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Resumo

Estruturas de dependência são estudadas exaustivamente em diversas aplicações. Nesta
tese, uma nova metodologia para a detecção de clusters, chamada de Distância Ponder-
ada de Voronoi, é apresentada levando em consideração não somente a localização dos
pontos, mas também sua estrutura temporal. Usando o espaço de variáveis ao invés
da localização geográfica, como em estatística espacial, e o toro em lugar do plano
cartesiano, esta metodologia permite que o usuário aplique a ideia para um número
maior de cenários alternativos. Em particular nos mercados financeiros, diferentes
modelagens de dependência entre ativos podem levar a mudanças drásticas na alocação
de recursos e a diferentes exposições a risco. Além disso, estas relações de dependência
podem ser utilizadas como mecanismos para a detecção de crises financeiras mais
rápidos que os modelos fundamentalistas, através do efeito contágio. Inicialmente,
esta aplicação é realizada entre ativos de um mesmo mercado, o mercado americano,
comparando a metodologia proposta com metodologias mencionadas na literatura
como coeficientes lineares e copulas. Esta abordagem foi estendida para ativos de
mercados distintos, a fim de se analisar a disseminação de crises financeiras entre
diferentes mercados. Resultados obtidos através de simulações e aplicações com dados
reais mostraram melhorias se comparados com abordagens clássicas, especialmente em
períodos financeiros turbulentos.

Palavras-Chave: Cluster, azulezamento, algoritmo, Efeito Contágio.



Abstract

The dependence structures have been exhaustively studied in many applications. In
this thesis, a new methodology for cluster detection is presented, i.e. the Weighted
Voronoi Distance (WVD), taking into consideration not only the location of the points
but also their time structure. Using variables space instead of geographical location as
in spatial statistics and the torus instead of a regular Cartesian plane, this methodology
allows the user to apply the rationale for more alternative scenarios. Particularly in
financial markets, different dependence modelling among assets can lead to significant
changes in asset allocation and different risk exposures. Besides, these dependence
relationships can be used as mechanisms to detect financial crisis more quickly than
fundamental models through the contagion effect. Initially, this application is run
using assets from the same market, i.e. the US market, comparing the proposed
methodology with methodologies mentioned in literature such as linear coefficients and
copulas. This approach will be extended to assets from distinct markets in order to
analyse the financial crisis dissemination across different markets. Results obtained
from simulations and real data applications showed improvements compared to classical
approaches especially in during turbulent financial periods.

Keywords: Cluster detection, tessellation, algorithm, Contagion Effect.
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Apresentação

A relação de dependência entre variáveis aleatórias é motivo de estudo há séculos.
Inicialmente, medidas de associação lineares foram desenvolvidas e, com o passar
do tempo, medidas não lineares foram apresentadas. Paralelamente, os estudos de
séries temporais também se tornaram difundidos na análise que incorporam os efeitos
do tempo no comportamento de uma variável aleatória. Entretanto, no mundo real,
podemos encontrar variáveis aleatórias que estão, de alguma forma associadas, mas
também possuem o efeito da variável tempo tanto dentro das próprias séries como
entre elas. Como entender este comportamento? É possível verificar de forma rápida e
eficiente um aumento ou diminuição da dependência destas variáveis para pequenas
variações?

Sendo encontrada em diversas áreas do conhecimento, estas questões apontadas
acima são de extrema importância para o entendimento de fenômenos e tomadas
de decisão. Por isso, esta tese foi desenvolvida através do estudo de estruturas de
dependência entre variáveis aleatórias, culminando na proposta de uma nova medida
de dependência. Esta abordagem possui algumas vantagens sobre as abordagens já
apresentadas na literatura: (i) possibilita a utilização de dados em tempo real, (ii)
intrinsecamente traz a estrutura temporal das séries, (iii) se baseia em técnicas de
estatística espacial próprias para a deteccção de clusters, definidos formalmente no
Capítulo 1 e (iv) utiliza uma topologia capaz de suportar uma variedade maior de
modelos alternativos.

Esta tese está organizada da seguinte forma: no Capítulo 1, uma apresentação e
contextualização do problema são expostas, incluindo uma descrição detalhada dos
trabalhos realizados nesta área. Posteriormente, no Capítulo 2, a metodologia de
Cópulas é apresentada e as famílias que serão utilizadas neste trabalho são descritas.
No capítulo seguinte, Capítulo 3, as metodologias de estatística espacial presentes
na literatura são apresentadas e a nova metodologia, principal interesse desta tese, é
apresentada detalhadamente. No Capítulo 4, simulações utilizando a nova metodologia
são expostas e comparadas com métodos tradicionais e no Capítulo 5 a metodologia é
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aplicada em dados reais e também comparada com a abordagem de cópulas. Por fim,
no Capítulo 6 esta tese é concluída e as considerações finais são realizadas.



