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Resumo

Neste trabalho, introduzimos um novo modelo de fragilidade para dados de sobrevivência agrupados

usando a distribuição inversa-Gaussiana Generalizada (GIG) para a fragilidade. Assumir essa distribuição

implica em um modelo �exível que é matematicamente vantajoso, uma vez que expressões fechadas estão

disponíveis para as funções de sobrevivência e densidade incondicionais. As versões paramétrica e semi-

paramétrica do modelo de fragilidade GIG são apresentadas. Focamos na abordagem semiparamétrica

que é baseada na distribuição exponencial por partes. Um algoritmo EM é proposto para estimar os

parâmetros sob esta abordagem. A �exibilidade do modelo proposto vem da adoção de uma distribuição

de fragilidade com dois parâmetros. Um deles determina a distribuição de fragilidade onde nosso in-

teresse será ajustar os diferentes casos especiais da distribuição GIG, obtidos alterando-se o valor desse

parâmetro. Esses casos especiais incluem as distribuições inversa-gaussiana, recíproca inversa-gaussiana,

hiperbólica e hiperbólica positiva. Com isso, temos em mãos a �exibilidade de testar diferentes fragili-

dades, possibilitando acomodar estruturas de correlação distintas que poderiam não ser capturadas pelo

ajuste de um único modelo. Apresentamos estudos de simulação sob as abordagens paramétrica e semi-

paramétrica. No estudo de simulação paramétrico, exploramos a estimação dos parâmetros sob tamanhos

de amostra �nitos e correta especi�cação do modelo. A comparação com outros modelos da literatura

como os modelos de fragilidade gama e exponencial generalizada é feita sob a abordagem semiparamétrica,

onde a fragilidade proposta mostra resultados competitivos sob falta de especi�cação. Ilustramos a apli-

cabilidade do modelo de fragilidade GIG através de dois exemplos de ajuste a dados reais. O primeiro

consiste em dados obtidos pelo estudo Therapeutically Applicable Research to Generate E�ective Treat-

ments (TARGET) 1 onde investigamos o efeito de duas variáveis genéticas no tempo de vida de crianças

diagnosticadas com câncer de neuroblastoma. Para ilustrar a aplicação da metodologia proposta a dados

de sobrevivência agrupados, incluímos também o ajuste ao conhecido conjunto de dados de cateter renal

(kidney catheter). Nos exemplos de aplicação a dados reais comparamos o ajuste do modelo proposto

com os dos modelos de fragilidade gama e exponencial generalizada sob as abordagens paramétrica e

semiparamétrica. Através do conjunto de dados de câncer de neuroblastoma do estudo TARGET, foi

possível mostrar que o modelo de fragilidade gama, sendo a escolha mais popular, sofre com problemas

de convergência que os outros modelos não apresentaram. Além disso, neste exemplo, a fragilidade GIG

provou ser a mais robusta quanto à especi�cação da função de risco base.

Palavras-chave: Inversa-Gaussiana Generalizada, semiparamétrico, modelo de fragilidade, algoritmo

EM, exponencial por partes.

1Agradecemos o National Cancer Institute (O�ce of Cancer Genomics) por nos conceder permissão para usar os dados
"TARGET Neuroblastoma Clinical data" para publicação.
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Abstract

In this work we introduce a new frailty model for clustered survival data using the Generalized Inverse-

Gaussian (GIG) distribution for the frailty. Assuming this distribution implies in a �exible model that

is mathematically advantageous since closed expressions are avaliable for the unconditional survival and

density functions. The parametric and semiparametric versions of the GIG frailty model are presented.

We focus on the semiparametric approach that is based on the piecewise exponential distribution. An EM

algorithm is proposed to estimate the parameters under this approach. The �exibility of the proposed

model comes from working with a two-parameter frailty distribution. One of the parameters will deter-

mine the frailty distribution and our interest will be in adjusting the di�erent special cases of the GIG

distribution obtained by changing the value of this parameter. These include the Inverse-Gaussian, Re-

ciprocal Inverse-Gaussian, Hyperbolic and Positive Hyperbolic distributions. With this, we have in hand

the �exibility of testing di�erent frailties, making it possible to accomodate distinct correlation struc-

tures that might not be captured by �tting a single model. We present simulation studies under both

parametric and semiparametric approaches. In the parametric simulation study, we explore parameter

estimation in �nite samples sizes under correct model speci�cation. A comparison to other models in the

literature such as gamma and generalized exponential frailty models is made under the semiparametric

approach where the proposed frailty shows competitive results under misspeci�cation. We illustrate the

applicability of the GIG frailty model through two real data examples. The �rst consists on data obtained

from the Therapeutically Applicable Research to Generate E�ective Treatments (TARGET) 2 initiative,

where we chose to investigate the e�ect of two genetic variables on the lifetime of children diagnosed with

neuroblastoma cancer. To illustrate the application of the proposed methodology to clustered survival

data, we also include the �t to the well known kidney catheter data set. In the real data examples we

compared the �t of the proposed model with the �t of the gamma and generalized exponential frailty

models under parametric and semiparametric approaches. Through the TARGET Neuroblastoma data

set we were able to show that the gamma frailty model, being the most popular choice, su�ers with

convergence issues that the other models did not present. In addition, in this example, the GIG frailty

proved to be the most robust regarding the speci�cation of the baseline hazard function.

Keywords: Generalized Inverse-Gaussian, semiparametric, frailty model, EM algorithm, piecewise con-

stant hazards.

2We thank the National Cancer Institute (O�ce of Cancer Genomics) for granting us permission to use the TARGET
Neuroblastoma Clinical data for publication.
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CHAPTER 1

INTRODUCTION

Ever since the introduction of the proportional hazards model by Cox [1972], models based on the

hazard function have dominated the �eld of survival analysis. These accomodate well censoring and

truncation which are key elements in time to event data. In addition, the hazard function has a useful

interpretation as it speci�es the instantaneous risk of failure that changes over time. However, it is not

rare to be in the presence of correlated failure data, that arises, for example, when we have repeated

measures of the same individual or even when some common traits such as biological or environmental

factors are shared. In these situations, the proportional hazards model is not adequate since it implicitly

assumes an homogeneous population. This is equivalent to say that given the observed covariates, the

failure times of two di�erent individuals are statistically independent, as mentioned by Wienke [2011].

This is a sensible assumption as, very often, important covariates may not be observed in the study,

maybe because they are di�cult to measure or even because the researcher did not know its importance

in the �rst place. When ignoring the presence of the correlation structure or non observed risk factors,

most often the e�ects of the covariates will be underestimated. Here we refer again to Wienke [2011]

who comments that, typically, we observe an increase in the regression parameters estimates as well as

in the standard errors when comparing a proportional hazards model to a frailty model with the same

baseline hazard function.

Frailty models are a natural extension of the proportional hazards model that introduce a latent

random component called frailty acting multiplicatively in the hazard function of an individual or a

group of individuals. The univariate frailty models emerge as a way to account for unobserved sources

of heterogeneity. This means that the variability is split in two parts: the �xed and random e�ects. The

�rst accounts for the observed covariates and the former is a random unobserved component.

The multivariate frailty model, or shared frailty model, was introduced by Clayton [1978] motivated

by the analysis of familial tendency in disease incidence. By making individuals in the same group share

the frailty variable, positive dependence between those individuals is created. In this case, the random

e�ect can be interpreted as the degree of association within the cluster, where in each risk level the

lifetimes are independent.

In both univariate and multivariate contexts, �tting the unobserved risk components is of most im-
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portance as it will allow us to properly evaluate the covariate e�ects. The presence of the frailty can even

give di�erent interpretations for the same problem. For example, a hazard function that is very high and

then diminishes over time can represent an adaptation phenomenon or could also be explained by the

existence of more susceptible individuals, that is, natural selection.

It is commonly assumed some distribution in R+ for the frailty variable, persuing desired mathematical

properties, since the inferential aspects of the frailty models pose additional di�culties in comparison

with usual mixed models due to censoring and truncation. The gamma distribution is the most used for

this task. This was a model that became very popular because of its mathematical convenience and was

explored by several authors such as Vaupel et al. [1979], Oakes [1982], Oakes [1986], Klein [1992] and

Yashin et al. [1995].

Ever since, the need to model more complex dependence structures and also the search for more

�exibility motivated the introduction of other frailty distributions. For instance, the inverse Gaussian

frailty by Hougaard [1984] and the log-normal frailty by McGilchrist & Aisbett [1991]. The former

was extended by Ripatti & Palmgren [2000] that proposed a model based on a multivariate log-normal

distribution. In this model, estimation relies on a Laplace approximation of the likelihood function.

Another relevant work in this area is Hougaard [1986a] that introduced the positive stable frailty. An

important aspect of this model is that it is the only frailty distribution that preserves the proportional

hazards condition after integrating out the latent component. It was later extended by Hougaard

[1986b] with the power variance function distribution. The power variance function distribution is a

three-parameter model that includes the gamma, inverse Gaussian and positive stable function as special

cases. It is also worth mentioning the compound Poisson model by Aalen [1992] that allows the presence

of a portion of individuals who will never experience the event of interest, that is, the model can handle

cure fractions.

A growing interest in this area is on proposing semiparametric versions of frailty models. This ap-

proach allows us to estimate the regression e�ects without expliciting the form of the baseline hazard

function. A parametric form for this function is often not easy to identify or to test for adequacy. One

popular approach for doing this was the one introduced by Klein [1992] to develop a semiparametric

version of the gamma frailty model. This approach is based on a modi�ed EM algorithm that involves

the Cox proportional hazards model. Other strategies that may be applied to develop semiparametric

versions of frailty models are penalized partial likelihood functions introduced by Therneau et al. [2003],

piecewise constant hazards with raising number of pieces and splines, for example. For references in

piecewise constant hazards see Kim & Proschan [1991] that introduced the estimation of the survival

function through the piecewise exponential estimator and Lawless & Zhan [1998] that studied the per-

formance of the regression estimators and frailty coe�cients using this method. The works by Liu &

Huang [2008] and Feng et al. [2005], for instance, have applied the piecewise constant hazards to the

context of frailty models. For a reference in the usage of splines in the estimation of the baseline hazard

function we suggest Du & Ma [2010].

The semiparametric gamma frailty model is the most popular in practice. However, it has been
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proved that more �exibility might be needed depending on the problem, motivating the introduction of

new semiparametric frailty models. That because using the gamma distribution for the frailty has some

implications that may not be desirable. For instance, Farrington et al. [2012] show that the relative frailty

variance of this model is constant, meaning that the heterogeneity of the population remains constant

over time, something that often may not be applicable.

It is worth mentioning Balakrishnan & Peng [2006] that introduced the generalized gamma frailty

model pursuing to provide the extra �exibility that the popular gamma frailty model lacks. This is a

model that includes an additional parameter and has the log-normal and Weibull frailty models as special

cases. However, this generalization comes at the cost of handling intractable integrals in the likelihood

function. The authors proposed to use numerical approximation through Monte Carlo simulation or by a

quadrature method. Another model that was introduced with the same motivation is the log-skew-normal

frailty by Callegaro & Iacobelli [2012]. This is a model that includes a parameter to control the skewness.

The authors show that the dependence pattern can assume di�erent shapes under the log-skew-normal

frailty just by changing the values of the parameters. This overcomes a limitation of the gamma frailty

model. However, the comparison of the proposed approach to those existing in the literature is not well

explored showing no information on how the model behaves under misspeci�cation. The same can be

said about Wang & Klein [2012] when introducing the semiparametric additive inverse Gaussian frailty

model, because the authors also did not explore the behavior of their methodology under misspeci�cation.

Instead, the focus of the additive inverse Gaussian frailty model is in allowing the presence of di�erent

sources of heterogeneity. With this, the frailty is the sum of two parts, one shared by all group members

and an individual speci�c part, both following the inverse Gaussian distribution.

Another di�culty posed to the semiparametric gamma frailty model is that its version proposed

by Klein [1992] is a�ected by a �at-likelihood issue that causes di�culties in the estimation of the

frailty variance as shown by Barreto-Souza & Mayrink [2019]. To attack this problem, the authors

introduced the generalized exponential (GE) frailty model that is immune to the �at-likelihood issue.

A semiparametric version of the GE frailty model is avaliable and is also based on an EM algorithm.

