR models. In this case, the estimate of RR per interquartile variation

(ξ) in the pollutant concentrations Xj, j = 1, ..., k, is
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R̂R
∗
Xj

(ξ) = exp(β̂∗j ξ). (28)

The estimated coefficient of the j-th pollutant, β̂∗j , is given by

β̂∗j =
l∑

i=1

âjiυ̂i, (29)

where l is the number of Principal Components (PC), υ̂i, i = 1, ..., l is the estimated coeffi-

cient of the i-th PC, and âi are the first l-th estimated eigenvectors.

The confidence interval (CI) is given by

CI(RR∗Xi
(ξ)) = exp(β̂∗j ξ ± zα/2se(β̂∗j )ξ), (30)

where zα/2 denotes the 1−α/2 quantile of the standard normal distribution, and the standard

error of β̂∗j is

se2(β̂∗j ) =
r∑
i=1

â2jise
2(υ̂i). (31)

The RR estimates were significant for the PM10, NO, NO2 and O3, which means that

these pollutants contributed significantly to the increase in the number of Chronic obstructive

pulmonary disease cases. Moreover, the risk relative estimates decreases with the addition

of the autoregressive structure.
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Table 12: Comparison of the Relative Risk and 95% con-
fidence intervals for an interquartile variation of the pol-
lutant concentrations

R̂R R̂R
∗

CO 0.9235 (0.8986;0.9492) 0.8995 (0.8724;0.9275)
PM10 1.1386 (1.1113;1.1667) 1.1914 (1.1604;1.2231)
NO 1.0383 (1.0131;1.0640) 1.0811 (1.0532;1.1097)
NO2 1.0302 (1.0076;1.0533) 1.0647 (1.0419;1.0881)
O3 1.1007 (1.0649;1.1376) 1.1108 (1.0699;1.1532)

R̂R: GAM-AR-PCA(2) and R̂R
∗
: GAM-PCA-VAR

5. Conclusion

In this work, we proposed a new class of models, called GAM-ARMA, which is an extension

of the GAM based on GLARMA methodology. The structure of GAM-ARMA allows the

fitting of non-parametric and semiparametric models, accommodating covariates with non-

linear and linear relation with the response variable in count data with time dependence.

The time structure is modelled by an autoregressive and moving average component. We

presented the estimation procedure both the parametric and non-parametric components.

To evaluate the accuracy of parameter estimation of the proposed model, two simulation

studies were performed. First, we analyzed models with just non-linear covariates from time

series following the Poisson distribution. In the second study, we evaluated a model with

linear and non-linear covariates, also generated under the Poisson distribution. In both cases,

we observed estimates close of the real values of the parameters. However, the simulation

studies revealed that the values of autoregressive and moving average components, φ and θ

respectively, can influence the accuracy of estimates (especially the parameter φ). In general,

as the value of these components increases, we have the worst estimates.

The proposed model was also applied in an epidemiological dataset. In this real data

analysis, we studied the impact of air pollutants and meteorological factors in the monthly
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numbers of Chronic obstructive pulmonary disease (COPD) cases, in Belo Horizonte, Brazil.

For this, we proposed two approaches: first, following the previous studies we adjusted

a model with a single air pollutant as covariate, once the pollutants presented correlation

among them, and this may imply identification problems and multicollinearity. In the second

approach, we adjusted a model with more than one pollutant, based on the methodology

proposed by Souza et al. (2018).

In the approach with a single pollutant (NO) as covariate, we adjusted a GAM and GAM-

ARMA model to compare the effects of the autocorrelation structure in the modelling. The

results revealed that the GAM-AR(1), with the coefficient of order 1 in the autoregressive

polynomial being significant, presented the best fit. This model presented smaller BIC

and white noise residuals, which was not observed in the GAM model. Besides that, we

calculate relative risks (RR) and 95% confidence intervals for an interquartile variation of the

pollutants concentrations. The RR analysis revealed that the NO contributed significantly

to the increase of COPD cases in Belo Horizonte. Moreover, the RR value decreased when

the autoregressive term was added.

The second approach considered the following pollutants: PM10, NO, NO2, CO and O3.