Chapter 1

Introduction

Dependence between two variables has been of major concern in many fields not only
for statisticians but also for both researchers and practitioners from biological to social
sciences. Along the last centuries, independently of any particular application, many
measures have been proposed. Although the linear correlation coefficient (Pearson’s ρ)
proposed by Pearson (1895) is the most popular, other concordance measures such as
rank correlation have been introduced to better apprehend correlation drawbacks. Spear-
man (1904) proposed a concordance measure (as known as “Spearman’s ρ”) which does
not assume linear relationships among variables but only monotonicity. Kendall (1938)
has also proposed a concordance measure, the “Kendal’s τ”, with similar characteristics
and assumptions. Pantaleo et al. (2011), for instance, show a comparative study of nine
covariance matrix estimators and Deng and Tsui (2013) propose a different method
to estimate the covariance matrix using matrix-logarithm transformation, to cite only
a few. One of the main issues about the covariance matrix is due to its non-static
nature. Many studies discuss the dynamic behaviour of the covariance matrix and
provide alternative methods and metrics to estimate and evaluate the change taking
into account the time structure (Andersen et al., 2009; Bauwens et al., 2006; Engle,
2002)

Introducing the idea of decomposing multivariate distributions behaviour into
functions of the marginal distributions of the random variables and of their depen-
dence, Sklar (1959) named “copulas” the function that absorbs all the dependence
structure. These approaches have some equivalence among each other, although the
transformations are not always possible to obtain in closed analytical form. Since then,
copulas have been used in many fields of science from geophysics to actuarial sciences
and finance (Cherubini et al., 2004; Nelsen, 2006; Patton, 2012; Salvadori et al., 2007).
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However, data time structure such as autocorrelation and homoskedasticity were
not taken into consideration in these studies. For time series analysis, other tools
have been developed separately such as Auto Regressive Conditional Heteroscedas-
ticity/Generalized Auto Regressive Conditional Heteroskedasticity (ARCH/GARCH)
developed by Engle (1982) and Bollerslev (1986), and its derivations, for instance,
Asymmetric Power ARCH (Ding et al., 1993), Exponential GARCH (Nelson, 1991),
and Multivariate GARCH (Bauwens et al., 2006).

Recently, many studies have been published using copulas and conditional volatility
to explain the contagion effect in financial markets (Brunnermeier and Perdersen,
2005; Forbes and Rigobon, 2002; Kaminsky et al., 2003; Naoui et al., 2010; Rodriguez,
2007). Particularly in financial applications, the contagion effect is when the returns of
financial assets show increase in their dependence structure or, graphically speaking,
appear in a unlikely manner around the regression line. An important aspect of this
phenomenon is that the high positive returns can also be correlated with high negative
returns as in financial “bubbles”. In quantitative finance, both risk management and
asset allocation procedures rely strongly upon dependence measures to estimate risk
factors and achieve efficient diversification. As stock returns show asymmetric lower
and upper tail dependence, the behaviour cannot be captured by traditional linear
correlation coefficient (Ang and Bekaert, 2002; Granger and Silvapulle, 2001; Login
and Solnik, 2001).

Copula functions also turn out to play an important role in dependence modelling
especially due to concordance characteristics, capacity to model tail dependence and
flexibility to work in a non-Gaussian world. However, in order to use the Extreme
Value Theory (EVT) and Generalized Pareto (GP) distribution model for both left and
right tails separately, the independence and identically distribution (i.i.d) assumptions
cannot be broken. Therefore, an ARMA/GARCH approach is usually applied to
generate the filtered conditional residuals which can be assumed to be independent
and identically distributed (Ghrobel and Trabelsi, 2009; Nystrom and Skoglund, 2002).
Besides, copula selection and validation tools are not unanimous. For instance, Huard
et al. (2006) considered copulas selection without counting for marginal modelling. Silva
and Lopes (2008) show advantages of estimating all parameters and used the deviance
information criterion, proposed by Spiegelhalter et al. (2002). Michiels and Schepper
(2013) (and references therein) show different graphical methods to visualize the fit.

For some other knowledge areas, particular tools were developed to take into
consideration the phenomena specificity. In epidemiology, for instance, for cluster
detection applications in spatial statistics, many algorithms have been proposed.
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Formally, a spatial cluster is the localized portion of the domain which contains a
higher-than-average proportion of cases over controls, and a space-time cluster can
be defined as unexpected concentrations of cases in a time series sequence of maps.
One of the predecessors in this field was Kulldorff (1997) who developed a spatial scan
statistics to detect a geographical cluster as early as possible. Thereafter, Kulldorff
(2001) proposed a prospective time scan method improved by Duczmal et al. (2006).
Other methods such as Conley et al. (2005), Wieland et al. (2007), Yiannakoulias
et al. (2007) and Duczmal et al. (2008) have also been presented to detect clusters
using different techniques. Duczmal et al. (2011) showed an extension for a prospective
space-time scan called the Voronoi Based Scan which uses the spatial tessellation and
Voronoi cells boundaries to detect clusters.

Although, at a first glance, these problems seem to be unrelated, the rationale
behind them is quite similar. Suppose X, Y are two random variables with an un-
known dependence structure between them. Without assuming any condition for the
relationship such as linearity or lack of sample autocorrelation, the main interest is to
analyse the time behaviour of the dependence structure which can be used for many
applications such as cluster detection in spatial statistics and contagion effect signalling
in financial markets. As described in Dornbusch et al. (2000), the financial contagion
detection can serve as a tool to anticipate a crisis in financial markets.

This work proposes a new non-parametric methodology based upon a non-ordinary
metric: the Weighted Voronoi Distance (WVD). Although extensive theoretical dis-
cussion can be found in Okabe et al. (2000) about spatial tessellation which has been
widely used in many fields such as biology and physics, it has not been used, to the
best of our knowledge, to model the space-time dependence structure between two
random variables. The main goal is to use the technique to develop a method able to
detect the increase in dependence more quickly than traditional measures. To illustrate
the potential advantages, simulations were run and real financial datasets were used to
verify how quick the 2007 subprime crisis could have been warned.