Although the proposed model shows to be competitive with respect to the gamma frailty model, it is

most suitable for small clusters. That because the high-order derivatives of the Laplace transform are

cumbersome in that case. Hence, there is some di�culty in appling the GE model to situations in which

big clusters are handled.

Following these arguments, our goal is to introduce a class of semiparametric frailty models having

advantages over existing ones. That because, as discussed, each model has its own advantages and limi-

tations. In our work, we propose a frailty model based on the generalized inverse-Gaussian distribution.

This is a two-parameter frailty distribution that contains the inverse-Gaussian as a particular case as well

the special cases reciprocal inverse-Gaussin, hyperbolic and positive hyperbolic that will be presented

later. Assuming this distribution for the frailty provides �exibility without compromising mathematical

tractability, since all the main expressions have closed forms. We present the parametric and semipara-

metric versions of the proposed model, the latter being based on the piecewise exponential baseline hazard
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function.

This work is organized as follows: In Section 2 we de�ne our class of GIG frailty models and obtain

basic results. Section 3 introduces the generalized inverse-Gaussian frailty model for clustered survival

data and discusses estimation in the parametric case. The semiparametric version of the proposed model

is based on an EM algorithm where the expressions of interest and detailed description are also given in

Section 3. In Section 4, we present Monte Carlo simulation studies under the parametric and semipara-

metric approaches. Also in this section, we compare the performance of the GIG frailty model with other

models in literature. In Section 5, we apply the developed methodology to real data sets illustrating the

usefulness of the proposed model. In the �rst example we investigate the in�uence of two genetic variables

in the lifetime of children diagnosed with a rare type of cancer called neuroblastoma. In this case, the

frailty accounts for unobserved individual risk factors. These data were provided by the Therapeutically

Applicable Research to Generate E�ective Treatments (TARGET) and are avaliable online. In addition,

we present the application of the GIG frailty model to the well known kidney cathether data set, so that

we illustrate the case of clustered data. With these examples, we are able to highlight problems that the

popular gamma frailty model su�ers and evidence the robustness of the proposed methodology.
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CHAPTER 2

MODEL SPECIFICATION AND BASIC RESULTS

In this section our goal is to introduce the GIG frailty model. For that, we will present some results

on the class of GIG distributions. The Generalized Inverse-Gaussian distribution with parameters λ ∈ R,

a > 0 and b > 0 has the following density

fλ,a,b(x) =
(a/b)λ/2

2Kλ(
√
ab)

xλ−1e−(ax+b/x)/2, x > 0, (2.1)

where Kλ(x) =
∫∞
0
uλ−1 exp −t2 (u+ 1/u)du denotes the third kind modi�ed Bessel function with index

λ.

Some basic properties of the GIG distribution are presented below.

The Laplace tranform associated to (2.1) is given by

L(t) =
Kλ(

√
(a+ 2t)b)

Kλ(
√
ab)

(
a

a+ 2t

)λ/2
, t > 0. (2.2)

From that, we have that the k-th order moments can be found through the following expression

E(Xk) =
Kλ+k(

√
ab)

Kλ(
√
ab)

(a/b)−k/2.

Hence, the expected value and variance of the Generalized Inverse-Guassian distribution are given by

E(X) =
Kλ+1(

√
ab)

Kλ(
√
ab)

(a/b)−1/2 (2.3)

and

V ar(X) =
Kλ+2(

√
ab)

Kλ(
√
ab)

(a/b)−1 − Kλ+1(
√
ab)2

Kλ(
√
ab)2

(a/b)−1.

As will be presented in sequence, having a closed form for the Laplace transform is an advantage in

the construction of frailty models. That because the marginal survival and density functions of the frailty

model to be de�ned will be found through this expression. The fact that the Laplace transform of the

gamma distribution has a closed form is one of the reasons for the popularity of the gamma frailty model.
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De�nition 1. Assume Z to be an independent and identically distributed random variable following the

GIG distribution and consider the time to event of an individual to be denoted by a random varible T

where the latent e�ect Z acts multiplicatively in the baseline hazard function. Conditional on Z, the

hazard function is given by h(t|Z) = Zh0(t). Here h0(t) is the baseline hazard function and Z is the

frailty variable.

A great motivation for choosing the GIG distribution for the frailty variable comes from the fact that

for a �xed λ there are several special cases of this distribution. Hence, by changing λ value we can �t

di�erent frailty models to the data. A list of the known distributions obtained by changing λ is given in

Table 2.1.

Table 2.1: Known special cases of the GIG distribution for �xed λ

Con�guration Distribution
λ = −1/2 Inverse Gaussian
λ = 1/2 Reciprocal Inverse Gaussian
λ = 0 Hyperbolic
λ = 1 Positive Hyperbolic

In order to avoid non-identi�cability issues, it is su�cient to con�gure the parameterization of the

GIG frailty model by one of the particular cases, which is going to be the inverse-Gaussian one. This

means that when λ = −1/2, we have that E(Z) = 1 and the variance modeled by a single parameter

being V ar(Z) = α. Hereby, our latent random variable, the frailty, follows a GIG(a = 1/α, b = 1/α, λ)

distribution. By doing this, we avoid non-identi�cability issues and have an appealing interpretation for

the parameter α in the inverse Gaussian case as the degree of non observed heterogeneity or association

within cluster, as commonly pursued in frailty models. That, however, holds only when λ = −0.5 and

the other particular cases require a transformation of α in order to obtain the frailty variance.

Now, we develop the theoretical results for the GIG frailty model based on the parametrization above

mentioned. First, the GIG frailty model without covariates will be presented. Regression structure can

easily be incorporated as discussed next. Through known results on frailty models which can be found,

for example, in Wienke [2011] and assuming the GIG distribution with the aforementioned parameters,

we can obtain the marginal survival function S(·) and density f(·) of T as follows. In line with the

De�nition 1, we denote by h0(t) the baseline hazard function and H0(t) =
∫ t
0
h0(u)du the cumulative

baseline hazard function.

The marginal survival function is given by

S(t) = L(H0(t)) =

(
1/α

1/α+ 2H0(t)

)λ/2
Kλ(

√
α−1(1/α+ 2H0(t)))

Kλ(1/α)
, t > 0. (2.4)

The marginal density function can be found using the relation f(t) = −h0(t)L′(H0(t)). This quantity
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depends on the derivative of Kλ(
√
α−1(α−1 + 2t)) that is given by the expression

∂

∂t
Kλ(

√
α−1(α−1 + 2t)) =

−1

2α

√
1

α−1(α−1 + 2t)

(
Kλ+1(

√
α−1(α−1 + 2t)) +Kλ−1(

√
α−1(α−1 + 2t))

)
,

with this, we have the following marginal density function

f(t) =
h0(t)(α−1)λ/2

Kλ(α−1)

{
λKλ(

√
α−1(α−1 + 2H0(t)))

(α−1 + 2H0(t))
λ
2 +1

+

√
α−1

(
Kλ+1(

√
α−1(α−1 + 2H0(t))) +Kλ−1(

√
α−1(α−1 + 2H0(t)))

)
2((α−1 + 2H0(t)))

λ+1
2

}
, t > 0.

We can simplify the expression above by applying the following recurrence identity of the Bessel function:

Kv(z) = z
2v (Kv+1(z)−Kv−1(z)). With this, we obtain

f(t) =
h0(t)α−(λ+1)/2

(α−1 + 2H0(t))
λ+1
2

Kλ+1(
√
α−1(α−1 + 2H0(t)))

Kλ(α−1)
, t > 0.

Next, we �nd the frailty distribution among the survivors and among the failures at time t. These

results are important to the EM algorithm that will be discussed in Section 3.2. The condional density

of Z given T > t, that is, the distribution of the frailty among the survivals at time t, can be found using

f(z|T > t) = f(z)S(t|z)/S(t) and is given by

f(z|T > t) =
zλ−1

2Kλ(
√
α−1(α−1 + 2H0(t)))

e
−1
2 (z(α−1+2H0(t))+

1
zα )

(
α−1 + 2H0(t)

α−1

)λ/2
, z > 0.

Therefore, Z|T > t ∼ GIG(α−1+2H0(t), α−1, λ). As argued by Hougaard [1995], if the frailty distribution

is in the natural exponential family, the frailty distribution between the survivals will be in the same

family. And according to Jørgensen [1982] the GIG distribution is a full exponential family of order

three. The conditional mean of Z|T > t is given by

E(Z|T > t) =
Kλ+1(

√
α−1(α−1 + 2H0(t)))

Kλ(
√
α−1(α−1 + 2H0(t)))

(
α−1 + 2H0(t)

α−1

)−1/2
.

Using the expression found for the marginal density function and some fundamental results in survival

analysis, we can calculate the distribution of the failures at time t as f(z|t) = f(t|z)f(z)/f(t). After

some algebra we get that this density is given by

f(z|t) =
zλ

2Kλ+1(
√
α−1(α−1 + 2H0(t)))

e
−1
2 (z(α−1+2H0(t))+

1
zα )

(
α−1 + 2H0(t)

α−1

)λ+1
2

, z > 0.

The frailty distribution of failures of time t is a GIG(α−1 + 2H0(t), α−1, λ+ 1). The conditional mean in
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this case is

E(Z|T = t) =
Kλ+2(

√
α−1(α−1 + 2H0(t)))

Kλ+1(
√
α−1(α−1 + 2H0(t)))

(
α−1 + 2H0(t)

α−1

)−1/2
.

We can de�ne δ = 1 if T = t (0 if T > 0) so we have that f(z|δ) ∼ GIG(α−1 +2H0(t), α−1, λ+δ). Hence,

the conditional mean of Z|δ is given by

E(Z|δ) =
Kλ+1+δ(

√
α−1(α−1 + 2H0(t)))

Kλ+δ(
√
α−1(α−1 + 2H0(t)))

(
α−1 + 2H0(t)

α−1

)−1/2
.

Next, we discuss another way of characterizing the frailty distribution that was introduced by Far-

rington et al. [2012], which is the relative frailty variance (hereby RFV). The RFV is a measure of how

the heterogeneity of the population evolves over time. This function can be used as a way to compare

patterns of dependence among di�erent frailty models and is obtained through the Laplace transform of

the frailty distribution. Let J(s) = logL(−s) where L(·) is the Laplace transform and µ is the expected

value of the frailty distribution given in (2.3), then RFV(s) = J′′(−s/µ)
J′(−s/µ)2 . The expressions required to

calculate the RFV for the GIG frailty model are given by

∂J(s)

∂s
=

∂ logL(−s)
∂s

=
α−1

2(α−1(α−1 − 2s))3/2Kλ(
√
α−1(α−1 − 2s))

× (2.5)

{α−1(α−1 − 2s)Kλ−1(
√
α−1(α−1 − 2s))

+2λ
√
α−1(α−1 − 2s)Kλ(

√
α−1(α−1 − 2s))

+α−1(α−1 − 2s)Kλ+1(
√
α−1(α−1 − 2s))}

and
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∂J(s)2

∂s2
=

∂ logL(−s)2

∂s2
=

1

4(α−1 − 2s)2
√
α−1(α−1 − 2s)Kλ(

√
α−1(α−1 − 2s))2

×

{−(α−1(α−1 − 2s))3/2Kλ−1(
√
α−1(α−1 − 2s))2 + 2α−1(α−1 − 2s)× (2.6)

[Kλ(
√
α−1(α−1 − 2s))−

√
α−1(α−1 − 2s)Kλ+1(

√
α−1(α−1 − 2s))]×

Kλ−1(
√
α−1(α−1 − 2s))− 4α−1s

√
α−1(α−1 − 2s)Kλ(

√
α−1(α−1 − 2s))2 +

8λ
√
α−1(α−1 − 2s)Kλ(

√
α−1(α−1 − 2s))2 +

2α−2
√
α−1(α−1 − 2s)Kλ(

√
α−1(α−1 − 2s))2 +

2α−1s
√
α−1(α−1 − 2s)Kλ+1(

√
α−1(α−1 − 2s))2 −

α−2
√
α−1(α−1 − 2s)Kλ+1(

√
α−1(α−1 − 2s))2 +

(α−1(α−1 − 2s))3/2Kλ−2(
√
α−1(α−1 − 2s))Kλ(

√
α−1(α−1 − 2s)) +

2α−2Kλ(
√
α−1(α−1 − 2s))Kλ+1(

√
α−1(α−1 − 2s))−

4α−1sKλ(
√
α−1(α−1 − 2s))Kλ+1(

√
α−1(α−1 − 2s))−

2α−1s
√
α−1(α−1 − 2s)Kλ(

√
α−1(α−1 − 2s))Kλ+2(

√
α−1(α−1 − 2s)) +

α−2
√
α−1(α−1 − 2s)Kλ(

√
α−1(α−1 − 2s))Kλ+2(

√
α−1(α−1 − 2s))}

We are now able to calculate the RFV of the proposed frailty model. Our interest lies on exploring

how the evolution of RFV occurs over time. In multivariate frailty models, that is, in the presence of

data with cluster structure, it is a tool to understand if the dependence between the individuals of the

same group increases, decreases or remains constant over time. We consider that in practical situations

having this type of information about the models can help the researcher to select the model that best

suits a particular problem. Let us explore this later, after we have discussed some particular cases of the

GIG frailty model. These particular cases are important for our purpose that is �tting the GIG frailty

model for �xed λ. The proposed methodology is not restricted to these λ values, but we are considering

the four special cases in sequence in the simulation studies and applications.

