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Resumo

O objetivo principal em um problema de múltiplos pontos de mudança em uma sequência
de observações é a estimação do número e localização desses pontos de mudança. Além disso, é de
interesse estimar o regime de cada agrupamento de observações que formam a partição induzida
pelos pontos de mudança. O Modelo de Partição de Produto (MPP), introduzido por Hartigan
[1990], foi aplicado pela primeira vez a problemas de múltiplos pontos de mudança por Barry and
Hartigan [1992; 1993]. O MPP é um modelo estatístico eficiente para detecção de múltiplos pontos
de mudança. Barry and Hartigan [1993] aplicaram o MPP para detectar mudanças na média de
sequências univariadas de observações Normais, com o número de mudanças e suas localizações
desconhecidas, e assumindo uma variação constante desconhecida. Loschi et al. [1999] propôs uma
extensão do MPP para detectar mudanças na média e variância das sequências univariadas de
observações Normais, mas sem especificar quais parâmetros foram alterados. Se o MPP é aplicado
para identificar mudanças em dois ou mais parâmetros, um dos maiores desafios é identificar qual
parâmetro sofreu cada mudança. A distribuição a posteriori para a partição aleatória indica apenas
os instantes quando as mudanças ocorreram, mas não qual parâmetro sofreu a mudança. Alterações
em diferentes parâmetros podem ocorrer em momentos diferentes. Nesta dissertação, propomos um
novo modelo que permite identificar quais parâmetros sofreram as mudanças. Introduzimos um
MPP com múltiplas partições para identificar múltiplas mudanças em múltiplos parâmetros, em
dados observados sequencialmente. O modelo proposto estende trabalhos anteriores assumindo que
diferentes parâmetros do modelo podem sofrer quantidades distintas de mudanças, que podem ocor-
rer em diferentes instantes. Isso é obtido considerando-se uma partição aleatória diferente associada
a cada parâmetro. O modelo é definido em um contexto geral e assumindo partições independentes.
Apresentamos um esquema geral do amostrador de Gibbs para simular da distribuição a posteriori
com base na estratégia de amostragem por blocos proposta por Liu [1994]. Aplicamos o modelo
proposto a dados Normais sujeitos a mudanças na média e na variância. Avaliamos o desempenho
do modelo proposto por meio de um estudo de simulação de Monte Carlo e também considerando
aplicações de dados reais. Seu desempenho é comparado aos métodos de Barry and Hartigan [1993]
e Loschi et al. [1999]. Esses estudos mostram que o modelo proposto é competitivo e enriquece a
análise de problemas de pontos de mudança.

Key-words: Ponto de mudança, Modelo Partição Produto, Amostrador de Gibbs, Multipartição,
Agrupamento.



Abstract

The main goal in a multiple change point problem in a sequence of observations is the
estimation of the number and location of the change points. Additionally, it is of interest to es-
timate the regime structure of each different cluster of observations that form the partition in-
duced by the change points. The Product Partition Model (PPM), introduced Hartigan [1990],
was first applied to multiple change point problems by Barry and Hartigan [1992; 1993]. It is an
efficient statistical model to multiple change points detection. Barry and Hartigan [1993] applied
the PPM detect changes in the mean of univariate sequences of Normal observations, with the
number of changes and their locations both unkown, and assuming an unknown constant variance.
Loschi et al. [1999] proposed an extension of the PPM to detect changes in the mean and variance of
univariate sequences of Normal observations, but without specifying which of the parameters have
changed. If the PPM is applied to identify changes in two or more parameters, one of the greatest
challenges is to identify which parameter has changed. The posterior distribution for the random
partition only indicates the instants when the changes occured, but does not which parameter has
changed. Changes in different parameters may occur at different times. In this thesis, we propose a
new model that permits to identify the parameter or parameters that have changed. We introduce
a multipartition PPM to detect multiple changes in multiple parameters in sequentially observed
data. The proposed model extends previous works by assuming that different model parameters
may experience distinct numbers of changes that may occur at different points of time. That is
attained by considering a different random partition associated with each different parameter. The
model is defined in a general context and assuming independent partitions. We present a gen-
eral Gibbs scheme to generate from the posteriors, based on the blocking strategy proposed by
Liu [1994]. We apply the proposed model to Normal data subject to changes in the mean and
variance. We evaluate the performance of the proposed model through a Monte Carlo simulation
study and also considering real data applications. Its performance is compared with Barry and
Hartigan [1993] and Loschi et al. [1999] methods. These studies show that the proposed model is
competitive and enriches the analysis of change point problems.

Key-words: Change point, Product Partition Model, Gibbs sampling, Multipartition, Clustering.
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1 Introduction

A change point may be defined as a structural change in the regime of a sequence of observa-
tions ordered, for example, by time or position. The detection of change points is a relevant topic of
research in many areas, such as analysis of historical environmental measurements, analysis of finan-
cial time series, genetics and other areas. The main goal in a multiple change point problem is the
estimation of the number and location of these change points. Additionally, it is of interest to estimate
the regime structure of each different cluster of observations that form the partition induced by the
change points.

The Product Partition Model (PPM) introduced by Hartigan [1990], and its extension to
change point problems proposed by Barry and Hartigan [1992], is an efficient statistical model to
multiple change points detection. Barry and Hartigan [1993] applied the PPM detect changes in the
mean of univariate sequences of Normal observations, with the number of changes and their locations
both unkown, and assuming an unknown constant variance. One of the greatest contributions of
their work is the proposed Gibbs sampler scheme to sample from the random partition that provides
information about the change points locations. Loschi et al. [1999] proposed an extension of the
PPM to detect changes in the mean and variance of univariate sequences of Normal observations, but
without specifying which of the parameters experienced the change. The models proposed by Barry
and Hartigan [1993] and Loschi et al. [1999] are described and applied all over this text, and we refer
to these models as BH93 and L99 models, respectively. Other important applications of the PPM to
change point problems are cited next. Loschi and Cruz [2002] and Loschi et al. [2003] analyse the
influence of some prior specifications for the parameters of the L99 model. In Loschi and Cruz [2005],
the PPM is extended to generate the posterior probability that each instant of time is a change point.
Fearnhead [2006] proposed an efficient algorithm to simulate from a class of change point models that
includes the PPM. Loschi et al. [2010] applied the PPM to identify multiple change points in linear
regression models and also modified the original algorithm proposed by Barry and Hartigan [1993]
in order to obtain samples from the posteriors of the regression parameters. Nyamundanda et al.
[2015] improved the PPM for the purpose of detecting multiple change points in both the mean and
covariance structures of multivariate correlated sequences of Gaussian data.

The PPM has also been applied in many other distinct statistical problems. Quintana and
Iglesias [2003] presented a theoretic formulation of the PPM that may be used in different decision
problems such as estimation or hypothesis testing and clustering methods simultaneously. Also, they
proved that the Dirichlet process (Ferguson [1973]) is a specific configuration of the PPM. Jordan et al.
[2007] proposed the application of the PPM to a prediction problem with categorical predictor variables
and to a meta-analysis model. Hegarty and Barry [2008] used the PPM in a regional mapping of
disease risk. Demarqui et al. [2008] applied the PPM to estimate the time grid in picewise exponential
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models. Monteiro et al. [2011] replaced the assumption of constant parameter values within each
cluster to the assumption of correlated different parameter values. Müller et al. [2011] developed a
PPM for clustering with covariates, such that the probability distribution of the random partition may
depend on the covariates. Page et al. [2016] extended the PPM to a spatial setting and modeled the
partitioning of spatial locations into spatially dependent clusters. García and Gutiérrez-Peña [2019]
proposed a nonparametric extension of the PPM, such that they associate a random measure instead
of a parametric distribution to each cluster of the random partition, and do not impose any specific
form to the observations model. An extension of the PPM to spatio-temporal clustering was proposed
by Teixeira et al. [2019].

Many distinct approachs have been proposed for change point problems, some of them are
cited next. Chib [1998] formulated a change point model in terms of a latent discrete state variable
that evolves according to a discrete-time Markov process and indicates the regime of each particular
observation. Fearnhead [2005] proposed a regression model that is a combination of independent linear
regression models on disjoint segments, such that both the number, the position and the parameters
of the regressions are to be estimated. Fearnhead and Liu [2007] introduced a particle filter simulation
algorithm to online change point problems, that is, observations are obtained incrementally over time,
and new inferences are required each time that an observation is made. Fearnhead and Rigaill [2019]
presented a penalized cost approach to change points detection that is robust to the presence of outliers,
based on alternative loss functions that are less sensitive to outliers. Peluso et al. [2019] proposed a
Bayesian semiparametric multiple change point model, in terms of the Markov process formulation
proposed by Chib [1998], such that different groups of structural parameters follow separate change
point processes. Mira and Petrone [1996], Martínez et al. [2014] and Haynes et al. [2017] are examples
of nonparametric approachs for change point problems. Dierckx and Teugels [2010], Nascimento and
Moura e Silva [2017] and Lattanzi and Leonelli [2019] are examples of change point approachs for the
identification of extreme regimes. A spatio-temporal change point model can be found in Majumdar
et al. [2005].

If the PPM is applied to identify multiple change points in two or more parameters, one of the
greatest challenges is to identify which parameter experienced the change. The posterior distribution
for the random partition only indicates the instants when the changes occured, but does not which
parameter have changed. Only one or all parameters may change in a specific instant, and changes in
different parameters can occur in different instants.

Our main goal is to propose a model that permits to identify the parameter or parameters
that have changed. We introduce a multiple partition PPM to detect multiple structural changes in
multiple parameters in sequentially observed data. We assume that different groups of parameters may
experience multiple changes at different times, with both the number and location of these changes
unknown. The proposed model extends previous PPM such that it allows to identify in which group of
structural parameters the change occurred. The proposed multiple random partitions PPM assumes
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that different partitions are associated to different parameters. We refer to this model as a Bayesian
multipartition change point model (BMCP).

In Chapter 2, we review some existing product partition models and present the tools that
form the basic background required to the development of this thesis. In Section 2.1, we describe the
PPM. In Section 2.2, we describe the convenience of the PPM to multiple change points detection, as
proposed by Barry and Hartigan [1992]. The BH93 model is presented in Section 2.3. This model is
one of the main backgrounds of this work, since we adopt their Gibbs sampler strategy to sample from
the random partitions in the proposed model. In Section 2.3.2, we develop an alternative and more
informative implementation of the BH93 model. In this approach, the parameters and partitions are
estimated through a Gibbs sampler strategy that makes use of the blocking technique proposed by
Liu [1994]. This blocking technique is an adaptation of the conventional Gibbs sampler that plays an
important role to the estimation procedures used in this thesis. The L99 model is described in Section
2.4. In Section 2.5, we present some properties of the model that permit some prior specifications
to be more or less informative, based on our expectation about the number of changes. Finally, in
Section 2.6, we discuss some features of the alternative implementation of the BH93 model, proposed in
Section 2.3.2. We also present a motivation to the new model to be proposed in Chapter 3. We analyse
a simulated data set in which both BH93 and L99 models fail to correctly estimate the parameters
and partitions.

In Chapter 3, we introduce the new Bayesian multipartition change point model, which is
the central contribution of this thesis. We denote it as BMCP model. In Section 3.1, we formulate
the BMCP model, and in Sections 3.2 and 3.3 we present the general configuration of the prior
and posterior distributions for parameters and partitions. In Section 3.4, we present a general Gibbs
scheme to estimate the parameters and partitions of the BMCP model. In Section 3.5, we apply the
BMCP model to Normal data subject to changes in the mean and variance, considering two random
partitions, one for each of these two groups of parameters.

Chapter 4 presents the Monte Carlo simulation studies that evaluate the proposed BMCP
model considering simulated data sets. Different scenes are considered, with changes in all the param-
eters or only in one of them. We present Monte Carlo simulation results that compare the performance
of the BMCP, L99 and BH93 models. In all the scenes, Normal data subject to changes in mean and
variance are considered.

In Chapter 5, we apply the BMCP model in two real data sets. Chapter 6 summarizes the
contributions of this thesis and point out some suggestions of future related works. Appendix A des-
cribes the probability densitiy functions used along this thesis. In Appendix B we present summarized
theoretical descriptions of the Markov Chain Monte Carlo (MCMC) methods.
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2 Product Partition Model for multiple change
point detection

The Product Partition Model (PPM) is a model for cluster detection introduced by Hartigan
[1990]. The clusters are represented by a random partition 𝜌, and the main goal is to infer about 𝜌.
This chapter presents the PPM and some applications of this model to detection of multiple change
points. We refer to many of the results described here along the future chapters.

2.1 The Product Partition Model

Let 𝑆 denotes a set of 𝑛 objects indexed by 1 to 𝑛 and 𝑆𝑗 denotes a nonempty subset of 𝑆.
𝑋 = (𝑋1, . . . , 𝑋𝑛) represents the observations associated to each object of 𝑆 and 𝑋𝑆𝑗 the combined
observations {𝑋𝑖, 𝑖 ∈ 𝑆𝑗}. To define the PPM, Hartigan [1990] considers a partition 𝜌 of 𝑆 represented
by the subsets 𝑆1, 𝑆2, . . . , 𝑆𝑏 with the property that each object in 𝑆 lies in exactly one of these
subsets, also called components of the partition. Define 𝒫 as the set of all possible partitions of 𝑆.
The PPM assumes a prior product distribution for the random partition 𝜌 ∈ 𝒫 given by

𝑝(𝜌) = 𝑃 (𝜌 = {𝑆1, . . . , 𝑆𝑏}) =

𝑏∏︀
𝑗=1

𝑐(𝑆𝑗)∑︀
𝜌∈𝒫

∏︀
𝑆𝑗∈𝜌

𝑐(𝑆𝑗) . (2.1)

where 𝑐(𝑆𝑗) is a non-negative cohesion assigned to the subset 𝑆𝑗 of 𝑆, which represents the prior
knowledge about the similarity level of the objects in 𝑆𝑗 . The PPM also assumes that, given 𝜌 =
{𝑆1, . . . , 𝑆𝑏}, the clusters of observations 𝑋𝑆1 , . . . , 𝑋𝑆𝑏

are independent, such that

𝑓 (𝑋|𝜌 = {𝑆1, . . . , 𝑆𝑏}) =
𝑏∏︁

𝑗=1
𝑓𝑆𝑗 (𝑋𝑆𝑗 ). (2.2)

where 𝑓𝑆𝑗 (𝑋𝑆𝑗 ) denotes the joint distribution of the observations in 𝑋𝑆𝑗 , 𝑗 = 1, . . . , 𝑏.

As defined in Barry and Hartigan [1992], any joint probability distribution for observations
and partition (𝑋, 𝜌) that satisfies the product form in Eq. (2.1) and the independence condition for
observations given the partition in Eq. (2.2) is called a product partition model. As a consequence of
these assumptions, the posterior distribution of 𝜌 given the observations 𝑋 is also a product partition
model with cohesions 𝑐(𝑆𝑗)𝑓𝑆𝑗 (𝑋𝑆𝑗 ), as shown next. Using the Bayes’ theorem, it follows that
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𝑝(𝜌|𝑋) = 𝑃 (𝜌 = {𝑆1, . . . , 𝑆𝑏}|𝑋) = 𝑓(𝑋|𝜌 = {𝑆1, . . . , 𝑆𝑏})𝑃 (𝜌 = {𝑆1, . . . , 𝑆𝑏})∑︀
𝜌∈𝒫

𝑓(𝑋|𝜌)𝑝(𝜌)

=

𝑏∏︁
𝑗=1

𝑓𝑆𝑗 (𝑋𝑆𝑗 ) ×

𝑏∏︀
𝑗=1

𝑐(𝑆𝑗)

∑︀
𝜌∈𝒫

𝑏∏︀
𝑗=1

𝑐(𝑆𝑗)

∑︁
𝜌∈𝒫

⎛⎜⎜⎝∏︁
𝑆𝑗∈𝜌

𝑓𝑆𝑗 (𝑋𝑆𝑗 ) ×

∏︀
𝑆𝑗∈𝜌

𝑐(𝑆𝑗)∑︀
𝜌∈𝒫

∏︀
𝑆𝑗∈𝜌

𝑐(𝑆𝑗)

⎞⎟⎟⎠
=

𝑏∏︁
𝑗=1

𝑐(𝑆𝑗)𝑓𝑆𝑗 (𝑋𝑆𝑗 )

∑︁
𝜌∈𝒫

∏︁
𝑆𝑗∈𝜌

𝑐(𝑆𝑗)𝑓𝑆𝑗 (𝑋𝑆𝑗 )
.

(2.3)

To calculate the marginal distribution of each 𝑋𝑖, 𝑖 = 1, . . . , 𝑛, a central definition is the
relevance probability 𝑟(𝑆𝑗), which is the probability that each subset 𝑆𝑗 is a component of the random
partition 𝜌, that is,

𝑟(𝑆𝑗) = 𝑃 (𝑆𝑗 ∈ 𝜌) =
∑︁

𝜌∈𝒫|𝑆𝑗∈𝜌

𝑝(𝜌). (2.4)

Considering expression (2.4), the marginal density 𝑓(𝑋𝑖), 𝑖 = 1, . . . , 𝑛, is given by

𝑓(𝑋𝑖) =
∑︁
𝜌∈𝒫

𝑓(𝑋𝑖|𝜌)𝑝(𝜌) =
∑︁

𝑆𝑗 |𝑖∈𝑆𝑗

∑︁
𝜌∈𝒫|𝑆𝑗∈𝜌

𝑓(𝑋𝑖|𝜌)𝑝(𝜌)

=
∑︁

𝑆𝑗 |𝑖∈𝑆𝑗

∑︁
𝜌∈𝒫|𝑆𝑗∈𝜌

𝑓𝑆𝑗 (𝑋𝑖)𝑝(𝜌) =
∑︁

𝑆𝑗 |𝑖∈𝑆𝑗

𝑓𝑆𝑗 (𝑋𝑖)𝑟(𝑆𝑗),
(2.5)

which means that 𝑓(𝑋𝑖) is the average of the possible component densities containing 𝑋𝑖, wheighted
by their respective relevance probabilities. The component density 𝑓𝑆𝑗 (𝑋𝑆𝑗 ) for the observations in
each subset 𝑆𝑗 is called data factor.

The PPM can consider parametric probabilistic models for the observations. To that end, it is
assumed that the observations 𝑋1, . . . , 𝑋𝑛 are independent, given the parameters 𝜃 = (𝜃1, . . . , 𝜃𝑛), with
independent conditional marginal densities 𝑓(𝑋𝑖|𝜃𝑖), 𝑖 = 1, . . . , 𝑛. Given a partition 𝜌 = {𝑆1, . . . , 𝑆𝑏},
𝜃𝑖 = 𝜃𝑆𝑗 for every 𝑖 ∈ 𝑆𝑗 , 𝑗 = 1, . . . , 𝑏, and the parameters 𝜃𝑆1 , . . . , 𝜃𝑆𝑏

are independent with densities
𝑓𝑆𝑗 (𝜃𝑆𝑗 ), 𝑗 = 1, . . . , 𝑏, that is,

𝑓 (𝜃|𝜌 = {𝑆1, . . . , 𝑆𝑏}) =
𝑏∏︁

𝑗=1
𝑓𝑆𝑗 (𝜃𝑆𝑗 ), (2.6)

where 𝑓𝑆𝑗 (𝜃𝑆𝑗 ) is called the block prior density, for 𝑗 = 1, . . . , 𝑏. The data factor 𝑓𝑆𝑗 (𝑋𝑆𝑗 ) is the
predictive distribution for the observations in cluster 𝑆𝑗 and is given by

𝑓𝑆𝑗 (𝑋𝑆𝑗 ) =
∫︁ ⎛⎝∏︁

𝑖∈𝑆𝑗

𝑓(𝑋𝑖|𝜃𝑆𝑗 )

⎞⎠ 𝑓𝑆𝑗 (𝜃𝑆𝑗 )𝑑𝜃𝑆𝑗 . (2.7)
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The conditional distribution on partition and parameters given the observations is also a
product partition model, such that

𝑓 (𝜃, 𝜌|𝑋) = 𝑓(𝑋|𝜃, 𝜌)𝑓(𝜃|𝜌)𝑝(𝜌)∑︀
𝜌∈𝒫

𝑓(𝑋|𝜌)𝑝(𝜌)
=

∏︁
𝑆𝑗∈𝜌

⎛⎝∏︁
𝑖∈𝑆𝑗

𝑓(𝑋𝑖|𝜃𝑆𝑗 )

⎞⎠×
∏︁

𝑆𝑗∈𝜌

𝑓𝑆𝑗 (𝜃𝑆𝑗 ) ×

∏︀
𝑆𝑗∈𝜌

𝑐(𝑆𝑗)∑︀
𝜌∈𝒫

∏︀
𝑆𝑗∈𝜌

𝑐(𝑆𝑗)

∑︁
𝜌∈𝒫

⎛⎜⎜⎝∏︁
𝑆𝑗∈𝜌

𝑓𝑆𝑗 (𝑋𝑆𝑗 ) ×

∏︀
𝑆𝑗∈𝜌

𝑐(𝑆𝑗)∑︀
𝜌∈𝒫

∏︀
𝑆𝑗∈𝜌

𝑐(𝑆𝑗)

⎞⎟⎟⎠

=
∏︁

𝑆𝑗∈𝜌

(︃ ∏︀
𝑖∈𝑆𝑗

𝑓(𝑋𝑖|𝜃𝑆𝑗 )
)︃

𝑓𝑆𝑗 (𝜃𝑆𝑗 )

𝑓𝑆𝑗 (𝑋𝑆𝑗 ) ×

∏︀
𝑆𝑗∈𝜌

𝑐(𝑆𝑗)𝑓𝑆𝑗 (𝑋𝑆𝑗 )

∑︁
𝜌∈𝒫

∏︁
𝑆𝑗∈𝜌

𝑐(𝑆𝑗)𝑓𝑆𝑗 (𝑋𝑆𝑗 )

=
∏︁

𝑆𝑗∈𝜌

𝑓𝑆𝑗 (𝜃𝑆𝑗 |𝑋𝑆𝑗 ) × 𝑝(𝜌|𝑋),

(2.8)

where 𝑓𝑆𝑗 (𝜃𝑆𝑗 |𝑋𝑆𝑗 ) =

⎛⎝∏︁
𝑖∈𝑆𝑗

𝑓(𝑋𝑖|𝜃𝑆𝑗 )

⎞⎠ 𝑓𝑆𝑗 (𝜃𝑆𝑗 )
⧸︃

𝑓𝑆𝑗 (𝑋𝑆𝑗 ) is the posterior distribution for the com-

mon parameter 𝜃𝑆𝑗 indexing the distribution of the observations in cluster 𝑆𝑗 , based only on data
information in the cluster 𝑆𝑗 , and 𝑐(𝑆𝑗)𝑓𝑆𝑗 (𝑋𝑆𝑗 ) are the posterior cohesions of each 𝑆𝑗 ∈ 𝜌. It follows
that the posterior density of 𝜃𝑖, 𝑖 = 1, . . . , 𝑛, is the average of the posterior distributions of each block
𝑆𝑗 |𝑖 ∈ 𝑆𝑗 , given the observations in 𝑆𝑗 , weighted by the posterior relevance probability 𝑟(𝑆𝑗 |𝑋), which
is the probability that 𝑆𝑗 ∈ 𝜌, given 𝑋. Formally, the posterior density of 𝜃𝑖 is given by

𝑓 (𝜃𝑖|𝑋) =
∑︁
𝜌∈𝒫

𝑓(𝜃𝑖|𝑋, 𝜌)𝑝(𝜌|𝑋) =
∑︁

𝑆𝑗 |𝑖∈𝑆𝑗

∑︁
𝜌∈𝒫|𝑆𝑗∈𝜌

𝑓(𝜃𝑖|𝑋, 𝜌)𝑝(𝜌|𝑋)

=
∑︁

𝑆𝑗 |𝑖∈𝑆𝑗

∑︁
𝜌∈𝒫|𝑆𝑗∈𝜌

𝑓𝑆𝑗 (𝜃𝑖|𝑋𝑆𝑗 )𝑝(𝜌|𝑋)

=
∑︁

𝑆𝑗 |𝑖∈𝑆𝑗

𝑓𝑆𝑗 (𝜃𝑖|𝑋𝑆𝑗 )
∑︁

𝜌∈𝒫|𝑆𝑗∈𝜌

𝑝(𝜌|𝑋) =
∑︁

𝑆𝑗 |𝑖∈𝑆𝑗

𝑓𝑆𝑗 (𝜃𝑖|𝑋𝑆𝑗 )𝑟(𝑆𝑗 |𝑋),

(2.9)

where

𝑟(𝑆𝑗 |𝑋) = 𝑃 (𝑆𝑗 ∈ 𝜌|𝑋) =
∑︁

𝜌∈𝒫|𝑆𝑗∈𝜌

𝑝(𝜌|𝑋) (2.10)

Thus, point estimates for 𝜃𝑖, 𝑖 = 1, . . . , 𝑛, using the square loss function, can be computed by first
conditioning on the partition and then averaging over all partitions, such that

𝐸 (𝜃𝑖|𝑋) =
∑︁
𝜌∈𝒫

𝐸(𝜃𝑖|𝑋, 𝜌)𝑝(𝜌|𝑋) =
∑︁

𝑆𝑗 |𝑖∈𝑆𝑗

𝐸𝑆𝑗 (𝜃𝑖|𝑋𝑆𝑗 )𝑟(𝑆𝑗 |𝑋), (2.11)

where 𝐸𝑆𝑗 (𝜃𝑖|𝑋𝑆𝑗 ) denotes the posterior expectation of 𝜃𝑖 when 𝜃𝑖 ∈ 𝑆𝑗 ∈ 𝜌.
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A recursive method to exact computation of prior and posterior relevances is available in
Hartigan [1990]. A similar recursive method, suitable to change point models, was introduced by Yao
[1984]. It is detailed stated in Barry and Hartigan [1992]. Although the relevances play an essential
role in statistical inference concerning the PPM, their exact calculation demands a high computational
effort. Sampling strategies that do not depend on exact computation of relevances were proposed by
Barry and Hartigan [1993] and are used in this work.