This thesis is organized as follows. Chapter 2 describes the copula methodology for
dependence modelling. Chapter 3 defines the new methodology of cluster detection
describing the inference procedure and the space-time scan. Chapter 4 presents
simulations run for different scenarios. The following chapter, Chapter 5 describes the
financial markets behaviour and the possibility to apply the methodology in this field
using real datasets and conclusions are pointed out in Chapter 6.



Chapter 2

Dependence Modelling using
Copulas

Copulas are the cutting edge technique to analyse the dependence structure today
due to its characteristics and flexibility (Boubaker and Sghaier, 2013; Meucci, 2011;
Patton, 2012). Therefore, this Chapter defines this measure in section 2.1, mentioning
the practical issues and benefits of such mathematical tool.

Broadly speaking, two parametric copula families are the most common and men-
tioned in literature, i.e. the elliptical and Archimedean copulas. In this work, the
elliptical family will be described and used as parameters interpretation is eased through
the transformation to traditional ρ. Furthermore, for Archimedean families, not only
are such analytical transformations not possible making it harder to interpret the
parameters, but they also have showed poor results for Goodness-of-fit test for financial
series (Patton, 2012).

2.1 Copulas
The word copula has its origin in Latin meaning “bond” or “tie”. In statistics, Sklar
(1959) was the first to mention this particular word in a theorem which bears his name
(pointed out in this section). Since then, this measure has become of great interest
among statisticians especially due to its scale-free characteristics and the possibility of
constructing families of bivariate distributions.

Formally, let I = [0, 1]. Then, copulas can be defined as:

Definition 2.1.1 A two-dimensional copula is a function C:I2 → I such that:

(i) C(0, x) = C(x, 0) = 0 and C(1, x) = C(x, 1) = x, ∀x ∈ I;
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(ii) for all a, b, c, d ∈ I, with a ≤ b and c ≤ d,

Vc([a, b]x[c, d]) = C(b, d) − C(a, d) − C(b, c) + C(a, c) ≤ 0. (2.1)

The function Vc is also called the C − volume of the rectangle [a, b] × [c, d]. Equiva-
lently, a copula is a bivariate distribution whose margins are uniform in [0, 1] restricted
to the unit square [0, 1] × [0, 1].

The importance of copulas in statistical field has been increasing due to Sklar’s
Theorem.

Theorem 2.1.1 (Sklar’s Theorem) Let G be a two-dimensional distribution function
with marginal distribution functions F1 and F2. Then there exists a copula C such that
G(x, y) = C(F1(x), F2(y)). Conversely, for any distribution functions F1 and F2 and
any copula C, the function G defined above is a two-dimensional distribution function
with marginals F1 and F2. Furthermore, if F1 and F2 are continuous, C is unique.

According to Sklar’s theorem, using a collection of copulas it is possible to construct
bivariate distributions with arbitrary margins. Nelsen (2006) and references therein
describe in details many parametric families and their characteristics. Normal and t
copulas and the Farlie-Gumbel-Morgenstern (FGM) copula family are widely used in
literature as mentioned by Aas (2004); Kolev and Paiva (2009); Manner and Reznikova
(2012); Patton (2012) to mention only a few. However, the FGM family can only model
relatively weak dependence (Nelsen, 2006). Thus, the immediate interest is to focus on
Normal and t copulas.

2.1.1 Elliptical Copulas

Let Φρ be the standard bivariate normal joint distribution with correlation coefficient
ρ. Then, the Normal (or Gaussian) copula is given by:

CN
ρ (u, v) = Φρ(Φ−1(u), Φ−1(v)) (2.2)

where Φ−1 denotes the standard normal distribution function. It is worth mentioning
that since there is no analytical expression for Φ−1, Φρ has also no closed form.

The t (or Student) copula can be defined analogous to the normal copula. Let
Tv,ρ be cumulative bivariate tv,ρ distribution with correlation coefficient ρ. Then, the
t-copula is given by:

CT
v,ρ(u, v) = Tv,ρ(T −1(u), T −1(v)) (2.3)
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Although both copulas have similarities, their behaviour in case of extreme events
(when the interest is to see the joint extremes) differ substantially. In order to study
the tail behaviour, the upper and lower tail dependences (λU and λL, respectively) can
be defined as:

λU = lim
t↗1

P (Y > F −
2 (t)|X > F −

1 (t))

= 2 − lim
t↗1

1 − C(t, t)
1 − t

λL = lim
t↘0

P (Y ≤ F −
2 (t)|X ≤ F −

1 (t))

= lim
t↘0

C(t, t)
t

(2.4)

It is possible to show that the Gaussian copula has 0 tail dependence for any given
correlation ρ. However, t-copula has its upper and lower tail dependence evaluated by:

λt
v,ρ = 2tv+1

−[(1 + v)(1 − ρ)] 1
2

(1 + ρ) 1
2

 (2.5)

This characteristic is important when the phenomena studied present extreme
events. As the methodology application with real datasets showed in Chapter 5 is
one of these cases, the Student copula will be applied to both simulation studies in
Chapter 4 and case study in Chapter 5.