Example 1. (Inverse Gaussian frailty model)

Suppose Z to be a GIG random variable with density function in (2.1). When λ = −1/2 we have that

K−1/2(z) =

√
π
2 e
−x

√
z

, so Z is an inverse Gaussian (hereafter IG) random variable with density function

given as follows

f(z) =

√
b

2πα
exp{α−1}z−3/2 exp

{
− 1

2α
(z +

1

z
)

}
, z > 0.

Example 2. (Reciprocal Inverse Gaussian frailty model)

The Reciprocal Inverse Gaussian (denoted here by RIG) case is obtained by taking λ = 1/2. Here we

have K1/2(z) = K−1/2(z), since the modi�ed Bessel function of the third kind is symmetric. In this case
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the density function of Z is given by

f(z) =

√
1

2πα
exp{α−1}z−1/2 exp

{
− 1

2α
(z +

1

z
)

}
, z > 0.

Example 3. (Hyperbolic frailty model)

Another special case of the GIG distribution is obtained when λ = 0 and is called the Hyperbolic distri-

bution. The Hyperbolic Generalized distributions were introduced by Barndor�-Nielsen [1977] and were

called Hyperbolic distributions since the graph of the logarithm of the probability function takes the form

of a hyperbola. The class of Generalized Hyperbolic distributions includes the Hyperbolic, Scaled Laplace

and Positive Hyperbolic distributions by changing parameter speci�cation. The Hyperbolic frailty (that

will be denoted by HYP) has the following density function

f(z) =
z−1

2K0(
√
α−1)

exp

{
− 1

2α
(z +

1

z
)

}
, z > 0.

Example 4. (Positive Hyperbolic frailty model)

Our last special case is called the Positive Hyperbolic (for short PHYP) and corresponds to the GIG

distribution with λ = 1. The density function a Positive Hyperbolic random variable is

f(z) =
1

2K1(
√
α−1)

exp

{
− 1

2α
(z +

1

z
)

}
, z > 0.

Now that we have become familiar the known distributions for �xed λ, we are going to explore some

aspects of these distributions. We will compare the form of the marginal density and hazard function of

T and the RFV evolution for the four values of λ that refer to the examples above.

The densities of the IG, RIG, HYP and PHYP distributions under di�erent values of α can be found

in Figure 2.1. Hougaard [1995] states that the tails of the frailty distribution determine the type of

dependence within the clusters, in a way that a large right tail leads to strong dependence initially while

a large left tail leads to strong late dependence. In such a matter, it is convenient that the distributions

that can be adjusted through the GIG frailty model provide alternatives with stronger right tails (RIG

and PHYP) as well as stronger left tails (IG and HYP). From Figure 2.1 we also conclude, as expected,

that the higher the value of α, the more dispersed becomes the distribution.

In Figure 2.2 we investigate how the choice of λ a�ects the form of the marginal density function and

marginal hazard function. For that we assume the baseline hazard to follow a Weibull distribution (that

is h0(t) = σγtγ−1 and H0(t) = σtγ) with parameters σ = 0.25 and γ = 2. In the right panel we can see

that positive values of λ imply greater risk in the initial times than negative values of λ as the curves,

from top to bottom, correspond to the values 1, 0.5, 0 and −0.5. As for the left panel, we can observe

that the marginal density function under negative values of λ has stronger right tails than under positive

values of this parameter.
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Figure 2.1: Density function of IG, RIG, HYP and PHYP distributions under some values of α where
line type indicates di�erent speci�cations.

As mentioned previously, the RFV is a way of comparing dependece patterns within frailty distribu-

tions and we will do that using the expressions in Equations (2.5) and (2.6). Through the graph of the

RFV(s) versus s, we can obtain information on how the heterogeneity or dependence evolves over time

in each frailty distribution. This means that exploring this relationship may help giving the researcher a

better understanding on what the choice of a particular frailty distribution entails for the �t.

In Figure 2.3, we present the evolution of the RFV(s) function for the IG, RIG, HYP and PHYP

frailties. For the four distributions to be compared we �nd for each of them the root of the equation

RFV (0)− 0.7 = 0. That is, the value of α for which RFV(0) is equal to 0.7. In this way we can better

compare how their evolution di�ers since they have the same starting point.

The results of Figure 2.3 evidence similarity within the GIG family regarding the RVF evolution. All

special cases have shown decreasing RFV over time. This means that in GIG frailty models individuals

who survive tend to be less heterogeneous (or less dependent) over time. What di�erentiates between

the distributions under comparison is the speed in which this happens. This can be observed in the

curvature of the graph of RFV (s) versus s. The more pronounced curvature is due to the inverse

Gaussian model, consequently in this frailty distribution, the decrease in heterogeneity (or dependence)

occurs more quickly. In the PHYP distribution, we notice a much more gradual decrease. The HYP and

RIG models have intermediate behavior regarding the evolution of the relative frailty variance.

Having introduced the GIG frailty model and its particular cases, in the next section we extend the

model presented to the multivariate case, that is, the presence of clustered data.
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Figure 2.2: Marginal density and marginal hazard function considering a Weibull(σ = 0.25, γ = 2)
baseline hazard, α = 1 and di�erent values of λ.

Figure 2.3: Relative frailty variance evolution for IG, RIG, HYP and PHYP frailties with α such that
RFV(0) = 0.7 in each case.
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CHAPTER 3

GENERALIZED INVERSE GAUSSIAN FRAILTY MODEL FOR

CLUSTERED DATA

In this section we discuss the GIG frailty model including a regression structure and extending to

the multivariate approach. In the univariate approach each individual has its own frailty value and the

latent variable is interpreted as the degree of unobserved heterogenity. The univariate frailty models

are applicable, for example, when important covariates are missing from the analysis. In the shared

frailty models, individuals in a group, or cluster, share the same frailty. This creates positive dependence

between individuals belonging to the same group. The shared frailty model is reduced to the univariate

approach when groups are formed by one observation.

Assume m clusters with the i-th cluster having ni individuals, for i = 1, ...m. Here T 0
ij and Cij denote

the failure and censoring times for the individual j = 1..., ni in the i-th cluster. The total sample size is

n =
∑m
i=1 ni. In addition let Tij = min{T 0

ij , Cij} for i = 1, ...m and j = 1, ..., ni be the observed random

variables and δij = I{T 0
ij ≤ Cij} the failure indicator. Naturally, the frailty Zi is associated to the i-th

cluster. To complete model speci�cation, we make the assumptions that given Zi, {(T 0
ij , Cij), j = 1, ..., ni}

are conditionally independent and that T 0
ij and , Cij are independent for all j. Another assumption that

we will rely on is that the censoring times within the cluster {Cij , j = 1, ..., ni} are non-informative with

respect to Zi.

Conditional to the frailty, the model has the same structure as the proportional hazards model by Cox

[1972], with the inclusion of the frailty term Zi acting multiplicatively in the baseline hazard function,

as follows

h(tij |Zi) = Zih0(tij) exp(x>ijβ), tij > 0 ∀ i, j.

3.1 Parametric GIG frailty model

In this section we will present the joint expressions of the clusters unconditional to the frailty. These

expressions will then be used to construct the likelihood function where maximum likelihood estimation

can be performed to �nd the parameters estimates under the parametric approach.
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The joint survival function of a cluster can be found by using that S(ti1, ..., tini) = LZi

(∑ni
j=1H0(tij)e

x>ijβ
)
.

When accounting for Expression (2.2) we have that the joint survival function associated to the i-th cluster

is given by

S(ti1, ..., tini) = LZi

 ni∑
j=1

Λ0(tij)e
x>ijβ

 =

(
α−1

α−1 + 2
∑ni
j=1H0(tij)e

x>ijβ

)λ/2
× (3.1)

Kλ(
√
α−1(α−1 + 2

∑ni
j=1H0(tij)e

x>ijβ))

Kλ(α−1)
.

Next, in order to �nd an explicit and simple form for the joint density function we need the following

Lemma. The proof of this Lemma can be found in the Appendix.

Lemma 1. Let ζ(x) =
1

xφ/2
Kφ(
√
x), we have that

∂

∂xk
ζ(x) =

(
−1

2

)k
Kφ+k(

√
x)

x(φ+k)/2
.

Using this result, we have that the joint density associated to the survival function in (3.1) is

f(ti1, ..., tini) =
α−λ

Kλ(α−1)
(2/α)ni

ni∏
j=1

h0(tij)e
x>ijβχ(ni)

(
α−1(α−1 + 2H0(tij)e

x>ijβ))
)
,

where χ(k)(x) = ∂
∂xk

(−1)k
xφ/2

Kφ(
√
x). The result given in Lemma 1 provides an expression for f(ti1, ..., tini)

no matter the size of the cluster. This is an advantage with respect to the GE model for example, because

the high-order derivatives of the Laplace transform do not have a simple form there.

Let θ be the parameter vector and L(θ) denote the likelihood function. Here, θ is given by (β,H0, α)>,

as we are considering �xed λ. L(θ) is given by

L(θ) =

m∏
i=1

∫ ∞
0

ni∏
j=1

(zih0(tij)e
x>ijβ)δij exp

(
−ziH0(tij)e

x>ijβ
)
f(zi)dzi,

where we are integrating with respect to the latent frailties so that L(θ) does not depend on unobserved

quantities. To solve this, we can use the integral that comes from (2.1):

∫ ∞
0

xλ−1e{
−1
2 (ax+b/x)}dx = 2Kλ(

√
ab)

(
b

a

)λ/2
,

and conclude that the observed likelihood function is given by

L(θ) =

m∏
i=1

1

Kλ(α−1)
Ψλ+

∑ni
j=1 δij

α−1(α−1 + 2

ni∑
j=1

H0(tij)e
x>ijβ)

α−(
∑ni
j=1 δij)+λ

ni∏
j=1

(
h0(tij)e

x>ijβ
)δij

,(3.2)

where Ψλ(x) =
Kλ(
√
x)

xλ/2
.
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The associated log-likelihood denoted by `(θ) is given as follows:

`(θ) =

m∑
i=1

log Ψλ+
∑ni
j=1 δij

α−1(α−1 + 2

ni∑
j=1

H0(tij)e
x>ijβ)

− logα

 ni∑
j=1

δij + λ

 (3.3)

+

m∑
i=1

ni∑
j=1

δij
(
x>ijβ + log h0(tij)

)
−m logKλ(α−1).

In order to �t a parametric GIG frailty model, we specify the baseline hazard function h0(·) and then

obtain parameter estimates via maximum likelihood, that is maximizing (3.3) using numerical optimiza-

tion methods, for example some are avaliable in R (R Core Team [2019]) optim such as BFGS and

Nelder-Mead for example. In this work we will assume a with Weibull baseline hazard, that is obtained

by using that h0(t) = σγtγ−1 and H0(t) = σtγ .

3.2 Semiparametric GIG frailty model

When no parametric form is desired for the baseline hazard function, a semiparametric approach can

be used. In this section we introduce the semiparametric generalized inverse-Gaussian frailty model based

on an EM algorithm and piecewise exponential hazards.

Our choice of methodology follows Lawless & Zhan [1998] who argues that the use of the piecewise-

constant hazard function avoids many problems associated with non- and semiparametric methods for

incomplete survival data, but still provides a high degree of robustness. Naturally, using piecewise

constant hazards o�ers greater �exibility than making a parametric assumption about the form of the

hazard function.