2.2 The Product Partition Model as a Bayesian multiple change point model

A multiple change point problem consists of estimating changes in one or in a group of struc-
tural parameters in the probability model of a sequence of observations, such that the number of
changes and their respective locations are both unknown. In the cases when the changes are observed
over a group of parameters (for example, location and scale paramenters), the changes are assigned
to the group of parameters as a whole, regardless of which parameters have changed.

A PPM for change point identification is proposed by Barry and Hartigan [1992] and Barry
and Hartigan [1993]. They consider 𝑋 = (𝑋1, . . . , 𝑋𝑛) a sequence of observations at consecutive
points in time that undergoes structural changes at unknown times. Suppose 𝑋1, . . . , 𝑋𝑛 independent
given the sequences of unkown structural parameters 𝜃 = (𝜃1, . . . , 𝜃𝑛), with independent conditional
marginal densities 𝑓(𝑋𝑖|𝜃𝑖), 𝑖 = 1, . . . , 𝑛. The process is modeled by supposing that 𝑆 is partitioned
into contiguous subsequences (clusters or blocks) 𝑆1, . . . , 𝑆𝑏 that induces a partition of 𝜃 in equal
parameter values 𝜃𝑆1 , . . . , 𝜃𝑆𝑏

. That is, there exists a partition 𝜌 = {𝑖0, 𝑖1, . . . , 𝑖𝑏} of the set of indexes
𝐼 = {1, 2, . . . , 𝑛}, denoted by

𝜌 = {𝑖0, 𝑖1, . . . , 𝑖𝑏}, 0 = 𝑖0 < 𝑖1 < · · · < 𝑖𝑏 = 𝑛,

such that, given 𝜌, there exist the common parameters 𝜃𝑆1 , . . . , 𝜃𝑆𝑏
such that

𝜃𝑖 = 𝜃𝑆𝑗 for 𝑖 ∈ 𝑆𝑗 = {𝑖𝑗−1 + 1, 𝑖𝑗−1 + 2, . . . , 𝑖𝑗}, 𝑗 = 1, 2, . . . , 𝑏.

The points 𝑖1, . . . , 𝑖𝑏 are the end points of the blocks 𝑆1, . . . , 𝑆𝑏 of 𝜌. The first point of each block is
called a change point. If the partition 𝜌 is known, observations whose indexes belong to the same block
have the same independent distribution. Note that 𝜌 = {𝑖0, 𝑖1, . . . , 𝑖𝑏} is equivalent to 𝜌 = {𝑆1, . . . , 𝑆𝑏}
as denoted in Section 2.1, but now with the constraint that 𝑆1, . . . , 𝑆𝑏 are contiguos blocks. A PPM
for change point identification is thus defined if we consider the likelihood in Eq. (2.2) and the prior
specifications in Eqs. (2.1) and (2.6), setting cohesion zero for all subsets of 𝐼 which are not composed
by contiguous indexes.

The number of end points (or blocks) 𝐵 = 𝑏 is a random variable ranging from 1 to n, and
has prior and posterior distributions given, respectively, by
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𝑃 (𝐵 = 𝑏) =
∑︁
𝜌∈ℬ

𝑝(𝜌) =
∑︁
𝜌∈ℬ

𝑏∏︁
𝑗=1

𝑐(𝑆𝑗)

∑︁
𝜌∈𝒫

∏︁
𝑆𝑗∈𝜌

𝑐(𝑆𝑗)
, 𝑏 ∈ 𝐼 (2.12)

and

𝑃 (𝐵 = 𝑏|𝑋) =
∑︁
𝜌∈ℬ

𝑝(𝜌|𝑋) =
∑︁
𝜌∈ℬ

𝑏∏︁
𝑗=1

𝑐(𝑆𝑗)𝑓𝑆𝑗 (𝑋𝑆𝑗 )

∑︁
𝜌∈𝒫

∏︁
𝑆𝑗∈𝜌

𝑐(𝑆𝑗)𝑓𝑆𝑗 (𝑋𝑆𝑗 )
, 𝑏 ∈ 𝐼, (2.13)

where ℬ is the set of all partitions of 𝐼 with 𝑏 contiguous blocks.

One of the greatest challenges in the PPM is to sample from the posterior distribution of
𝜌. Barry and Hartigan [1993] proposed an interesting approach to sample from this posterior. This
approach is discussed in the next section.

2.3 The BH93 model for detection of multiple change points

This section presents an outline of the Bayesian approach proposed by Barry and Hartigan
[1993] for multiple change point detection in Normal means. This approach is based in a PPM and
proceeds with a MCMC scheme to estimate the parameters and partitions. An implementation of this
approach is available in the R package bcp (Erdman and Emerson [2007]). In addition, we present
an alternative estimation procedure for this Bayesian approach, based on a partially colapsed Gibbs
sampler strategy, as defined by Van Dyk and Park [2008]. This sampling strategy will be considered
to estimate the Bayesian multipartition change point model proposed in Chapter 3.

2.3.1 The BH93 model

The BH93 model is applied to the case where the observations 𝑋1, . . . , 𝑋𝑛 are independent
given the sequence of parameters 𝜇1, . . . , 𝜇𝑛, 𝜎2, with 𝑋𝑖 ∼ 𝑁(𝜇𝑖, 𝜎2), 𝑖 = 1, . . . , 𝑛. The prior distri-
bution for the block parameter 𝜇𝑆𝑗 is the Normal distribution 𝑁(𝜇0, 𝜎2

0/𝑛𝑗), where 𝑛𝑗 = |𝑆𝑗 | and |𝑆𝑗 |
is the cardinality of the set 𝑆𝑗 , 𝑗 = 1, . . . , 𝑏. The block prior cohesions follow the parametric approach
suggested by Yao [1984], which considers the probability 𝑝 that a change occurs at any instant in the
sequence, so that

𝑐(𝑆𝑗) =

⎧⎨⎩(1 − 𝑝)𝑛𝑗−1𝑝 if 𝑗 = 1, 2, . . . , 𝑏 − 1,

(1 − 𝑝)𝑛𝑗−1 if 𝑗 = 𝑏.
(2.14)

Assuming the cohesions in Eq. (2.14) and the prior distribution in Eq. (2.1), the prior distri-
bution of 𝜌, given 𝑝, is given by
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𝑝(𝜌|𝑝) = 𝑝𝑏−1(1 − 𝑝)𝑛−𝑏, (2.15)

where 𝑏 is the number of blocks in 𝜌.

The block density of the observations 𝑋𝑆𝑗 , given 𝜇0, 𝜎2
0 and 𝜎2, is

𝑓𝑆𝑗 (𝑋𝑆𝑗 |𝜇0, 𝜎2
0, 𝜎2) = 1

(2𝜋𝜎2)𝑛𝑗/2

(︃
𝜎2

𝜎2
0 + 𝜎2

)︃1/2

exp

⎡⎢⎢⎢⎣−

∑︁
𝑖∈𝑆𝑗

(𝑋𝑖 − 𝑋𝑆𝑗 )2

2𝜎2 −
𝑛𝑗(𝑋𝑆𝑗 − 𝜇0)2

2(𝜎2
0 + 𝜎2)

⎤⎥⎥⎥⎦ , (2.16)

with 𝑋𝑆𝑗 =
∑︀

𝑖∈𝑆𝑗
𝑋𝑖/𝑛𝑗 . Barry and Hartigan [1993] assume the following independent priors for the

parameters 𝑝, 𝜇0, 𝜎2 and 𝑤 = 𝜎2/(𝜎2
0 + 𝜎2):

𝑓(𝜇0) ∝ 1, −∞ < 𝜇0 < ∞,

𝑓(𝜎2) ∝ 1/𝜎2, 0 < 𝜎2 < ∞,

𝑓(𝑝) ∝ 1/𝑝0, 0 < 𝑝 < 𝑝0,

𝑓(𝑤) ∝ 1/𝑤0, 0 < 𝑤 < 𝑤0.

The authors suggest using 𝑝0 = 0.2 and 𝑤0 = 0.2. Under this model structure, the posterior distribu-
tion for the partition 𝜌 is 𝑝(𝜌|𝑋) ∝ 𝑓(𝑋|𝜌)𝑝(𝜌), where

𝑓(𝑋|𝜌) ∝
∫︁ 𝑤0

0

∫︁ ∞

−∞

∫︁ ∞

0
𝑓(𝑋|𝜌, 𝜎2, 𝜇0, 𝑤) 1

𝜎2
1

𝑤0
𝑑𝜎2 𝑑𝜇0 𝑑𝑤

∝
∫︁ 𝑤0

0

∫︁ ∞

−∞

∫︁ ∞

0

⎛⎝∏︁
𝑆𝑗∈𝜌

𝑓𝑆𝑗 (𝑋𝑆𝑗 )

⎞⎠ 1
𝜎2

1
𝑤0

𝑑𝜎2 𝑑𝜇0 𝑑𝑤

∝
∫︁ 𝑤0

0

𝑤(𝑏−1)/2

[𝑊 − 𝑉 𝑤](𝑛−1)/2 𝑑𝑤,

(2.17)

𝑏 is the number of blocks in 𝜌, 𝑋 =
𝑛∑︁

𝑖=1
𝑋𝑖/𝑛, 𝑉 =

∑︁
𝑆𝑗∈𝜌

𝑛𝑗(𝑋𝑆𝑗 − 𝜇0)2, 𝑊 =
∑︁

𝑆𝑗∈𝜌

∑︁
𝑖∈𝑆𝑗

(𝑋𝑖 − 𝑋𝑆𝑗 )2, and

𝑝(𝜌) =
∫︁ 𝑝0

0
𝑝(𝜌|𝑝)𝑓(𝑝) 𝑑𝑝 =

∫︁ 𝑝0

0

⎛⎝ 𝑏∏︁
𝑗=1

𝑐(𝑆𝑗)

⎞⎠ 1
𝑝0

𝑑𝑝

=
∫︁ 𝑝0

0

⎛⎝𝑏−1∏︁
𝑗=1

(1 − 𝑝)𝑛𝑗 𝑝

⎞⎠ (1 − 𝑝)𝑛𝑏
1
𝑝0

𝑑𝑝

∝
∫︁ 𝑝0

0
𝑝𝑏−1(1 − 𝑝)𝑛−𝑏 𝑑𝑝.

(2.18)

Thus, it follows that

𝑝(𝜌|𝑋) ∝
∫︁ 𝑤0

0

𝑤(𝑏−1)/2

[𝑊 − 𝑉 𝑤](𝑛−1)/2 𝑑𝑤

∫︁ 𝑝0

0
𝑝𝑏−1(1 − 𝑝)𝑛−𝑏 𝑑𝑝. (2.19)
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The assumptions considered by the BH93 model determine the posterior means of
𝜇 = (𝜇1, . . . , 𝜇𝑛) is such that

𝐸(𝜇𝑖|𝑋) =
∑︁
𝜌∈𝒫

[︁
(1 − 𝑤*)𝑋𝑆𝑗 + 𝑤*𝑋

]︁
𝑝(𝜌|𝑋), 𝑖 ∈ 𝑆𝑗 ∈ 𝜌, (2.20)

with

𝑤* =

∫︁ 𝑤0

0

𝑤(𝑏+1)/2

[𝑊 + 𝑉 𝑤](𝑛−1)/2 𝑑𝑤∫︁ 𝑤0

0

𝑤(𝑏−1)/2

[𝑊 + 𝑉 𝑤](𝑛−1)/2 𝑑𝑤

.

It also follows that the posterior mean of 𝜎2 is given by

𝐸(𝜎2|𝑋) =
∑︁
𝜌∈𝒫

1
𝑛 − 3

∫︁ 𝑤0

0

𝑤(𝑏−1)/2

[𝑊 + 𝑉 𝑤](𝑛−3)/2 𝑑𝑤∫︁ 𝑤0

0

𝑤(𝑏−1)/2

[𝑊 + 𝑉 𝑤](𝑛−1)/2 𝑑𝑤

𝑝(𝜌|𝑋). (2.21)

Although exact computation of Eqs. (2.20) and (2.21) is possible, the sum over all partitions
has a high computational cost. A MCMC implementation was proposed to achieve an approximation
to these quantities. A fixed dimension representation of 𝜌 is considered. Let 𝑈 = (𝑈1, . . . , 𝑈𝑛−1) be a
vector of auxiliary variables such that for 𝑖 = 1, . . . , 𝑛 − 1,

𝑈𝑖 =

⎧⎨⎩ 1 if 𝜇𝑖 = 𝜇𝑖+1,

0 if 𝜇𝑖 ̸= 𝜇𝑖+1.

Instant 𝑛 is always an end point, that is equivalent to 𝑈𝑛 = 0. Thus, 𝑈 is a vector of random
variables assuming values in {0, 1}, indicating whether or not a change point occurred at each time
𝑖, 𝑖 = 1, . . . , 𝑛 − 1. Using the Gibbs sampler described in Section B.2, in Appendix B, a sample from
𝑝(𝜌|𝑋) can be obtained by successively sampling from

𝑈
(𝑡)
𝑖 ∼ 𝑝

(︁
𝑈𝑖

⃒⃒
𝑋, 𝑈

(𝑡)
1 , . . . , 𝑈

(𝑡)
𝑖−1, 𝑈

(𝑡−1)
𝑖+1 , . . . , 𝑈

(𝑡−1)
𝑛−1

)︁
, for 𝑖 = 1, . . . , 𝑛 − 1.

As detailed explained in Gamerman and Lopes [2006], this sampling can be made based on a random
quantity 𝑢 generated from an U(0,1) distribution, as shown next. Define

𝑝𝑖 = 𝑃 (𝑈𝑖 = 1|𝑋, 𝑈𝑘, 𝑘 ̸= 𝑖) = 1 − 𝑃 (𝑈𝑖 = 0|𝑋, 𝑈𝑘, 𝑘 ̸= 𝑖) .

Thus,

𝑈
(𝑡)
𝑖 = 1 [𝑢 ≤ 𝑝𝑖] = 1

[︂
𝑢

1 − 𝑢
≤ 𝑝𝑖

1 − 𝑝𝑖

]︂
, (2.22)
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where 1[𝐴] represents the indicator function of event 𝐴 and the ratio 𝑝𝑖

1 − 𝑝𝑖
follows from Eq. (2.19)

as

𝑝𝑖

1 − 𝑝𝑖
=

∫︁ 𝑤0

0

𝑤𝑏/2

[𝑊1 − 𝑉1𝑤](𝑛−1)/2 𝑑𝑤

∫︁ 𝑝0

0
𝑝𝑏(1 − 𝑝)𝑛−𝑏−1 𝑑𝑝∫︁ 𝑤0

0

𝑤(𝑏−1)/2

[𝑊0 − 𝑉0𝑤](𝑛−1)/2 𝑑𝑤

∫︁ 𝑝0

0
𝑝𝑏−1(1 − 𝑝)𝑛−𝑏 𝑑𝑝

, (2.23)

where 𝑊0, 𝑉0, 𝑊1 and 𝑉1 are equivalent to 𝑊 and 𝑉 defined for Eq. (2.17). Initialize all 𝑈
(0)
𝑖 = 0.

After each iteraction 𝑡, the posterior means in Eqs. (2.20) and (2.21) are computed and their average
give an approximation for 𝜇 and 𝜎2.

2.3.2 An alternative approach to the BH93 model

In this section, we propose an alternative and more refined estimation procedure for the BH93
model. Estimation of the partition and parameters of the BH93 model can be made through an
MCMC implementation that simulate from the posterior joint distribution of (𝜇, 𝜎2, 𝜌, 𝜇0, 𝑤, 𝑝|𝑋). It
eliminates the use of numerical integrations and refines the inference about the parameters, providing
samples of their posterior marginal distributions. The Gibbs sampler scheme described next is built
following the conventional methodology described in Section B.2, in Appendix B. It considers the
equivalent configuration of 𝜌 as a binary vector 𝑈 ∈ {0, 1}𝑛−1.

i. Initialize 𝜇(0), 𝜎2(0), 𝑈 (0), 𝜇
(0)
0 , 𝑤(0), 𝑝(0) (initialize all 𝑈

(0)
𝑖 = 0).

ii. Set 𝑡 = 1.

iii. Sequentially generate:

1. 𝑝(𝑡) ∼ 𝑓(𝑝 | 𝜎2(𝑡−1), 𝜇
(𝑡−1)
0 , 𝑤(𝑡−1), 𝑈 (𝑡−1), 𝜇(𝑡−1), 𝑋)

2. 𝜎2(𝑡) ∼ 𝑓(𝜎2 | 𝑝(𝑡), 𝜇
(𝑡−1)
0 , 𝑤(𝑡−1), 𝑈 (𝑡−1), 𝜇(𝑡−1)𝑋)

3. 𝜇
(𝑡)
0 ∼ 𝑓(𝜇0 | 𝑝(𝑡), 𝜎2(𝑡), 𝑤(𝑡−1), 𝑈 (𝑡−1), 𝜇(𝑡−1), 𝑋)

4. 𝑤(𝑡) ∼ 𝑓(𝑤 | 𝑝(𝑡), 𝜎2(𝑡), 𝜇
(𝑡)
0 , 𝑈 (𝑡−1), 𝜇(𝑡−1), 𝑋)

5. 𝑈
(𝑡)
𝑖 ∼ 𝑝(𝑈𝑖 | 𝑝(𝑡), 𝜎2(𝑡), 𝜇

(𝑡)
0 , 𝑤(𝑡), 𝑈

(𝑡)
1 , . . . , 𝑈

(𝑡)
𝑖−1, 𝑈

(𝑡−1)
𝑖+1 , . . . , 𝑈

(𝑡−1)
𝑛−1 , 𝜇(𝑡−1), 𝑋),

for 𝑖 = 1, . . . , 𝑛 − 1.

6. 𝜇
(𝑡)
𝑖 ∼ 𝑓(𝜇𝑆𝑗 |𝑖∈𝑆𝑗

| 𝑝(𝑡), 𝜎2(𝑡), 𝜇
(𝑡)
0 , 𝑤(𝑡), 𝑈 (𝑡), 𝑋), for 𝑖 = 1, . . . , 𝑛.

iv. Set 𝑡 = 𝑡 + 1 and return to step 3 until convergence is reached.
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This Gibbs sampler is not feasible to run. The conditional distribution in step iii.5 is degenerate
in 𝑈𝑖 = 0 or 𝑈𝑖 = 1, because it depends on parameter vector 𝜇, that implies the partition 𝑈 . The
definition of the PPM implies that given the parameters, the partition is exactly specified. To solve
this problem, we replace this distribution in step iii.5 with a conditional distribution that integrates
out the parameter vector 𝜇, but preserving the convergence of the samples to the desired target
distribution. This modified Gibbs sampler can be defined as a partially colapsed Gibbs sampler, as
proposed by Van Dyk and Park [2008]. A similar Gibbs sampler strategy was used by Dobigeon et al.
[2007], and deeply discussed by Park and Van Dyk [2009].

The modified Gibbs sampler, with the parameter 𝜇 integrated out of the conditional distribu-
tion in step iii.5 is feasible to implement. This partially colapsed Gibbs sampler is equivalent to use
the blocking technique proposed by (Liu [1994]) to combine the sample distrubutions of 𝑈 and 𝜇.
As pointed out by Van Dyk and Park [2008], the partially colapsed Gibbs sampler technique can be
viewed as a generalization of blocking.

Define 𝑈(−𝑖) = (𝑈1, . . . , 𝑈𝑖−1, 𝑈𝑖+1, . . . , 𝑈𝑛−1). The conditional distribution in step iii.5, that
is given by

𝑝(𝑈𝑖|𝑋, 𝑝, 𝜎2, 𝜇0, 𝑤, 𝑈(−𝑖), 𝜇)

∝ 𝑓(𝑋|𝜎2, 𝑈 , 𝜇)𝑓(𝜇|𝜇0, 𝑤, 𝜎2, 𝑈)𝑝(𝑈
⃒⃒
𝑝)

∝
𝑏∏︁

𝑗=1
𝑓𝑆𝑗 (𝑋𝑆𝑗

⃒⃒
𝜇𝑆𝑗 , 𝜎2) ×

𝑏∏︁
𝑗=1

𝑓𝑆𝑗 (𝜇𝑆𝑗

⃒⃒
𝜇0, 𝑤, 𝜎2) ×

𝑏∏︁
𝑗=1

𝑐(𝑆𝑗)

∝
𝑏∏︁

𝑗=1
𝑓𝑆𝑗 (𝑋𝑆𝑗

⃒⃒
𝜇𝑆𝑗 , 𝜎2)𝑓𝑆𝑗 (𝜇𝑆𝑗

⃒⃒
𝜇0, 𝑤, 𝜎2)𝑐(𝑆𝑗),

(2.24)

is replaced by

𝑝(𝑈𝑖

⃒⃒⃒
𝑋, 𝑝, 𝜎2, 𝜇0, 𝑤, 𝑈(−𝑖))

∝
∫︁ ∞

−∞
· · ·
∫︁ ∞

−∞

𝑏∏︁
𝑗=1

𝑓𝑆𝑗 (𝑋𝑆𝑗

⃒⃒
𝜇𝑆𝑗 , 𝜎2)𝑓𝑆𝑗 (𝜇𝑆𝑗

⃒⃒
𝜇0, 𝑤, 𝜎2)𝑐(𝑆𝑗)𝑑𝜇𝑆1 . . . 𝑑𝜇𝑆𝑏

∝
𝑏∏︁

𝑗=1

∫︁ ∞

−∞
𝑓𝑆𝑗 (𝑋𝑆𝑗

⃒⃒
𝜇𝑆𝑗 , 𝜎2)𝑓𝑆𝑗 (𝜇𝑆𝑗

⃒⃒
𝜇0, 𝑤, 𝜎2)𝑐(𝑆𝑗)𝑑𝜇𝑆𝑗

∝
𝑏∏︁

𝑗=1
𝑓𝑆𝑗 (𝑋𝑆𝑗 |𝜇0, 𝑤, 𝜎2

0)𝑐(𝑆𝑗),

(2.25)

with 𝑓𝑆𝑗 (𝑋𝑆𝑗 ) as defined in Eq. (2.16). The same procedure used in Eq. (2.22) to sample from the
partition may be applied considering this marginal conditional distribution, such that when 𝑖 ∈ 𝑆𝑗 ,

𝑝𝑖

1 − 𝑝𝑖
=

𝑓𝑆𝑗 (𝑋𝑆𝑗 |𝜇0, 𝑤, 𝜎2
0)𝑐(𝑆𝑗)

𝑓𝑆𝑗𝑖(𝑋𝑆𝑗𝑖 |𝜇0, 𝑤, 𝜎2
0)𝑐(𝑆𝑗𝑖) × 𝑓𝑆𝑖𝑗 (𝑋𝑆𝑖𝑗 |𝜇0, 𝑤, 𝜎2

0)𝑐(𝑆𝑖𝑗)
(2.26)
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where 𝑆𝑗𝑖 = {𝑖𝑗−1 + 1, 𝑖𝑗−1 + 2, . . . , 𝑖 − 1, 𝑖} and 𝑆𝑖𝑗 = {𝑖 + 1, 𝑖 + 2, . . . , 𝑖𝑗 − 1, 𝑖𝑗} form a partition of
the block 𝑆𝑗 with two blocks such that 𝑖 is the end point of 𝑆𝑗𝑖 (equivalent to 𝑈𝑖 = 0). The proposed
Gibbs scheme to the BH93 model is outlined next. The definition of these conditional distributions
are described in Section A.1, in Appendix A.

i. Initialize 𝜇(0), 𝜎2(0), 𝑈 (0), 𝜇
(0)
0 , 𝑤(0), 𝑝(0) (initialize all 𝑈

(0)
𝑖 = 0).

ii. Set 𝑡 = 1.

iii. Sequentially generate:

1. 𝑝(𝑡) ∼ Beta (𝑏, 𝑛 − 𝑏 + 1, [0, 𝑝0])

2. 𝜎2(𝑡) ∼ IG
(︃

𝑛 + 𝑏

2 ,

∑︀𝑛
𝑖=1 (𝑋𝑖 − 𝜇𝑖)2 + 𝑤

1−𝑤

∑︀𝑛
𝑖=1 (𝜇𝑖 − 𝜇0)2

2

)︃

3. 𝜇
(𝑡)
0 ∼ N

(︃∑︀𝑛
𝑖=1 𝜇𝑖

𝑛
,
𝜎2(1 − 𝑤)

𝑛𝑤

)︃

4. 𝑤(𝑡) ∼ 𝑓(𝑤|𝑏, 𝑛1, . . . , 𝑛𝑏, 𝜎2, 𝜇, 𝜇0, 𝑤0)

5. 𝑈
(𝑡)
𝑖 ∼ 𝑝(𝑈𝑖|𝑋, 𝑝, 𝜎2, 𝜇0, 𝑤, 𝑈(−𝑖)), for 𝑖 = 1, . . . , 𝑛 − 1.