Chapter 3

Dependence Modelling Measures
and Cluster Analysis and Detection

In this Chapter, the main contribution of this thesis is presented. First of all, the new
measure, called Weighted Voronoi Distance, is defined followed by a cluster detection
algorithm and a Space-Time Scan based on it.

3.1 Cluster Analysis

3.1.1 Weighted Voronoi Distance

The first step to build the proposed metric is to define Voronoi diagram. Consider n

point in the space domain and the set P = {(xi, yi) : i = 1, ..., n} ⊂ ℜ2. For i = 1, ..., n,
the Voronoi cell v(i) consists of those points in ℜ2 which are closer to (xi, yi) than any
other point in P . The Voronoi diagram is the collection of cells v(i), i = 1, ...n.

Let vk be a Voronoi cell which is crossed by the line segment joining points
ci = (xi, yi) and cj = (xj, yj), dk the length of the segment that is in vk, and ak the
area of the cell vk. Then, the Weighted Voronoi Distance (WVD) is defined as:

WV Dci,cj
=

nk∑
k=1

(dk/ak) =
nk∑

k=1
(wk ∗ dk) (3.1)

where nk is the total number of cells crossed by the line segment and wk = 1/ai is
the weight assigned to each cell.
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Fig. 3.1 Example of Weighted Voronoi Distance (WVD).

Example 3.1.1 Let p and q be two points in the plane illustrated in Figure 3.1. The
formula becomes:

WV Dp,q =
4∑

i=1
di/ai = d1/a1 + d2/a2 + d3/a3 + d4/a4 (3.2)

The numbered segments, di, emphasize that each segment is weighted by its Voronoi
cell area ai.

3.1.2 Cluster Detection and WVD Space-Time Scan

Having defined the WVD, it is possible to build a cluster detection procedure. Firstly,
a data set called training set (T ) (known as “controls” in some fields) is chosen, the
Voronoi diagram is calculated and plotted with these points and the WVD is calculated
for all possible pairs. Notably, as the metric is symmetric only (n2 −n)/2 distances have
to be calculated, reducing the complexity of the algorithm. Besides, this training set T

has to be chosen to represent a randomly distributed population. Secondly, a Monte
Carlo simulation is run m times to build the empirical distribution of WVD’s. Then,
the sum of all WVD in time sequence from a data set called candidate set (C) (known
as “cases” in some fields) is calculated and compared to the empirical distribution.
Given the significance level, it is possible to test the existence of a possible cluster,
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as defined in Chapter 1, through an one-tail hypothesis test. The procedure can be
summarized as:

1. Choose the Training Set (T ) which describes the randomly distributed population
and calculate the Voronoi Diagram for these points.

2. Calculate the Weighted Voronoi Distance (WVD) for all pairs in the Training
Set (T ).

3. Build an Empirical Distribution for the WVD using Monte Carlo simulations.

4. Calculate the Weighted Voronoi Distance for the Candidate Set (C).

5. Compare the WVD of the Candidate Set with the appropriate percentile given
the confidence level.

To visualize both the Training Set (T ) and the Candidate Set (C), Figure 3.2 shows
an example of a Training Set with 10 points and a Candidate Set with 3 elements.

Fig. 3.2 The circles are the training set. The squares are the candidates for a cluster.

It is worth mentioning that the points can hardly be identified as significantly
concentrated just looking at the map.

Formally, let ci be the i − th point, the training set T = ⋃nT
i=1 ci, and nc be the

length of the candidate set C. Then, the WV Di of a subset of T = c(i−nc), ..., ci is
defined as:

WV Di =
i∑

t=i−nc+1
WV Dt,t−1 (3.3)
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And the Empirical Distribution (ED) for a particular time length (or horizon) nc

obtained running m Monte Carlo simulations is defined as:

ED =
m⋃

i=1
WV Di (3.4)

Having set the significance level, α, the one-tail hypothesis test is run:H0 : WV Di ≥ 100 ∗ αthpercentile(ED)
H1 : WV Di < 100 ∗ αthpercentile(ED)

One of the advantages of this new metric is that as it has been built upon the real
line, it allows no multiple solutions, a problem faced by Duczmal et al. (2011).

Particularly in financial applications, the contagion effect can be seen when the
returns of financial assets increase their correlation getting closer to the regression
line. As high positive returns can be followed by high negative returns as in financial
unstable periods, instead of applying the WVD methodology for the original plane,
i.e. returns of asset y against returns of asset x, a torus is created with its external
longitudinal axis being the regression line of the original plane, maintaining the returns
dependence characteristics. Furthermore, this geometry construction extinguishes the
border problem when dealing with Voronoi Diagrams in classical Cartesian plane as
borders are connected and no infinite border is necessary.

In Figure 3.3 the original returns series are plotted for three different situations: a
centered cluster, no cluster, and a border cluster.

The first two cases are visually straightforward to recognize. However, the latter
case is only obtained due to the torus construction. Otherwise, should the points be
connected through the middle of the map instead of through the borders, the Voronoi
Distance could be high enough not to detect the financial movement. Although the
distances are actually calculated in the Cartesian plane using replicas around the
original map, the geometrical visualization of the phenomena with torus is easier
especially when high and low returns are correlated.
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(a) Centered Cluster in the Cartesian plane (b) Centered Cluster represented in a torus
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(c) No Cluster in the Cartesian plane (d) No Cluster represented in a torus
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(e) Border Cluster in the Cartesian plane (f) Border Cluster represented in a torus

Fig. 3.3 The numbered dots represent the cluster candidates considering their order of
occurrence. Regression lines are plotted in the Cartesian planes representation.