The autocorrelation and multicolinearity present in the pollutants were modelled using PCA

and VAR models. The best fit was obtained with the GAM-PCA-AR(2) with the coefficients

of order 1 and 2 in the autoregressive polynomials significant. This model presented white

noise residuals and smaller BIC in comparison with the model that did not include the

autocorrelation structure of the response variable. The RR analysis revealed that the PM10,

NO, NO2 and O3 contributed significantly to the increase of COPD cases, and once again the

addition of the autoregressive component contributed to decreasing the relative risks. This

suggests that without this component, the RR can be overestimated. The results revealed

that the proposed model provides better adjustments than the conventional models applied

in count time series.
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Appendix

Histograms of simulation studies

Model 1: Autoregressive Case

Figure 11: Histogram of Model 1 (φ = 0.1)
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Figure 12: Histogram of Model 1 (φ = 0.4)

Figure 13: Histogram of Model 1 (φ = 0.6)
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Model 2: Moving Average Case

Figure 14: Histogram of Model 2 (θ = 0.1)
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Figure 15: Histogram of Model 2 (θ = 0.4)

Figure 16: Histogram of Model 2 (θ = 0.6)
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Semiparametric Model - Model 3

Figure 17: Histogram of Model 3 (φ = 0.1)
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Figure 18: Histogram of Model 3 (φ = 0.4)

Figure 19: Histogram of Model 3 (φ = 0.6)
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Code in R for the simulation studies

Model 1: Autoregressive Case

# Run modifying the parameter phi for 0.1, 0.4 and 0.6 n=100

Temp_min <- as.data.frame(ns(DataRD_filter$Tmin,df=5))

colnames(Temp_min) <-

c("Temp_min_1","Temp_min_2","Temp_min_3","Temp_min_4","Temp_min_5")

Intercept <- rep(1,100) X <- as.matrix(Temp_min) XI <-

as.matrix(cbind(Intercept,Temp_min)) XI <- as.data.frame(XI)

beta_0 <- 0.8 alpha_1 <- 0.1 alpha_2 <- -0.2 alpha_3 <- 0.5

alpha_4 <- -1.0 alpha_5 <- 0.8 n <- 100 N <- 1000 W <- matrix(0,

nrow=n, ncol=N) Y <- matrix(0, nrow=n, ncol=N) mu <- matrix(0,

nrow=n, ncol=N) Z <- matrix(0, nrow=n, ncol=N) for (t in 1:N){

mu[1,t] <- exp(W[1,t])

} beta <- beta_0 + alpha_1*Temp_min$Temp_min_1 +

alpha_2*Temp_min$Temp_min_2 +

alpha_3*Temp_min$Temp_min_3 + alpha_4*Temp_min$Temp_min_4 + alpha_5*Temp_min$Temp_min_5

lambda <- 0.5 phi <- 0.1 betas <- matrix(0, nrow=N, ncol=ncol(XI))

tetas <- matrix(0, nrow=N, ncol=1) phis <- matrix(0, nrow=N,

ncol=1) for (i in 1:N) {

for (t in 2:n) {

W[t,i] <- beta[t] + phi*(Z[t-1,i]+((Y[t-1,i]-exp(W[t-1,i]))/exp(lambda*W[t-1,i])))

mu[t,i] <- exp(W[t,i])

Y[t,i] <- rpois(1,mu[t,i])

Z[t,i] <- phi*(Z[t-1]+((Y[t-1,i]-exp(W[t-1,i]))/exp(lambda*W[t-1,i])))

}
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} W <- data.frame(W) mu <- data.frame(mu) Y <- data.frame(Y) XI <-

as.matrix(cbind(Intercept,Temp_min)) AR1 <- rep(0,N) for (i in

1:N) {

AR1<-GLARMA.IC(Y[,i], preditora=XI, Vphi=c(1), Vteta=NULL, lambda=0.5)

betas[i,] <- AR1$betas

phis[i,] <- AR1$phi

print(i)

}

Model 2: Moving Average Case

# Run modifying the parameter theta to 0.1,0.4 and 0.6 n=100

Temp_min <- as.data.frame(ns(DataRD_filter$Tmin,df=5))

colnames(Temp_min) <-

c("Temp_min_1","Temp_min_2","Temp_min_3","Temp_min_4","Temp_min_5")

cor(Temp_min) X <- as.matrix(Temp_min) Intercept <- rep(1,100) XI

<- as.matrix(cbind(Intercept,Temp_min)) XI <- as.data.frame(XI)

beta_0 <- 0.8 alpha_1 <- 0.1 alpha_2 <- -0.2 alpha_3 <- 0.5

alpha_4 <- -1.0 alpha_5 <- 0.8 n <- 100 N <- 1000 W <- matrix(0,

nrow=n, ncol=N) Y <- matrix(0, nrow=n, ncol=N) mu <- matrix(0,

nrow=n, ncol=N) Z <- matrix(0, nrow=n, ncol=N) for (t in 1:N){

mu[1,t] <- exp(W[1,t])