6. 𝜇
(𝑡)
𝑖 |𝑖 ∈ 𝑆𝑗 ∼ N

(︃
(1 − 𝑤)𝑋𝑆𝑗 + 𝑤𝜇0,

𝜎2(1 − 𝑤)
𝑛𝑗

)︃
, for 𝑖 = 1, . . . , 𝑛.

iv. Set 𝑡 = 𝑡 + 1 and return to step iii until convergence is reached.

The iteration indicators (𝑡) and (𝑡 − 1) are not displayed to simplify the expressions of the
conditional distributions, but in each step it must be used the most recently sampled value of each
variable that is not sampled in that step. The quantity 𝑏 represents the number of blocks of the
current sampled partition. The Beta distribution in step iii.1 is truncated in [0, 𝑝0]. The 𝑤 conditional
distribution is not a known model. Thus, a Metropolis-Hastings (M-H) algorithm was proposed to this
sample. The general M-H algorithm is briefly described in Section B.1, in Appendix B. The samples
from 𝑈 (𝑡) in step iii.5 consider a conditional distribution with the parameter vector 𝜇 integrated out,
and 𝜇 is sampled in the next step. It is a blocking strategy tha combines the samples of 𝑈 and 𝜇.

2.4 The L99 model for multiple change points detection

The L99 model was first presented in Loschi et al. [1999], but it is also detailed described in
Loschi and Cruz [2002] and Loschi et al. [2003]. This model is an extension of the PPM to multiple
change point detection in both mean and variance of sequences of Normal observations. It assumes
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that given the sequence of unkown parameters 𝜃1 = (𝜇1, 𝜎2
1), . . . , 𝜃𝑛 = (𝜇𝑛, 𝜎2

𝑛), the observations
𝑋1, . . . , 𝑋𝑛 are independent with 𝑋𝑖|𝜇𝑖, 𝜎2

𝑖 ∼ 𝑁(𝜇𝑖, 𝜎2
𝑖 ), 𝑖 = 1, . . . , 𝑛.

It is also assumed that given a partition 𝜌 = {𝑆1, . . . , 𝑆𝑏}, there exists 𝜃𝑆𝑗 = (𝜇𝑆𝑗 , 𝜎2
𝑆𝑗

),
𝑗 = 1, . . . , 𝑏, such that (𝜇𝑖, 𝜎2

𝑖 ) = (𝜇𝑆𝑗 , 𝜎2
𝑆𝑗

) for 𝑖 ∈ 𝑆𝑗 , 𝑖 = 1, . . . , 𝑛. The joint block prior distribution
of (𝜇𝑆𝑗 , 𝜎2

𝑆𝑗
) is given by

𝜇𝑆𝑗 |𝜎2
𝑆𝑗

∼ 𝑁(𝑚, 𝑣𝜎2
𝑆𝑗

) and 𝜎2
𝑆𝑗

∼ 𝐼𝐺(𝑎/2, 𝑑/2), (2.27)

that is called Normal-Inverse-Gamma distribution, which is a conjugate prior for the Normal model
with mean and variance unknown. Similar to the BH93 model, the block prior cohesions follow the
parametric model described in Eq. (2.14).

2.5 Prior specifications for the random partitions

The change point models discussed in this thesis consider the parametric cohesion model
introduced by Yao [1984], described in Eq. (2.14), to determine the prior probability distribution of
the random partition 𝜌. As presented by Loschi et al. [2003] and Loschi and Cruz [2005], and later
discussed by Monteiro et al. [2011] and Peluso et al. [2019], the prior distribution of the parameter 𝑝 in
Eq. (2.14) may induce higher or lower informative levels for this prior, based on prior knowledge about
the number of changes in each particular application. The results presented in this section support
the specification of the prior distributions of the random partitions in the applications developed
throughout this thesis.

Consider the distribution 𝑝(𝜌|𝑝) in Eq. (2.15). If we specify the prior distribution of the pa-
rameter 𝑝 to be a 𝐵𝑒𝑡𝑎(𝛼, 𝛽), we have that

𝑝(𝜌) =
∫︁ 1

0
𝑝(𝜌|𝑝)𝑓(𝑝) 𝑑𝑝 =

∫︁ 1

0
𝑝𝑏−1(1 − 𝑝)𝑛−𝑏 Γ(𝛼 + 𝛽)

Γ(𝛼)Γ(𝛽)𝑝𝛼−1(1 − 𝑝)𝛽−1 𝑑𝑝

= Γ(𝛼 + 𝛽)
Γ(𝛼)Γ(𝛽)

∫︁ 1

0
𝑝𝛼+𝑏−2(1 − 𝑝)𝑛+𝛽−𝑏−1 𝑑𝑝

= Γ(𝛼 + 𝛽)
Γ(𝛼)Γ(𝛽)

Γ(𝛼 + 𝑏 − 1)Γ(𝑛 + 𝛽 − 𝑏)
Γ(𝛼 + 𝛽 + 𝑛 − 1) .

(2.28)

Thus, the probability distribution of the random number of blocks 𝐵 of 𝜌 is given by

𝑃 (𝐵 = 𝑏) =
∑︁
𝜌∈ℬ

𝑝(𝜌) =
∑︁
𝜌∈ℬ

Γ(𝛼 + 𝛽)
Γ(𝛼)Γ(𝛽)

Γ(𝛼 + 𝑏 − 1)Γ(𝑛 + 𝛽 − 𝑏)
Γ(𝛼 + 𝛽 + 𝑛 − 1)

=
(︃

𝑛 − 1
𝑏 − 1

)︃
Γ(𝛼 + 𝛽)
Γ(𝛼)Γ(𝛽)

Γ(𝛼 + 𝑏 − 1)Γ(𝑛 + 𝛽 − 𝑏)
Γ(𝛼 + 𝛽 + 𝑛 − 1) ,

(2.29)
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for 𝑏 = 1, . . . , 𝑛, where ℬ is the set of all partitions of 𝐼 = {1, 2, . . . , 𝑛} with 𝑏 contiguous blocks. The
random number of blocks 𝐵 and the random number of change points, denoted by 𝑁 , in a partition
𝜌 are related by 𝑁 = 𝐵 − 1. Thus,

𝑃 (𝑁 = 𝑐) = 𝑃 (𝐵 = 𝑐 + 1) =
(︃

𝑛 − 1
𝑐

)︃
Γ(𝛼 + 𝛽)
Γ(𝛼)Γ(𝛽)

Γ(𝛼 + 𝑐)Γ(𝑛 − 1 + 𝛽 − 𝑐)
Γ(𝛼 + 𝛽 + 𝑛 − 1) , (2.30)

for 𝑐 = 0, 1, . . . , 𝑛 − 1. Eq. (2.30) determines that 𝑁 ∼ 𝐵𝑒𝑡𝑎-𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛 − 1, 𝛼, 𝛽), such that

𝐸(𝑁) = (𝑛 − 1) 𝛼

𝛼 + 𝛽
(2.31)

and

𝑉 𝑎𝑟(𝑁) = (𝑛 − 1) 𝛼𝛽(𝛼 + 𝛽 + 𝑛 − 1)
(𝛼 + 𝛽)2(𝛼 + 𝛽 + 1) (2.32)

The hyperparameters 𝛼 and 𝛽 may be determined in order to insert in the model some prior
beliefs about the number of changes that have occurred in the application, and how confident we are
about this beliefs. If we believe that 𝑁 = 𝑐 regime changes have occurred, we can incorporate this
expectation in the model by choosing the parameters 𝛼 and 𝛽 such that 𝐸(𝑁) = 𝑐, and also regulate
our uncertainty about this expectation by the variance of 𝑁 determined by the choice of 𝛼 and 𝛽. We
are not restricted to an integer expected number of changes. For example, if we believe that two or
three changes have occurred, we can set 𝑐 as real number in the open interval (2, 3).

If we fix 𝐸(𝑁) = 𝑐, it follows from (2.31) that the parameters 𝛼 and 𝛽 are related by
𝛽 = 𝛼(𝑛 − 1 − 𝑐)/𝑐. Denote 𝑘 = (𝑛 − 1 − 𝑐)/𝑐. Thus, we have that

𝑉 𝑎𝑟(𝑁) = 𝑐
𝑘

1 + 𝑘

𝛼(1 + 𝑘) + 𝑛 − 1
𝛼(1 + 𝑘) + 1 , (2.33)

such that d
d𝛼

𝑉 𝑎𝑟(𝑁) = 𝑐
𝑘

[𝛼(1 + 𝑘) + 1]2 (2−𝑛) < 0 for 𝑛 ≥ 3 and lim
𝛼→∞

𝑉 𝑎𝑟(𝑁) = 𝑐(𝑛−1−𝑐)/(𝑛−1).

Thus, 𝑉 𝑎𝑟(𝑁) decreases as 𝛼 increases, and we can consider more or less informative levels for the
prior knowledge about the number of changes by choosing higher or lower values of 𝛼, respectively,
with 𝛽 following from 𝛽 = 𝛼(𝑛−1−𝑐)/𝑐. Table 1 presents some examples of highly informative possible
specifications of the 𝑁 prior to scenes with 𝑛 = 100 or 𝑛 = 200 observations and expected number of
changes varing in 1 to 9. We empirically choose 𝛼 = 50, that is a value large enough such that 𝑉 𝑎𝑟(𝑁)
is next to lim

𝛼→∞
𝑉 𝑎𝑟(𝑁), and the 𝛽 values in Table 1 follow from the relation 𝛽 = 𝛼(𝑛 − 1 − 𝑐)/𝑐.
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𝑛 = 100 𝑛 = 200

𝐸(𝑁) 𝛽 𝑉 𝑎𝑟(𝑁) lim
𝛼→∞

𝑉 𝑎𝑟(𝑁) 𝛽 𝑉 𝑎𝑟(𝑁) lim
𝛼→∞

𝑉 𝑎𝑟(𝑁)

1 4,900 1.01 0.99 9,900 1.01 0.99

2 2,425 2.04 1.96 4,925 2.06 1.98

3 1,600 3.08 2.91 3,267 3.13 2.95

4 1,188 4.14 3.84 2,438 4.23 3.92

5 940 5.22 4.75 1,940 5.36 4.87

6 775 6.31 5.64 1,608 6.51 5.82

7 657 7.41 6.51 1,371 7.69 6.75

8 569 8.52 7.35 1,194 8.9 7.68

9 500 9.64 8.18 1,056 10.13 8.59

Table 1: Examples of prior specifications of 𝑁 prior to scenes with 100 or 200 observations and expected
number of changes varing in 1 to 9, with 𝛼 = 50.

Additionally, fixing 𝛼 = 𝛽 = 1 impplies that 𝑁 ∼ 𝐵𝑒𝑡𝑎-𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛 − 1, 1, 1), which is equiva-
lent to 𝑁 follow a Uniform discrete distribution over {0, 1, . . . , 𝑛 − 1}, with 𝐸(𝑁) = (𝑛 − 1)/2 and
𝑉 𝑎𝑟(𝑁) = (𝑛 − 1)(𝑛 + 1)/12. In this case, we assume prior distributions for 𝑝 and 𝑁 corresponding
to the noninformative Bayes–Laplace prior distributions (Laplace [1774]).

A similar analysis can be made for the prior specification of the parameter 𝑝 in the BH93 model,
that is, 𝑝 ∼ 𝑈(0, 𝑝0), where 𝑝0 is a fixed value in (0, 1). In this case, we have the prior probability
distribution of 𝑁 given by

𝑃 (𝑁 = 𝑐) =
(︃

𝑛 − 1
𝑐

)︃∫︁ 𝑝0

0
𝑝𝑐(1 − 𝑝)𝑛−𝑐−1 1

𝑝0
𝑑𝑝, (2.34)

for 𝑐 = 0, . . . , 𝑛 − 1, with

𝐸(𝑁) = 𝐸(𝐸(𝑁 |𝑝)) = 𝐸((𝑛 − 1)𝑝) = (𝑛 − 1)𝑝0
2 . (2.35)

The model properties presented in this Section support some prior specifications considered
in the applications presented in the Section 2.6, in the Monte Carlo simulation study presented in
Chapter 4, and in the real data applications presented in Chapter 5.

2.6 Applications of the L99 and BH93 models

This section has two main purposes. First, we analyze the Lombard’s dataset using the R
package bcp and the algorithm proposed in Section 2.3.2, to compare their results. After that, we
analyze a simulated data set experiencing changes in mean and variance at different times, using the
L99 and BH93 models, to evaluate their limitations in this conditions and motivate the new model.
The applications of the L99 model presented in this section consider the hyperparameters 𝑚, 𝑣, 𝑎 and 𝑑

fixed as (𝑚, 𝑣, 𝑎, 𝑑) = (0, 2, 2, 2), that implies in a flat configuration for the distribution in (2.27), and a
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𝐵𝑒𝑡𝑎(𝛼, 𝛽) prior for the parameter 𝑝 of the cohesions, with 𝛼 and 𝛽 to be specified in each application,
based on the model properties discussed in Section 2.5. For the BH93 model, we follow the suggestion
proposed in the original paper, that is, 𝑝0 = 𝑤0 = 0.2

First, we apply the Gibbs scheme described in Section 2.3.2 and compare it with the R package
bcp. We consider the 𝑛 = 100 sequential observations of the Lombard’s dataset analyzed by Barry
and Hartigan [1993]. We generate 10,000 samples after a burn-in period of 4,000 discarded samples.
The results are displayed in Figure 1.
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Figure 1: BH93 model estimates to Lombard’s dataset: (a) Lombard’s data (gray circles) and poste-
rior means estimates using bcp (black ×) and alternative approach (black solid line). (b) Estimated
posterior distribution of 𝑁 using bcp (gray bars) and alternative approach (black bars). (c) Estimated
posterior probability of each instant to be a change point using bcp (×) and alternative approach
(∘). (d) Estimated marginal posterior density of 𝜇85 using the alternative approach (histogram) and
posterior point estimate using bcp (black dashed line). (e) Estimated marginal posterior density of 𝜎2

using alternative approach (histogram), and posterior point estimate informed in the original paper
as 0.00857 (dashed line).

The point estimates in Figure 1a are the posterior sample means of 𝜇1, . . . , 𝜇100. The posterior
distribution of the number of change points 𝑁 , in Figure 1b, is obtained by noticing that
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𝑁 =
𝑛−1∑︁
𝑖=1

(1 − 𝑈𝑖), (2.36)

and the posterior probability of the 𝑖th instant to be an end point in Figure 1c (and also in Figures 2e
and 2f) are estimated by the proportion of the generated samples in which 𝑈𝑖 = 0, 𝑖 = 1, . . . , 𝑛 − 1, as
proposed by Loschi and Cruz [2005]. These estimated posterior probabilities provide useful information
about the true partition, in addition to the estimated posterior probabilities of 𝜌, which are often too
flat, not providing sufficient evidence to make decision about the most likely partition.

As shown in Figures 1a, 1b and 1c, the same results are obtained with the bcp package
and the proposed partially colapsed Gibbs sampler, which confirms it as a useful sampling strategy.
Moreover, the partially colapsed Gibbs sampler provides estimates of the marginal posterior densities
of each 𝜇𝑖, 𝑖 = 1, . . . , 𝑛, and 𝜎2 (Figures 1d and 1e), while the bcp package procedure returns only
point estimates of these parameters, which may be an inappropriate information in the case of an
asymmetric or bimodal posterior density, that are usual shapes for the posterior sample distributions
of the parameters around the change points.

In another application, we apply the BH93 and L99 models to a simulated sequence of inde-
pendent Normal data 𝑋 = (𝑋1, . . . , 𝑋100) where changes occur in the mean at instants 41 and 61,
and the true means are 1, 6 and 2 for the 1st, 2nd and 3rd clusters, respectively. Only one variance
change is assumed, at instant 51. The variance changes from 1 in the cluster (𝑋1, . . . , 𝑋50) to 9 in the
cluster (𝑋51, . . . , 𝑋100). We use the R package bcp to apply the BH93 model, with 𝑝0 = 𝑤0 = 0.2,
as suggested in the original paper. We developed an implementation of the L99 model in R language,
and considered the prior configuration presented in Section 2.4 to the block parameters. The 𝐵𝑒𝑡𝑎

prior of the cohesion parameter 𝑝 is specified as 𝑝 ∼ 𝐵𝑒𝑡𝑎(50, 1600), following the informative prior
specifications presented in Table 1 to an expected number of changes 𝐸(𝑁) = 3 in 𝑛 = 100 observa-
tions. Figure 2 summarizes the results of this application. In this application, the BH93 model does
not provide good point estimates for the parameters 𝜇 from the instant when the variance changes to
the end of the sequence, and gives high probability of being a change point to a considerable number
of false change points, as shown in Figures 2b and 2f. The parameters 𝜎 are underestimated by the
BH93 model, as shown in Figure 2d. It is a default feature of the variance estimates provided by the
BH93 model, as can be noticed in all the applications presented in this thesis.

Although the L99 model provides slightly better estimates for the means, both models fail
to identify the true change points. Under the L99 model, the posterior estimates for the variance
are clearly affected by the changes in the mean, and also the change in the variance affect the mean
estimates. Moreover, the L99 and BH93 approachs do not provide information about in which param-
eter the change occurred. As an attempt to account for these problems, in Chapter 3 we introduce
the Bayesian multipartition change point model which allows different groups of parameters to be
separately partitioned. Thus, we may identify the changes and the parameter in which the changes
occurred.
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Figure 2: L99 and BH93 model estimates to simulated Normal data: (a-b) Simulated data (gray
circles), posterior mean estimates (black dots) and true mean values (gray solid horizontal lines). (c-
d) The squared error (gray circles), posterior variance estimates (black dots) and the true variance
values (gray solid horizontal lines). (e-f) Estimated posterior probability of each instant to be a change
point. In Figures (a-f), the vertical gray lines indicate the true change points in the mean (dotted line)
and variance (dashed line).
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3 Multipartition model for detection of multiple
change points

The PPM for multiple change point identification in sequences of observations generated by
multiparametric models (Loschi et al. [1999], Loschi et al. [2010]) permits to identify when regime
changes occurred but does not indicate which structural parameter experienced the change. The model
proposed in this chapter extend the PPM to a multiparametric change point application such that
each group of structural parameters experiences its own change point process. We propose a model
with more than one partition, one for each group of structural parameters. As a result, in addition to
detecting the regime changes, it is also known which structural parameter has changed.

3.1 Model assumptions and likelihood

Consider the sequence of 𝑛 observations 𝑋 = (𝑋1, . . . , 𝑋𝑛) that is independent, given the 𝑑

sequences of unkown structural parameters 𝜃𝑘 = (𝜃𝑘,1, . . . , 𝜃𝑘,𝑛), 𝑘 = 1, . . . , 𝑑, and with conditional
marginal densities 𝑓(𝑋𝑖|𝜃1,𝑖, . . . , 𝜃𝑑,𝑖), 𝑖 = 1, . . . , 𝑛. Suppose that each 𝜃𝑘 undergoes sudden multiple
changes at unknown times. Suppose that 𝜃1, . . . , 𝜃𝑑 are each one partitioned into contiguous blocks.
Thus, there exist 𝑑 partitions 𝜌𝑘, 𝑘 = 1, . . . , 𝑑, of the set of indexes 𝐼 = {1, . . . , 𝑛}, denoted by

𝜌𝑘 = {𝑖𝑘,0, 𝑖𝑘,1, . . . , 𝑖𝑘,𝑏𝑘
}, 0 = 𝑖𝑘,0 < 𝑖𝑘,1 < · · · < 𝑖𝑘,𝑏𝑘

= 𝑛.

Assume that for each given 𝜌𝑘, there exist the common parameters 𝜃𝑆𝑘,1 , . . . , 𝜃𝑆𝑘,𝑏𝑘
such that

𝜃𝑘,𝑖 = 𝜃𝑆𝑘,𝑗𝑘
for 𝑖 ∈ 𝑆𝑘,𝑗𝑘

= {𝑖𝑘,𝑗𝑘−1 + 1, 𝑖𝑘,𝑗𝑘−1 + 2, . . . , 𝑖𝑘,𝑗𝑘
}, 𝑖 = 1, . . . , 𝑛, 𝑗𝑘 = 1, . . . , 𝑏𝑘.

The points 𝑖𝑘,𝑗𝑘
are the end points of the blocks 𝑆𝑘,𝑗𝑘

of the partitions 𝜌𝑘, for 𝑗𝑘 = 1, . . . , 𝑏𝑘,
and define the change points of 𝜃𝑘, 𝑘 = 1, . . . , 𝑑. The first point of each block is said to be a change
point. The assumptions above determine that if the partition 𝜌𝑘 is known, observations whose indexes
𝑖 belongs to the same block of 𝜌𝑘 have the same value for 𝜃𝑘,𝑖. The number of end points or blocks
𝐵𝑘 = 𝑏𝑘, in each parameter 𝜃𝑘, 𝑘 = 1, . . . , 𝑑, is a random variable ranging from 1 to n.

As a consequence of each sequence of parameters 𝜃1, . . . , 𝜃𝑑 to be blocked through an specific
process represented by a specific partition, we are not constrained to blocks in matching positions,
neither the same number of blocks between the partitions. For example, in a observational model with
two groups of structural parameters (that is, 𝑑 = 2), a subsequence of observations setted by 𝜌1 with
equal parameter 𝜃𝑆1,𝑗1

may not be all setted by 𝜌2 with equal parameter 𝜃𝑆2,𝑗2
. For a better view of

this specific blocking feature of the model, we itemize in Table 2 all possible combinations of partitions
𝜌1 and 𝜌2 for a sequence of 𝑛 = 3 observations, with (𝑏1, 𝑏2) ∈ {1, 2, 3} × {1, 2, 3}.
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(𝑏1, 𝑏2)
(︃

𝜃1,1 𝜃1,2 𝜃1,3
𝜃2,1 𝜃2,2 𝜃2,3

)︃

(1, 1)
(︃

𝜃𝑆1,1 𝜃𝑆1,1 𝜃𝑆1,1

𝜃𝑆2,1 𝜃𝑆2,1 𝜃𝑆2,1

)︃

(1, 2)
(︃

𝜃𝑆1,1 𝜃𝑆1,1 𝜃𝑆1,1

𝜃𝑆2,1 𝜃𝑆2,1 𝜃𝑆2,2

)︃(︃
𝜃𝑆1,1 𝜃𝑆1,1 𝜃𝑆1,1

𝜃𝑆2,1 𝜃𝑆2,2 𝜃𝑆2,2

)︃

(1, 3)
(︃

𝜃𝑆1,1 𝜃𝑆1,1 𝜃𝑆1,1

𝜃𝑆2,1 𝜃𝑆2,2 𝜃𝑆2,3

)︃

(2, 1)
(︃

𝜃𝑆1,1 𝜃𝑆1,1 𝜃𝑆1,2

𝜃𝑆2,1 𝜃𝑆2,1 𝜃𝑆2,1

)︃(︃
𝜃𝑆1,1 𝜃𝑆1,2 𝜃𝑆1,2

𝜃𝑆2,1 𝜃𝑆2,1 𝜃𝑆2,1

)︃

(2, 2)
(︃

𝜃𝑆1,1 𝜃𝑆1,1 𝜃𝑆1,2

𝜃𝑆2,1 𝜃𝑆2,1 𝜃𝑆2,2

)︃(︃
𝜃𝑆1,1 𝜃𝑆1,2 𝜃𝑆1,2

𝜃𝑆2,1 𝜃𝑆2,2 𝜃𝑆2,2

)︃(︃
𝜃𝑆1,1 𝜃𝑆1,1 𝜃𝑆1,2

𝜃𝑆2,1 𝜃𝑆2,2 𝜃𝑆2,2

)︃(︃
𝜃𝑆1,1 𝜃𝑆1,2 𝜃𝑆1,2

𝜃𝑆2,1 𝜃𝑆2,1 𝜃𝑆2,2

)︃

(2, 3)
(︃

𝜃𝑆1,1 𝜃𝑆1,1 𝜃𝑆1,2

𝜃𝑆2,1 𝜃𝑆2,2 𝜃𝑆2,3

)︃(︃
𝜃𝑆1,1 𝜃𝑆1,2 𝜃𝑆1,2

𝜃𝑆2,1 𝜃𝑆2,2 𝜃𝑆2,3

)︃

(3, 1)
(︃

𝜃𝑆1,1 𝜃𝑆1,2 𝜃𝑆1,3

𝜃𝑆2,1 𝜃𝑆2,1 𝜃𝑆2,1

)︃

(3, 2)
(︃

𝜃𝑆1,1 𝜃𝑆1,2 𝜃𝑆1,3

𝜃𝑆2,1 𝜃𝑆2,1 𝜃𝑆2,2

)︃(︃
𝜃𝑆1,1 𝜃𝑆1,2 𝜃𝑆1,3

𝜃𝑆2,1 𝜃𝑆2,2 𝜃𝑆2,2

)︃

(3, 3)
(︃

𝜃𝑆1,1 𝜃𝑆1,2 𝜃𝑆1,3

𝜃𝑆2,1 𝜃𝑆2,2 𝜃𝑆2,3

)︃

Table 2: All possible combinations of partitions 𝜌1 and 𝜌2 for a sequence of 𝑛 = 3 observations.