In frailty models this methodology was also adopted by Liu & Huang [2008] who proposed a Gaussian

quadrature estimation method for the gamma and normal frailties. Some motivations for using this

method, according to the authors, were the simplicity of implementation, accuracy of the estimates and

avaliability of the standard errors. Feng et al. [2005] also highlights the �exibility provided by the

usage of piecewise constant hazards, that according to them is quite general and can approximate various

shapes of the baseline hazard function.

The baseline hazard function of a piecewise exponential distribution is given by

h0(t) = ηl, t
(l−1) ≤ t < t(l), l = 1, ..., k + 1 , (3.4)

where t(l) denotes the l-th ordered time and 0 = t(0) < min(ti, i = 1, ..., n) ≤ t(1) < ... < t(k) ≤

max(ti, i = 1, ..., n) = t(k+1) are the prespeci�ed cutpoints. This implies that the cumulative baseline

function is H(t|η) =
∑i
j=1 ηj [min(t, t(j+1))− t(j)] if t(i) ≤ t < t(i+1) for i = 0, ..., k. Hence, specifying k

change points means separating the data into k+1 groups, so there are k+1 failure rates to be estimated

in the model.
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When Kim & Proschan [1991] introduced the estimation of the survival function through the piecewise

exponential estimator, they considered as many partitions as the number of observed failures. However,

in this matter we will follow Lawless & Zhan [1998] that showed through simulation studies that frailty

models based on the piecewise constant hazards often result in excelent estimation of regression and

frailty coe�cients when 8-10 pieces are adopted. Next, we will proceed to the estimation of parameters

via an EM (Expectation-Maximization) algorithm [Dempster et al., 1977].

The EM algorithm is a popular method to deal with the presence of non-observed data in the likelihood

function and has been used in the literature of frailty models by Klein [1992], Wang & Klein [2012],

Callegaro & Iacobelli [2012] and Barreto-Souza & Mayrink [2019] to name a few. This algorithm consists

on alternating between two parts. In the Expectation (E) step, we compute the conditional expectation

of the log-likelihood given the observed data, evaluated at the current estimate of the parameters. This

is named Q-function. It also includes a Maximization (M) step, in which we maximize the Q-function.

The new estimates obtained in the M step are used to update the Q-function and we iterate between

these steps until some convergence criteria is reached.

The complete data set is given by (tij , δij , Zi), for i = 1, ...,m and j = 1, ..., ni. We observe the pairs

(tij , δij) and Zi are the latent random e�ects. The complete likelihood is given by

Lc(θ) =

m∏
i=1

ni∏
j=1

(zih0(tij)e
x>ijβ)δij exp

(
−ziH0(tij)e

x>ijβ
) 1

2Kλ(α−1)
zλ−1i exp

{
− 1

2α

(
zi +

1

zi

)}
,

This likelihood function can be written as the product of two terms, i.e. Lc(θ) = L1(β,H)L2(α) where

L1(β,H) =

m∏
i=1

ni∏
j=1

(zih0(tij)e
x>ijβ)δij exp

(
−ziH0(tij)e

x>ijβ
)
,

and

L2(α, λ) =

m∏
i=1

1

2Kλ(α−1)
zλ−1i exp

{
− 1

2α

(
zi +

1

zi

)}
.

As a consequence, the associated complete log-likelihood can be written as `c(θ) = `1(β,H)+`2(α) where

the �rst term is given by

`1(β,H) ∝
m∑
i=1

ni∑
j=i

δij
(
x>ijβ + log h0(tij)

)
−

m∑
i=1

ni∑
j=i

ZiH0(tij)e
x>ijβ ,

and the second term is

`2(α, λ;Z) = −m log 2Kλ(α−1) + (λ− 1)

m∑
i=1

log(zi)−
1

2α

m∑
i=1

(zi + 1/zi) .

In order to determine the expectation step of the EM algorithm, we need to �nd the conditional density

of Zi given the observed data {tij , δij}nij=1. Using basic probability it can be shown that this density

function is given by f(zi|tij , δij , j = 1, ..., ni) = f(tij , δij , j = 1, ..., ni|zi)f(zi)/f(tij , δij , j = 1..., ni).
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More speci�cally, we have that

f(zi|tij , δij , j = 1, ..., ni) ∝ z
λ+

∑ni
j=1 δij−1

i exp

−1

2

zi
α−1 + 2

ni∑
j=1

H0(tij)e
x>ijβ

+
1

αzi

 .

Therefore, it can be observed that the conditional density of Zi given the observed data {tij , δij}nij=1

follows a GIG(α−1 + 2
∑ni
j=1H0(tij)e

x>ijβ , α−1, λ+
∑ni
j=1 δij) distribution for i = 1, ...,m. Conditional on

the observed data, the frailties Z1, ..., Zm are independent GIG distributed random variables with the

mentioned parameters.

The Q-function is the conditional expected value of the complete likelihood given the observed data

at the current parameter estimates, that is, Q(θ, θ(r)) ≡ E
(
`c(θ)|(tij , δij), i = 1, ...,m, j = 1..., ni; θ

(r)
)

where θ(r) denotes the estimated vector of parameters θ in the r-th step. The Q-function depends on

the expectations E
(
Zi|(tij , δij)nij=1

)
≡ ωi(θ), E

(
1/Zi|(tij , δij)nij=1

)
≡ κi(θ) and E

(
log(Zi)|(tij , δij)nij=1

)
≡

νi(θ). These expectations are presented in the next proposition.

Proposition 1. (E-step of the EM algorithm) For i = 1, ...,m, we have that

ωi(θ) = E
(
Zi|(tij , δij)nij=1

)
=

Kλ+
∑ni
j=1 δij+1

(√
α−1(α−1 + 2

∑ni
j=1H0(tij)e

x>ijβ)

)
Kλ+

∑ni
j=1 δij

(√
α−1(α−1 + 2

∑ni
j=1H0(tij)e

x>ijβ)

) ×

(
α−1 + 2

∑ni
j=1H0(tij)e

x>ijβ

α−1

)−1/2
,

that is obtained from (2.3).

In order to calculate κi(θ) we can identify the kernel of a GIG distribution and �nd that this conditional

expectation is given by

κi(θ) = E
(
1/Zi|(tij , δij)nij=1

)
=

Kλ+
∑ni
j=1 δij−1

(√
α−1(α−1 + 2

∑ni
j=1H0(tij)e

x>ijβ)

)
Kλ+

∑ni
j=1 δij

(√
α−1(α−1 + 2

∑ni
j=1H0(tij)e

x>ijβ)

) ×

(
α−1 + 2

∑ni
j=1H0(tij)e

x>ijβ

α−1

)1/2

.

Our strategy to �nd νi(θ) consists on calculating MlogZi(t), the moment generating function (MGF) of

logZi and evaluate its derivative at t = 0. For the sake of simpli�ng the demostration we will use the

following notation for the parameters:

a∗ = α−1 + 2
∑ni
j=1H0(tij)e

x>ijβ , b∗ = α−1 and λ∗ = λ+
∑ni
j=1 δij.
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The MGF of logZi is

MlogZi(t) = E
(
elog(zi)t

)
=

(
a∗

b∗

)λ∗/2
1

2Kλ∗(
√
a∗b∗)

∫ ∞
0

zλ
∗+t−1
i exp

{
−1

2

(
a∗zi +

b∗

zi

)}
dzi.

Solving this, we obtain

MlogZi(t) =

(
a∗

b∗

)−t/2
Kλ∗+t(

√
a∗b∗)

Kλ∗(
√
a∗b∗)

.

The derivative of the expression above depends on the derivative of the Bessel function in terms of its

index, that does not have a closed form. Finally, E
(
log(Zi)|(tij , δij)nij=1

)
is given by

νi(θ) = E
(
log(Zi)|(tij , δij)nij=1

)
= −1

2
log

(
a∗

b∗

)
+

∂
∂tKλ∗+t(

√
a∗b∗)t=0

Kλ∗(
√
a∗b∗)

.

Although an analytical expression was found for νi(θ), it depends on the derivative of the Bessel

function with respect to its index, which can be numerically unstable. This is discussed by Palmer et al.

[2016], who presents an alternative form for this expectation. We will work with the expression provided

in this reference which gives us that a good approximation for νi(θ) is

νi(θ) = E
(
log(Zi)|(tij , δij)nij=1

)
≈ ε−1

((
a∗

b∗

)ε
Kλ∗+ε(

√
a∗b∗)

Kλ∗(
√
a∗b∗)

− 1

)
,

when taking a su�ciently small ε > 0. We will work with ε = 10−6 as suggested by the authors.

Now we are ready to obtain the Q-function, that is Q(θ, θ(r)) = Q1(β,H0(t); θ(r))+Q2(α; θ(r)), where

Q1(β,H0(t); θ(r)) ∝
m∑
i=1

ni∑
j=i

δij
(
x>ijβ + log h0(tij)

)
−

m∑
i=1

ni∑
j=i

ωi(θ
(r))H0(tij)e

x>ijβ ,

and

Q2(α; θ(r)) ∝ −m log(Kλ(α−1)) + (λ− 1)

m∑
i=1

νi(θ
(r))− 1

2α

m∑
i=1

(ωi(θ
(r)) + κi(θ

(r))).

By assuming the piecewise hazard function for h0(t) in (3.4) and providing its cutpoints, we have

all components needed to �nd the estimates of the parameters. Using the EM algorithm instead of

maximizing the observed log-likelihood function in (3.3) with piecewise constant hazards, allows us to

have simpler expressions to maximize. In addition, we are able to do this separately for (β, η) and α.

The EM algorithm for the GIG frailty model will be carried as descripted in Algorithm 1.

There are two procedures available to �nd the standard errors of the estimates. The �rst one consists

on the method indicated in Klein [1992] that relies on the observed Fisher Information matrix, that
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Algorithm 1 EM-algorithm for the semiparametric GIG frailty model

1: Provide initial guesses for the parameters. Denoting θ(r) as the estimate of the set of parameters at
step r, β(0) will be those obtained through the �t of the proportional hazards model in R package

survival (Therneau [2015]). We set α(0) = 1 and η
(0)
k =

∑m
i=1

∑ni
j=1 δij/

∑m
i=1

∑ni
j=1 tij if tij is

a failure time for t(l) ≤ tij < t(l+1) where t(l) represents the l-th change point, for l = 1, ..., k.
The last expression corresponds to the maximum likelihood estimator of the rate of an exponential
distribution in each given interval considering only the failure times within that interval.

2: Update the Q-function using the expressions found for ωi(θ), κi(θ) and νi(θ) and θ = θ̂(r).

3: Use the expressions of h0(t) and H0(t), corresponding to a piecewise exponential distribution, and
numerically obtain the maximum likelihood estimates of β and η by maximizing Q1. For this task,
we chose to work with the optim function in R using BFGS maximization routine (Fletcher, R.

[2000]). The new estimates of the parameters are denoted by β̂(r+1) and η̂(r+1).

4: Obtain the maximum likelihood estimate of α by maximize Q2 numerically. Again, we use R optim

command and the BFGS maximization procedure. The new estimate is denoted by α̂(r+1).

5: Verify a convergence criterion. For example, ||θ(r+1) − θ(r)|| < ε for some prestablished ε > 0. If the
convergence criterion is satis�ed, then θ(r+1) are the �nal parameter estimates. Otherwise, we update
θ(r) with θ(r+1) and return to step 2.

is, I(β, α, η) = − ∂2`(β, α, η)

∂(β, α, η)∂(β, α, η)>
, where ` is the observed log-likelihood given in (3.2). In order to

use this method, an option would be to obtain this matrix numerically since the analytical calculations

would be very cumbersome. After having the �nal estimates of the algorithm, the standard errors of the

parameters are given by the diagonal elements of I(β̂, α̂, η̂). Another way of approaching the standard

errors is through bootstrap resampling (Efron, B. [1979]).
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CHAPTER 4

SIMULATION STUDIES

In this section we present simulation studies with the goal of evaluating the performance of the

estimates produced by the proposed model under correct model speci�cation and under misspeci�cation.