Chapter 4

Simulation Study

After describing the new methodology in Chapter 3, this chapter shows results and
discussion about the methodology simulations under different scenarios, and comparison
with copula approach.

For both methods, a training set (T ) assumed to be the null hypothesis of 504
observations was generated from a bivariate Normal distribution with zero mean, 0.10
standard deviation for each variable, and 0.70 correlation coefficient between them.
Formally, the empirical distribution is given by:

X
H0∼ N(µ, Σ), (4.1)

where µ = [0, 0] and Σ =
[

0.010 0.007
0.007 0.010

]
.

As alternative scenarios, three different changes in behaviour were tested. Firstly,
the mean was kept at zero and the correlation was increased to 0.85. This scenario
simulates the simple increase in correlation between two random variables. The second
scenario was generated from distribution with the same covariance as the null hypothesis,
but the mean for each sample was either [0.04, 0.04] or [−0.04, −0.04]. The decision
as taken from a Bernoulli Distribution with p parameter equals to 0.5. Thus, keeping
the correlation constant, this scenario is expected to verify the detection capacity of
the proposed algorithm in a situation where regular tools usually do not work as well
as in the first scenario. Finally, the third scenario was generated changing the mean
vector to µ = [−0.04, −0.04]. These cases were especially chosen due to practical
applications were this phenomena are found such as financial markets (described in
details in Chapter 5). The alternative scenarios are shown in Figure 4.1.

As discussed by Kulldorff (2001), purely repeating spatial analysis cannot be
adequate to detect emerging clusters. Should the emerging cluster have occurred in the
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(a) Increase in correlation to 0.85.

(b) Alternating points between mean 0.04 and -0.04.

(c) Translated points around (-0.04,-0.04)

Fig. 4.1 Scatter plot for alternative scenarios tested.



16

last few observations, purely spatial analysis for the whole period dilutes the cluster
strength and diminishes the power to detect such cluster. Conversely, for short periods,
adjustments for multiple testing should be made when repeated analysis every month
are taking place. Therefore, simulations were run using four different time periods, i.e.
n = 21, 42, 63 and 84 points, and tests were made after each step to check possible
cluster detections.

For each horizon, the WVD Space-Time Scan compares the Voronoi Distance with
an empirical distribution as defined in equation 3.4. In each simulation, a collection of
n points was randomly selected from the 504 original points and Voronoi tessellation,
respecting their order, and the total Weighted Voronoi Distance was recorded. This
step was repeated 100,000 times to build the empirical distributions for each horizon.

With the empirical distributions, it was possible to calculate the critical values
for each horizon and for different significance levels: 0.5%, 1%, 2%, 5%, 10%, 20%,
50%, and 80%. Table 4.2 describes these values which play an important role in the
proposed test.

Table 4.1 Critical Values for the Empirical Distributions for different horizons.

Significance Level Horizons
21 42 63 84

0.5% 7213.7 17144.7 27693.7 37634.0

1.0% 7596.2 17711.2 28333.2 38855.2

2.0% 8046.1 18333.3 29157.6 39818.6

5.0% 8662.4 19229.8 30165.1 41026.8

10.0% 9220.7 20027.4 31128.5 42195.4

20.0% 9868.7 20979.4 32314.3 43614.0

50.0% 11127.4 22863.4 34590.8 46306.2

80.0% 12433.5 24682.9 36933.2 48999.4

In order to calculate both the cluster Power of Detection and the Average Detection
Delay, 10,080 calculations for Copula and WVD Space-Time Scan approaches were
made using the same datasets. The “Power of Detection” column shows the proportion
of the simulations that detected a significant cluster and the “Average Detection
Delay” represents the mean of the time until detection given that the method detected
the cluster. The results can be seen in Table 4.2. The scenario 1 is the increase in
correlation, scenario 2 is the alternating points and scenario 3 is the translated points
following the order in Figure 4.1.
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Table 4.2 Simulation results for different time horizons (95% confidence level).

Methodology Number of Points Power of Detection Avg. Detection Delay
Sc

en
ar

io
1

21 0.92 7.16
Copula 42 0.95 19.15

63 0.98 31.11
84 1.00 45.44
21 0.77 11.10

WVD Scan 42 0.99 21.38
63 0.99 25.66
84 1.00 26.73

Sc
en

ar
io

2

21 0.78 9.61
Copula 42 0.77 22.27

63 0.77 35.70
84 0.78 49.89
21 0.79 11.21

WVD Scan 42 0.99 21.01
63 1.00 25.00
84 1.00 25.92

Sc
en

ar
io

3

21 0.71 8.46
Copula 42 0.67 19.60

63 0.67 32.20
84 0.67 44.94
21 0.79 11.33

WVD Scan 42 0.99 20.89
63 1.00 24.85
84 1.00 25.87

As results were similar for all other significance levels, the analysis will be made
for the 95% confidence level and tables for the remaining levels can be found in the
Appendix.

4.1 Discussion
Having proposed the new methodology for cluster detection and run simulations for
three different alternative scenarios for both Copulas and WVD Space-Time Scan, it is
possible to compare both methodologies.