For notation simplicity, denote by 𝑋𝑆1,𝑗1 ···𝑆𝑘,𝑗𝑘
the subsequence of observations which in-

dexes belong to 𝑆1,𝑗1 ∩ 𝑆2,𝑗2 · · · ∩ 𝑆𝑘,𝑗𝑘
, 𝑘 = 1, . . . , 𝑑. Assume that {𝑋𝑖, 𝑖 ∈ 𝑆1,𝑗1 · · · 𝑆𝑑,𝑗𝑑

} are inde-
pendent and identicaly distributed, given (𝜃1, . . . , 𝜃𝑑, 𝜌1, . . . , 𝜌𝑑), with conditional marginal density
𝑓(𝑋𝑖|𝜃𝑆1,𝑗1

, . . . , 𝜃𝑆𝑑,𝑗𝑑
). Under these assumptions, the likelihood function of (𝜃1, . . . , 𝜃𝑑, 𝜌1, . . . , 𝜌𝑑) is

given by

𝑓(𝑋|𝜃1, . . . , 𝜃𝑑, 𝜌1, . . . , 𝜌𝑑) =
𝑏1∏︁

𝑗1=1

∏︁
𝑗2:

2⋂︀
𝑙=1

𝑆𝑙,𝑗𝑙
̸=∅

· · ·
∏︁

𝑗𝑑:
𝑑⋂︀

𝑙=1
𝑆𝑙,𝑗𝑙

̸=∅

𝑓(𝑋𝑆1,𝑗1 ···𝑆𝑑,𝑗𝑑
|𝜃𝑆1,𝑗1

, . . . , 𝜃𝑆𝑑,𝑗𝑑
), (3.1)

where

𝑓(𝑋𝑆1,𝑗1 ···𝑆𝑑,𝑗𝑑
|𝜃𝑆1,𝑗1

, . . . , 𝜃𝑆𝑑,𝑗𝑑
) =

∏︁
𝑖∈

𝑑⋂︀
𝑙=1

𝑆𝑙,𝑗𝑙

𝑓(𝑋𝑖|𝜃𝑆1,𝑗1
, . . . , 𝜃𝑆𝑑,𝑗𝑑

). (3.2)
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To exemplify, consider 𝑛 = 3 and 𝑑 = 2, and assume (𝑏1, 𝑏2) = (2,2). If 𝜌1 and 𝜌2 are such that
𝑆1,1 = {1}, 𝑆1,2 = {2, 3}, 𝑆2,1 = {1, 2} and 𝑆2,2 = {3}, which corresponds to 5th line, 4th column of
Table 2, it follows that

𝑓(𝑋1, 𝑋2, 𝑋3|𝜃1,1, 𝜃1,2, 𝜃1,3, 𝜃2,1, 𝜃2,2, 𝜃2,3, 𝜌1 = {0, 1, 3}, 𝜌2 = {0, 2, 3})

=
2∏︁

𝑗1=1

∏︁
𝑗2:

2⋂︀
𝑙=1

𝑆𝑙,𝑗𝑙
̸=∅

𝑓(𝑋𝑆1,𝑗1 𝑆2,𝑗2
|𝜃𝑆1,𝑗1

, 𝜃𝑆2,𝑗2
)

= 𝑓(𝑋1|𝜃𝑆1,1 , 𝜃𝑆2,1) × 𝑓(𝑋2|𝜃𝑆1,2 , 𝜃𝑆2,1) × 𝑓(𝑋3|𝜃𝑆1,2 , 𝜃𝑆2,2).

Another possible configuration is 𝑆1,1 = {1, 2}, 𝑆1,2 = {3}, 𝑆2,1 = {1, 2} and 𝑆2,2 = {3}, that is the
case in 5th line and 1st column of Table 2. In this case, the likelihood is given by

𝑓(𝑋1, 𝑋2, 𝑋3|𝜃1,1, 𝜃1,2, 𝜃1,3, 𝜃2,1, 𝜃2,2, 𝜃2,3, 𝜌1 = {0, 2, 3}, 𝜌2 = {0, 2, 3})

=
2∏︁

𝑗1=1

∏︁
𝑗2:

2⋂︀
𝑙=1

𝑆𝑙,𝑗𝑙
̸=∅

𝑓(𝑋𝑆1,𝑗1 𝑆2,𝑗2
|𝜃𝑆1,𝑗1

, 𝜃𝑆2,𝑗2
)

= 𝑓(𝑋1|𝜃𝑆1,1 , 𝜃𝑆2,1) × 𝑓(𝑋2|𝜃𝑆1,1 , 𝜃𝑆2,1) × 𝑓(𝑋3|𝜃𝑆1,2 , 𝜃𝑆2,2).

It is relevant to note that the order of the indexes in the products of Eq. (3.1) is exchangeable.
Let {𝑘1, . . . , 𝑘𝑑} denote any permutation of {1, . . . , 𝑑}. Eq. (3.1) can be generalized by

𝑓(𝑋|𝜃1, . . . , 𝜃𝑑, 𝜌1, . . . , 𝜌𝑑)

=
𝑏𝑘1∏︁

𝑗𝑘1 =1

∏︁
𝑗𝑘2 :𝑆𝑘1,𝑗𝑘1

∩𝑆𝑘2,𝑗𝑘2
̸=∅

· · ·
∏︁

𝑗𝑘𝑑
:𝑆𝑘1,𝑗𝑘1

∩···∩𝑆𝑘𝑑,𝑗𝑘𝑑
̸=∅

𝑓(𝑋𝑆𝑘1,𝑗𝑘1
···𝑆𝑘𝑑,𝑗𝑘𝑑

|𝜃𝑆𝑘1,𝑗𝑘1
, . . . , 𝜃𝑆𝑘𝑑,𝑗𝑘𝑑

),
(3.3)

where

𝑓(𝑋𝑆𝑘1,𝑗𝑘1
···𝑆𝑘𝑑,𝑗𝑘𝑑

|𝜃𝑆𝑘1,𝑗𝑘1
, . . . , 𝜃𝑆𝑘𝑑,𝑗𝑘𝑑

) =
∏︁

𝑖∈
𝑑⋂︀

𝑙=1
𝑆𝑘𝑙,𝑗𝑙

𝑓(𝑋𝑖|𝜃𝑆𝑘1,𝑗𝑘1
, . . . , 𝜃𝑆𝑘𝑑,𝑗𝑘𝑑

), (3.4)

and 𝑋𝑆𝑘1,𝑗𝑘1
···𝑆𝑘𝑙,𝑗𝑘𝑙

denotes the subsequence of observations which indexes belong to
𝑆𝑘1,𝑗𝑘1

∩ · · · ∩ 𝑆𝑘𝑙,𝑗𝑘𝑙
, 𝑙 = 1, . . . , 𝑑.

3.2 Prior distributions

To specify a PPM, it is necessary to set product prior distributions for the partitions 𝜌𝑘 and
prior distributions for 𝜃𝑘 given 𝜌𝑘, for 𝑘 = 1, ...., 𝑑. Given the partitions 𝜌𝑘, 𝑘 = 1, ..., 𝑑, we assume
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that (i) 𝜃1, . . . , 𝜃𝑑 are independent and (ii) 𝜃𝑆𝑘,1 , . . . , 𝜃𝑆𝑘,𝑏𝑘
, 𝑘 = 1, . . . , 𝑑, are independent, such that

the joint prior distribution of 𝜃1, . . . , 𝜃𝑑 given 𝜌1, . . . , 𝜌𝑑 is

𝑓(𝜃1, . . . , 𝜃𝑑|𝜌1, . . . , 𝜌𝑑) =
𝑑∏︁

𝑘=1
𝑓(𝜃𝑘|𝜌1, . . . , 𝜌𝑑) =

𝑑∏︁
𝑘=1

𝑓(𝜃𝑘|𝜌𝑘)

=
𝑑∏︁

𝑘=1

𝑏𝑘∏︁
𝑗𝑘=1

𝑓𝑆𝑘,𝑗𝑘
(𝜃𝑆𝑘,𝑗𝑘

),

(3.5)

where 𝑓𝑆𝑘,𝑗𝑘
(𝜃𝑆𝑘,𝑗𝑘

) is the block prior density, for 𝑘 = 1, . . . , 𝑑, 𝑗𝑘 = 1, . . . , 𝑏𝑘. To simplify the notation,
we set 𝑓𝑆𝑘,𝑗𝑘

(𝜃𝑆𝑘,𝑗𝑘
) = 𝑓𝑘(𝜃𝑆𝑘,𝑗𝑘

).

We assume that each random partition 𝜌𝑘, 𝑘 = 1, ..., 𝑑, are independent and that each partition
𝜌𝑘 has a product partition distribution, denoted as 𝑝(𝜌𝑘), given by

𝑝(𝜌𝑘) = 𝑃 (𝜌𝑘 = {𝑆𝑘,1, . . . , 𝑆𝑘,𝑏𝑘
}) =

𝑏𝑘∏︁
𝑗𝑘=1

𝑐𝑘(𝑆𝑘,𝑗𝑘
)∑︁

𝜌𝑘∈𝒫

∏︁
𝑆𝑘,𝑗𝑘

∈𝜌𝑘

𝑐𝑘(𝑆𝑘,𝑗𝑘
)
, 𝑘 = 1, . . . , 𝑑, (3.6)

where the cohesions 𝑐𝑘(𝑆𝑘,𝑗𝑘
), a priori, measure how strongly we believe that the components of 𝜃𝑘

in 𝑆𝑘,𝑗𝑘
are a cluster, 𝑘 = 1, . . . , 𝑑.

3.3 Joint posterior distribution of structural parameters and partitions

Under the proposed model assumptions in (3.1), (3.5) and (3.6), the posterior distribution for
parameters 𝜃1, . . . , 𝜃𝑑 and partitions 𝜌1, . . . , 𝜌𝑑 becomes

𝑓(𝜃1, . . . , 𝜃𝑑, 𝜌1, . . . , 𝜌𝑑|𝑋) = 𝑓(𝑋|𝜃1, . . . , 𝜃𝑑, 𝜌1, . . . , 𝜌𝑑)𝑓(𝜃1, . . . , 𝜃𝑑|𝜌1, . . . , 𝜌𝑑)𝑝(𝜌1) · · · 𝑝(𝜌𝑑)
𝑓(𝑋)

∝
𝑏1∏︁

𝑗1=1

∏︁
𝑗2:

2⋂︀
𝑙=1

𝑆𝑙,𝑗𝑙
̸=∅

· · ·
∏︁

𝑗𝑑:
𝑑⋂︀

𝑙=1
𝑆𝑙,𝑗𝑙

̸=∅

𝑓(𝑋𝑆1,𝑗1 ···𝑆𝑑,𝑗𝑑
|𝜃𝑆1,𝑗1

, . . . , 𝜃𝑆𝑑,𝑗𝑑
) ×

𝑑∏︁
𝑘=1

𝑏𝑘∏︁
𝑗𝑘=1

𝑓𝑘(𝜃𝑆𝑘,𝑗𝑘
)𝑐𝑘(𝑆𝑘,𝑗𝑘

),

(3.7)

where the proportionality is supressing the term

⎡⎣𝑓(𝑋)
𝑑∏︁

𝑘=1

∑︁
𝜌𝑘∈𝒫

∏︁
𝑆𝑘,𝑗𝑘

∈𝜌𝑘

𝑐𝑘(𝑆𝑘,𝑗𝑘
)

⎤⎦−1

.
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3.4 Sampling scheme

Inference about the partitions 𝜌1, . . . , 𝜌𝑑 and structural parameters 𝜃1, . . . , 𝜃𝑑 can be made
through a partially colapsed Gibbs sampler based on the same blocking strategy described in Section
2.3.2, but now adapted to consider 𝑑 groups of structural parameters and 𝑑 respective random parti-
tions.

Let 𝛿 represent a vector with the possibly existing hyperparameters in our Bayesian model.
We have a model with the random quantities (𝑋, 𝜃1, . . . , 𝜃𝑑, 𝜌1, . . . , 𝜌𝑑, 𝛿), and we are interested in
sample from 𝑓

(︀
𝜃1, . . . , 𝜃𝑑, 𝜌1, . . . , 𝜌𝑑, 𝛿

⃒⃒
𝑋
)︀
. To sample from the conditional distributions of 𝜌1, . . . , 𝜌𝑑,

we consider the same fixed dimension representation of the partitions as the proposed in the BH93
model, that is, we consider the random vector 𝑈𝑘 = (𝑈𝑘,1, . . . , 𝑈𝑘,𝑛−1), such that

𝑈𝑘,𝑖 =

⎧⎨⎩ 1 if 𝜃𝑘,𝑖 = 𝜃𝑘,𝑖+1,

0 if 𝜃𝑘,𝑖 ̸= 𝜃𝑘,𝑖+1,

for 𝑘 = 1, . . . , 𝑑, 𝑖 = 1, . . . , 𝑛−1. The component 𝑈𝑘,𝑖 indicates whether or not a change point occurred
at time 𝑖 + 1 in the group of structural parameters 𝜃𝑘. Thus, 𝑈𝑘 = (𝑈𝑘,1, . . . , 𝑈𝑘,𝑛−1) determines the
random partition 𝜌𝑘, for 𝑘 = 1, . . . , 𝑑, and the following equivalence is verified:

(𝑋, 𝜃1, . . . , 𝜃𝑑, 𝜌1, . . . , 𝜌𝑑, 𝛿) ⇔ (𝑋, 𝜃1, . . . , 𝜃𝑑, 𝑈1, . . . , 𝑈𝑑, 𝛿).

In order to implement the BMCP model, the partially colapsed Gibbs sampler scheme descri-
bed next may be considered to simulate from 𝑓

(︀
𝜃1, . . . , 𝜃𝑑, 𝜌1, . . . , 𝜌𝑑, 𝛿

⃒⃒
𝑋
)︀
.

i. Initialize 𝛿(0), 𝜃
(0)
1 , . . . , 𝜃

(0)
𝑑 , 𝑈

(0)
1 , . . . , 𝑈

(0)
𝑑 (𝑈 (0)

𝑘,𝑖 may be initialized as all 0).

ii. Set 𝑡 = 1.

iii. Sequentially generate:

0. 𝛿(𝑡) ∼ 𝑓(𝛿 | 𝑈
(𝑡−1)
1 , . . . , 𝑈

(𝑡−1)
𝑑 , 𝜃

(𝑡−1)
1 , . . . , 𝜃

(𝑡−1)
𝑑 , 𝑋)

1.1. 𝑈
(𝑡)
1,𝑖 ∼ 𝑝(𝑈1,𝑖 | 𝛿(𝑡), 𝑈

(𝑡)
1,1, . . . , 𝑈

(𝑡)
1,𝑖−1, 𝑈

(𝑡−1)
1,𝑖+1 , . . . , 𝑈

(𝑡−1)
1,𝑛−1, 𝑈

(𝑡−1)
2 , . . . , 𝑈

(𝑡−1)
𝑑 , 𝜃

(𝑡−1)
2 , . . . , 𝜃

(𝑡−1)
𝑑 , 𝑋),

for 𝑖 = 1, . . . , 𝑛 − 1.

1.2. 𝜃
(𝑡)
1,𝑖 ∼ 𝑓(𝜃𝑆1,𝑗1 |𝑖∈𝑆1,𝑗1

| 𝛿(𝑡), 𝑈
(𝑡)
1 , 𝑈

(𝑡−1)
2 , . . . , 𝑈

(𝑡−1)
𝑑 , 𝜃

(𝑡−1)
2 , . . . , 𝜃

(𝑡−1)
𝑑 , 𝑋), for 𝑖 = 1, . . . , 𝑛.

...
k.1. 𝑈

(𝑡)
𝑘,𝑖 ∼

𝑝(𝑈𝑘,𝑖 | 𝛿(𝑡), 𝑈
(𝑡)
1 , . . . , 𝑈

(𝑡)
𝑘−1, 𝜃

(𝑡)
1 , . . . , 𝜃

(𝑡)
𝑘−1, 𝑈

(𝑡)
𝑘,1, . . . , 𝑈

(𝑡)
𝑘,𝑖−1, 𝑈

(𝑡−1)
𝑘,𝑖+1 , . . . , 𝑈

(𝑡−1)
𝑘,𝑛−1, 𝑈

(𝑡−1)
𝑘+1 , . . . , 𝑈

(𝑡−1)
𝑑 , 𝜃

(𝑡−1)
𝑘+1 , . . . , 𝜃

(𝑡−1)
𝑑 , 𝑋),

for 𝑖 = 1, . . . , 𝑛 − 1.

k.2. 𝜃
(𝑡)
𝑘,𝑖 ∼ 𝑓(𝜃𝑆𝑘,𝑗𝑘

|𝑖∈𝑆𝑘,𝑗𝑘
| 𝛿(𝑡), 𝑈

(𝑡)
1 , . . . , 𝑈

(𝑡)
𝑘 , 𝜃

(𝑡)
1 , . . . , 𝜃

(𝑡)
𝑘−1, 𝑈

(𝑡−1)
𝑘+1 , . . . , 𝑈

(𝑡−1)
𝑑 , 𝜃

(𝑡−1)
𝑘+1 , . . . , 𝜃

(𝑡−1)
𝑑 , 𝑋), for 𝑖 = 1, . . . , 𝑛.
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...
d.1. 𝑈

(𝑡)
𝑑,𝑖 ∼ 𝑝(𝑈𝑑,𝑖 | 𝛿(𝑡), 𝑈

(𝑡)
1 , . . . , 𝑈

(𝑡)
𝑑−1, 𝜃

(𝑡)
1 , . . . , 𝜃

(𝑡)
𝑑−1, 𝑈

(𝑡)
𝑑,1, . . . , 𝑈

(𝑡)
𝑑,𝑖−1, 𝑈

(𝑡−1)
𝑑,𝑖+1 , . . . , 𝑈

(𝑡−1)
𝑑,𝑛−1, 𝜃

(𝑡−1)
𝑑 , 𝑋),

for 𝑖 = 1, . . . , 𝑛 − 1.

d.2. 𝜃
(𝑡)
𝑑,𝑖 ∼ 𝑓(𝜃𝑆𝑑,𝑗𝑑

|𝑖∈𝑆𝑑,𝑗𝑑
| 𝛿(𝑡), 𝑈

(𝑡)
1 , . . . , 𝑈

(𝑡)
𝑑 , 𝑋), for 𝑖 = 1, . . . , 𝑛.

iv. Set 𝑡 = 𝑡 + 1 and return to step iii until convergence is reached.

The 𝛿 sample in step iii.0 represents a group of samples of each hyperparameter that may
belong to the model. The structural parameters vectors 𝜃𝑘, 𝑘 = 1, . . . , 𝑑, are integrated out of their
respective conditional distribution of 𝑈𝑘, in step iii.𝑘.1, which is a necessary procedure, as discussed in
Section 2.3.2. Each pair of ordered samples (iii.𝑘.1,iii.𝑘.2) is a blocking step that combines the samples
of (𝑈𝑘, 𝜃𝑘).

Denote 𝑈𝑘,(−𝑖) = (𝑈𝑘,1, . . . , 𝑈𝑘,𝑖−1, 𝑈𝑘,𝑖+1, . . . , 𝑈𝑘,𝑛−1). The samples from the conditional dis-
tributions in steps iii.𝑘.1, 𝑘 = 1, . . . , 𝑑, follow the same procedure described in Eq. (2.22), considering
now

𝑝𝑘,𝑖

1 − 𝑝𝑘,𝑖
=

𝑝(𝑈𝑘,𝑖 = 1 | 𝑈1, . . . , 𝑈𝑘−1, 𝑈𝑘,(−𝑖), 𝑈𝑘+1, . . . , 𝑈𝑑, 𝜃1, . . . , 𝜃𝑘−1, 𝜃𝑘+1, . . . , 𝜃𝑑, 𝛿, 𝑋)
𝑝(𝑈𝑘,𝑖 = 0 | 𝑈1, . . . , 𝑈𝑘−1, 𝑈𝑘,(−𝑖), 𝑈𝑘+1, . . . , 𝑈𝑑, 𝜃1, . . . , 𝜃𝑘−1, 𝜃𝑘+1, . . . , 𝜃𝑑, 𝛿, 𝑋) , (3.8)

It follows from Eq. (3.7) that
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𝑝(𝑈𝑘,𝑖 | 𝑈1, . . . , 𝑈𝑘−1, 𝑈𝑘,(−𝑖), 𝑈𝑘+1, . . . , 𝑈𝑑, 𝜃1, . . . , 𝜃𝑘−1, 𝜃𝑘+1, . . . , 𝜃𝑑, 𝛿, 𝑋)

=
∫︁

· · ·
∫︁

𝑝(𝑈𝑘,𝑖 | 𝑈1, . . . , 𝑈𝑘−1, 𝑈𝑘,(−𝑖), 𝑈𝑘+1, . . . , 𝑈𝑑, 𝜃1, . . . , 𝜃𝑘−1, 𝜃𝑘, 𝜃𝑘+1, . . . , 𝜃𝑑, 𝛿, 𝑋) 𝑑𝜃𝑘,1 . . . 𝑑𝜃𝑘,𝑛

∝
∫︁

· · ·
∫︁ 𝑏1∏︁

𝑗1=1

∏︁
𝑗2:

2⋂︀
𝑙=1

𝑆𝑙,𝑗𝑙
̸=∅

· · ·
∏︁

𝑗𝑑:
𝑑⋂︀

𝑙=1
𝑆𝑙,𝑗𝑙

̸=∅

𝑓(𝑋𝑆1,𝑗1 ···𝑆𝑑,𝑗𝑑
|𝜃𝑆1,𝑗1

, . . . , 𝜃𝑆𝑑,𝑗𝑑
)

×
𝑏1∏︁

𝑗1=1
𝑓1(𝜃𝑆1,𝑗1

)𝑐1(𝑆1,𝑗1) × · · · ×
𝑏𝑘∏︁

𝑗𝑘=1
𝑓𝑘(𝜃𝑆𝑘,𝑗𝑘

)𝑐𝑘(𝑆𝑘,𝑗𝑘
) × · · · ×

𝑏𝑑∏︁
𝑗𝑑=1

𝑓𝑑(𝜃𝑆𝑑,𝑗𝑑
)𝑐𝑑(𝑆𝑑,𝑗𝑑

) 𝑑𝜃𝑆𝑘,𝑗1
. . . 𝑑𝜃𝑆𝑘,𝑗𝑏𝑘

∝
∫︁

· · ·
∫︁ 𝑏𝑘∏︁

𝑗𝑘=1

∏︁
𝑗1:

⋂︀
𝑙∈{𝑘,1}

𝑆𝑙,𝑗𝑙
̸=∅

· · ·
∏︁

𝑗𝑑:
⋂︀

𝑙∈{𝑘,1,...,𝑑}
𝑆𝑙,𝑗𝑙

̸=∅

𝑓(𝑋𝑆1,𝑗1 ···𝑆𝑑,𝑗𝑑
|𝜃𝑆1,𝑗1

, . . . , 𝜃𝑆𝑑,𝑗𝑑
)

×
𝑏1∏︁

𝑗1=1
𝑓1(𝜃𝑆1,𝑗1

)𝑐1(𝑆1,𝑗1) × · · · ×
𝑏𝑘∏︁

𝑗𝑘=1
𝑓𝑘(𝜃𝑆𝑘,𝑗𝑘

)𝑐𝑘(𝑆𝑘,𝑗𝑘
) × · · · ×

𝑏𝑑∏︁
𝑗𝑑=1

𝑓𝑑(𝜃𝑆𝑑,𝑗𝑑
)𝑐𝑑(𝑆𝑑,𝑗𝑑

) 𝑑𝜃𝑆𝑘,𝑗1
. . . 𝑑𝜃𝑆𝑘,𝑗𝑏𝑘

∝
𝑏𝑘∏︁

𝑗𝑘=1

∫︁ ∏︁
𝑗1:

⋂︀
𝑙∈{𝑘,1}

𝑆𝑙,𝑗𝑙
̸=∅

· · ·
∏︁

𝑗𝑑:
⋂︀

𝑙∈{𝑘,1,...,𝑑}
𝑆𝑙,𝑗𝑙

̸=∅

𝑓(𝑋𝑆1,𝑗1 ···𝑆𝑑,𝑗𝑑
|𝜃𝑆1,𝑗1

, . . . , 𝜃𝑆𝑑,𝑗𝑑
)

𝑓𝑘(𝜃𝑆𝑘,𝑗𝑘
)𝑐𝑘(𝑆𝑘,𝑗𝑘

) 𝑑𝜃𝑆𝑘,𝑗𝑘

∝
𝑏𝑘∏︁

𝑗𝑘=1
𝑐𝑘(𝑆𝑘,𝑗𝑘

) 𝑓(𝑋𝑆𝑘,𝑗𝑘
|𝜃𝑆𝑙,𝑗𝑙

: 𝑆𝑙,𝑗𝑙
∩ 𝑆𝑘,𝑗𝑘

̸= ∅),

(3.9)

where

𝑓(𝑋𝑆𝑘,𝑗𝑘
|𝜃𝑆𝑙,𝑗𝑙

: 𝑆𝑘,𝑗𝑘
∩ 𝑆𝑙,𝑗𝑙

̸= ∅)

=
∫︁ ∏︁

𝑗1:
⋂︀

𝑙∈{𝑘,1}
𝑆𝑙,𝑗𝑙

̸=∅

· · ·
∏︁

𝑗𝑑:
⋂︀

𝑙∈{𝑘,1,...,𝑑}
𝑆𝑙,𝑗𝑙

̸=∅

𝑓(𝑋𝑆1,𝑗1 ···𝑆𝑑,𝑗𝑑
|𝜃𝑆1,𝑗1

, . . . , 𝜃𝑆𝑑,𝑗𝑑
)𝑓𝑘(𝜃𝑆𝑘,𝑗𝑘

) 𝑑𝜃𝑆𝑘,𝑗𝑘
,

(3.10)

and {𝑘, 1, . . . , 𝑑} is a simplified notation to {𝑘, 1, . . . , 𝑘 − 1, 𝑘 + 1, . . . , 𝑑}.