First, we will explore the parametric version of the GIG frailty model specifying a Weibull baseline

hazard function. We evaluate parameter estimation under correct model speci�cation and �nite sample

sizes by running a Monte Carlo study with 1000 replicates. This is presented in Subsection 4.1. Our main

interest is in the semiparametric version of the GIG frailty model, which will be explored in Subsection

4.2. We will present scenarios in which the data are generated with gamma, generalized exponential

(GE), log-normal and inverse Gaussian frailties. We �t to each data set the IG, RIG, HYP and PHYP

frailty models with di�erent numbers of change points for the piecewise constant hazards. In addition,

we �t the semiparametric versions of the gamma and GE frailty models avaliable in literature. In the

semiparametric simulation studies we also consider 1000 Monte Carlo replicas in each scenario.

4.1 Parametric simulation study

In this subsection we explore the behavior of the estimators under �nite samples. We evaluated

the performance of the proposed model under the parametric approach by assuming a Weibull baseline

hazard function with the parametrization previously mentioned. The simulation study was conducted

using 1000 Monte Carlo replicas and we assessed the number of cluster of m = 50, 100 and 200 with

ni = 2(i = 1, ...,m) observations per cluster in all cases. In the parametric approach, we chose to

explore the performance of the correct speci�ed models. A simulation study under misspeci�cation will

be presented in the next section for the semiparametric version.

We generated independent random covariates from a Bernoulli(p = 0.5) and Uniform(−1, 1) distri-

butions with true values of the �xed e�ects being (β1, β2) = (1.5,−1.0). True value of α was set to

0.7. Given the frailties, the survival times were generated from a Weibull distribution with γ = 2 and

σ = 0.25. The censoring times were generated independently from a Weibull distribution with parameters

γ = 2 and σ = 0.05. Thus, we have a censoring rate around 30%. We explore parameter estimation for

the complete set of parameters θ = (β1, β2, σ, γ, α)> using the IG, RIG, HYP and PHYP frailty models.
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Table 4.1: Empirical mean and root mean square error (RMSE) of the parameter estimates under the
parametric approach considering a Weibull baseline hazard.

Parameter Model
m=50 m=100 m=200
Mean RMSE Mean RMSE Mean RMSE

β1 = 1.5

IG 1.5664 0.0664 1.5322 0.0322 1.5159 0.0159
RIG 1.5566 0.0291 1.5325 0.0325 1.5092 0.0092
HYP 1.5678 0.0678 1.5167 0.0167 1.5172 0.0172
PHYP 1.5489 0.0489 1.5180 0.0180 1.5194 0.0194

β2 = −1

IG −1.0474 0.0474 −0.9992 0.0008 −1.0072 0.0072
RIG −1.0291 0.0291 −1.0160 0.0160 −1.0127 0.0127
HYP −1.0561 0.0561 −1.0125 0.0125 −1.0125 0.0125
PHYP −1.0296 0.0296 −1.0083 0.0083 −1.0114 0.0114

σ = 0.25

IG 0.2700 0.0200 0.2563 0.0063 0.2518 0.0018
RIG 0.2507 0.0007 0.2513 0.0013 0.2542 0.0042
HYP 0.2565 0.0065 0.2542 0.0042 0.2510 0.0010
PHYP 0.2616 0.0116 0.2570 0.0070 0.2504 0.0004

γ = 2

IG 2.0912 0.0912 2.0378 0.0368 2.0214 0.0214
RIG 2.0850 0.0850 2.0290 0.0290 2.0135 0.0135
HYP 2.0851 0.0851 2.0327 0.0327 2.0218 0.0218
PHYP 2.0660 0.0660 2.0246 0.0246 2.0205 0.0205

α = 0.7

IG 1.0491 0.3491 0.8298 0.1298 0.7487 0.0487
RIG 0.9573 0.2573 0.8087 0.1087 0.7306 0.0306
HYP 0.9277 0.2277 0.7871 0.0871 0.7470 0.0470
PHYP 1.0605 0.3605 0.8046 0.1046 0.7717 0.0717

Table 4.1 contains the empirical means and root mean square errors (RMSE) of the parameter esti-

mates for this simulation study. Figures 4.1 - 4.5 illustrate with boxplots the estimates under the four

proposed frailty models so that we have a better picture on how the estimates are distributed.

In Table 4.1 we note that the covariate e�ects are well estimated even for the smallest sample size in

all frailty models. The same can be said about the parameters of the baseline hazard function, where we

have observed that γ and σ are estimated with low bias in all sample sizes. In Figure 4.5, we observed

that the estimation of α occurs with greater variability when in smaller sample sizes and presents slight

bias, as reported in Table 4.1. However, as expected, bias and RMSE reduce when increasing sample size

and the estimates of α, when m = 200, are reasonably close to the true value.

There was not a relevant di�erence between the models under correct speci�cation in the estimation

of the parameters. The variability of the estimates under the four models considered also seem to be

similar when looking at the boxplots in Figures 4.1 - 4.5.

4.2 Semiparametric simulation study

In this section we analyze the four special cases of the GIG frailty under model misspeci�cation using

the semiparametric approach discussed in subsection 3.2. For that we will consider data sets generated

with gamma, generalized exponential (GE) and log-normal frailties and sample sizes of m = 200 and

m = 500 with clusters formed by ni = 2 individuals each. In addition, we explore λ misspeci�cation

by generating data with inverse Gaussian frailty and �tting all special cases. In this last scenario,
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Figure 4.1: Boxplots of the estimates obtained in the Monte Carlo simulation for β1. Each boxplot
corresponds to a frailty distribution as indicated in the horizontal axis. The columns represent the sample
sizes of m = 50 (on the left), m = 100 (in the middle) and m = 200 (on the right). The horizontal dashed
line indicates the true value of the parameter.

Figure 4.2: Boxplots of the estimates obtained in the Monte Carlo simulation for β2. Each boxplot
corresponds to a frailty distribution as indicated in the horizontal axis. The columns represent the sample
sizes of m = 50 (on the left), m = 100 (in the middle) and m = 200 (on the right). The horizontal dashed
line indicates the true value of the parameter.

Figure 4.3: Boxplots of the estimates obtained in the Monte Carlo simulation for σ. Each boxplot cor-
responds to a frailty distribution as indicated in the horizontal axis. The columns represent the sample
sizes of m = 50 (on the left), m = 100 (in the middle) and m = 200 (on the right). The horizontal dashed
line indicates the true value of the parameter.

we also aim to explore the behavior of the models under a larger cluster size. Thus, in this part we

consider m = 20 and m = 100 with ni = 10 for all i, mantaining the total sample size. Analogous to the

parametric simulation, given the frailties, the failure times T 0
ij were generated from a Weibull distribution

with γ = 2 and σ = 0.25 and the censoring times Cij were generated, independently of T 0
ij , following
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Figure 4.4: Boxplots of the estimates obtained in the Monte Carlo simulation for γ. Each boxplot cor-
responds to a frailty distribution as indicated in the horizontal axis. The columns represent the sample
sizes of m = 50 (on the left), m = 100 (in the middle) and m = 200 (on the right). The horizontal dashed
line indicates the true value of the parameter.

Figure 4.5: Boxplots of the estimates obtained in the Monte Carlo simulation for α. Each boxplot cor-
responds to a frailty distribution as indicated in the horizontal axis. The columns represent the sample
sizes of m = 50 (on the left), m = 100 (in the middle) and m = 200 (on the right). The horizontal dashed
line indicates the true value of the parameter.

a Weibull distribution with parameters γ = 2 and σ = 0.05. The observed data are min{T 0
ij , Cij}

and δij = I{T 0
ij ≤ Cij}. With this con�guration we have a percentage of approximately 30% censored

observations.

We generated independent random covariates from the Bernoulli(p = 0.5) and Uniform(−1, 1) dis-

tributions with true values of their e�ects being (β1, β2) = (1.5,−1.0). True value of α was set to 1.

We evaluated parameter estimation for the complete set of parameters θ = (β1, β2, α)> under the IG,

RIG, HYP and PHYP frailty models. Fitting the IG, RIG, HYP and PHYP models is done considering

5 and 10 change points for the piecewise baseline hazard function, that is, k = 5 and k = 10. In the

�rst three scenarios, the �ts of the gamma and GE models are also included. In the last one, we do not

report the GE model as it is most suitable for small clusters. The semiparametric versions of the gamma

and GE models are based on the Cox partial likelihood function and therefore do not require cut point

speci�cation.

The parameter α represents the frailty variance only in the gamma and IG cases. Hence, in each case

an appropriate transformation of this parameter is calculated so that we obtain the frailty variance. This

comparison is done as indicated by Barreto-Souza & Mayrink [2019] that states that the model given
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Table 4.2: Empirical mean and root mean square error (RMSE) of β1, β2 and the frailty variance for
gamma distributed frailty data with sample size m = 200. Rows represent the �tted model. The real
values of the parameters are β1 = 1.5, β2 = −1 and α = 1 so real frailty variance is also 1.

β1 β2 Var
Model Cut points Mean RMSE Mean RMSE Mean RMSE

Semiparametric Gamma - 1.288 0.212 -0.857 0.143 0.592 0.408

Semiparametric GE - 1.396 0.104 -0.927 0.073 0.767 0.233

Semiparametric - IG
k = 5 1.307 0.193 -0.862 0.138 1.541 0.541
k = 10 1.361 0.139 -0.900 0.100 1.866 0.866

Semiparametric - RIG
k = 5 1.408 0.092 -0.927 0.073 1.153 0.153
k = 10 1.482 0.018 -0.981 0.019 1.272 0.272

Semiparametric - HYP
k = 5 1.365 0.135 -0.898 0.102 1.388 0.388
k = 10 1.434 0.066 -0.946 0.054 1.608 0.608

Semiparametric - PHYP
k = 5 1.383 0.117 -0.914 0.086 0.865 0.135
k = 10 1.427 0.073 -0.949 0.051 0.894 0.106

by h(tij |Zi) = Zih0(tij) exp (x>ijβ) is equivalent to h(tij |Zi) = Z∗i h
∗
0(tij) exp(x>ijβ) with Z∗i = Zi/E(Zi)

having mean 1, and h∗0(tij) = h0(tij)E(Zi). In other words, the comparison of the frailty variance should

be done through the transformation Var(Z∗i ) = Var(Zi)/E(Zi)
2. The proper transformation for each

model is done so that they are comparable and is reported in the column named "Var".

Figure 4.6: Boxplots of the maximum likelihood estimates obtained in the Monte Carlo simulation for
β1, β2 and the frailty variance when data is generated from a gamma distribution with m = 200. The
horizontal dashed line indicates the real value of the parameter.

In Table 4.2 we present the empirical mean and root mean square error (RMSE) of 1000 Monte Carlo

replicas when data are generated with gamma frailty and sample size is equal to m = 200 with ni = 2

for all i, totalizing 400 observations. We estimated the e�ects of the two covariates considered and the

frailty variance through the gamma, GE and GIG �ts. For the GIG model, we included the four special

cases under investigation and the number of change points of k = 5 and k = 10.

We observed that the correct model clearly underestimated the frailty variance. This is something

that was also observed by Barreto-Souza & Mayrink [2019] in their simulation studies. The authors
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Table 4.3: Empirical mean and root mean square error (RMSE) of β1. β2 and the frailty variance for
gamma distributed frailty data with sample size m = 500. Rows represent the �tted model. The real
values of the parameters are β1 = 1.5, β2 = −1 and α = 1 so real frailty variance is also 1.

β1 β2 Var
Model Cut points Mean RMSE Mean RMSE Mean RMSE

Semiparametric Gamma - 1.290 0.210 −0.863 0.137 0.609 0.391

Semiparametric GE - 1.393 0.107 −0.929 0.071 0.769 0.231

Semiparametric - IG
k = 5 1.294 0.206 −0.860 0.140 1.480 0.480
k = 10 1.345 0.155 −0.897 0.103 1.782 0.782

Semiparametric - RIG
k = 5 1.395 0.105 −0.923 0.077 1.149 0.149
k = 10 1.471 0.029 −0.978 0.022 1.275 0.275

Semiparametric - HYP
k = 5 1.350 0.150 −0.894 0.106 1.351 0.351
k = 10 1.418 0.082 −0.942 0.058 1.570 0.570

Semiparametric - PHYP
k = 5 1.381 0.119 −0.915 0.085 0.882 0.118
k = 10 1.425 0.075 −0.951 0.049 0.909 0.091

pointed to the fact that the di�culty in estimating α in the gamma frailty model is due to the �at

shape of its Q-function. We can note clear advantage of the PHYP, RIG and GE models in estimating

this quantity, as they returned smaller RMSEs than the true model. Although the gamma model is the

correctly speci�ed model in this scenario, it presented the greatest bias in the estimation of �xed e�ects

as well. The lowest RMSEs in the estimation of β1 and β2 are related to GIG frailties.