First of all, both methods behaved similarly for the scenario where the increase in
dependence occurs through an increase in off-diagonal terms of the covariance matrix.
Such a situation was expected for copulas as a direct transformation can be made to
work with the linear correlation coefficient in question. On the other hand, for the
same scenario, the WVD approach was also able to capture the data structure change
and signalize the increase in dependence.

Nonetheless, in situations where the increase in dependence happens in not an
ordinary way and cannot be easily seen in the scatter plot as in Figure 4.1, the
proposed methodology showed better results for both Power of Detection and Average
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Detection Delay than Copula. By construction, copulas (and the linear correlation
coefficient) are not able to capture changes in mean nor changes in behaviour when
data oscillates in extremes but do not move away from the original regression line.
Through the parameters space tessellation and the use of the torus geometry, the
proposed methodology could perform better than copulas to detect and signalize these
changes. Although changes around the regression line are common and important,
they are not the only type of dependence change that can happen between any two
random variables.



Chapter 5

Financial Markets and the
Weighted Voronoi Distance
Space-Time Scan

This chapter describes the behaviour of global financial markets during crisis (section 5.1
and applies the methodology proposed in Chapter 4 to detect clusters in financial
assets returns. A comparison with copula methodology described in Chapter 3 is made
and the results are shown in sections 5.2 and 5.3.

5.1 Financial Market Crisis
Financial markets often crashes. Although investors may face different types of risks,
the risk of collapse in particular is usually one of the most important risks, especially
due to its impact in investor’s portfolio. In October 1987, for example, the stock market
declined by over 20 percent in the US and Canada and over 25 percent in the UK. The
“black Monday” is the largest one-day percentage decline ever recorded in the US stock
market. Ten years after, in 1997, the Asian financial crisis caused the devaluation
of many Asian currencies, for instance the Thai baht, the South Korean won and
the Indonesian rupiah which declined over 80 percent in one year period. Rapidly, it
spread out to developed countries. The 2007 crisis with its roots in subprime housing
bubble in the United States made the DJIA index plunge over 50 percent in 17 months.
These times are crucial for both investors and regulators because the diversification
mechanisms usually disappear.
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Traditionally, it is believed that continuous long-term deterioration of macroeco-
nomic factors would lead to financial crisis. Krugman (1979) is one of the predecessors
in this field having studied how governments should not be able to sustain a pegged
exchange rate regime using their foreign reserves to offset markets movements. Other-
wise, a “crisis” would be created in the balance of payments. Obstfeld (1986) innovated
studying the self-fulfilling balance of payments crises using stochastic models to link
macroeconomic variables to the phenomenon. For decades, the early warning systems
(EWS) for financial crisis were based on macroeconomic fundamentals and were de-
signed to monitor and predict the events in the mid- to long term, i.e. at least one
year. However, due to lack or delay of information and relative low frequency of data
releases, these models tend to respond slowly to market changes, although financial
data demonstrate high variability.

Recently, many studies have been published trying to analyse and explain the
spillover phenomena (Bae et al., 2003; Dungey et al., 2003; Forbes and Rigobon, 1999;
Kaminsky et al., 2003; Valdés, 1996). Dornbusch et al. (2000) and Pericoli and Sbracia
(2003), for instance, divided the transmission mechanisms into two different categories,
i.e. interdependence and contagion. The first category is due to normal interdependence
such as geographical position and trade links. This market interaction is based upon
fundamentals and is responsible for the comovements in both tranquil and turbulent
times. Calvo and Reinhart (2003) named this effect as “fundamentals-based contagion”.
The second category is another type of dependence which can be seen only in turbulent
periods. Dornbusch et al. (2000) argues that this “irrational” phenomenon is based on
panic, loss of confidence and herd behavior, but not on financial nor macroeconomic
variables. Kyle and Xiong (2001) and references therein discuss how effects other than
fundamentals can and actually interfere in market behaviors.

The financial literature describes many mechanisms through which the contagion
can be disseminated (Longstaff, 2010, and references therein). First, the negative shocks
in one market is associated with negative news that is directly linked to securities, for
example, cash-flow and/or collateral, in other markets. Kaminsky et al. (2003); King
and Wadhwani (1990); Kiyotaki and Moore (2002) are only a few authors who discuss
these market news absorption from different perspectives. Second, Allen and Gale
(2000); Brunnermeier and Pedersen (2009) and others analyze how investors reduce
the market overall liquidity after a shock. This behavior can be caused by forced
liquidation of leveraged positions or investors’ ability to obtain funding. Third, the risk
premia required by investors is not constant. Therefore, negative shocks in any market
can affect the dynamic behavior of the risk premia as investors change their willingness
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to bear risk. Acharya and Pedersen (2005); Longstaff (2004); Vayanos (2004) show
how distressed securities may be predictive of subsequent negative returns in other
securities, leading to increase in risk premia asked by investors.