Denote 𝑆𝑘𝑖,𝑗𝑘
= {𝑖𝑘,𝑗𝑘−1 +1, 𝑖𝑘,𝑗𝑘−1 +2, . . . , 𝑖−1, 𝑖} and 𝑆𝑖𝑘,𝑗𝑘

= {𝑖+1, 𝑖+2, . . . , 𝑖𝑘,𝑗𝑘
−1, 𝑖𝑘,𝑗𝑘

}.
Therefore, for 𝑖 ∈ 𝑆𝑘,𝑗𝑘

,

𝑈
(𝑡)
𝑘,𝑖 = 1 [𝑢 ≤ 𝑝𝑘,𝑖] = 1

[︃
𝑢

1 − 𝑢
≤ 𝑝𝑘,𝑖

1 − 𝑝𝑘,𝑖

]︃
, (3.11)
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with

𝑝𝑘,𝑖

1 − 𝑝𝑘,𝑖
=

𝑓(𝑋𝑆𝑘,𝑗𝑘
|𝜃𝑆𝑙,𝑗𝑙

: 𝑆𝑘,𝑗𝑘
∩ 𝑆𝑙,𝑗𝑙

̸= ∅)𝑐𝑘(𝑆𝑘,𝑗𝑘
)

𝑓(𝑋𝑆𝑘𝑖,𝑗𝑘
|𝜃𝑆𝑙,𝑗𝑙

: 𝑆𝑘𝑖,𝑗𝑘∩𝑆𝑙,𝑗𝑙
̸= ∅)𝑐𝑘𝑖(𝑆𝑘𝑖,𝑗𝑘

) × 𝑓(𝑋𝑆𝑖𝑘,𝑗𝑘
|𝜃𝑆𝑙,𝑗𝑙

: 𝑆𝑖𝑘,𝑗𝑘
∩ 𝑆𝑙,𝑗𝑙

̸= ∅)𝑐𝑖𝑘(𝑆𝑖𝑘,𝑗𝑘
) .

(3.12)

The indexes subsets 𝑆1,1, . . . , 𝑆1,𝑏1 , 𝑆2,1, . . . , 𝑆2,𝑏2 , . . . , 𝑆𝑑,1, . . . , 𝑆𝑑,𝑏𝑑
, to be considered in the

products configuration in the third line of Eq.(3.9) are directly determined by the given quantities
𝑈1, . . . , 𝑈𝑘−1, 𝑈𝑘,(−𝑖), 𝑈𝑘+1, . . . , 𝑈𝑑 and 𝑈𝑘,𝑖 = 0 or 𝑈𝑘,𝑖 = 1. Also in the third line, we exchange the
products order, setting the first product to be over the blocks of the respective partition 𝑘 being
sampled in step iii.𝑘.1. This exchange permits the multiple integral becomes a product of single
integrals. All terms that leave the Eq.(3.9) through the proportionality assumption are common to
the numerator and denominator of the ratio in the Eq.(3.8), not affecting its final value.

In the next section, we apply the BMCP model and the sampling procedures presented before
in this chapter to multiple change points detection in the mean and variance of sequentially observed
Normal data.

3.5 The BMCP model for Normal data

Consider 𝑋1, . . . , 𝑋𝑛 are independent given the 𝑑 = 2 sequences of unkown structural param-
eters 𝜃1 = (𝜃1,1, . . . , 𝜃1,𝑛) = (𝜇1, . . . , 𝜇𝑛) and 𝜃2 = (𝜃2,1, . . . , 𝜃2,𝑛) = (𝜎2

1, . . . , 𝜎2
𝑛), with conditional

marginal densities 𝑓(𝑋𝑖|𝜇𝑖, 𝜎2
𝑖 ) as the density of a 𝑁(𝜇𝑖, 𝜎2

𝑖 ), 𝑖 = 1, . . . , 𝑛.

Suppose 𝑓(𝑋𝑖|𝜇𝑖, 𝜎2
𝑖 ), 𝑖 = 1, . . . , 𝑛, experience changes in 𝜇 = (𝜇1, . . . , 𝜇𝑛) and 𝜎 = (𝜎2

1, . . . , 𝜎2
𝑛),

at unknown times, and there exist partitions 𝜌1 and 𝜌2 of 𝐼 = {1, 2, . . . , 𝑛} such that, given 𝜌1, there
exist the common parameters 𝜇𝑆1,1 , . . . , 𝜇𝑆1,𝑏1

such that

𝜇𝑖 = 𝜇𝑆1,𝑗1
for 𝑖 ∈ 𝑆1,𝑗1 = {𝑖1,𝑗1−1 + 1, 𝑖1,𝑗1−1 + 2, . . . , 𝑖1,𝑗1}, 𝑖 = 1, . . . , 𝑛, 𝑗1 = 1, 2, . . . , 𝑏1,

and, given 𝜌2, there exist the common parameters 𝜎2
𝑆2,1 , . . . , 𝜎2

𝑆2,𝑏2
such that

𝜎2
𝑖 = 𝜎2

𝑆2,𝑗2
for 𝑖 ∈ 𝑆2,𝑗2 = {𝑖2,𝑗2−1 + 1, 𝑖2,𝑗2−1 + 2, . . . , 𝑖2,𝑗2}, 𝑖 = 1, . . . , 𝑛, 𝑗2 = 1, 2, . . . , 𝑏2.

To simplify the notation, denote 𝑆1,𝑗1 = 𝑆𝑗1 , 𝑆2,𝑗2 = 𝑆𝑗2 , 𝑆1,𝑗1 ∩ 𝑆2,𝑗2 = 𝑆𝑗1𝑆𝑗2 , and denote by
𝑋𝑆𝑗1 𝑆𝑗2

the sequence of observations which indexes belong to 𝑆𝑗1𝑆𝑗2 . Also, denote 𝜇𝑆1,𝑗1
= 𝜇𝑆𝑗1

and
𝜎2

𝑆2,𝑗2
= 𝜎2

𝑆𝑗2
.

Assume that {𝑋𝑖, 𝑖 ∈ 𝑆𝑗1𝑆𝑗2} are independent and identicaly distributed with conditional
marginal density 𝑓(𝑋𝑖|𝜇𝑆𝑗1

, 𝜎2
𝑆𝑗2

). Thus, the likelihood function of (𝜇, 𝜎, 𝜌1, 𝜌2) is given by
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𝑓(𝑋|𝜇, 𝜎, 𝜌1, 𝜌2) =
𝑏1∏︁

𝑗1=1

∏︁
𝑗2:𝑆𝑗1 𝑆𝑗2 ̸=∅

𝑓(𝑋𝑆𝑗1 𝑆𝑗2
|𝜇𝑆𝑗1

, 𝜎2
𝑆𝑗2

), (3.13)

where

𝑓(𝑋𝑆𝑗1 𝑆𝑗2
|𝜇𝑆𝑗1

, 𝜎2
𝑆𝑗2

) =
∏︁

𝑖∈𝑆𝑗1 𝑆𝑗2

𝑓(𝑋𝑖|𝜇𝑆𝑗1
, 𝜎2

𝑆𝑗2
). (3.14)

Given (𝜌1, 𝜌2), we assume (𝜇, 𝜎) independent, with joint prior distribution given by

𝑓(𝜇, 𝜎|𝜌1, 𝜌2) = 𝑓(𝜇|𝜌1, 𝜌2)𝑓(𝜎|𝜌1, 𝜌2) = 𝑓(𝜇|𝜌1)𝑓(𝜎|𝜌2)

=
𝑏1∏︁

𝑗1=1
𝑓𝑆1,𝑗1

(𝜇𝑆𝑗1
)

𝑏2∏︁
𝑗2=1

𝑓𝑆2,𝑗2
(𝜎2

𝑆𝑗2
),

(3.15)

where 𝑓𝑆1,𝑗1
(𝜇𝑆𝑗1

) and 𝑓𝑆2,𝑗2
(𝜎2

𝑆𝑗2
) are the block prior densities, that we propose to be

𝜇𝑆𝑗1
∼ 𝑁(𝜇0, 𝜎2

0), 𝑗1 = 1, ..., 𝑏1, (3.16)

and

𝜎2
𝑆𝑗2

∼ 𝐼𝐺(𝑎/2, 𝑑/2), 𝑗2 = 1, ..., 𝑏2. (3.17)

We assume the random partitions 𝜌1 and 𝜌2 are distributed according to independent product
partition distributions, determined by block prior cohesions as the described in Eq. (2.14), with distinct
parameters 𝑝1 and 𝑝2, respectively.

The posterior distribution for parameters and partitions is given by

𝑓(𝜇, 𝜎, 𝜌1, 𝜌2, 𝑝1, 𝑝2|𝑋) = 𝑓(𝑋|𝜇, 𝜎, 𝜌1, 𝜌2, 𝑝1, 𝑝2)𝑓(𝜇, 𝜎|𝜌1, 𝜌2)𝑝(𝜌1|𝑝1)𝑓(𝑝1)𝑝(𝜌2|𝑝2)𝑓(𝑝2)
𝑓(𝑋)

∝
𝑏1∏︁

𝑗1=1

∏︁
𝑗2:𝑆𝑗1 𝑆𝑗2 ̸=∅

𝑓(𝑋𝑆𝑗1 𝑆𝑗2
|𝜇𝑆𝑗1

, 𝜎2
𝑆𝑗2

) ×
𝑏1∏︁

𝑗1=1
𝑓𝑆1,𝑗1

(𝜇𝑆𝑗1
) ×

𝑏2∏︁
𝑗2=1

𝑓𝑆2,𝑗2
(𝜎2

𝑆𝑗2
)

× 𝑝𝛼1+𝑏1−2
1 (1 − 𝑝1)𝑛+𝛽1−𝑏1−1 × 𝑝𝛼2+𝑏2−2

2 (1 − 𝑝2)𝑛+𝛽2−𝑏2−1.

(3.18)

Next, we present the partially colapsed Gibbs sampler scheme described in Section 3.4, now
specified to the current Normal BMCP model, that is formed by the random quantities
(𝑋, 𝜇, 𝜎, 𝜌1, 𝜌2, 𝑝1, 𝑝2), such that

(𝑋, 𝜇, 𝜎, 𝜌1, 𝜌2, 𝑝1, 𝑝2) ⇔ (𝑋, 𝜇, 𝜎, 𝑈1, 𝑈2, 𝑝1, 𝑝2),

with 𝑈1 and 𝑈2 as defined in Section 3.4.
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In order to implement the Normal BMCP model, the partially colapsed Gibbs sampler scheme
described next may be considered to simulate from 𝑓(𝜇, 𝜎, 𝑈1, 𝑈2, 𝑝1, 𝑝2|𝑋).

i. Initialize 𝜇(0), 𝜎(0), 𝑈
(0)
1 , 𝑈

(0)
2 , 𝑝

(0)
1 , 𝑝

(0)
2 (initialize all 𝑈

(0)
𝑘,𝑖 to be 0).

ii. Set 𝑡 = 1.

iii. Sequentially generate:

0.1. 𝑝1 ∼ 𝑓(𝑝1 | 𝑈
(𝑡−1)
1 , 𝑈

(𝑡−1)
2 , 𝜇(𝑡−1), 𝜎(𝑡−1), 𝑝

(𝑡−1)
2 , 𝑋)

0.1. 𝑝2 ∼ 𝑓(𝑝2 | 𝑈
(𝑡−1)
1 , 𝑈

(𝑡−1)
2 , 𝜇(𝑡−1), 𝜎(𝑡−1), 𝑝

(𝑡)
1 , 𝑋)

1.1. 𝑈
(𝑡)
1,𝑖 ∼ 𝑝(𝑈1,𝑖 | 𝑈

(𝑡)
1,1, . . . , 𝑈

(𝑡)
1,𝑖−1, 𝑈

(𝑡−1)
1,𝑖+1 , . . . , 𝑈

(𝑡−1)
1,𝑛−1, 𝑈

(𝑡−1)
2 , 𝜎(𝑡−1), 𝑝

(𝑡)
1 , 𝑝

(𝑡)
2 , 𝑋),

for 𝑖 = 1, . . . , 𝑛 − 1.

1.2. 𝜇
(𝑡)
𝑖 ∼ 𝑓(𝜇𝑆𝑗1 |𝑖∈𝑆1,𝑗1

| 𝑈
(𝑡)
1 , 𝑈

(𝑡−1)
2 , 𝜎(𝑡−1), 𝑝

(𝑡)
1 , 𝑝

(𝑡)
2 , 𝑋), for 𝑖 = 1, . . . , 𝑛.

2.1. 𝑈
(𝑡)
2,𝑖 ∼ 𝑝(𝑈2,𝑖 | 𝑈

(𝑡)
1 , 𝑈

(𝑡)
2,1, . . . , 𝑈

(𝑡)
2,𝑖−1, 𝑈

(𝑡−1)
2,𝑖+1 , . . . , 𝑈

(𝑡−1)
2,𝑛−1, 𝜇(𝑡), 𝑝

(𝑡)
1 , 𝑝

(𝑡)
2 , 𝑋),

for 𝑖 = 1, . . . , 𝑛 − 1.

2.2. 𝜎
2(𝑡)
𝑖 ∼ 𝑓(𝜎2

𝑆𝑗2 |𝑖∈𝑆2,𝑗2
| 𝑈

(𝑡)
1 , 𝑈

(𝑡)
2 , 𝜇(𝑡), 𝑝

(𝑡)
1 , 𝑝

(𝑡)
2 , 𝑋), for 𝑖 = 1, . . . , 𝑛.

iv. Set 𝑡 = 𝑡 + 1 and return to step iii until convergence is reached.

Denote 𝑛𝑗1 = |𝑆1,𝑗1 |, 𝑛𝑗2 = |𝑆2,𝑗2 |, 𝑛𝑗1𝑗2 = |𝑆1,𝑗1 ∩ 𝑆2,𝑗2 | and 𝑋𝑆𝑗1 𝑆𝑗2
=
∑︀

𝑖∈𝑆𝑗1 𝑆𝑗2
𝑋𝑖/𝑛𝑗1𝑗2 . Also,

to simplify notation, denote 𝑗2|𝑆𝑗1 = {𝑗2 : 𝑆1,𝑗1 ∩ 𝑆2,𝑗2 ̸= ∅} and 𝑗1|𝑆𝑗2 = {𝑗1 : 𝑆1,𝑗1 ∩ 𝑆2,𝑗2 ̸= ∅}. To
sample from the conditional distribution in step iii.1.1, the Eq. (3.10) is given by

𝑓(𝑋𝑆1,𝑗1
|𝜎2

𝑆2,𝑗2
: 𝑆1,𝑗1 ∩ 𝑆2,𝑗2 ̸= ∅) =

∫︁ ∏︁
𝑗2:𝑆𝑗1

𝑓(𝑋𝑆𝑗1 𝑆𝑗2
|𝜇𝑆𝑗1

, 𝜎2
𝑆𝑗2

) × 𝑓𝑆1,𝑗1
(𝜇𝑆𝑗1

) 𝑑𝜇𝑆𝑗1

=
∫︁ ∏︁

𝑗2:𝑆𝑗1

(2𝜋𝜎2
𝑆𝑗2

)−𝑛𝑗1𝑗2 /2 exp

⎧⎨⎩− 1
2𝜎2

𝑆𝑗2

∑︁
𝑖∈𝑆𝑗1 𝑆𝑗2

(𝑋𝑖 − 𝜇𝑆𝑗1
)2

⎫⎬⎭× (2𝜋𝜎2
0)−1/2 exp

{︂
− 1

2𝜎2
0

(𝜇𝑆𝑗1
− 𝜇0)2

}︂
𝑑𝜇𝑆𝑗1

=(2𝜋)−(𝑛𝑟+1)/2(𝜎2
0)−1/2 ∏︁

𝑗2:𝑆𝑗1

(𝜎2
𝑆𝑗2

)−𝑛𝑗1𝑗2 /2

×
∫︁ ∏︁

𝑗2:𝑆𝑗1

exp

⎧⎨⎩− 1
2𝜎2

𝑆𝑗2

∑︁
𝑖∈𝑆𝑗1 𝑆𝑗2

(𝑋𝑖 − 𝜇𝑆𝑗1
)2

⎫⎬⎭× exp
{︂

− 1
2𝜎2

0
(𝜇𝑆𝑗1

− 𝜇0)2
}︂

𝑑𝜇𝑆𝑗1
.

(3.19)
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The integral in Eq. (3.19) may be computed as

∫︁ ∏︁
𝑗2:𝑆𝑗1

exp

⎧⎨⎩− 1
2𝜎2

𝑆𝑗2

∑︁
𝑖∈𝑆𝑗1 𝑆𝑗2

(𝑋𝑖 − 𝜇𝑆𝑗1
)2

⎫⎬⎭× exp
{︂

− 1
2𝜎2

0
(𝜇𝑆𝑗1

− 𝜇0)2
}︂

𝑑𝜇𝑆𝑗1

=
∫︁

exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩−1
2

⎡⎢⎢⎢⎣𝜇2
𝑆𝑗1

⎛⎝ ∑︁
𝑗2:𝑆𝑗1

𝑛𝑗1𝑗2

𝜎2
𝑆𝑗2

+ 1
𝜎2

0

⎞⎠− 2𝜇𝑆𝑗1

⎛⎝ ∑︁
𝑗2:𝑆𝑗1

𝑛𝑗1𝑗2𝑋𝑆𝑗1 𝑆𝑗2

𝜎2
𝑆𝑗2

+ 𝜇0
𝜎2

0

⎞⎠+
∑︁

𝑗2:𝑆𝑗1

∑︁
𝑖∈𝑆𝑗1 𝑆𝑗2

𝑋2
𝑖

𝜎2
𝑆𝑗2

+ 𝜇2
0

𝜎2
0

⎤⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭ 𝑑𝜇𝑆𝑗1

= exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩−1
2

⎡⎢⎢⎢⎣ ∑︁
𝑗2:𝑆𝑗1

∑︁
𝑖∈𝑆𝑗1 𝑆𝑗2

𝑋2
𝑖

𝜎2
𝑆𝑗2

+ 𝜇2
0

𝜎2
0

− 𝑄2
2

𝑄1

⎤⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭
∫︁

exp
{︃

−𝑄1
2

[︃
𝜇2

𝑆𝑗1
− 2𝜇𝑆𝑗1

𝑄2
𝑄1

+
(︂

𝑄2
𝑄1

)︂2
]︃}︃

𝑑𝜇𝑆𝑗1

= exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩−1
2

⎡⎢⎢⎢⎣ ∑︁
𝑗2:𝑆𝑗1

∑︁
𝑖∈𝑆𝑗1 𝑆𝑗2

𝑋2
𝑖

𝜎2
𝑆𝑗2

+ 𝜇2
0

𝜎2
0

− 𝑄2
2

𝑄1

⎤⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭
(︂

𝑄1
2𝜋

)︂−1/2
,

where 𝑄1 =
∑︁

𝑗2:𝑆𝑗1

𝑛𝑗1𝑗2

𝜎2
𝑆𝑗2

+ 1
𝜎2

0
and 𝑄2 =

∑︁
𝑗2:𝑆𝑗1

𝑛𝑗1𝑗2𝑋𝑆𝑗1 𝑆𝑗2

𝜎2
𝑆𝑗2

+ 𝜇0
𝜎2

0
. Thus, the density in Eq. (3.19)

becomes

𝑓(𝑋𝑆1,𝑗1
|𝜎2

𝑆2,𝑗2
: 𝑆1,𝑗1 ∩ 𝑆2,𝑗2 ̸= ∅)

=(2𝜋)−(𝑛𝑗1 +1)/2(𝜎2
0)−1/2 ∏︁

𝑗2:𝑆𝑗1

(𝜎2
𝑆𝑗2

)−𝑛𝑗1𝑗2 /2 × exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩−1
2

⎡⎢⎢⎢⎣ ∑︁
𝑗2:𝑆𝑗1

∑︁
𝑖∈𝑆𝑗1 𝑆𝑗2

𝑋2
𝑖

𝜎2
𝑆𝑗2

+ 𝜇2
0

𝜎2
0

− 𝑄2
2

𝑄1

⎤⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭
(︂

𝑄1
2𝜋

)︂−1/2

=(2𝜋)−𝑛𝑗1 /2(𝜎2
0𝑄1)−1/2 ∏︁

𝑗2:𝑆𝑗1

(𝜎2
𝑆𝑗2

)−𝑛𝑗1𝑗2 /2 × exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩−1
2

⎡⎢⎢⎢⎣ ∑︁
𝑗2:𝑆𝑗1

∑︁
𝑖∈𝑆𝑗1 𝑆𝑗2

𝑋2
𝑖

𝜎2
𝑆𝑗2

+ 𝜇2
0

𝜎2
0

− 𝑄2
2

𝑄1

⎤⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,

(3.20)
that does not depend on 𝜇.

To sample from the conditional distribution in step iii.2.1, the Eq. (3.10) is given by
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𝑓(𝑋𝑆2,𝑗2
|𝜇𝑆1,𝑗1

: 𝑆2,𝑗2 ∩ 𝑆1,𝑗1 ̸= ∅) =
∫︁ ∏︁

𝑗1:𝑆𝑗2

𝑓(𝑋𝑀𝑟𝐿𝑠 |𝜇𝑆𝑗1
, 𝜎2

𝑆𝑗2
) × 𝑓𝑆2,𝑗2

(𝜎2
𝑆𝑗2

) 𝑑𝜎2
𝑆𝑗2

=
∫︁ ∏︁

𝑗1:𝑆𝑗2

(2𝜋𝜎2
𝑆𝑗2

)−𝑛𝑗1𝑗2 /2 exp

⎧⎨⎩− 1
2𝜎2

𝑆𝑗2

∑︁
𝑖∈𝑆𝑗1 𝑆𝑗2

(𝑋𝑖 − 𝜇𝑆𝑗1
)2

⎫⎬⎭× (𝑎/2)𝑑/2

Γ(𝑑/2) (𝜎2
𝑆𝑗2

)−(𝑑+2)/2 exp
{︃

− 𝑎

2𝜎2
𝑆𝑗2

}︃
𝑑𝜎2

𝑆𝑗2

=(2𝜋)−𝑛𝑗2 /2 (𝑎/2)𝑑/2

Γ(𝑑/2)

∫︁
(𝜎2

𝑆𝑗2
)−𝑛𝑗2 /2 exp

⎧⎨⎩− 1
2𝜎2

𝑆𝑗2

∑︁
𝑗1:𝑆𝑗2

∑︁
𝑖∈𝑆𝑗1 𝑆𝑗2

(𝑋𝑖 − 𝜇𝑆𝑗1
)2

⎫⎬⎭× (𝜎2
𝑆𝑗2

)−(𝑑+2)/2 exp
{︃

− 𝑎

2𝜎2
𝑆𝑗2

}︃
𝑑𝜎2

𝑆𝑗2

=(2𝜋)−𝑛𝑗2 /2 (𝑎/2)𝑑/2

Γ(𝑑/2)

∫︁
(𝜎2

𝑆𝑗2
)−(𝑛𝑗2 +𝑑+2)/2 exp

⎧⎨⎩− 1
2𝜎2

𝑆𝑗2

⎡⎣ ∑︁
𝑗1:𝑆𝑗2

∑︁
𝑖∈𝑆𝑗1 𝑆𝑗2

(𝑋𝑖 − 𝜇𝑆𝑗1
)2 + 𝑎

⎤⎦⎫⎬⎭ 𝑑𝜎2
𝑆𝑗2

.