The boxplots of the estimates in Figure 4.6 con�rm our statement that gamma model had the poorest

performance in estimating β1 and β2 as well as the frailty variance, since its boxplots are farthest from the

true values. The boxplots of frailty variance estimates show us that between the GIG frailty special cases,

the PHYP is the one showing lowest variability. The gamma and GE models also show low variability

but higher bias.

As for the number of cutpoints k, we observed a reduction in the RMSEs of β1 and β2 in all cases,

but only in the PHYP model it implied in an improvement in the estimation of the frailty variance too.

The other three models showed an increase in the frailty variance bias when increasing k.

In general, we can observe the same behavior when we increase the total sample size from n = 400

to n = 1000. Again, each clusters is formed by two individuals. There is not a signi�cant di�erence

between the two sample sizes considered. The decrease in the RMSE of the frailty variance estimates in

the gamma and GE cases is very small, which gives evidence that increasing the sample size did not help

much to decrease the bias. In the same way, for the IG, RIG and HYP models a similar result occurs.

In the PHYP model, the frailty variance was estimated with low bias when m = 200 unlike the other

models under comparison. Thus, as expected, this is also the model that performed best when m = 500.

Again, for both �ts with k = 5 and k = 10, the mean estimation of the frailty variance in this model

was closer to the real value than the correctly speci�ed one. Something we can observe by comparing

the two sample sizes tested is that there is evidence that the number of change points equal to 10 is

more appropriate when m = 500. This can be said based on �xing the number of change points to 5 and
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Figure 4.7: Boxplots of the maximum likelihood estimates obtained in the Monte Carlo simulation for
β1, β2 and the frailty variance when data is generated from a gamma distribution with m = 500. The
horizontal dashed line indicates the real value of the parameter.

Table 4.4: Empirical mean and root mean square error (RMSE) of β1, β2 and the frailty variance for
GE distributed frailty data with sample size m = 200. Rows represent the �tted model. The real values
of the parameters are β1 = 1.5, β2 = −1 and α = 1 so real frailty variance is also 1.

β1 β2 Var
Model Cut points Mean RMSE Mean RMSE Mean RMSE

Semiparametric Gamma - 1.304 0.196 −0.869 0.131 0.645 0.355

Semiparametric GE - 1.391 0.109 −0.924 0.076 0.770 0.230

Semiparametric - IG
k = 5 1.335 0.166 −0.885 0.115 1.602 0.602
k = 10 1.407 0.093 −0.938 0.062 2.064 1.064

Semiparametric - RIG
k = 5 1.423 0.077 −0.938 0.062 1.163 0.163
k = 10 1.483 0.017 −0.982 0.018 1.257 0.257

Semiparametric - HYP
k = 5 1.388 0.112 −0.917 0.083 1.407 0.407
k = 10 1.448 0.052 −0.960 0.040 1.595 0.595

Semiparametric - PHYP
k = 5 1.393 0.107 −0.921 0.079 0.876 0.124
k = 10 1.426 0.074 −0.949 0.051 0.895 0.105

comparing the average estimates of sample size m = 200 to those of m = 500, where we can see equal

or slightly worse estimates of the covariate e�ects. This behavior is not expected when the sample size

is increased. For example, the estimates of β1 in the IG, RIG, HYP and PHYP were 1.307, 1.408, 1.350

and 1.383 when m = 200, whereas for m = 500 these estimates were respectively 1.294, 1.395, 1.350

and 1.381. We also tested the number of cut points of 20 but did not observe a signi�cant di�erence in

comparison to the use of 10 cut points, which is in agreement with Lawless & Zhan [1998].

When the data are generated with GE frailty, we can see in Table 4.4 that all models considered

estimate well the e�ects of the covariates, among which the gamma model again displays the higher

RMSEs in the estimation of β1 and β2. The correct speci�ed model underestimates the frailty variance,

as does the gamma model. Meanwhile, we observe in the IG frailty a considerable overestimation of

this quantity. However, the PHYP and RIG frailties perform well in this scenario. The �rst one showed
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Figure 4.8: Boxplots of the maximum likelihood estimates obtained in the Monte Carlo simulation for
β1 , β2 and the frailty variance when data is generated from a generalized exponential distribution with
m = 200. The horizontal dashed line indicates the real value of the parameter that are 1.5, −1 and 1
respectively.

Table 4.5: Empirical mean and root mean square error (RMSE) of β1, β2 and the frailty variance for
GE distributed frailty data with sample size m = 500. Rows represent the �tted model. The real values
of the parameters are β1 = 1.5, β2 = −1 and α = 1 so real frailty variance is also 1.

β1 β2 Var
Model Cut points Mean RMSE Mean RMSE Mean RMSE

Semiparametric Gamma - 1.311 0.189 −0.876 0.124 0.655 0.345

Semiparametric GE - 1.394 0.106 −0.928 0.072 0.771 0.229

Semiparametric - IG
k = 5 1.397 0.103 −0.925 0.075 3.683 2.683
k = 10 1.382 0.118 −0.921 0.079 1.847 0.847

Semiparametric - RIG
k = 5 1.417 0.083 −0.936 0.064 1.159 0.159
k = 10 1.479 0.021 −0.982 0.018 1.259 0.259

Semiparametric - HYP
k = 5 1.382 0.118 −0.914 0.086 1.376 0.376
k = 10 1.443 0.057 −0.957 0.043 1.565 0.565

Semiparametric - PHYP
k = 5 1.397 0.103 −0.925 0.075 0.892 0.108
k = 10 1.431 0.069 −0.954 0.046 0.910 0.090

smaller bias than the correct model for both �ts with k = 5 and k = 10.

In the bloxplots presented in Figure 4.8, we can see that the estimates of β1 and β2 are concentrated

close to the true values in all models under investigation with exception of the gamma one. However, the

most striking di�erence between the models is obviously in the estimation of the frailty variance, that

varies greatly among them. The gamma, GE and PHYP models show the lowest variabilities, while the

largest comes from the IG model that also has the largest RMSE in this scenario. The boxplots con�rm

that the PHYP and RIG frailties were responsible for the best estimates of the frailty variance under GE

generated data.

Once more, increasing sample size did not reduce much the RMSE under the gamma and GE models.

For the GIG frailty models, an increase in RMSE was observed again when the number of cut points is

equal to 5. The IG case was the most sensitive to this, since the average estimation of the frailty variance
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Figure 4.9: Boxplots of the maximum likelihood estimates obtained in the Monte Carlo simulation for
β1, β2 and the frailty variance when data is generated from a generalized exponential distribution with
m = 500. The horizontal dashed line indicates the real value of the parameter.

di�ers signi�cantly between the two values of k tested. This supports our previous assertion that 10

change points seems to be more appropriate when m = 500.

Just as when the data were generated from a model with gamma frailty, the PHYP model had the

smallest RMSE in the estimation of the frailty variance. It consists on the smaller RMSE among all the

models under investigation, including the correctly speci�ed one. With this, we conclude that the PHYP

model is quite competitive under misspeci�cation.

In Table 4.6 we present the simulation study when the frailty follows a log-normal distribution and

the total sample size is equal to 400. Figure 4.10 contains the corresponding boxplots. We highlight that

unlike the gamma and GE models, where α = 1 implies in a frailty variance of 1, in the log-normal frailty

when α is set to 1 the variance is approximately 1.718. We refer again to Barreto-Souza & Mayrink

[2019], that noted in their work that the gamma and GE models considerably underestimate the frailty

variance when the the frailty distribution is log-normal. Here we can see that poorest performance is due

to the gamma model. Not only it displays the highest bias in the estimation on the frailty variance, but

β1 and β2 also show RMSEs that are considerably higher than the competing models.

In this scenario, the model that best estimated the frailty variance was the inverse Gaussian frailty

model. With respect to this quantity, when k = 10, this model presents a signi�cantly lower RMSE than

all competing models. This also shows in the boxplots of the estimates given in Figure 4.10. The gamma

case, which is the most commonly used in practice, estimates very poorly the true frailty distribution is

log-normal.

Table 4.7 presents the results of the simulation study with log-normal frailty data when total sample

size is 1000. The boxplots in Figure 4.11 illustrate these results where, as expected, the variability

exhibited by the graphs reduces as sample size increases.

We can see that gamma model is not competitive in this scenario, displaying the highest RMSEs in

38



Table 4.6: Empirical mean and root mean square error (RMSE) of β1, β2 and the frailty variance for
LN distributed frailty data with sample size m = 200. Rows represent the �tted model. The real values
of the parameters are β1 = 1.5, β2 = −1 and α = 1 so real frailty variance is approximately 1.718.

β1 β2 Var
Model Cut points Mean RMSE Mean RMSE Mean RMSE

Semiparametric Gamma - 1.335 0.165 −0.887 0.113 0.442 1.276

Semiparametric GE - 1.493 0.007 −0.988 0.012 0.739 0.979

Semiparametric - IG
k = 5 1.400 0.100 −0.926 0.074 1.124 0.594
k = 10 1.464 0.036 −0.971 0.029 1.421 0.297

Semiparametric - RIG
k = 5 1.407 0.093 −0.928 0.072 0.782 0.936
k = 10 1.466 0.034 −0.972 0.028 0.884 0.834

Semiparametric - HYP
k = 5 1.413 0.087 −0.933 0.067 0.947 0.771
k = 10 1.478 0.022 −0.979 0.021 1.121 0.597

Semiparametric - PHYP
k = 5 1.390 0.110 −0.918 0.082 0.648 1.070
k = 10 1.439 0.061 −0.955 0.045 0.704 1.014

Table 4.7: Empirical mean and root mean square error (RMSE) of β1. β2 and the frailty variance for
LN distributed frailty data with sample size m = 500. Rows represent the �tted model. The real values
of the parameters are β1 = 1.5, β2 = −1 and α = 1 so real frailty variance is approximately 1.718.

β1 β2 Var
Model Cut points Mean RMSE Mean RMSE Mean RMSE

Semiparametric Gamma - 1.332 0.168 −0.891 0.109 0.454 1.264

Semiparametric GE - 1.485 0.015 −0.988 0.012 0.741 0.977

Semiparametric - IG
k = 5 1.385 0.115 −0.921 0.079 1.080 0.638
k = 10 1.451 0.049 −0.967 0.033 1.366 0.352

Semiparametric - RIG
k = 5 1.390 0.110 −0.922 0.078 0.774 0.944
k = 10 1.451 0.049 −0.965 0.035 0.880 0.837

Semiparametric - HYP
k = 5 1.397 0.103 −0.928 0.072 0.926 0.792
k = 10 1.463 0.037 −0.974 0.026 1.100 0.618

Semiparametric - PHYP
k = 5 1.377 0.123 −0.914 0.086 0.652 1.066
k = 10 1.428 0.072 −0.952 0.048 0.713 1.005
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Figure 4.10: Boxplots of the maximum likelihood estimates obtained in the Monte Carlo simulation for
β1, β2 and the frailty variance when data is generated from a log-normal distribution with m = 200. The
horizontal dashed line indicates the real value of the parameter.

Figure 4.11: Boxplots of the maximum likelihood estimates obtained in the Monte Carlo simulation for
β1, β2 and the frailty variance when data is generated from a log-normal distribution with m = 500. The
horizontal dashed line indicates the real value of the parameter.

the estimation of all quantities compared. Furthermore, the IG frailty continued to show great advantage

in the estimation of the frailty variance comparing to the other models when using 10 change points.

Our last scenario consists on data generated with inverse Gaussian frailty, one of our particular

cases. We have two main goals here, (i): analyzing what happens to the other particular cases under

misspeci�cation of λ and (ii): exploring how the gamma frailty model behaves under larger cluster sizes.

For this task, we will consider the total sample sizes of 400 and 1000 as before, but ni = 10 for all i,

hence m = 20 and m = 100. The �t of the GE frailty will not be presented as this model is most suitable

for small clusters.

Table 4.8 contains the mean and RMSE of the estimates obtained in 1000 Monte Carlo replicas. We

can see that, as expected, the true model estimates well the �xed e�ects and the frailty variance, unlike

what happened with the gamma model. Comparing among the particular cases of the GIG frailty, we see

that the choice of λ does not a�ect the estimation of the covariate e�ects, it only interferes in the frailty
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Table 4.8: Empirical mean and root mean square error (RMSE) of β1, β2 and the frailty variance for
IG distributed frailty data with total sample size equal to 400 (m = 20 with ni = 10 for all i). Rows
represent the �tted model. The real values of the parameters are β1 = 1.5, β2 = −1 and α = 1 so real
frailty variance is also 1.

