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Resumo

Esta tese propoe estudos tedricos, simulados e aplicados, em processos ARMA Periddicos
(PARMA), nos contextos de identificabilidade, robustez e observagoes faltantes. No que
tange ao problema de identificabilidade, suposi¢oes sao determinadas para garantir uni-
cidade na identificagao do processo, teoria que nao tem sido ainda explicitamente inves-
tigada na literatura de processos PARMA. As condigoes de identificabilidade sugeridas
permitiram o desenvolvimento da teoria assintética para o estimador de Whittle desse
modelo. O estudo de robustez é baseado no dominio da frequéncia e em regressao M
para obter o estimador da matriz de densidade espectral, que é aplicado ao método de
Whittle, com o objetivo de propor um estimador robusto do modelo PARMA quando
a série é contaminada por outliers aditivos ou é gerada por distribuicoes simétricas de
caudas pesadas, como por exemplo, t-student ou exponencial dupla. A Estimacao de
modelos PARMA com outliers aditivos e observacoes faltantes é a terceira contribuicao
desta tese. Nesse contexto, é proposto um estimador que tem propriedades de robustez e
pode ser aplicado em series temporais incompletas. A metodologia é baseada no dominio
da frequéncia por meio da convolucao entre funcao espectral e periodograma. Todas as
propostas sao utilizadas na aplicacao a dados reais provenientes da area da poluicao do
ar. Essas trés contribuicoes cientificas estao, respectivamente, apresentadas nesta tese por
meio dos seguintes artigos: Identifiability and Whittle Estimation of Periodic ARMA Mo-
dels; M -regression spectral estimator for periodic ARMA models: a robust method against
additive outliers and heavy tail distributions; e On the use of classical and M periodograms

to fit periodic ARMA models to time series with missing data and additive outliers.

Palavras-chave: Processos periodicamente estacionarios. Modelo PARMA. Estimador
de Whittle. Identificabilidade. Robustez. Dados faltantes.



Abstract

This thesis proposes theoretical, simulated and applied studies on Periodic Autoregressive
Moving Average (PARMA) processes in the identifiability, robustness and missing data
contexts. Regarding the identifiability problem, conditions have been established to en-
sure the uniqueness of PARMA representation, which has not been explicitly investigated
in the literature of PARMA processes yet. The proposed conditions have allowed the
development of the asymptotic theory of Whittle estimator of PARMA parameters. The
robustness study is based on the frequency domain and M-regression used to obtain an
estimator of the spectral density matrix, which is applied in the Whittle’s method, aiming
to propose a robust estimator of the PARMA model for time series contaminated by ad-
ditive outliers or generated by symmetric heavy tailed distributions, such as t-student or
double exponential. The estimation of PARMA models with additive outliers and miss-
ing data is the third contribution of this thesis. In this context, it is proposed a robust
estimator which can be applied to fit incomplete time series. The methodology is based
on the frequency domain through convolution of spectral density and periodogram. All
proposals are used in applications to real air pollution datasets. These three contribu-
tions are, respectively, presented in this thesis through the following papers: Identifiability
and Whittle Estimation of Periodic ARMA Models; M-regression spectral estimator for
periodic ARMA models: a robust method against additive outliers and heavy tail distri-
butions; and On the use of classical and M periodograms to fit periodic ARMA models

to time series with missing data and additive outliers.

Keywords: Periodically stationary processes. PARMA model. Whittle estimator. Iden-
tifiability. Robustness. Missing data.
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1 Introducao

Dados coletados no tempo usualmente violam a suposicao de independéncia, que é
uma das principais condi¢oes dos procedimentos estatisticos mais basicos. Nesse con-
texto, a andlise de séries temporais se torna uma metodologia alternativa apropriada para
realizar inferéncia em dados correlacionados no tempo. Formalmente, uma série temporal
representa uma realizacao finita de um processo estocastico que pode ser indexado pelo
tempo, espaco ou ambos. No que tange a séries temporais, em geral, a estacionariedade
de segunda ordem, ou fraca, é um dos requisitos basicos. Essa condicao estabelece que os
momentos de primeira e segunda ordens nao dependem do tempo. Uma suposi¢cao mais
forte é a de estacionariedade estrita, a qual impoe que todas as distribuigdes conjuntas
finito-dimensionais do processo sejam invariantes sob translacoes do tempo. Pode-se mos-
trar que estacionariedade estrita aliada a momentos de segunda ordem finitos implica a
de segunda ordem, enquanto o oposto nao necessariamente ¢ valido. Nesta tese, o termo
estacionariedade se referird a estacionariedade de segunda ordem. Ver |Brockwell & Davis
(2006)) e [Priestley; (1981]), para mais informagoes acerca de processos estacionérios.