(3.21)

The integral in Eq. (3.21) may be computed as

∫︁
(𝜎2

𝑆𝑗2
)−(𝑛𝑗2 +𝑑+2)/2 exp

⎧⎨⎩− 1
2𝜎2

𝑆𝑗2

⎡⎣ ∑︁
𝑗1:𝑆𝑗2

∑︁
𝑖∈𝑆𝑗1 𝑆𝑗2

(𝑋𝑖 − 𝜇𝑆𝑗1
)2 + 𝑎

⎤⎦⎫⎬⎭ 𝑑𝜎2
𝑆𝑗2

=
∫︁

(𝜎2
𝑆𝑗2

)−(𝐷+2)/2 exp
{︃

− 𝐴

2𝜎2
𝑆𝑗2

}︃
𝑑𝜎2

𝑆𝑗2

= Γ(𝐷/2)
(𝐴/2)𝐷/2

∫︁ (𝐴/2)𝐷/2

Γ(𝐷/2) (𝜎2
𝑆𝑗2

)−(𝐷+2)/2 exp
{︃

− 𝐴

2𝜎2
𝑆𝑗2

}︃
𝑑𝜎2

𝑆𝑗2

= Γ(𝐷/2)
(𝐴/2)𝐷/2

where 𝐷 = 𝑛𝑗2 + 𝑑 and 𝐴 =
∑︁

𝑗1:𝑆𝑗2

∑︁
𝑖∈𝑆𝑗1 𝑆𝑗2

(𝑋𝑖 − 𝜇𝑆𝑗1
)2 + 𝑎. Thus, the density in Eq. (3.21) becomes

𝑓(𝑋𝑆2,𝑗2
|𝜇𝑆1,𝑗1

: 𝑆2,𝑗2 ∩ 𝑆1,𝑗1 ̸= ∅) = (2𝜋)−𝑛𝑗2 /2 (𝑎/2)𝑑/2

Γ(𝑑/2)
Γ(𝐷/2)

(𝐴/2)𝐷/2 , (3.22)

that does not depend on 𝜎. Eqs. (3.20) and (3.22) are used to sample from partitions 𝜌1 and 𝜌2

according to Eqs. (3.11) and (3.12), respectively.

The conditional distributions of 𝜇, 𝜎, 𝑝1 and 𝑝2 are presented next.
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𝑓(𝜇|𝜎, 𝜌1, 𝜌2, 𝑝1, 𝑝2, 𝑋) ∝ 𝑓(𝜇, 𝜎, 𝜌1, 𝜌2, 𝑝1, 𝑝2|𝑋)

∝
𝑏1∏︁

𝑗1=1

∏︁
𝑗2:𝑆𝑗1

𝑓(𝑋𝑆𝑗1 𝑆𝑗2
|𝜇𝑆𝑗1

, 𝜎2
𝑆𝑗2

) ×
𝑏1∏︁

𝑗1=1
𝑓𝑆1,𝑗1

(𝜇𝑆𝑗1
)

∝
𝑏1∏︁

𝑗1=1

∏︁
𝑗2:𝑆𝑗1

(2𝜋𝜎2
𝑆𝑗2

)−𝑛𝑗1𝑗2 /2 exp

⎧⎨⎩− 1
2𝜎2

𝑆𝑗2

∑︁
𝑖∈𝑆𝑗1 𝑆𝑗2

(𝑋𝑖 − 𝜇𝑆𝑗1
)2

⎫⎬⎭×
𝑏1∏︁

𝑗1=1
(2𝜋𝜎2

0)−1/2 exp
{︂

− 1
2𝜎2

0
(𝜇𝑆𝑗1

− 𝜇0)2
}︂

∝
𝑏1∏︁

𝑗1=1
exp

⎧⎨⎩−1
2

⎡⎣ ∑︁
𝑗2:𝑆𝑗1

∑︁
𝑖∈𝑆𝑗1 𝑆𝑗2

(𝑋𝑖 − 𝜇𝑆𝑗1
)2

𝜎2
𝑆𝑗2

+
(𝜇𝑆𝑗1

− 𝜇0)2

𝜎2
0

⎤⎦⎫⎬⎭

∝
𝑏1∏︁

𝑗1=1
exp

⎧⎨⎩−1
2

⎡⎣𝜇2
𝑆𝑗1

⎛⎝ ∑︁
𝑗2:𝑆𝑗1

𝑛𝑗1𝑗2

𝜎2
𝑆𝑗2

+ 1
𝜎2

0

⎞⎠− 2𝜇𝑆𝑗1

⎛⎝ ∑︁
𝑗2:𝑆𝑗1

𝑛𝑗1𝑗2𝑋𝑆𝑗1 𝑆𝑗2

𝜎2
𝑆𝑗2

+ 𝜇0
𝜎2

0

⎞⎠⎤⎦⎫⎬⎭

∝
𝑏1∏︁

𝑗1=1
exp

{︂
−𝑀1

2

[︂
𝜇2

𝑆𝑗1
− 2𝜇𝑆𝑗1

𝑀2
𝑀1

]︂}︂
,

where 𝑀1 =
∑︁

𝑗2:𝑆𝑗1

𝑛𝑗1𝑗2

𝜎2
𝑆𝑗2

+ 1
𝜎2

0
and 𝑀2 =

∑︁
𝑗2:𝑆𝑗1

𝑛𝑗1𝑗2𝑋𝑆𝑗1 𝑆𝑗2

𝜎2
𝑆𝑗2

+ 𝜇0
𝜎2

0
. Thus, the sample distribution in

step iii.1.2 is given by

𝜇𝑆𝑗1

⃒⃒
𝜎, 𝜌1, 𝜌2, 𝑋 ∼ 𝑁

(︂
𝑀2
𝑀1

, 𝑀−1
1

)︂
, for 𝑖 ∈ 𝑆1,𝑗1 , 𝑗1 = 1, . . . , 𝑏1. (3.23)

𝑓(𝜎|𝜇, 𝜌1, 𝜌2, 𝑝1, 𝑝2, 𝑋) ∝ 𝑓(𝜇, 𝜎, 𝜌1, 𝜌2, 𝑝1, 𝑝2|𝑋)

∝
𝑏2∏︁

𝑗2=1

∏︁
𝑗1:𝑆𝑗2

𝑓(𝑋𝑆𝑗1 𝑆𝑗2
|𝜇𝑆𝑗1

, 𝜎2
𝑆𝑗2

) ×
𝑏2∏︁

𝑗2=1
𝑓𝑆2,𝑗2

(𝜎2
𝑆𝑗2

)

∝
𝑏2∏︁

𝑗2=1

∏︁
𝑗1:𝑆𝑗2

(2𝜋𝜎2
𝑆𝑗2

)−𝑛𝑗1𝑗2 /2 exp

⎧⎨⎩− 1
2𝜎2

𝑆𝑗2

∑︁
𝑖∈𝑆𝑗1 𝑆𝑗2

(𝑋𝑖 − 𝜇𝑆𝑗1
)2

⎫⎬⎭×
𝑏2∏︁

𝑗2=1

(𝑎/2)𝑑/2

Γ(𝑑/2) (𝜎2
𝑆𝑗2

)−(𝑑+2)/2 exp
{︃

− 𝑎

2𝜎2
𝑆𝑗2

}︃

∝
𝑏2∏︁

𝑗2=1
(𝜎2

𝑆𝑗2
)−(𝑛𝑗2 +𝑑+2)/2 exp

⎧⎨⎩− 1
2𝜎2

𝑆𝑗2

⎡⎣ ∑︁
𝑗1:𝑆𝑗2

∑︁
𝑖∈𝑆𝑗1 𝑆𝑗2

(𝑋𝑖 − 𝜇𝑆𝑗1
)2 + 𝑎

⎤⎦⎫⎬⎭

∝
𝑏2∏︁

𝑗2=1
(𝜎2

𝑆𝑗2
)−(𝐷+2)/2 exp

{︃
− 𝐴

2𝜎2
𝑆𝑗2

}︃
,

with 𝐴 and 𝐷 as defined for Eq. (3.22). Thus, the sample distribution in step iii.2.2 is given by
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𝜎2
𝑆𝑗2

⃒⃒
𝜇, 𝜌1, 𝜌2, 𝑋 ∼ 𝐼𝐺 (𝐴/2, 𝐷/2) , for 𝑖 ∈ 𝑆2,𝑗2 , 𝑗2 = 1, . . . , 𝑏2. (3.24)

𝑓(𝑝1|𝜇, 𝜎, 𝜌1, 𝜌2, 𝑝2, 𝑋) ∝ 𝑓(𝜇, 𝜎, 𝜌1, 𝜌2, 𝑝1, 𝑝2|𝑋) ∝ 𝑝𝛼1+𝑏1−2
1 (1 − 𝑝1)𝑛+𝛽1−𝑏1−1

and

𝑓(𝑝2|𝜇, 𝜎, 𝜌1, 𝜌2, 𝑝1, 𝑋) ∝ 𝑓(𝜇, 𝜎, 𝜌1, 𝜌2, 𝑝1, 𝑝2|𝑋) ∝ 𝑝𝛼2+𝑏2−2
2 (1 − 𝑝2)𝑛+𝛽2−𝑏2−1.

Thus, the sample distributions in steps 0.1 and 0.2 are given by

𝑝1|𝜌1, 𝑋 ∼ 𝐵𝑒𝑡𝑎(𝛼1 + 𝑏1 − 1, 𝑛 + 𝛽1 − 𝑏1) (3.25)

and

𝑝2|𝜌2, 𝑋 ∼ 𝐵𝑒𝑡𝑎(𝛼2 + 𝑏2 − 1, 𝑛 + 𝛽2 − 𝑏2). (3.26)

The performance of the BMCP model introduced in this section will be evaluated in Chapter
4 through simulation studies.
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4 Monte Carlo simulation study
In this chapter, we run a Monte Carlo simulation study to evaluate the performance of the

BMCP model to identify multiple change points in Normal means and variances. We compare it with
the L99 and BH93 models. The data are generated from Normal distributions according to the simu-
lation schemes summarized in Table 3, that compiles the partitions, parameters and hyperparameters
of each simulated scene. We concentrate in 7 scenes, with 100 or 200 observations, multiple changes in
mean and/or variance, and the total number of changes varying from 1 to 9. For each scene we gener-
ate 100 data sets. For each data set, the posterior distribution is obtained through a MCMC scheme
with 14,000 iterations, with the first 4,000 discarded as a burn-in period. We consider the BH93 model
implementation available in the R package bcp. The L99 and BMCP models were implemented in
C++ and connected to R through the Rcpp package (Eddelbuettel and François [2011]).

To analyze the data, we consider the prior distributions mentioned in previous chapters. The
hyperparameters of the block prior distributions of the BMCP model, specified in 3.16 and 3.17, are
fixed as (𝜇0, 𝜎2

0) = (0, 100) and (𝑎, 𝑑) = (2, 2), which are flat proposals for both the block mean and
the block variance. The hyperparameters of the joint block prior distribution of the L99 model and the
hyperparameters of the BH93 model are fixed as described in Section 2.6. The hyperparameters of the
prior distributions of the random partitions, 𝛼1, 𝛽1, 𝛼2 and 𝛽2 for the BMCP model, and 𝛼 and 𝛽 for
the L99 model, are specified based on the model properties discussed in Section 2.5. For the scenes 1
to 6, they are stated based on the true number of changes in each partition, following what is shown in
Table 1. For the BMCP model, this procedure may be considered to each partition separately, due to
the independence assumption between the partitions determined in Section 3.2. For the scenes where
there is no change in mean or variance, that is, 𝑁 = 0, we considered the 𝐵𝑒𝑡𝑎 hyperparameters of
the case when 𝑁 = 1 because there is no possible configuration of these hyperparameters that implies
𝐸(𝑁) = 0. For the scene 7, we assume the Bayes-Laplace prior 𝐵𝑒𝑡𝑎(1, 1) for parameters 𝑝1, 𝑝2 and
𝑝 of the BMCP and L99 models, as mentioned in Section 2.5.

The representation of the partitions described in this chapter ignore the first element, previously
defined as 0. We represent the partition of the L99 model as 𝜌. Note that it is equivalent to the union
of the elements of the partitions 𝜌1 and 𝜌2 of the BMCP model. For example, in the scene of the
Section 2.6 we have that 𝜌 = {40, 50, 60, 100}. The partition of the BH93 model is represented by 𝜌1

because this model objective is to identify only the changes in the mean. The 90% precision intervals
in the graphics that show the posterior mean and variance estimates are the quantiles of 5% and
95% of the Monte Carlo replications. In the graphics of the posterior mean and variance estimates
and in the graphics that show the estimated probability of a change, the horizontal axis display the
observations indexes 𝑖 = 1, . . . , 𝑛, and the vertical gray lines indicate the true end points, relative to
changes in the mean (dotted line), variance (dashed line) and both the mean and the variance (solid
line). In the graphics of the prior and posterior distributions of the number of changes 𝑁 , the vertical
solid gray line indicates the true 𝑁 in the respective partition.
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Scene 𝑛
True parameters
𝜇 and 𝜎

True partitions
𝜌1, 𝜌2 and 𝜌

Prior distributions
of 𝑝1, 𝑝2 and 𝑝

1 100 𝜇𝑖 =
{︂

0, 𝑖 = 1, . . . , 60
2, 𝑖 = 61, . . . , 100

𝜎2
𝑖 = 1, 𝑖 = 1, . . . , 100

𝜌1 = {60, 100}
𝜌2 = {100}
𝜌 = {60, 100}

𝑝1 ∼ 𝐵𝑒𝑡𝑎(50, 4900)
𝑝2 ∼ 𝐵𝑒𝑡𝑎(50, 4900)
𝑝 ∼ 𝐵𝑒𝑡𝑎(50, 4900)

2 100 𝜇𝑖 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, 𝑖 = 1, . . . , 10
3, 𝑖 = 11, . . . , 20
0, 𝑖 = 21, . . . , 30
3, 𝑖 = 31, . . . , 40
0, 𝑖 = 41, . . . , 50
3, 𝑖 = 51, . . . , 60
0, 𝑖 = 61, . . . , 70
3, 𝑖 = 71, . . . , 80
0, 𝑖 = 81, . . . , 90
3, 𝑖 = 91, . . . , 100

𝜎2
𝑖 = 1, 𝑖 = 1, . . . , 100

𝜌1 = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}
𝜌2 = {100}
𝜌 = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}

𝑝1 ∼ 𝐵𝑒𝑡𝑎(50, 500)
𝑝2 ∼ 𝐵𝑒𝑡𝑎(50, 4900)
𝑝 ∼ 𝐵𝑒𝑡𝑎(50, 500)

3 200

𝜇𝑖 = 1, 𝑖 = 1, . . . , 200

𝜎2
𝑖 =

⎧⎪⎪⎨⎪⎪⎩
0, 𝑖 = 1, . . . , 50
4, 𝑖 = 51, . . . , 100
0, 𝑖 = 101, . . . , 150
9, 𝑖 = 151, . . . , 200

𝜌1 = {200}
𝜌2 = {50, 100, 150, 200}
𝜌 = {50, 100, 150, 200}

𝑝1 ∼ 𝐵𝑒𝑡𝑎(50, 9900)
𝑝2 ∼ 𝐵𝑒𝑡𝑎(50, 3267)
𝑝 ∼ 𝐵𝑒𝑡𝑎(50, 3267)

4 200

𝜇𝑖 =

⎧⎨⎩
0, 𝑖 = 1, . . . , 60
2, 𝑖 = 61, . . . , 140
0, 𝑖 = 141, . . . , 200

𝜎2
𝑖 =

⎧⎨⎩
1, 𝑖 = 1, . . . , 60
4, 𝑖 = 61, . . . , 140
1, 𝑖 = 141, . . . , 200

𝜌1 = {60, 140, 200}
𝜌2 = {60, 140, 200}
𝜌 = {60, 140, 200}

𝑝1 ∼ 𝐵𝑒𝑡𝑎(50, 4925)
𝑝2 ∼ 𝐵𝑒𝑡𝑎(50, 4925)
𝑝 ∼ 𝐵𝑒𝑡𝑎(50, 4925)

5 200

𝜇𝑖 =

⎧⎨⎩
0, 𝑖 = 1, . . . , 40
3, 𝑖 = 41, . . . , 120
0, 𝑖 = 121, . . . , 200

𝜎2
𝑖 =

⎧⎨⎩
1, 𝑖 = 1, . . . , 80
4, 𝑖 = 81, . . . , 160
2, 𝑖 = 161, . . . , 200

𝜌1 = {40, 120, 200}
𝜌2 = {80, 160, 200}
𝜌 = {40, 80, 120, 160, 200}

𝑝1 ∼ 𝐵𝑒𝑡𝑎(50, 4925)
𝑝2 ∼ 𝐵𝑒𝑡𝑎(50, 4925)
𝑝 ∼ 𝐵𝑒𝑡𝑎(50, 2438)

6 200
𝜇𝑖 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, 𝑖 = 1, . . . , 40
2, 𝑖 = 41, . . . , 80
4, 𝑖 = 81, . . . , 120
2, 𝑖 = 121, . . . , 160
0, 𝑖 = 161, . . . , 200

𝜎2
𝑖 =

{︂
1, 𝑖 = 1, . . . , 100
2, 𝑖 = 100, . . . , 200

𝜌1 = {40, 80, 120, 160, 200}
𝜌2 = {100, 200}
𝜌 = {40, 80, 100, 120, 160, 200}

𝑝1 ∼ 𝐵𝑒𝑡𝑎(50, 2438)
𝑝2 ∼ 𝐵𝑒𝑡𝑎(50, 9900)
𝑝 ∼ 𝐵𝑒𝑡𝑎(50, 1940)

7 200

𝜇𝑖 =

⎧⎪⎪⎨⎪⎪⎩
0.25, 𝑖 = 1, . . . , 50
1.5, 𝑖 = 51, . . . , 100
0.1, 𝑖 = 101, . . . , 150
1, 𝑖 = 151, . . . , 200

𝜎2
𝑖 =

⎧⎪⎪⎨⎪⎪⎩
0.3, 𝑖 = 1, . . . , 65
1.2, 𝑖 = 66, . . . , 115
0.15, 𝑖 = 116, . . . , 165
1, 𝑖 = 166, . . . , 200

𝜌1 = {50, 100, 150, 200}
𝜌2 = {65, 115, 165, 200}
𝜌 = {50, 65, 100, 115, 150, 165, 200}

𝑝1 ∼ 𝐵𝑒𝑡𝑎(1, 1)
𝑝2 ∼ 𝐵𝑒𝑡𝑎(1, 1)
𝑝 ∼ 𝐵𝑒𝑡𝑎(1, 1)

Table 3: Partitions, parameters and hyperparameters considered in the simulation scenes.
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4.1 BMCP applied to data in Section 2.6

Before analyzing the Monte Carlo simulation results, we present in Figure 3 the results of
the application of the BMCP model to the sample considered in Section 2.6. Following the notation
described in Section 3.5, this scene may be summarized by 𝜌1 = {40, 60, 100}, (𝜇𝑆1 , 𝜇𝑆2 , 𝜇𝑆3) = (1, 6, 2),
𝜌2 = {50, 100} and (𝜎2

𝑆1 , 𝜎2
𝑆2) = (1, 9). We can see in Figures 3a-3f, that the BMCP model provides

improved estimates for the mean and variance when compared to the other models. Also, as shown
in Figures 3g-3j, it gives distinctly larger probabilities of a change to the true change points in mean
and variance, correctly identifying the two partitions, which is not true to the L99 and BH93 models.
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Figure 3: BMCP, L99 and BH93 model estimates to simulated Normal data: (a-c) Simulated data (gray
circles), posterior mean estimates (black dots) and true mean values (gray solid horizontal lines). (d-f)
The squared error (gray circles), posterior variance estimates (black dots) and the true variance values
(gray solid horizontal lines). (g-j) Estimated posterior probability of each instant to be a change point.
In Figures (a-j), the vertical gray lines indicate the true change points in the mean (dotted line) and
variance (dashed line).
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4.2 Scenes 1 and 2: mean changes with constant variance

In this section, we evaluate the performance of the BMCP, L99 and BH93 models in two
constant variance scenes.

The results for the scene 1, with constant variance and one mean change, are summarized
in Figure 4 and Tables 4 and 5. The three models provide appropriate mean estimates, with similar
precision. The precision interval in the BH93 model are not so regular as the other models. It may
be a consequence of the different prior specification for parameter 𝑝 in this model, that is not so
informative as the considered for the L99 and BMCP models. The underestimated variance in Figure
4f and the less regular estimates for the mean provided by the BH93 model are common to all scenes
analysed in this chapter. The BMCP and L99 models provide suitable posterior variance estimates.
As can be seen in Figures 4g-4j, all the three models correctly identify the true mean change point,
estimating high probabilities to the true change point to be a change point. The BMCP also provides
the information that there is no change in the variance. The results in Table 4 support that all the
three models correctly identify the true partitions, such that the estimated posterior mode are the
true partitions. Based on Figures 4k-4n and Table 5, we can conclude that the BMCP and L99 models
provide posterior distributions for the number of changes concentrated in the true values, with both
the estimated posterior expectation and posterior mode providing adequate estimates for the true 𝑁

values of each partition. In the case of the BH93 model, only the mode provides a correct estimative
for the number of mean changes.

BMCP 𝑁 𝑝(𝜌1|𝑋)
𝜌1 = {60, 100} 1 0.469828
𝜌1 = {59, 100} 1 0.156611
𝜌1 = {61, 100} 1 0.132427
𝜌1 = {58, 100} 1 0.046720
𝜌1 = {62, 100} 1 0.035384

BMCP 𝑁 𝑝(𝜌2|𝑋)
𝜌2 = {100} 0 0.645319
𝜌2 = {99, 100} 1 0.005375
𝜌2 = {98, 100} 1 0.005245
𝜌2 = {93, 100} 1 0.004245
𝜌2 = {97, 100} 1 0.003793

L99 𝑁 𝑝(𝜌|𝑋)
𝜌 = {60, 100} 1 0.369748
𝜌 = {59, 100} 1 0.130202
𝜌 = {61, 100} 1 0.117891
𝜌 = {58, 100} 1 0.040332
𝜌 = {62, 100} 1 0.035497

BH93 𝑁 𝑝(𝜌1|𝑋)
𝜌1 = {60, 100} 1 0.183917
𝜌1 = {61, 100} 1 0.064499
𝜌1 = {59, 100} 1 0.063816
𝜌1 = {58, 100} 1 0.018677
𝜌1 = {62, 100} 1 0.015206

Table 4: Top five most likely partitions based on the average estimated posterior probability for the
scene 1.

Model Partition True 𝑁 𝐸(𝑁 |𝑋) 𝑉 (𝑁 |𝑋) 𝑀𝑜(𝑁 |𝑋) 𝑃 (𝑁 = 𝑀𝑜|𝑋)
BMCP 𝜌1 1 1.1 0.1 1 0.9
BMCP 𝜌2 0 0.5 0.6 0 0.65

L99 𝜌 1 1.3 0.4 1 0.75
BH93 𝜌1 1 2.9 7.2 1 0.37

Table 5: Summary of the average estimates of the posterior probability of the number of changes 𝑁
for each model and respective partitions for the scene 1.
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Figure 4: Graphical summary for the MC simulation study of the scene 1. Figures (a-c): average posterior
means estimates (black dots) and 90% precision interval (dashed lines) with a simulated sample example (gray
circles) and the true mean values (solid gray horizontal lines). Figures (d-f): average posterior variance estimates
(black dots) and 90% precision interval (dashed lines) with a simulated sample squared error (gray circles) and
the true variance values (solid gray horizontal lines). Figures (g-j): average estimates of the posterior probability
of each instant to be a change point. Figures (k-n): prior (gray bars) and average estimated posterior (black
bars) probability distributions of the number of change points.
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The results for the scene 2, with constant variance and nine changes in the mean, are sum-
marized in Figure 5 and Tables 6 and 7. The three models provide appropriate mean estimates, with
similar precision, but the BMCP and the BH93 models provide more accurate estimates. Only the
BMCP model provides correct variance estimates, because the posterior variance estimates of the L99
model are affected by the mean changes (Figures 5d and 5e). As can be seen in Figures 5g-5j, all the
three models correctly identify the true changes, with the additional information of the BMCP model
that the changes ocurred only in the mean. The results in Table 6 show that the average posterior
distributions of the partitions give larger probabilities to the true partitions, but in this case we have
a smooth probability function, and the probability of a change available in Figures 5g-5j is a better
evidence in favor of the true partitions. Based on Figures 5k-5n and Table 7, all the models overesti-
mate the true number of mean changes, with the BMCP model providing the better estimates. The
absence of changes in variance is correctly identified by the BMCP model in all the results related to
scene 2.