β1 β2 Var
Model Cut points Mean RMSE Mean RMSE Mean RMSE

Semiparametric Gamma - 1.471 0.029 −0.980 0.020 0.552 0.448

Semiparametric - IG
k = 5 1.450 0.050 −0.962 0.038 0.878 0.122
k = 10 1.487 0.014 −0.992 0.022 0.978 0.022

Semiparametric - RIG
k = 5 1.449 0.051 −0.961 0.039 0.657 0.343
k = 10 1.484 0.016 −0.990 0.010 0.702 0.304

Semiparametric - HYP
k = 5 1.452 0.048 −0.962 0.038 0.755 0.245
k = 10 1.488 0.013 −0.992 0.008 0.822 0.182

Semiparametric - PHYP
k = 5 1.444 0.056 −0.958 0.042 0.573 0.427
k = 10 1.478 0.023 −0.986 0.015 0.603 0.406

variance. In relation to this quantity, the model that presents smaller RMSE other than the true model,

is the HYP frailty. This behavior is also antecipated since the λ value corresponding to this special case is

zero, being the closest to the real λ (−0.5: Inverse-Gaussian) of three models where λ is misspeci�cated.

We observe that the further from the true value of λ, the greater becomes the underestimation of the

frailty variance. Even so, it is noted that all GIG frailties estimated this quantity with smaller RMSEs

than the gamma model.

Figure 4.12 contains the boxplots of the estimates obtained in the simulation study where the true

frailty is inverse Gaussian frailty and n = 400. We can see that, for all the models tested, the boxplots of

β1 and β2 are concentrated close to the true values. The di�erence between the �ts lies in the estimation

of the frailty variance, where the boxplots referring to the gamma and PHYP models are those that are

farthest from the true value. In the correct speci�ed model, we can note that the increase in the number

of cut points improved the estimation of the frailty variance.

Figure 4.12: Boxplots of the maximum likelihood estimates obtained in the Monte Carlo simulation for
β1, β2 and the frailty variance when data is generated from a inverse Gaussian distribution with m = 20
and ni = 10 for all i. The horizontal dashed line indicates the real value of the parameter.
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Table 4.9: Empirical mean and root mean square error (RMSE) of β1, β2 and the frailty variance for
IG distributed frailty data with total sample size equal to 1000 (m = 100 with ni = 10 for all i). Rows
represent the �tted model. The real values of the parameters are β1 = 1.5, β2 = −1 and α = 1 so real
frailty variance is also 1.

β1 β2 Var
Model Cut points Mean RMSE Mean RMSE Mean RMSE

Semiparametric Gamma - 1.466 0.034 −0.980 0.020 0.557 0.443

Semiparametric - IG
k = 5 1.438 0.062 −0.958 0.042 0.867 0.133
k = 10 1.480 0.020 −0.987 0.013 0.957 0.043

Semiparametric - RIG
k = 5 1.436 0.064 −0.956 0.044 0.658 0.342
k = 10 1.477 0.023 −0.985 0.015 0.702 0.298

Semiparametric - HYP
k = 5 1.439 0.061 −0.958 0.042 0.753 0.247
k = 10 1.480 0.020 −0.987 0.013 0.815 0.185

Semiparametric - PHYP
k = 5 1.432 0.068 −0.953 0.047 0.579 0.421
k = 10 1.471 0.029 −0.981 0.019 0.608 0.392

Table 4.9 contains the results of the same simulation study when the total sample size is 1000. As

expected, all models continue to estimate well the �xed e�ects. The gamma model seemns to estimate

better the �xed e�ects under larger cluster sizes, but it would be necessary to increase the size of clusters

under the same frailty distribution in order to make this conclusion. It is noted that increasing sample size

did not help decreasing bias of the frailty variance estimation in any case. The boxplots of the estimates

in Figure 4.13 show that the increase in sample size caused the variability of the estimates to decrease,

something that we can conclude by comparing Figures 4.12 and 4.13, that are on the same scale.

Figure 4.13: Boxplots of the maximum likelihood estimates obtained in the Monte Carlo simulation for
β1, β2 and the frailty variance when data is generated from a inverse Gaussian distribution with m = 100
and ni = 10 for all i. The horizontal dashed line indicates the real value of the parameter.

4.2.1 Conclusion of Simulation Studies

In this section we presented simulations under the parametric and semiparametric approaches, explor-

ing the behavior of the proposed model under the correct model speci�cation and under misspeci�cation.
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In Subsection 4.1, under a Weibull baseline hazard function, we explored the behavior of the estimates of

the parameter set θ = (β1, β2, σ, γ, α)> under the four particular cases of the GIG model. We concluded

that all IG, RIG, HYP and PHYP frailties estimate well the complete set of parameters under correct

model speci�cation. In Subsection 4.2, using piecewise constant hazards, we compared the semipara-

metric version of the proposed model with the semiparametric versions available in the literature of the

gamma and GE frailty models. Through the simulation studies shown in this section, we were able to

evaluate the behavior of the GIG frailty model under model misspeci�cation since we �t it to gamma,

GE and log-normal generated data. The proposed model proved to be robust under misspeci�cation as

in the gamma and GE scenarios there was a particular case that performed better than the correct spec-

i�ed model. It was also possible to obtain a particular case that performed satisfactorily when the real

frailty was log-normal, scenario in which the competitive models did not yield good results. At last, we

explored the �t of the GIG special cases under misspeci�cation of λ concluding that, although it a�ects

the estimatation of the frailty variance, it does not in�uence the estimation of the �xed e�ects.

We also conclude that for all GIG frailties in all scenarios, the increase in the number of change points

implied an increase in the magnitude of the estimates of β1, β2 and the frailty variance. This meant an

improvement in the estimates of the �xed e�ects but this did not always imply an improvement in the

estimation of the frailty variance, since an increase in bias was observed in some cases. A key point here

is that the estimation of the �xed e�ects is not as a�ected by the choice of the model as is the frailty

variance. However, in frailty models it is crucial to obtain reliable estimates of the former quantity since

it represents either the degree of non-observed heterogeneity or cluster association, something that is

important to measure in practical problems.

We complete by highlighting that, as expected, there is no single model that is appropriate in all

situations. It was observed that the model that performed best when the data was generated with

gamma and GE frailties di�ered from the one that returned the best estimates under log-normal frailty

data. In the �rst two scenarios, we pointed advantages towards the PHYP model, while in the latter,

the IG model proved to be the most competitive. Thus, it seems advantageous to have in hand the

possibility of easily �tting di�erent frailty distributions to the same problem, something that is o�ered

by the proposed model. The frailties obtained by �tting the special cases of the GIG distribution showed

di�erent behavior in this simulation study. This evidences that they can capture distinct dependence

structures that were not well modeled by �tting the competing models. We emphasize that in the gamma,

GE and log-normal scenarios there was one of the special cases of the GIG frailty that performed better

than the correctly speci�ed model, evidencing its robustness. In addition, in the last scenario considered,

the model also showed excelent performance when correctly speci�ed, something that is not reached by

the gamma model.

43



CHAPTER 5

APPLICATIONS

In this section our goal is to illustrate the utility of the proposed model with the application to real

problems and to compare the estimates obtained using di�erent frailty models avaliable. We will present

the �t of the four special cases of the GIG frailty model as well as the gamma and generalized exponential

(denoted by GE) frailty models under the parametric and semiparametric approaches.

In the parametric approach we will work with a Weibull distributed baseline hazard function with

the parameterization previously mentioned. As for the semiparametric approach, the gamma and GE

models used here are based on the Cox partial likelihood function, while the GIG frailty model is based

on the piecewise exponential distribution. In this aspect, we chose to work with equally spaced intervals

and an speci�cation of the number of change points so that we have a reasonable amount of information

to estimate the failure rate within each interval. All cases are based on an EM algorithm, where initial

guesses were given equivalently for all �ts as previously described in Algorithm 1. Also, the convergence

parameter ε is set to 10−5 in all models.

5.1 TARGET-Neuroblastoma Clinical Data

Our �rst application consists on data obtained from the TARGET (Therapeutic Applicable Research

to Generate E�ective Treatments) initiative that aims to determine the genetic factors that lead to the

emergence and progression hard-to-treat cancers in children. More speci�cally, we will work with clinical

data from the rare cancer named neuroblastoma where our response variable is the time (in months)

from diagnosis to the last follow-up or death of the patient. The neuroblastoma is a type of cancer that

originates in primitive forms of the nerve cells of the sympathetic nervous system. Most neuroblastomas

develop in the adrenal glands, which lie on top of the kidneys. We chose to work with the subset of

patients classi�ed as high risk consisting of 315 observations (where 178 events are recorded and 137 are

censored) and investigate the e�ect of two covariates on the lifetime of the subjects. These covariates were

selected after a preliminary analysis and are: (i) MYCN Status, corresponds to MYCN gene ampli�cation

status and categorizes tumors as ampli�ed or non-ampli�ed, and (ii): Ploidy (DNA Ploidy Analysis by

Flow Cytometry Result Category) this is a categorical value based on the DNA content of the tumor cell
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population compared to normal diploid cells based on �ow cytometry. The categories of covariate Ploidy

are diploid or hyperploid.

Our preliminary analysis showed that the Cox model was not adequate in this application. This can

be early identi�ed since it is observed that the curves in the Kaplan-Meier estimation of S(t) are not

proportional over time, as shown in Figure 5.1. This occurs for the levels of both covariates MYCN

and Ploidy. We apply a frailty model since it can deal with the non-proportionality seen in the distance

between the curves. We consider one individual per cluster, so that the frailty represents non-observed

risk factors. The inclusion of the frailty will allow us to correctly evaluate the covariate e�ects in the

group of high risk patients.

Figure 5.1: Kaplan-Meier estimates of the survival function of the variables MYCN and Ploidy for the
TARGET Neuroblastoma clinical data set.

In Table 5.1 we report the estimates obtained under the parametric approach using a Weibull baseline

hazard function where rows correspond to the �t of the di�erent frailty models. Here the gamma estimates

are not reported because this model presented convergence issue, more speci�cally in the estimation of α.

We point out that for this task, both the maximization of the likelihood function that we implemented

and the �t made using the parfm (Munda et al [2012]) package presented the same problem and did

not return the estimates. We report this error below. This application evidences that the problem of

estimating the frailty parameter using a gamma frailty model occurs even when considering a parametric

assumption of the baseline hazard function, and con�rms that this issue, evidently, happens in practical

situations.

Error in optim(par = theta0, fn = loglikGA, y = y, delta = delta, x = x, :
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Table 5.1: Estimates of the parameters and standard errors (in parenthesis) for the TARGET Neu-
roblastoma data set under the parametric approach considering a Weibull baseline hazard function with
parameters σ and γ. Rows correspond to �tting the GIG special cases and the generalized exponential
(GE) frailty models.

βMY CN βploidy Var α σ γ

Par. IG 0.3529 (0.2307) 0.3410 (0.2230) 3.3398 3.3398 (1.9558) 0.0058 (0.0017) 1.2396 (0.1142)
Par. RIG 0.3174 (0.2025) 0.2537 (0.1947) 0.9815 1.5622 (0.5000) 0.0035 (0.0006) 1.0527 (0.0439)
Par. HYP 0.3705 (0.2240) 0.3418 (0.2156) 1.9696 2.8251 (0.8813) 0.0028 (0.0004) 1.2134 (0.0472)
Par. PHYP 0.2401 (0.1874) 0.2460 (0.1789) 0.5706 0.8545 (0.3442) 0.0050 (0.0013) 0.9578 (0.0475)
Par. GE 0.9767 (0.3149) 0.3962 (0.2990) 3.2384 0.2836 (0.0517) 0.0031 (0.0004) 1.4721 (0.1252)

Table 5.2: Estimates of the parameters and standard errors in parenthesis for the TARGET Neuroblas-
toma data application under the semiparametric approach. Rows correspond to �tting the GIG special
cases and the generalized exponential (GE) frailty models.