} beta <- beta_0 + alpha_1*Temp_min$Temp_min_1 +

alpha_2*Temp_min$Temp_min_2 +

alpha_3*Temp_min$Temp_min_3 + alpha_4*Temp_min$Temp_min_4 + alpha_5*Temp_min$Temp_min_5

lambda <- 0.5 theta <- 0.1 betas <- matrix(0, nrow=N,

ncol=ncol(XI)) tetas <- matrix(0, nrow=N, ncol=1) for (i in 1:N) {
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for (t in 2:n) {

W[t,i] <- beta[t] + theta*(Y[t-1,i]-exp(W[t-1,i]))/exp(lambda*W[t-1,i])

mu[t,i] <- exp(W[t,i])

Y[t,i] <- rpois(1,mu[t,i])

}

} W <- data.frame(W) mu <- data.frame(mu) Y <- data.frame(Y) XI <-

as.matrix(cbind(Intercept,Temp_min)) MA1 <- rep(0,N) for (i in

1:N) {

MA1<-GLARMA.IC(Y[,i], preditora=XI, Vphi=NULL, Vteta=c(1), lambda=0.5)

betas[i,] <- MA1$betas

tetas[i,] <- MA1$teta

print(i)

}

Mixed Model - Model 3

# Run modifying the parameter phi for 0.1, 0.4 and 0.6 n=100

sim_PM10 <- arima.sim(n = n, list(ar = c(0.42), ma = c(0.13)))

sim_O3 <- arima.sim(n = n, list(ar = c(0.30), ma =

c(-0.76,-0.17))) PM10 <- as.vector(sim_PM10) O3 <-

as.vector(sim_O3) Polut <- cbind(PM10,O3) Polut <-

as.data.frame(Polut) Temp_min <-

as.data.frame(ns(DataRD_filter$Tmin,df=3)) colnames(Temp_min) <-

c("Temp_min_1","Temp_min_2","Temp_min_3") Intercept <- rep(1,100)

X <- as.matrix(Temp_min) XI <-

as.matrix(cbind(Intercept,Polut$PM10,Polut$O3,Temp_min)) XI <-

as.data.frame(XI) beta_0 <- 0.8 beta_1 <- 0.1 beta_2 <- -0.2
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alpha_1 <- 0.5 alpha_2 <- -1.0 alpha_3 <- 0.8 n <- 100 N <- 1000 W

<- matrix(0, nrow=n, ncol=N) Y <- matrix(0, nrow=n, ncol=N) mu <-

matrix(0, nrow=n, ncol=N) Z <- matrix(0, nrow=n, ncol=N) for (t in

1:N){

mu[1,t] <- exp(W[1,t])

} beta <- beta_0 + beta_1*XI$‘Polut$PM10‘ + beta_2*XI$‘Polut$O3‘ +

alpha_1*XI$Temp_min_1 + alpha_2*XI$Temp_min_2 +

alpha_3*XI$Temp_min_3

lambda <- 0.5 #phi <- as.matrix(rep(0.1,n)) phi <- 0.1 betas <-

matrix(0, nrow=N, ncol=ncol(XI)) tetas <- matrix(0, nrow=N,

ncol=1) phis <- matrix(0, nrow=N, ncol=1) for (i in 1:N) {

for (t in 2:n) {

W[t,i] <- beta[t] + phi*(Z[t-1,i]+((Y[t-1,i]-exp(W[t-1,i]))/exp(lambda*W[t-1,i])))

mu[t,i] <- exp(W[t,i])

Y[t,i] <- rpois(1,mu[t,i])

Z[t,i] <- phi*(Z[t-1]+((Y[t-1,i]-exp(W[t-1,i]))/exp(lambda*W[t-1,i])))

}

} W <- data.frame(W) mu <- data.frame(mu) Y <- data.frame(Y) XI <-

as.matrix(cbind(Intercept,Polut$PM10,Polut$O3,Temp_min)) AR1 <-

rep(0,N) for (i in 1:N) {

AR1<-GLARMA.IC(Y[,i], preditora=XI, Vphi=c(1), Vteta=NULL, lambda=0.5)

betas[i,] <- AR1$betas

phis[i,] <- AR1$phi

print(i)

}
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