BMCP 𝑁 𝑝(𝜌1|𝑋)
𝜌1 = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100} 9 0.03256
𝜌1 = {10, 20, 31, 40, 50, 60, 70, 80, 90, 100} 9 0.00661
𝜌1 = {10, 19, 30, 40, 50, 60, 70, 80, 90, 100} 9 0.00594
𝜌1 = {10, 20, 29, 40, 50, 60, 70, 80, 90, 100} 9 0.00462
𝜌1 = {10, 20, 30, 40, 50, 60, 71, 80, 90, 100} 9 0.00447

BMCP 𝑁 𝑝(𝜌2|𝑋)
𝜌2 = {100} 0 0.64037
𝜌2 = {99, 100} 1 0.00470
𝜌2 = {98, 100} 1 0.00386
𝜌2 = {1, 100} 1 0.00354
𝜌2 = {97, 100} 1 0.00327

L99 𝑁 𝑝(𝜌|𝑋)
𝜌 = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100} 9 0.00176
𝜌 = {10, 20, 31, 40, 50, 60, 70, 80, 90, 100} 9 0.00031
𝜌 = {10, 20, 30, 40, 48, 50, 60, 70, 80, 90, 100} 10 0.00030
𝜌 = {10, 20, 29, 40, 50, 60, 70, 80, 90, 100} 9 0.00029
𝜌 = {10, 19, 30, 40, 50, 60, 70, 80, 90, 100} 9 0.00019

BH93 𝑁 𝑝(𝜌1|𝑋)
𝜌 = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100} 9 0.00086
𝜌 = {10, 20, 31, 40, 50, 60, 70, 80, 90, 100} 9 0.00025
𝜌 = {10, 19, 30, 40, 50, 60, 70, 80, 90, 100} 9 0.00009
𝜌 = {10, 20, 30, 40, 50, 60, 70, 81, 90, 100} 9 0.00008
𝜌 = {10, 20, 29, 40, 50, 60, 70, 80, 90, 100} 9 0.00007

Table 6: Top five most likely partitions based on the average estimated posterior probability for the
scene 2.

Model Partition True 𝑁 𝐸(𝑁 |𝑋) 𝑉 (𝑁 |𝑋) 𝑀𝑜(𝑁 |𝑋) 𝑃 (𝑁 = 𝑀𝑜|𝑋)
BMCP 𝜌1 9 10.4 2 10 0.31
BMCP 𝜌2 0 0.5 0.6 0 0.64

L99 𝜌 9 12.9 4.8 12 0.18
BH93 𝜌1 9 16.4 11.5 16 0.11

Table 7: Summary of the average estimates of the posterior probability of the number of changes 𝑁
for each model and respective partitions for the scene 2.

The two scenes with changes in mean and constant variance show the ability of the BMCP
model to correctly identify the changes in this situation. Unlike the L99 model, the BMCP model
point out that the changes occurred only in the mean and the variance estimates are not affected by
the mean changes.
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Figure 5: Graphical summary for the MC simulation study of the scene 2. Figures (a-c): average posterior
means estimates (black dots) and 90% precision interval (dashed lines) with a simulated sample example (gray
circles) and the true mean values (solid gray horizontal lines). Figures (d-f): average posterior variance estimates
(black dots) and 90% precision interval (dashed lines) with a simulated sample squared error (gray circles) and
the true variance values (solid gray horizontal lines). Figures (g-j): average estimates of the posterior probability
of each instant to be a change point. Figures (k-n): prior (gray bars) and average estimated posterior (black
bars) probability distributions of the number of change points.
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4.3 Scene 3: variance changes with constant mean

We evaluate now the performance of the models in a constant mean scene. The results are
summarized in Figure 6 and Tables 8 and 9. The three models provide appropriate mean estimates,
with the BMCP presenting the highest precision (Figures 6a-6c). The BMCP and L99 models provide
suitable posterior variance estimates, with similar precisions (Figures 6d-6f). The results in Table 8
show that the most likely partitions estimated by the L99 model consider only one (the most severe)
change of the three changes. The average posterior distributions of the partitions give larger proba-
bilities to the true partitions only for the BMCP and BH93 models, but we have a smooth estimated
posterior probability distribution for 𝜌2, and the estimated probability of a change available in Figures
6g-6j is thus a better evidence in favor of the true partitions. The distinctly higher probability of a
change presented in Figures 6h and 6i for the true change points indicates that both the BMCP and
the L99 models correctly recognize the changes in the behavior of the sequence of observations. In the
case of the BMCP model, Figures 6g and 6h correctly indicate that this changes occur only in the
variance. Based on Figures 6k-6n and Table 9, we can conclude that the BMCP model overestimates
the number of mean changes, but correctly indicates the absence of changes in the variance. The
L99 model provides posterior distributions for the number of changes concentrated in the true value
𝑁 = 3, with the estimated posterior expectation and posterior mode providing adequate estimates
for the number of changes in 𝜌. The BH93 model provides an incorrect estimation for the number
and location of the mean changes, which is a consequence that its assumption of constant variance is
strongly broken in this scene.

BMCP 𝑁 𝑝(𝜌1|𝑋)
𝜌1 = {200} 0 0.888989
𝜌1 = {198, 200} 1 0.003847
𝜌1 = {199, 200} 1 0.003257
𝜌1 = {195, 200} 1 0.002525
𝜌1 = {193, 200} 1 0.001660

BMCP 𝑁 𝑝(𝜌2|𝑋)
𝜌2 = {50, 100, 150, 200} 3 0.001550
𝜌2 = {150, 200} 1 0.001408
𝜌2 = {51, 100, 150, 200} 3 0.001130
𝜌2 = {151, 200} 1 0.001066
𝜌2 = {51, 100, 151, 200} 3 0.000973

L99 𝑁 𝑝(𝜌|𝑋)
𝜌 = {150, 200} 1 0.018335
𝜌 = {151, 200} 1 0.012897
𝜌 = {149, 200} 1 0.007634
𝜌 = {152, 200} 1 0.004169
𝜌 = {148, 200} 1 0.004023

BH93 𝑁 𝑝(𝜌1|𝑋)
𝜌1 = {200} 0 0.040672
𝜌1 = {198, 200} 1 0.001044
𝜌1 = {181, 200} 1 0.000663
𝜌1 = {184, 186, 200} 2 0.000635
𝜌1 = {183, 200} 1 0.000634

Table 8: Top five most likely partitions based on the average estimated posterior probability for the
scene 3.

Model Partition True 𝑁 𝐸(𝑁 |𝑋) 𝑉 (𝑁 |𝑋) 𝑀𝑜(𝑁 |𝑋) 𝑃 (𝑁 = 𝑀𝑜|𝑋)
BMCP 𝜌1 0 0.1 0.1 0 0.89
BMCP 𝜌2 3 4.4 1.9 4 0.31

L99 𝜌 3 3.6 1.6 3 0.4
BH93 𝜌1 0 28.6 234.7 0 0.04

Table 9: Summary of the average estimates of the posterior probability of the number of changes 𝑁
for each model and respective partitions for the scene 3.
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Figure 6: Graphical summary for the MC simulation study of the scene 3. Figures (a-c): average posterior
means estimates (black dots) and 90% precision interval (dashed lines) with a simulated sample example (gray
circles) and the true mean values (solid gray horizontal lines). Figures (d-f): average posterior variance estimates
(black dots) and 90% precision interval (dashed lines) with a simulated sample squared error (gray circles) and
the true variance values (solid gray horizontal lines). Figures (g-j): average estimates of the posterior probability
of each instant to be a change point. Figures (k-n): prior (gray bars) and average estimated posterior (black
bars) probability distributions of the number of change points.
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4.4 Scene 4: mean and variance changes at the same time

In this section, we evaluate the performance of the models in a scene where two changes occur
in both the mean and variance at the same time. The Monte Carlo simulation results are summarized
in Figure 7 and Tables 10 and 11. The three models provide good mean estimates, with the L99 model
providing the most accurate estimates (Figures 7a-7c). The same is true for the variance estimates
(Figures 7d-7f), except for the BH93 model that underestimates the variance, as is the case in all the
scenes we analyse in this chapter. The better performance of the L99 model in the mean and variance
estimation in this scene is expected because, as described in Section 2.4, this model is formulated with
the assumption that both the mean and the variance parameters change at the same time, which is the
case in this scene. Comparing Figures 7g-7j, the L99 model provides the largest average probabilities
of a change for the true changes. The BMCP model provides distinctly larger probabilities of change
for the true changes in mean and variance, with these probabilities being smaller for the changes in
the variance. Based on Figure 7j, we can say that the BH93 model correctly identifies the changes
in mean. Figures 7k-7m and Table 11 show that the L99 and the BMCP models provide posterior
distributions for the number of changes highly concentrated in the true value 𝑁 = 2. The results in
Table 10 show that the average posterior distributions of all the partitions have their mode equal to
the true partition

BMCP 𝑁 𝑝(𝜌1|𝑋)
𝜌1 = {60, 140, 200} 2 0.050056
𝜌1 = {61, 139, 200} 2 0.028129
𝜌1 = {61, 140, 200} 2 0.026343
𝜌1 = {60, 139, 200} 2 0.023128
𝜌1 = {62, 139, 200} 2 0.020103

BMCP 𝑁 𝑝(𝜌2|𝑋)
𝜌2 = {60, 140, 200} 2 0.006304
𝜌2 = {59, 140, 200} 2 0.005154
𝜌2 = {60, 139, 200} 2 0.004889
𝜌2 = {60, 141, 200} 2 0.004874
𝜌2 = {61, 140, 200} 2 0.004494

L99 𝑁 𝑝(𝜌|𝑋)
𝜌 = {60, 140, 200} 2 0.057594
𝜌 = {61, 140, 200} 2 0.028148
𝜌 = {61, 139, 200} 2 0.027855
𝜌 = {60, 139, 200} 2 0.026327
𝜌 = {60, 141, 200} 2 0.024905

BH93 𝑁 𝑝(𝜌1|𝑋)
𝜌1 = {60, 140, 200} 2 0.004427
𝜌1 = {61, 140, 200} 2 0.002886
𝜌1 = {61, 139, 200} 2 0.002721
𝜌1 = {60, 139, 200} 2 0.002465
𝜌1 = {60, 141, 200} 2 0.002370

Table 10: Top five most likely partitions based on the average estimated posterior probability for the
scene 4.

Model Partition True 𝑁 𝐸(𝑁 |𝑋) 𝑉 (𝑁 |𝑋) 𝑀𝑜(𝑁 |𝑋) 𝑃 (𝑁 = 𝑀𝑜|𝑋)
BMCP 𝜌1 2 2.3 0.3 2 0.76
BMCP 𝜌2 2 3 1.2 2 0.41

L99 𝜌 2 2.7 0.8 2 0.54
BH93 𝜌1 2 12.8 102.2 3 0.08

Table 11: Summary of the average estimates of the posterior probability of the number of changes 𝑁
for each model and respective partitions for the scene 4.
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Figure 7: Graphical summary for the MC simulation study of the scene 4. Figures (a-c): average posterior
means estimates (black dots) and 90% precision interval (dashed lines) with a simulated sample example (gray
circles) and the true mean values (solid gray horizontal lines). Figures (d-f): average posterior variance estimates
(black dots) and 90% precision interval (dashed lines) with a simulated sample squared error (gray circles) and
the true variance values (solid gray horizontal lines). Figures (g-j): average estimates of the posterior probability
of each instant to be a change point. Figures (k-n): prior (gray bars) and average estimated posterior (black
bars) probability distributions of the number of change points.
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4.5 Scenes 5, 6 and 7: mean and variance changes at different times

In this section, we evaluate the performance of the BMCP, L99 and BH93 models in simulated
scenes where changes occur in the mean and in the variance at different times.

The scene 5, with two changes in mean and two changes in variance, is summarized in Figure
8 and Tables 12 and 13. All the models provide appropriate mean estimates, with the BMCP model
providing the most accurate estimates (Figures 8a-8c). The BMCP model also provides the better
estimates for the variance (Figures 8d-8f). As shown in Figure 8e, the variance estimates of the L99
model are clearly affected by the changes in the mean, as it is also the case in the constant variance
scene 1, in Section 4.2, which does not occur in the BMCP variance estimates (Figure 8d). As can
be seen in Figures 8h and 8i, both the BMCP and the L99 models do not identify the last change in
variance. Figures 8g-8i are a good illustration of the most relevant output of the BMCP model that
is not provided by the L99 model: both the BMCP and the L99 models provide closer values to the
probabilities for the true changes in the mean and in the variance, but the BMCP model, unlike the
L99 model, provide this information separately for the mean and the variance, such that we know
in which parameter the change occurred. Figures 8k-8n show that the L99 and the BMCP models
provide posterior distributions for the number of changes highly concentrated in the true values 𝑁 = 2
(two changes in mean and two changes in variance) and 𝑁 = 4 (four total changes) for the L99 model.

BMCP 𝑁 𝑝(𝜌1|𝑋)
𝜌1 = {40, 120, 200} 2 0.209763
𝜌1 = {40, 121, 200} 2 0.089323
𝜌1 = {40, 119, 200} 2 0.084880
𝜌1 = {40, 118, 200} 2 0.047314
𝜌1 = {40, 122, 200} 2 0.033951

BMCP 𝑁 𝑝(𝜌2|𝑋)
𝜌2 = {80, 200} 1 0.026173
𝜌2 = {81, 200} 1 0.024465
𝜌2 = {79, 200} 1 0.018039
𝜌2 = {82, 200} 1 0.014761
𝜌2 = {78, 200} 1 0.010790

L99 𝑁 𝑝(𝜌|𝑋)
𝜌 = {40, 120, 200} 2 0.012472
𝜌 = {40, 80, 120, 200} 3 0.006363
𝜌 = {40, 119, 200} 2 0.005487
𝜌 = {40, 81, 120, 200} 3 0.005333
𝜌 = {40, 121, 200} 2 0.004157

BH93 𝑁 𝑝(𝜌1|𝑋)
𝜌1 = {40, 120, 200} 2 0.045443
𝜌1 = {40, 119, 200} 2 0.018004
𝜌1 = {40, 121, 200} 2 0.016670
𝜌1 = {40, 118, 200} 2 0.010768
𝜌1 = {39, 120, 200} 2 0.010651

Table 12: Top five most likely partitions based on the average estimated posterior probability for the
scene 5.

Model Partition True 𝑁 𝐸(𝑁 |𝑋) 𝑉 (𝑁 |𝑋) 𝑀𝑜(𝑁 |𝑋) 𝑃 (𝑁 = 𝑀𝑜|𝑋)
BMCP 𝜌1 2 2.3 0.3 2 0.77
BMCP 𝜌2 2 2.4 1.4 2 0.37

L99 𝜌 4 4.4 2.2 4 0.28
BH93 𝜌1 2 6.1 24.9 2 0.2

Table 13: Summary of the average estimates of the posterior probability of the number of changes 𝑁
for each model and respective partitions for the scene 5.
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Figure 8: Graphical summary for the MC simulation study of the scene 5. Figures (a-c): average posterior
means estimates (black dots) and 90% precision interval (dashed lines) with a simulated sample example (gray
circles) and the true mean values (solid gray horizontal lines). Figures (d-f): average posterior variance estimates
(black dots) and 90% precision interval (dashed lines) with a simulated sample squared error (gray circles) and
the true variance values (solid gray horizontal lines). Figures (g-j): average estimates of the posterior probability
of each instant to be a change point. Figures (k-n): prior (gray bars) and average estimated posterior (black
bars) probability distributions of the number of change points.
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The same conclusions made about the scene 5 can be extended to the scene 6, displayed next
in Figure 9 and Tables 14 and 15, with four changes in mean and one change in variance. Moreover,
the BMCP has a better performance in the identification of the variance change than the L99 model,
as can be seen in Figures 9h and 9i and in the average posterior probabilities 𝑝(𝜌2|𝑋) and 𝑝(𝜌|𝑋) in
Table 14. Thus, this scene is an example where the BMCP model not only identifies the changes and
parameters that experienced these changes, but also identifies a variance change that is not identified
by the L99 model, indicating that the multipartition model we propose in this thesis is a powerfull
strategy to change point detection in situations where different parameters change at different times.

BMCP 𝑁 𝑝(𝜌1|𝑋)
𝜌1 = {40, 80, 134, 200} 3 0.004045
𝜌1 = {40, 80, 120, 160, 200} 4 0.003690
𝜌1 = {40, 80, 121, 160, 200} 4 0.003576
𝜌1 = {40, 80, 120, 200} 3 0.003243
𝜌1 = {39, 80, 121, 200} 3 0.002842

BMCP 𝑁 𝑝(𝜌2|𝑋)
𝜌2 = {100, 200} 1 0.111871
𝜌2 = {101, 200} 1 0.072110
𝜌2 = {99, 200} 1 0.069860
𝜌2 = {102, 200} 1 0.050833
𝜌2 = {98, 200} 1 0.045440

L99 𝑁 𝑝(𝜌|𝑋)
𝜌 = {40, 81, 121, 200} 3 0.001413
𝜌 = {40, 80, 121, 200} 3 0.001376
𝜌 = {39, 80, 121, 200} 3 0.001099
𝜌 = {40, 80, 120, 200} 3 0.000856
𝜌 = {40, 79, 120, 200} 3 0.000595

BH93 𝑁 𝑝(𝜌1|𝑋)
𝜌1 = {40, 80, 122, 160, 200} 4 0.000163
𝜌1 = {40, 81, 120, 158, 200} 4 0.000143
𝜌1 = {40, 80, 121, 160, 200} 4 0.000141
𝜌1 = {40, 80, 121, 167, 200} 4 0.000135
𝜌1 = {40, 79, 121, 167, 200} 4 0.000118

Table 14: Top five most likely partitions based on the average estimated posterior probability for the
scene 6.

Model Partition True 𝑁 𝐸(𝑁 |𝑋) 𝑉 (𝑁 |𝑋) 𝑀𝑜(𝑁 |𝑋) 𝑃 (𝑁 = 𝑀𝑜|𝑋)
BMCP 𝜌1 4 4.3 0.8 4 0.54
BMCP 𝜌2 1 1.4 0.5 1 0.68

L99 𝜌 5 5.4 2.1 5 0.29
BH93 𝜌1 4 10.7 44.5 6 0.12

Table 15: Summary of the average estimates of the posterior probability of the number of changes 𝑁
for each model and respective partitions for the scene 6.
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Figure 9: Graphical summary for the MC simulation study of the scene 6. Figures (a-c): average posterior
means estimates (black dots) and 90% precision interval (dashed lines) with a simulated sample example (gray
circles) and the true mean values (solid gray horizontal lines). Figures (d-f): average posterior variance estimates
(black dots) and 90% precision interval (dashed lines) with a simulated sample squared error (gray circles) and
the true variance values (solid gray horizontal lines). Figures (g-j): average estimates of the posterior probability
of each instant to be a change point. Figures (k-n): prior (gray bars) and average estimated posterior (black
bars) probability distributions of the number of change points.
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The scene 7, with three changes in mean and three changes in variance, considers the non-
informative 𝐵𝑒𝑡𝑎(1, 1) prior for parameters 𝑝1 and 𝑝2. This scene was inspired in a simulated scene
proposed by Peluso et al. [2019] to evaluate their multiparametric change point model in a situation
where a variance change occur a few instants after each mean change. Our results are displayed next
in Figure 10 and Tables 16 and 17. Based on Table 16 and Figures 10g-10i, the BMCP model correctly
identifies the true change points in mean and variance, while the L99 model does not identify two
changes in the variance. We can see in Table 17 that the BMCP model provides correct estimates
for the number of changes in the mean and in the variance through the estimated posterior mode,
while the L99 model correctly estimates the total number of changes through the estimated posterior
expectation.

BMCP 𝑁 𝑝(𝜌1|𝑋)
𝜌1 = {50, 100, 150, 200} 3 0.034641
𝜌1 = {50, 99, 150, 200} 3 0.020887
𝜌1 = {50, 101, 150, 200} 3 0.015268
𝜌1 = {50, 98, 150, 200} 3 0.012232
𝜌1 = {51, 100, 150, 200} 3 0.010630

BMCP 𝑁 𝑝(𝜌2|𝑋)
𝜌2 = {65, 115, 165, 200} 3 0.000981
𝜌2 = {65, 114, 165, 200} 3 0.000878
𝜌2 = {65, 115, 166, 200} 3 0.000877
𝜌2 = {64, 115, 165, 200} 3 0.000755
𝜌2 = {64, 114, 165, 200} 3 0.000754

L99 𝑁 𝑝(𝜌|𝑋)
𝜌 = {50, 100, 114, 150, 200} 4 0.001616
𝜌 = {50, 100, 115, 150, 200} 4 0.001074
𝜌 = {50, 99, 114, 150, 200} 4 0.000931
𝜌 = {50, 100, 112, 150, 200} 4 0.000797
𝜌 = {50, 100, 113, 150, 200} 4 0.000759

BH93 𝑁 𝑝(𝜌1|𝑋)
𝜌1 = {50, 100, 150, 200} 3 0.001361
𝜌1 = {50, 99, 150, 200} 3 0.001051
𝜌1 = {49, 100, 150, 200} 3 0.000939
𝜌1 = {50, 100, 149, 200} 3 0.000723
𝜌1 = {50, 100, 151, 200} 3 0.000619

Table 16: Most likely partitions based on the average estimated posterior probability for the scene 7.

Model Partition True 𝑁 𝐸(𝑁 |𝑋) 𝑉 (𝑁 |𝑋) 𝑀𝑜(𝑁 |𝑋) 𝑃 (𝑁 = 𝑀𝑜|𝑋)
BMCP 𝜌1 3 4 1.7 3 0.48
BMCP 𝜌2 3 5.8 9.3 3 0.2

L99 𝜌 6 6 3.8 5 0.24
BH93 𝜌1 3 17.5 134.6 5 0.06

Table 17: Summary of the average estimates of the posterior probability of the number of changes 𝑁
for each model and respective partitions for the scene 7.
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Figure 10: Graphical summary for the MC simulation study of the scene 7. Figures (a-c): average posterior
means estimates (black dots) and 90% precision interval (dashed lines) with a simulated sample example (gray
circles) and the true mean values (solid gray horizontal lines). Figures (d-f): average posterior variance estimates
(black dots) and 90% precision interval (dashed lines) with a simulated sample squared error (gray circles) and
the true variance values (solid gray horizontal lines). Figures (g-j): average estimates of the posterior probability
of each instant to be a change point. Figures (k-n): prior (gray bars) and average estimated posterior (black
bars) probability distributions of the number of change points.
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5 Real data applications

In this chapter, we apply the BMCP model to two real data sets: the Us EX-post real interest
rate and the Mexican Peso/US Dollar exchange rate. We also compare BMCP estimates with that
obtained applying the L99 and BH93 models. In both the cases, we consider the noninformative Bayes-
Laplace prior 𝐵𝑒𝑡𝑎(1, 1) for the cohesion parameters 𝑝1, 𝑝2 and 𝑝 of the BMCP and L99 models, as
mentioned in Section 2.5, which assumes that, on average, 50% of the instants will be a change point.

5.1 Real data application 1: US Ex-post real interest rate

The US ex-post real interest rate we analyse in this section is available at the RealInt data
set of the R package bcp. This data set is a quarterly time series from 1961/1 to 1986/3 of the three-
month treasury bill rate deflated by the Consumer Price Index (CPI) inflation rate. It has a total of
𝑛 = 103 observations and is presented in Figure 11. The presence of structural changes in the mean
and variance of this time series was analysed by Garcia and Perron [1996] and Bai and Perron [2003].
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Figure 11: US ex-post real interest rate quarterly time series from 1961/1 to 1986/3.

We apply the BMCP to possibly detect changes in mean and variance of this data set. We also
apply the L99 and BH93 models, to compare the results. We consider the same prior specifications
of the simulation study presented in Chapter 4: (𝜇0, 𝜎2

0, 𝑎, 𝑑) = (0, 100, 2, 2) for the BMCP model,
(𝑚, 𝑣, 𝑎, 𝑑) = (0, 2, 2, 2) for the L99 model and 𝑤0 = 𝑝0 = 0.2 for the BH93 model. The posterior dis-
tributions are obtained through a MCMC scheme with 14,000 iterations, with the first 4,000 discarded
as a burn-in period. The simulations took 3.2, 3.3 and 6.7 seconds for the BH93, L99 and BMCP mo-
dels, respectively. The results are summarized in Figure 12 and Tables 18 and 19. In Figures 12a-12j,
the vertical lines indicate the end points of the 𝜌1 blocks (red dotted lines) and of the 𝜌2 blocks (red
dashed lines) of the most probable partitions 𝜌1 and 𝜌2 according to the BMCP model. Combining
the most probable partitions estimated by the BMCP model, presented in Table 18, with the instants
with the highest probabilities of a change in Figures 12g and 12h, we can say that the BMCP model
indicates two changes in the mean, at instants 48 and 80 (one time next the end points 47 and 79),
and one change in the variance, at instant 52 (one time next the end point 51). The posterior modes
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for the number of changes in mean and variance estimated by the BMCP (see Table 19) also support
this statement. Based on Figures 12a-12f, the BMCP and L99 models provide similar posterior point
estimates for the means and the variances, with similar precision, but the L99 model estimates for the
variance are affected by the two mean changes, just as observed in the Monte Carlo study in Chapter
4, in the scenes with the mean and the variance changes occurring at different times. The BH93 model
mean estimates become unstable after the variance change indicated by the BMCP model, and the
variance has lower estimates than BMCP and L99 models, maintaining the same behavior observed
in the Monte Carlo study.