βMYCN βploidy Var α

Semi. IG (k=5) 0.3834 (0.2451) 0.3467 (0.2449) 1.9579 1.9579 (0.8748)
Semi. IG (k=10) 0.4142 (0.2465) 0.3529 (0.2465) 2.1382 2.1382 (0.9661)
Semi. RIG (k=5) 0.3258 (0.2296) 0.2941 (0.2296) 0.7795 1.0604 (0.3821)
Semi. RIG (k=10) 0.3505 (0.2374) 0.3201 (0.2374) 0.6257 0.7724 (0.1391)
Semi. HYP (k=5) 0.3812 (0.2533) 0.3102 (0.2533) 2.1659 3.2633 (1.7049)
Semi. HYP (k=10) 0.4382 (0.2576) 0.3420 (0.2576) 1.8615 2.6003 (0.9407)
Semi. PHYP (k=5) 0.2919 (0.2196) 0.2793 (0.2196) 0.3603 0.4255 (0.0459)
Semi. PHYP (k=10) 0.3092 (0.2229) 0.2874 (0.2229) 0.3719 0.4436 (0.0306)
Semi. GE 0.4799 (0.2130) 0.3230 (0.2001) 0.5263 1.2049 (0.1316)

non-finite finite-difference value [3]

Comparing the GIG �ts to the GE �t, we can notice signi�cant di�erences. The e�ect of βmycn is

much larger under the GE frailty model than in all other models considered. The frailty variance and

β̂ploidy estimated by the GE model resemble those of the particular case IG, these being the two models

under which the frailty variance has larger magnitude.

Table 5.2 contains the �ts of the semiparametric versions of the GIG and GE frailty models to the

TARGET Neuroblastoma clinical data. The estimates of the penalized version of the semiparametric

gamma frailty model available in the R package survival are not reported because this model also

presented convergence problems, that we report below.

Warning message: In coxpenal.fit(X, Y, strats, offset, init = init, control,

weights = weights, : Inner loop failed to converge for iterations 4 5

We �t the semiparametric GIG frailty models considering 5 and 10 cut points in the piecewise constant

hazards and estimate the standard errors by running 1000 bootstrap replicas. In Table 5.2 we can

note that β̂mycn in the semiparametric GE model di�ered signi�cantly from the one obtained under the

parametric approach (0.4799 and 0.9767 respectively), whereas the magnitude of the di�erence between

the parametric and semiparametric approaches of the GIG frailties were smaller. The same comment

applies to the frailty variance, that in the GE model went from 3.2384 to 0.5263 which is the largest
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Table 5.3: Estimates of the parameters and standard errors (in parenthesis) for the kidney catheter
data set under the parametric approach considering a Weibull baseline hazard function with parameters
σ and γ. Rows correspond to �tting the GIG special cases, generalized exponential (GE) and gamma
frailty models.

βage βsex Var α σ γ

Par. IG 0.0053 (0.0117) −1.4786 (0.4306) 0.6752 0.6752 (0.5340) 0.0136 (0.0100) 1.1454 (0.1418)
Par. RIG 0.0043 (0.0113) −1.6308 (0.4880) 0.6398 0.7962 (0.6153) 0.0084 (0.0060) 1.1624 (0.1358)
Par. HYP 0.0050 (0.0116) −1.5542 (0.4571) 0.6754 0.7309 (0.5628) 0.0106 (0.0080) 1.1571 (0.1430)
Par. PHYP 0.0042 (0.0111) −1.7173 (0.5157) 0.6178 0.9959 (0.7646) 0.0056 (0.0032) 1.1797 (0.1164)
Par. Gamma 0.0071 (0.0124) −1.9116 (0.5394) 0.5102 0.5102 (0.2572) 0.0129 (0.0105) 1.2155 (0.1591)
Par. GE 0.0067 (0.0117) −1.9621 (0.5424) 0.5999 1.8197 (0.8800) 0.0093 (0.0059) 1.2285 (0.1498)

variation observed among the competitive models. This suggests robustness of the proposed model on

the speci�cation of the baseline hazard function.

5.2 Kidney Catheter Data

The second application refers to the kidney catheter data of McGilchrist & Aisbett [1991] that we

present in order to illustrate the multivariate version of the proposed model. This data set is widely used

to illustrate shared frailty models and is available in the R survival package. The response variable

is the time to infection since the insertion of a catheter in a patient who is carrying a portable dialysis

equipment. The time to the �rst and second infections of each patient are recorded. There are 38

individuals constituting 38 clusters of size 2. We have a total of 76 observations in which 18 of them are

right-censored. After the �rst event (or censoring) a cure time of the infection is allowed until the second

measurement is made. We will consider in our analysis the covariates gender and age in years.

In Table 5.3, we report the estimates of the parameters under the parametric approach with IG, RIG,

HYP, PHYP, gamma and GE frailties. This table contains the estimates of the covariate e�ects gender

and age, as well as the parameters σ, γ and α. The former, in all cases, is the parameter of the frailty

distribution. However, it does not correspond directly to the frailty variance in all models. Therefore,

they are not directly comparable without a proper transformation. Hence, here we are going to use the

same transformation that was discussed in Section 4 that is reported in the columns named "Var". We

can see that the estimates of βage and βsex obtained through the gamma and GE models are more similar

to each other than to those estimated using GIG frailties. However, the frailty variance estimated by the

�t of the GE model is closer to the GIG ones. In the �t of the gamma model, the frailty variance has the

smallest magnitude among the models compared.

Estimates for the same data set under the semiparametric approach can be found in Table 5.4. We

report the results obtained with the �t of the semiparametric GE model based on the Cox partial likelihood

function, and also report the �t of the gamma frailty model available in the survival package which

relies on the penalized likelihood approach. The standard error of the estimate of α, however, is not

available in the package, hence not reported. Here we �t the GIG frailties with 3 and 5 change points in

the piecewise constant hazards as the data set contains only 76 observations. Likewise observed in the
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Table 5.4: Estimates of the parameters and standard errors (in parenthesis) for the kidney catheter data
set under the semiparametric approach. Rows correspond to �tting the GIG special cases, the generalized
exponential (GE) and gamma frailty models.

βage βsex Var α

Semi. IG (k=3) 0.0038 (0.0114) −1.3387 (0.4122) 0.3893 0.3893 (0.3457)
Semi. IG (k=5) 0.0031 (0.0116) −1.3817 (0.4209) 0.4306 0.4306 (0.3930)
Semi. RIG (k=3) 0.0043 (0.0119) −1.5772 (0.4725) 0.4830 0.5532 (0.4957)
Semi. RIG (k=5) 0.0038 (0.0121) −1.5773 (0.4813) 0.5094 0.5910 (0.5532)
Semi. HYP (k=3) 0.0039 (0.0116) −1.4282 (0.4329) 0.4246 0.4412 (0.3832)
Semi. HYP (k=5) 0.0033 (0.0118) −1.4823 (0.4454) 0.4699 0.4916 (0.4376)
Semi. PHYP (k=3) 0.0042 (0.0114) −1.2617 (0.4483) 0.3765 0.4510 (0.4776)
Semi. PHYP (k=5) 0.0036 (0.0116) −1.3045 (0.4597) 0.4054 0.4987 (0.5467)
Semi. Pen. Gamma 0.0052 (0.0119) −1.5875 (0.4605) 0.4120 0.4120 (-)
Semi. GE 0.0067 (0.0134) −1.8438 (0.4756) 0.7121 1.4805 (0.3177)

simulation studies, increasing the value of k implied in an increase in the magnitude of the �xed e�ects

in all cases. We can see a di�erence among the particular cases but, in general, they are closer to those

obtained by the gamma �t than the GE one. This can be said both with respect to (β̂age, β̂sex) as well

as the frailty variance, which is signi�cantly larger under GE frailty.

Although it is relevant to compare the magnitude of the estimates, none of these values gives us an

idea of which model is best �tted to the data. There is not much work developed in verifying model

adequacy of frailty models and we would need to �nd some appropriate method to allows us deciding on

the most suitable model.

The real data applications illustrated the practical utility of the proposed model in its univariate and

multivariate versions and allowed us to observe some important points. The gamma frailty model, being

the most used in practice, presented convergence problems in both the parametric and semiparametric

approaches in the �rst application. This and other problems presented by the gamma frailty, in our

view, justify the introduction of more �exible and robust models. In addition, the GIG frailties proved to

be robust regarding the speci�cation of the baseline hazard function, since the estimates under the two

approaches are consistent, something that did not occur in all models compared.
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CHAPTER 6

CONCLUSION

The GIG frailty model proposed in this work proved to be a mathematically tractable, �exible and

robust model. The �exibility is obtained through the additional parameter λ which we considered �xed.

Particular values of λ correspond to the known particular cases of the GIG distribution. We investigated

the performance of the IG, RIG, HYP and PHYP frailties under the correct speci�cation of the model

and under misspeci�cation of the frailty distribution. In the simulation studies, we observed that when

the data were generated with gamma and GE frailties, it was possible to identify a GIG frailty that

performed better than the correctly speci�ed model. In these two scenarios the most competitive frailty

was the PHYP special case. When the true frailty distribution is log-normal, the gamma and GE frailty

models su�er in the estimation of the frailty variance, showing high bias in the estimation of this quantity.

However, it was possible to obtain a satisfactory result with our model, this time under the IG frailty.

In addition to being robust under misspeci�cation, the proposed model, as expected, performs well when

correctly speci�ed.

Through the TARGET Neuroblastoma application we showed that the gamma frailty model, the most

common choice, can be problematic in practical situations. It presented convergence issues under the

parametric and semiparametric approaches. The �ts were obtained through the popular R (R Core Team

[2019]) packages used for this task, that are respectively, the parfm (Munda et al [2012]) and survival

(Therneau [2015]) packages. Another important point that this application allowed us to observe was

the robustness of the GIG frailty model regarding the speci�cation of the baseline hazard function. This

was evidenced by the consistency of the estimates obtained under the parametric and semiparametric

approaches, something that was not observed in all models under comparison. By �tting the GIG frailty

models to the kidney catheter data, we were able to illustrate the application of the proposed methodology

to clustered survival data.
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APPENDIX

Proof of Lemma 1. : For k = 1: It can be shown that the derivative of the Bessel function with respect

to its argument is

∂

∂x
Kφ(
√
x) = − 1

4
√
x

(
Kφ+1(

√
x) +Kφ−1(

√
x)
)
.

Using this expression we have that

∂

∂x
ζ(x) = −1

2

(
φ
Kφ(
√
x)

x(φ/2+1)
+
Kφ+1(

√
x) +Kφ−1(

√
x)

2x(φ+1)/2

)
.

At this point, we apply the recurrence identity on the Bessel function mentioned previously,

Kv(z) =
z

2v
(Kv+1(z)−Kv−1(z)) , (6.1)

and the former derivative simpli�es to

∂

∂x
ζ(x) = −1

2

Kφ+1(
√
x)

x(φ+1)/2
.

Using this, we continue the demonstration by �nding the second derivative of ζ(x) with respect to x, given

by

∂2

∂x2
ζ(x) = −1

2

(
−Kφ+1(

√
x)(φ+ 1)

2x(φ+3)/2
− Kφ+2(

√
x) +Kφ(

√
x)

4x(φ/2+1)

)
.

The second derivative simpli�es to the following after using (6.1)

∂2

∂x2
ζ(x) =

1

4

Kφ+2(
√
x)

x(φ+2)/2
.

To conclude the proof by induction, we now assume as true the case k − 1 and use it to prove the k-th

order expression. If this is satis�ed, then the result is true for all k. If the {k − 1}th derivative of ζ(x)

in terms of x is given by

∂k−1

∂xk−1
ζ(x) =

(
−1

2

)k−1
Kφ+k−1(

√
x)

x(φ+k−1)/2
,
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then the k-th order derivative is

∂k−1

∂xk−1
ζ(x) =

(
−1

2

)k−1{−Kφ+k−1(
√
x)(φ+ k − 1)

2x(φ+k+1)/2
− Kφ+k(

√
x) +Kφ+k−2(

√
x)

4x(φ+k)/2

}
.

Here we use again (6.1), that gives us Kφ+k−1(
√
x) =

√
x

2(φ+k−1) [Kφ+k(
√
x)−Kφ+k−2(

√
x)] and get that

∂k

∂xk
ζ(x) is

∂k

∂xk
ζ(x) =

(
−1

2

)k
Kφ+k(

√
x)

x(φ+k)/2
.

This completes the proof of Lemma 1. �
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