Econometric models have been developed to describe and forecast the economic
phenomenon in question. Eichengreen et al. (1996) and Frankel and Rose (1996) showed
almost simultaneously how currency crisis can be estimated using logit/probit models.
Although they used different input variables and different definitions for “crisis”,
the rationale is still very similar. Hawkins and Klau (2000) built “vulnerability and
pressure indices” based on representative variables presented in the literature and
achieved satisfactory results. Edwards (1998) studied the role interest rates play in
crisis contagion in open economies using the generalized autoregressive conditionally
heteroskedastic (GARCH) approach. The contagion effect among East Asian countries
was modeled by Khalid and Kawai (2003) using vector autoregressive (VAR), and no
strong support for contagion was found for the period and markets included. Longstaff
(2010) used the same approach for ABX subprime indexes and found strong evidence
of contagion in the American financial market. Another leading modelling category is
the non-parametric approach which utilizes available daily financial data to improve
crises detection capability. Kaminsky et al. (1997) popularized the idea of defining
threshold values beyond which a crisis would be said to take place using equity prices
as one of the indicators. Thereafter, many other studies have been conducted in this
line and moderately success has been obtained (Frankel and Saravelos, 2010), although
their focus were not crisis prediction but rather an ex-post analysis.

In order to study the proposed WVD Space-Time scan methodology performance
to signalize 2007-8 financial crisis behaviour and the its presence, two scenarios were
analysed: the contagion/spilover effect within the US financial market and the effect
in the American, the British and the Japanese markets. The former case is shown
in section 5.2 and the latter case is described in section 5.3. This study focus on the
three of the most important asset classes, named fixed income, equities, and currency.
The benefits of these choices are clear: (i) using daily data instead of macroeconomic
variables increases the possibility of detecting a crisis earlier, and (ii) these assets
classes represent classes used for diversification benefits in asset allocation procedures.
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Fig. 5.1 Daily Returns for all 4 asset series between 01/03/2003 and 12/31/2007.

5.2 The US Financial Market Crisis and the WVD
Space-Time Scan

The analysis of the American financial market was based upon daily returns of EURO,
NASDAQ, iShares iBoxx Investment Grade Corporate Bonds and S&P500 were used
from January, 3th, 2003 until December, 12th, 2007, totalling 1253 samples for each
series. The data was downloaded from Yahoo! Finance (finance.yahoo.com) and the
returns are plotted in Figure 5.1.

It was not until August, 2007, that the Federal Reserve officially published the
turmoil in financial markets (FOMC, 2007). Although authorities came to public only
in the third quarter of 2007, investors and other market participants have already
reacted to and priced the upcoming crisis, changing the behaviour and consequently
the dependence structure between assets.

Figure 5.2 shows on the left hand side the scatter plot for the returns around the
x-axis, i.e. the returns rotated by the regression line angle. On the right hand side,
the respective torus representation is shown. As similar results were obtained for all
four pairs of assets, the illustration below is just for one particular case (Corporate
Bonds and S&P500).

As discussed in Chapter 4, different periods should be chosen in order to detect
clusters. Similar to what was shown by Kulldorff (2001), here a time periodic surveil-
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Fig. 5.2 Scatter plot and the torus representation for Corporate Bonds and S&P500.

Table 5.1 P-values for three different dates and four horizons.

Horizon 12/06 06/07 10/07

Corporate Bonds/S&P 1 month 0.04 0.97 0.00
2 months 0.00 0.93 0.00
3 months 0.19 0.87 0.00
4 months 0.12 0.00 0.00

Euro/Nasdaq 1 month 0.40 0.90 0.02
2 months 0.04 0.87 0.00
3 months 0.11 0.96 0.04
4 months 0.54 0.00 0.06

Euro/Corporate Bonds 1 month 0.08 0.50 0.02
2 months 0.04 0.74 0.00
3 months 0.22 0.80 0.03
4 months 0.16 0.00 0.14

Euro/S&P 1 month 0.43 0.76 0.32
2 months 0.02 0.59 0.04
3 months 0.06 0.74 0.13
4 months 0.37 0.00 0.35

lance is used with one, two, three and four months. Figure 5.3 presents the p-values
for 10,000 Monte Carlo simulations (m = 10, 000).

Working with a 95% confidence interval, it is expected to find random points below
both the 20 and 5% levels (horizontal lines). However, in December 2006, June 2007
and October 2007, all asset pairs presented at least one horizon below the 5% level.
This effect can indicate a presence of a market reaction, a financial contagion, before the
crisis announcements and earlier than previous studies about Early Warning Systems
(Addo et al. 2013, for example). The p-values for these horizons are presented in Table
5.1.

Having analysed the results for the proposed model, we would like to compare the
WVD Space-Time Scan with the Copula approach estimated by filtered conditional
residuals obtained from a ARMA/GARCH model as shown by Nystrom and Skoglund
(2002). In this case, each univariate time series was modelled as a AR(1)/GARCH(1,1)
process, removing both autocorrelation and heterocedasticity present in the original
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Fig. 5.3 P-values for Corporate Bonds and S&P500, Euro and NASDAQ, Euro and
Corporate Bonds, and Euro and S&P500 for 1, 2, 3 and 4 months (red, green, blue
and black), respectively.
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series. The second step was to estimate the empirical cumulative distribution function
(CDF) for each series with a Gaussian kernel to smooth the interior the sample
CDF pattern. Each tail, consisting of 15% of the residuals, was associated with a
parametric Generalized Pareto Distribution (GDP) and their index (ζ) and scale
(β) parameters were estimated optimizing the log-likelihood function. Finally, the
standardized residuals are transformed to uniform variates and a t-copula (as described
in 2.1) is fitted to the transformed data. Figure 5.4 shows the ρ for the pairs studied.