BMCP 𝑁 𝑝(𝜌1|𝑋)
𝜌1 = {47, 79, 103} 2 0.2067
𝜌1 = {47, 76, 103} 2 0.0996
𝜌1 = {47, 78, 103} 2 0.0221
𝜌1 = {47, 80, 103} 2 0.0218
𝜌1 = {47, 76, 82, 103} 3 0.0191

BMCP 𝑁 𝑝(𝜌2|𝑋)
𝜌2 = {51, 103} 1 0.1300
𝜌2 = {50, 103} 1 0.0452
𝜌2 = {49, 103} 1 0.0254
𝜌2 = {48, 103} 1 0.0136
𝜌2 = {39, 103} 1 0.0113

L99 𝑁 𝑝(𝜌|𝑋)
𝜌 = {47, 79, 103} 2 0.0867
𝜌 = {47, 76, 103} 2 0.0704
𝜌 = {47, 76, 82, 103} 3 0.0238
𝜌 = {46, 79, 103} 2 0.0165
𝜌 = {46, 76, 103} 2 0.0113

BH93 𝑁 𝑝(𝜌1|𝑋)
𝜌1 = {47, 76, 82, 88, 103} 4 0.0116
𝜌1 = {47, 76, 82, 87, 103} 4 0.0115
𝜌1 = {47, 76, 82, 84, 103} 4 0.0083
𝜌1 = {46, 76, 82, 87, 103} 4 0.0031
𝜌1 = {47, 76, 82, 103} 3 0.0030

Table 18: Top five most likely partitions based on the estimated posterior probability.

Model Partition 𝐸(𝑁 |𝑋) 𝑉 (𝑁 |𝑋) 𝑀𝑜(𝑁 |𝑋) 𝑃 (𝑁 = 𝑀𝑜|𝑋)
BMCP 𝜌1 3.2 2.2 2 0.43
BMCP 𝜌2 5.2 55.5 1 0.29

L99 𝜌 4.7 9.1 2 0.25
BH93 𝜌1 7.6 8 6 0.16

Table 19: Summary of the estimates of the posterior probability of the number of changes 𝑁 for each
model and respective partitions, for real data application 1.

Our results for the BMCP and L99 models applied to the US Ex-post real interest rate data
set are much similar to the results obtained by the model in Garcia and Perron [1996]. They used the
Markov switching model proposed by Hamilton [1989], allowing a maximum number of three possible
regimes affecting both the mean and the variance. They estimate two changes, in 1973 and 1981 (they
do not specify the quarter of the year), while the BMCP model estimates two change points in the
mean, in 1972/4 and 1980/4, that are the observations one time next the end points 47 and 79. Garcia
and Perron [1996] results also indicate that the variance for the second and third blocks are equivalent,
similar to the BMCP indication of a unique change in the variance next to the first change in the
mean. The L99 estimates also coincide with the BMCP and the Garcia and Perron [1996] results.
The results of Bai and Perron [2003] contrast with BMCP and Garcia and Perron [1996] applications
because they found three regime changes. It is relevant to note that the two changes in the mean
indicated by the BMCP model match two of the three changes indicated by Bai and Perron [2003].
The other change indicated by Bai and Perron [2003] occur in 1966/4.
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Figure 12: Graphical summary for the application of the BMCP, L99 and BH93 models for the US Ex-post Real
Interest Rate data set. Figures (a-c): posterior means estimates (black dots), 90% precision interval (dashed lines)
and observation values (black circles). Figures (d-f): posterior variance estimates (black dots), 90% precision
interval (dashed lines) and the square of the difference between the observation values and the respective
posterior mean estimate (black circles). Figures (g-j): estimated posterior probability of each instant to be a
change point. Figures (k-n): prior (gray bars) and estimated posterior (black bars) probability distributions of
the number of change points.
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5.2 Real data application 2: Mexican Peso/US Dollar exchange rate

The Mexican Peso/US Dollar exchange rate we analyse in this section is available at
www.federalreserve.gov, and is presented in Figure 13. This data set is composed by daily records
of Mexican Peso/US Dollar exchange rate from January 2007 to December 2012, a total of 𝑛 = 1, 510
observations. The presence of regime changes in this time series was analysed by Martínez et al. [2014]
fitting a nonparametric change point detection model.
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Figure 13: Daily records of Mexican Peso/US Dollar exchange rate from January 2007 to December 2012.

A priori, we assume the same hyperparameters specified in Section 5.1, excepted by
𝜎2

0 = 10, 000, which reduced the number of short blocks (with less than ten observations, for example)
that the BMCP model was identifying when we first assumed 𝜎2

0 = 100. Because of the higher number
of observations in this application when compared to the application in Section 5.1 and to the simula-
tion scenes discussed in Chapter 4, we increased the number of MCMC iterations to 140,000, with the
first 40,000 discarded as a burn-in period. The simulations took 3.9, 41.8 and 246.4 minutes for the
BH93, L99 and BMCP models, respectively. The BH93 model did not provide convenient estimates.
The estimated posterior expected number of changes is very large, around 180, which is equivalent to
occur, on average, one change at each eight observations. Because of this, we do not present the BH93
model results.

The results for the BMCP and L99 models are summarized in Figure 14 and Tables 20 and
21. In Figures 14a-14g, the vertical lines indicate the end points of the most probable partitions 𝜌1

(red dotted lines) and 𝜌2 (red dashed lines) according to the BMCP model, and the end points of
the most probable partition 𝜌 (blue solid lines) according to the L99 model. In this application, the
BMCP and L99 models provide different results. According to the estimates of the posterior expected
value and mode presented in Table 21, the number of changes in the mean obtained by the BMCP
model is more than twelve times the total number of changes obtained by fitting the L99 model. The
estimated posterior distribution of the 𝜌1 and 𝜌2 are too flat, not providing strong evidence about the
respective change point locations. In this cases, the probability of a change in Figures 14e-14g may be
a more useful result. For example, we could determine the true partition as the one composed by the
instants with probability of a change greater than some probability threshold. On the other hand, the
most probable partition 𝜌 of the L99 model is estimated with probability 0.38.
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Our results for the BMCP model applied to the Mexican Peso/US Dollar exchange rates are
different from the results of the nonparametric change point model proposed by Martínez et al. [2014].
They estimmate a most probable partition with seven change points while the BMCP model estimates
around forty changes in the mean and three changes in the variance (see Table 21). They also apply
the L99 model to this data set, but we found different results. They estimate a most probable partition
with four change points occurring with probability 0.08465, while we estimate three change points,
with probability 0.3837. This difference may have been caused by some different prior specification.

BMCP 𝑁 𝑝(𝜌1|𝑋)

𝜌1 =
{︂

85, 144, 185, 278, 316, 348, 391, 421, 428, 448, 478, 514, 537, 555, 570, 655, 672, 701, 732, 798, 817,

843, 919, 940, 1009, 1070, 1157, 1182, 1190, 1228, 1268, 1276, 1325, 1347, 1353, 1383, 1406, 1436, 1510

}︂
38 0.00030

𝜌1 =
{︂

87, 143, 187, 283, 317, 346, 392, 423, 430, 448, 478, 513, 539, 555, 569, 657, 672, 702, 730, 798, 818,

843, 919, 941, 1008, 1068, 1159, 1182, 1188, 1230, 1269, 1275, 1324, 1347, 1353, 1384, 1430, 1510

}︂
37 0.00026

𝜌1 =
{︂

83, 147, 185, 284, 316, 350, 392, 422, 429, 447, 477, 514, 539, 554, 568, 654, 672, 703, 732, 798, 818, 842, 921,

934, 949, 1014, 1069, 1159, 1183, 1190, 1231, 1237, 1269, 1279, 1327, 1348, 1358, 1382, 1408, 1431, 1510

}︂
40 0.00025

𝜌1 =
{︂

84, 144, 184, 274, 316, 347, 394, 422, 430, 447, 476, 513, 538, 554, 568, 655, 673, 701, 731, 795, 818, 842,

920, 940, 1010, 1070, 1158, 1182, 1190, 1231, 1236, 1268, 1276, 1325, 1348, 1358, 1382, 1408, 1433, 1510

}︂
39 0.00022

𝜌1 =
{︂

81, 144, 184, 282, 318, 351, 393, 423, 432, 448, 477, 514, 537, 555, 569, 638, 643, 656, 671, 701, 732, 801, 819,

843, 919, 941, 1009, 1070, 1158, 1182, 1188, 1231, 1237, 1268, 1275, 1326, 1347, 1352, 1383, 1408, 1432, 1510

}︂
41 0.00021

BMCP 𝑁 𝑝(𝜌2|𝑋)
𝜌2 = {444, 591, 1510} 2 0.01498
𝜌2 = {443, 590, 1510} 2 0.01388
𝜌2 = {443, 591, 1510} 2 0.01304
𝜌2 = {443, 604, 1510} 2 0.01048
𝜌2 = {442, 591, 1510} 2 0.00984

L99 𝑁 𝑝(𝜌|𝑋)
𝜌 = {448, 716, 1183, 1510} 3 0.38370
𝜌 = {447, 716, 1183, 1510} 3 0.20571
𝜌 = {448, 716, 1184, 1510} 3 0.11439
𝜌 = {449, 716, 1183, 1510} 3 0.09291
𝜌 = {447, 716, 1184, 1510} 3 0.09025

Table 20: Top five most likely partitions for the BMCP and L99 models, based on the estimated
posterior probability.

Model Partition 𝐸(𝑁 |𝑋) 𝑉 (𝑁 |𝑋) 𝑀𝑜(𝑁 |𝑋) 𝑃 (𝑁 = 𝑀𝑜|𝑋)
BMCP 𝜌1 40.2 4.0369 40 0.2007
BMCP 𝜌2 2.7 0.2555 3 0.6699

L99 𝜌 3 0.0001 3 0.9999

Table 21: Summary of the estimate of the posterior probability of the number of changes 𝑁 for each
model and respective partitions, for real data application 2.
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Figure 14: Graphical summary for the application of the BMCP, L99 and BH93 models for the Mexican Peso/US
Dollar data set. Figures (a-b): posterior means estimates (black dots), 90% precision interval (dashed lines) and
observation values (black circles). Figures (c-d): posterior variance estimates (black dots), 90% precision interval
(dashed lines) and the square of the difference between observation values and the respective mean estimate
(black circles). Figures (e-g): estimated posterior probability of each instant to be a change point. Figures (h-j):
prior (gray bars) and estimated posterior (black bars) probability distributions of the number of change points.

In the next chapter, we summarize the contributions of this thesis and point out some suggestions
of future related works.
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6 Conclusions

In this thesis, we introduce a new multipartition model to multiple change point detection in
multiparametric models, referred to as BMCP model, such that we can identify separately the number
and location of change points in different parameters. We developed an application of this model to
Normal data and the results of the Monte Carlo simulation study presented in Chapter 4 show that
the proposed model has similar ability to detect changes in the mean of Normal data when compared
to the L99 and BH93 model, and has superior ability to identify changes in the variance of Normal
data when compared to the L99 model. Moreover, the BMCP has a better performance than the L99
and BH93 models to identify the changes in the mean and in the variance of Normal data in scenes
where the mean and the variance change at different times. Additionally to the L99 model, the BMCP
model provides the information of which of these parameters experienced the change.

Some improvements to the model introduced in this thesis may be considered for future work.
The influence of the prior specifications can be analysed. We can try other prior specifications for
the block parameters, for example, the block variance prior may be a half-Cauchy (Gelman et al.
[2006]) or a SBeta2 (Pérez et al. [2017]). The general change point model introduced in Chapter 3
may be applied to other multiparametric probability models, for example, the generalized exponential
model, skew normal model and extreme value distributions. The independent 𝐵𝑒𝑡𝑎 prior distributions
assumed for the parameters 𝑝𝑘 of the prior cohesions of each partition 𝜌𝑘, 𝑘=1, . . . , 𝑑, may be replaced
by a joint correlated distribution for (𝑝1, . . . , 𝑝𝑑). Similar to the BMCP model, the change point model
proposed by Peluso et al. [2019] also identifies changes separately in different parameters. This work
suggests that we can have improved estimates if we make the parameters 𝑝𝑘 time dependent. Another
improvement may be the extension of the BMCP model to change point detection in multivariate
sequences of observations.

The Normal data application of the BMCP model and the L99 model were implemented in
C++ and will be submitted as a new R package to the Comprehensive R Archive Network (CRAN).
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A Probability distributions

A.1 Basic distributions

This appendix presents the density functions and parameters description of the probability
distributions considered in this thesis.

A.1.1 Univariate Normal

𝑋 ∼ 𝑁(𝜇, 𝜎2) if its density function is given by

𝑓(𝑥|𝜇, 𝜎2) = (2𝜋𝜎2)−1/2 exp
[︂
− 1

2𝜎2 (𝑥 − 𝜇)2
]︂
, 𝑥 ∈ R , 𝜇 ∈ R , 𝜎2 ∈ R+ .

A.1.2 Inverse-Gamma

𝑋 ∼ 𝐼𝐺(𝑎, 𝑑) if its density function is given by

𝑓(𝑥|𝑎, 𝑑) = 𝑎𝑑

Γ(𝑑) 𝑥−(𝑑+1)𝑒−𝑎/𝑥, 𝑥 ∈ R+, 𝑎 ∈ R+, 𝑑 ∈ R+.

A.1.3 Beta

𝑋 ∼ 𝐵𝑒𝑡𝑎(𝛼, 𝛽) if its density function is given by

𝑓(𝑥|𝛼, 𝛽) = Γ(𝛼 + 𝛽)
Γ(𝛼)Γ(𝛽) 𝑥𝛼−1(1 − 𝑥)𝛽−1, 𝑥 ∈ [0, 1], 𝛼 ∈ R+, 𝛽 ∈ R+.

A.1.4 Beta-Binomial

𝑋 ∼ 𝐵𝑒𝑡𝑎-𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛, 𝛼, 𝛽) if its density function is given by

𝑓(𝑥|𝛼, 𝛽) =
(︃

𝑛

𝑥

)︃
Γ(𝛼 + 𝛽)
Γ(𝛼)Γ(𝛽)

Γ(𝛼 + 𝑥)Γ(𝑛 + 𝛽 − 𝑥)
Γ(𝛼 + 𝛽 + 𝑛) , 𝑥 = 0, 1, . . . , 𝑛, 𝑛 ∈ N, 𝛼 ∈ R+, 𝛽 ∈ R+.
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B Markov Chain Monte Carlo methods

This appendix briefly describes some Markov Chain Monte Carlo (MCMC) sampling methods
used to evaluate the quantities of interest in this work: Metropolis-Hastings algorithm (M-H) and
Gibbs sampler, which are powerful tools to simulate from complex high-dimensional distributions
that can be evaluated but not easily sampled. Detailed and enlightening descriptions of these methods
are available in Gamerman and Lopes [2006] or Liu [2008].

The partially collapsed Gibbs sampling method (PCG) proposed by Van Dyk and Park [2008]
is also described here. It enables sampling from our proposed joint model for parameters and partitions,
for which an ordinary Gibbs sampler is not feasible to run.

B.1 Metropolis-Hastings algorithm

Consider a distribution 𝜋 from which a sample must be drawn. The MCMC sampling methods
consist in construct a Markov chain for which the stationary distribution equals the target distribu-
tion 𝜋. It contributes to perform Bayesian inference when 𝜋 is a posterior distribution for parameters
𝜋(𝜃|𝑋). For a sufficiently large 𝑡 ∈ N, a realization 𝜃(𝑡) from this chain will have approximate distri-
bution 𝜋(𝜃|𝑋).

The Metropolis-Hastings (M-H) method was introduced by Metropolis et al. [1953] and Hast-
ings [1970]. A sample is generated from an arbitrary auxiliary distribution and it is accepted or
rejected with some stated probability. Let 𝑞(·|𝜃) represent a distribution that is easy to sample from
and 𝜋(𝜃|𝑋) the target distribution. The M-H algorithm can be specified by the following steps:

1. Initialize the iteration counter of the chain 𝑡 = 1 and set an arbitrary initial value 𝜃(0).

2. Generate a value 𝜃′ from the density 𝑞(·|𝜃(𝑡−1)).

3. Compute the acceptance probability 𝛼(𝜃(𝑡−1), 𝜃′) = min
{︃

1,
𝜋(𝜃′|𝑋)

𝜋(𝜃(𝑡−1)|𝑋)
𝑞(𝜃(𝑡−1)|𝜃′)
𝑞(𝜃′|𝜃(𝑡−1))

}︃
.

4. Generate 𝑢 ∼ U(0, 1). If 𝑢 ≤ 𝛼(𝜃(𝑡−1), 𝜃′), accept 𝜃(𝑡) = 𝜃′, otherwise, 𝜃(𝑡) = 𝜃(𝑡−1).

5. Set 𝑡 = 𝑡 + 1 and return to step 2 until convergence is reached.
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B.2 Gibbs sampler

Assume 𝜋(𝜃|𝑋) is the target posterior distribution, with 𝜃 = (𝜃1, . . . , 𝜃𝑑), and the full condi-
tional distributions 𝜋(𝜃𝑖|𝜃1, . . . , 𝜃𝑖−1, 𝜃𝑖+1, . . . , 𝜃𝑑, 𝑋), 𝑖 = 1, . . . , 𝑑, are completely known and can be
sampled from. The Gibbs sampler (Geman and Geman [1984]) is an MCMC method based on iterative
simulation from full conditional distributions, as exemplified next:

1. Initialize the iteration counter of the chain 𝑡 = 1 and set and set an arbitrary initial value
𝜃(0) = (𝜃(0)

1 , . . . , 𝜃
(0)
𝑑 ).

2. Generate 𝜃(𝑡) = (𝜃(𝑡)
1 , . . . , 𝜃

(𝑡)
𝑑 ) from 𝜃(𝑡−1) through successive generation of

𝜃
(𝑡)
1 ∼ 𝜋(𝜃1|𝜃(𝑡−1)

1 , . . . , 𝜃
(𝑡−1)
𝑑 , 𝑋),

𝜃
(𝑡)
2 ∼ 𝜋(𝜃2|𝜃(𝑡)

1 , 𝜃
(𝑡−1)
3 , . . . , 𝜃

(𝑡−1)
𝑑 , 𝑋),

...

𝜃
(𝑡)
𝑑 ∼ 𝜋(𝜃𝑑|𝜃(𝑡)

1 , . . . , 𝜃
(𝑡)
𝑑−1, 𝑋).

3. Set 𝑡 = 𝑡 + 1 and return to step 2 until convergence is reached.

When convergence is reached, 𝜃(𝑡) is a sample from 𝜋(𝜃|𝑋). Clearly, a chain constructed via M-H or
Gibbs sampler algorithms defines a Markov chain, since the sample in stage 𝑡 is only dependent on
the previous stage 𝑡 − 1.

B.3 Partially collapsed Gibbs sampler

This section is a short presentation of thr Partially Colapsed Gibbs sampler (PCG), introduced
by Van Dyk and Park [2008], which consists of a strategy developed to improve the convergence
characteristics of a conventional Gibbs sampler.

To understand the PCG, it is necessary some insight into two sampling procedures related to
the Gibbs sampler: grouping, also known as blocking, and collapsing, also known as marginalizing.
Consider the Gibbs sampler scheme in Section B.2 with 𝜃 = (𝜃1, 𝜃2, 𝜃3). If we sample from some two
components of 𝜃 together, for example 𝜃2 and 𝜃3, this procedure is referred as grouping (it is possible if
we are able to sample from 𝜋(𝜃2|𝜃1) and then from 𝜋(𝜃3|𝜃2, 𝜃1)). Collapsing consists of integrating out
some random (irrelevant) parameters of the model. Both collapsing and grouping procedures usually
result in more efficient Gibbs sampling schemes (Liu [1994]).

Based on grouping and collapsing, the PCG enables integrating out different components in
different steps of the Gibbs algorithm without losing the convergence of the chain to the original target
distribution.



Appendix B. Markov Chain Monte Carlo methods 71

To transform a Gibbs sampler into a PCG, three basic tools are used: marginalization, permu-
tation and trimming. Park and Van Dyk [2009] use a simple and enlightening schematic example to
illustrate how these three tools are used to transform a Gibbs sampler in a PCG sampler. This example
is briefly illustrated here. It supposes a Gibbs sampler with target joint distribution 𝑝(𝑊, 𝑋, 𝑌, 𝑍) and
also suppose it is possible to directly sample from 𝑝(𝑌 |𝑋, 𝑍) and 𝑝(𝑍|𝑋, 𝑌 ), which are both conditional
distributions of

∫︁
𝑝(𝑊, 𝑋, 𝑌, 𝑍)𝑑𝑊 . They start with an ordinary Gibbs sampler.

Sampler 1.

1. Draw 𝑊 ∼ 𝑝(𝑊 |𝑋, 𝑌, 𝑍)
2. Draw 𝑋 ∼ 𝑝(𝑋|𝑊, 𝑌, 𝑍)
3. Draw 𝑌 ∼ 𝑝(𝑌 |𝑊, 𝑋, 𝑍)
4. Draw 𝑍 ∼ 𝑝(𝑍|𝑊, 𝑋, 𝑌 )

The first tool is marginalization. It entails moving a group of unknowns components from
being conditioned upon to being sampled in one or more steps of a Gibbs sampler. The marginalized
group can differ among the steps. In this example, 𝑊 is moved from being conditioned upon to being
sampled in steps 3 and 4. Sampler 2 is a generalization of Sampler 1 that updates component 𝑊

multiple times within each iteration. Thus, Sampler 2 has the same target distribution as Sampler 1.

Sampler 2.

1. Draw 𝑊 ⋆ ∼ 𝑝(𝑊 |𝑋, 𝑌, 𝑍)
2. Draw 𝑋 ∼ 𝑝(𝑋|𝑊, 𝑌, 𝑍)
3. Draw (𝑊 ⋆, 𝑌 ) ∼ 𝑝(𝑊, 𝑌 |𝑋, 𝑍)
4. Draw (𝑊, 𝑍) ∼ 𝑝(𝑊, 𝑍|𝑋, 𝑌 )

The second tool is permutation. Drawing 𝑊 three times in Sample 2 may be inefficient, but
removing any two of the three draws affects the convergence of the chain to the target distribution.
Only intermediate quantities whose values are not conditioned upon in subsequent steps may be
removed. Permuting the steps of a Gibbs sampler does not alter its target distribution but can enable
certain intermediate quantities to be removed. Thus, Sampler 3 has the same target distribution as
Sampler 2.

Sampler 3.

1. Draw (𝑊 ⋆, 𝑌 ) ∼ 𝑝(𝑊, 𝑌 |𝑋, 𝑍)
2. Draw (𝑊 ⋆, 𝑍) ∼ 𝑝(𝑊, 𝑍|𝑋, 𝑌 )
3. Draw 𝑊 ∼ 𝑝(𝑊 |𝑋, 𝑌, 𝑍)
4. Draw 𝑋 ∼ 𝑝(𝑋|𝑊, 𝑌, 𝑍)
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The output of the iteration consists of the most recently sampled value of each quantity at
the end of the iteration. The superscript ⋆ designates an intermediate quantity that is sampled but is
not part of the output of an iteration. In Sampler 3, the intermediate draws of 𝑊 in steps 1 and 2
are not used in the subsequent steps because a new value of 𝑊 is sampled in step 3. Thus, they can
be removed (or trimmed) from the sampler without affecting the stationary distribution of the chain.
Therefore, Sampler 4 has the same stationary distribution as Sample 3.

Sampler 4.

1. Draw (𝑊 ⋆, 𝑌 ) ∼ 𝑝(𝑊, 𝑌 |𝑋, 𝑍)
2. Draw (𝑊 ⋆, 𝑍) ∼ 𝑝(𝑊, 𝑍|𝑋, 𝑌 )
3. Draw 𝑊 ∼ 𝑝(𝑊 |𝑋, 𝑌, 𝑍)
4. Draw 𝑋 ∼ 𝑝(𝑋|𝑊, 𝑌, 𝑍)

Sampler 4 is not a Gibbs sampler, it is a PCG. Its conditional distributions are incompatible
and permuting the order of the draws may alter the stationary distribution of the chain.
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