The horizontal lines in Figure 5.4 show a possible threshold for the coefficient of 0.8
and -0.8. It is worthy mentioning that the interpretation of the correlation coefficient
graph is different from the p-values shown in Figure 5.3: while the crisis signal is given
by a low p-value level in Figure 5.3, in Figure 5.4 the crisis is signalized by a high
correlation coefficient. As can be seen, the positive threshold, i.e. +0.8, was crossed
just once, in the first quarter of 2006, by the Corporate Bonds and S&P500 (1-month)
series during the period in question. This signal is weaker than the signal generated by
the WVD Space-Time Scan procedure.

5.3 International Financial Markets and the WVD
Space-Time Scan

In order to analyse the behaviour of the WVD Space-Time Scan for the international
markets, equity indexes were used from the US, UK, and Japanese markets: S&P500,
FTSE100, and NIKKEI225, respectively. These markets were chosen due to their
representativeness in global financial markets and their informational efficiency.

The period in question was from January 2003 until December 2007 for all assets.
However, the number of observations are different for each pair of series as only
trading days were taken into account. The American and British pair was built with
1250 observations, the American and Japanese series had 1184 observations, and the
Japanese and British pair showed 1223 observations.

Similar analysis as described in previous section is made and the p-values are shown
in Figure 5.5 and Table 5.2.

As can be seen, in July 2006 the Nikkei/FTSE pair showed two p-values below
5% level, i.e for 2 and 4 months, and the two other pairs in study showed all p-values
below 5% level. In December of the same year, both Nikkei/FTSE and FTSE/S&P
reached levels below 5% for 2 and 3 month, and Nikkei/S&P reached levels below 5%
for all four months. In October 2007, when the crisis was officially declared, all pairs
presented p-values below 5% levels.
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Fig. 5.4 Correlation Coefficients estimated by EVT and Copula for ARMA/GARCH
filtered series of Corporate Bonds and S&P500, Euro and NASDAQ, Euro and Corporate
Bonds, and Euro and S&P500 for 1, 2, 3 and 4 months (red, green, blue and black),
respectively.



5.3 International Financial Markets and the WVD Space-Time Scan 27

Fig. 5.5 P-values for NIKKEI250 and FTSE100, FTSE100 and S&P500, and NIKKEI250
and S&P500 for 1, 2, 3 and 4 months (red, green, blue and black), respectively.

Table 5.2 P-values for three different dates and four horizons.

Horizon 07/06 12/06 10/07

Nikkei/FTSE 1 month 0.16 0.10 0.05
2 months 0.02 0.04 0.00
3 months 0.07 0.04 0.00
4 months 0.03 0.037 0.00

FTSE/S&P 1 month 0.01 0.21 0.00
2 months 0.00 0.01 0.00
3 months 0.01 0.00 0.00
4 months 0.04 0.92 0.00

Nikkei/S&P 1 month 0.00 0.01 0.00
2 months 0.00 0.00 0.00
3 months 0.03 0.01 0.00
4 months 0.05 0.00 0.00
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Fig. 5.6 Correlation Coefficients estimated by EVT and Copula for ARMA/GARCH
filtered series of NIKKEI250 and FTSE100, FTSE100 and S&P500, and NIKKEI250
and S&P500 for 1, 2, 3 and 4 months (red, green, blue and black), respectively.

However, using the same technique described in section 5.2, i.e. filtering the original
series with a AR(1)/GARCH(1,1) process and modelling the each residual series with
a Gaussian kernel and GP Distribution before estimating the t-copula function for the
dependence, results were not helpful in anticipating the 2007 crisis. The Figure 5.6
displays the behaviour for all three market pairs and for the same window lengths:
one, two, three, and four months.

The only signal that crossed the 0.8 correlation threshold was the Nikkei/FTSE
1-month with an increase in all other three periods levels in the first quarter of 2007.
Nevertheless, it was not sufficient to raise any flag to signalize any crisis.



Chapter 6

Conclusions and Final Remarks

Dependence modelling has been of major concern in many fields during the last century.
So, many measures have been proposed to quantify the relationship between two or
more random variables. In this thesis, the Weighted Voronoi Distance (WVD), a new
dependence measure based upon spatial tessellation is proposed. This approach uses a
well know geometry concept, i.e. the Voronoi diagram, working with the parameters
space instead of the geographical points and in a torus instead of the regular Cartesian
plane. While not unanimous, such a construction allows users to work with more
alternative models and to detect dependence behaviours that are not possible with
traditional dependence modelling measure such as linear coefficient or copulas.

Using this new measure, a Space-Time Scan statistics was built to detect the increase
in dependence levels recognizing the cluster presence. The method is non-parametric
and respects the time structure in dataset to compute the measure which can be an
advantage if compared to other methods in applications where assumptions such as
independence or autocorrelation cannot be relaxed.

Inference procedure for the WVD Space-Time statistics is presented and Monte
Carlo simulations were run to build a thorough cluster detection analysis. Simulations
show that this strategy is similar to traditional mehtods in “regular” situations and
behave better when the location changes abruptly from north-east to south-west in the
map.

Finally, real financial data was used to analyse the detection capacity of the
contagion effect in financial markets during the 2007 sub-prime crisis. Two different
situations were verified: (i) Different asset classes within the US and (ii) Different
countries in international markets. The results from the proposed methodology were
compared to Extreme Value Theory and copula approach, and the WVD Space-Time
statistics was able to signalize anomalies more strongly than the traditional method.
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Thus, it is expected that this tool may help academics, practitioners and regulators to
better manage their risk in financial markets.
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