A suposicao de estacionariedade nem sempre é apropriada na préatica e pode ser vi-
olada de diversas formas, de modo que métodos especiais necessitam ser desenvolvidos
para tratar cada fenomeno separadamente. Em particular, processos cuja estrutura de
covariancia varia no tempo de maneira periédica, ou periodicamente estacionarios (PS),
tém ganhado atencao especial desde o artigo pioneiro de|Gladyshev (1961). (Tiao & Grupe
(1980)) investigaram os efeitos de utilizar modelos estacionarios que negligenciam a periodi-
cidade da verdadeira estrutura de covariancia, observaram que essa ma especificagao pode
deteriorar o desempenho das predigoes e mostraram que esse fenomeno nao é detectado
pelo diagnostico da qualidade de ajuste padrao. Nesse contexto, alguns autores propuse-
ram métodos para identificar correlagao periddica oculta em séries temporais. Veja, por
exemplo, Hurd & Gerr| (1991)) e Vecchia & Ballerini (1991). Evidéncias da ocorréncia de
processos PS em situagdes praticas foram documentadas em (Gardner & Franks (1975),
Bloomfield, Hurd & Lund| (1994), |Lund et al. (1995)), entre outros.

Em geral, processos estacionarios sao base para a concepgao de modelos para séries
temporais PS, onde se admite que os parametros variem periodicamente no tempo. O
modelo Periédico Autoregressivo (PAR) é um dos mais abordados nesse contexto. A
familia PAR foi originalmente introduzida por [Thomas & Fiering| (1962)) para o ajuste e
a simulagao de fluxos de rios, um estudo sistematico das propriedades desses sistemas foi
realizado por Troutman|(1979) e McLeod (1994) desenvolveu a metodologia de diagndstico
da qualidade de ajuste para esses processos e mostrou vérias desvantagens do modelo
Periédico Autoregressivo de Médias Méveis (PARMA), tal como a inviabilidade do uso

de critérios autométicos de selecao das ordens do modelo, devido, principalmente, a alta
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complexidade computacional envolvida. Diante dessa limitacao, somente poucos artigos
investigaram a familia PARMA. Como exemplo, pode-se citar Vecchia) (1985)) e |Li & Hui
(1988)).

O avanco tecnolégico ocorrido a partir do final da década de 90, no entanto, motivou
diversos pesquisadores a retomarem o estudo de processos PARMA com fungao de autoco-
variancia absolutamente somavel (memoria curta), dedicando especial atengao a métodos
de estimacao desses modelos. No dominio do tempo, |[Anderson, Meerschaert & Vecchia
(1999) desenvolveram o innovations algorithm para a estimacao de sistemas PARMA, |An-
derson & Meerschaert| (2005)) investigaram as caracteristicas assintéticas desse estimador,
Lund & Basawa (2000)) usaram essa metodologia na construgao de um procedimento recur-
sivo simples de predi¢oes um passo a frente, o qual foi utilizado no desenvolvimento de um
algoritmo eficiente para avaliar a verosimilhanca exata de séries temporais PARMA gaus-
sianas e Basawa & Lund| (2001) estudaram as propriedades assintéticas do estimador de
minimos quadrados ponderados para esses modelos. No dominio da frequéncia, Sarnaglia,
Reisen & Bondon (2015) sugeriram a utilizacdo da metodologia de Whittle para estimar
os parametros do modelo PARMA. No contexto de memoria longa, ou seja, quando a
fun¢ao de autocovariancia nao é absolutamente somével, [Franses & Ooms| (1997) e |Ko-
opman, Ooms & Carnero| (2007) estudaram processos PARMA de Integragao Fracionéria
(PARFIMA).

Em geral, no contexto de estimagao, assume-se que a familia de modelos considerada
¢ identificavel no sentido de Reinsel| (1997) ou Deistler, Dunsmuir & Hannan (1978)). Em
poucas palavras, identificabilidade de uma familia de modelos significa que uma estrutura
de covariancia (ou matriz de densidade espectral) determina um, e somente um, membro
dessa familia. Portanto, nao identificabilidade resulta em uma superficie de verossimi-
lhanga com mais de um maximo (BROCKWELL; DAVIS| 2006, pagina 431). Nesse
sentido, a investigacao de condigoes que asseguram a identificabilidade do modelo é um
tépico extremamente importante. No que tange a processos ARMA Vetoriais (VARMA),
condigbes suficientes foram introduzidas por Dunsmuir & Hannan| (1976) e Deistler, Duns-
muir & Hannan (1978). No entanto, para a familia PARMA, esse topico ainda é inexplo-
rado, sendo que as pesquisas dedicadas a estimacao desses processos somente assumem
implicitamente que a busca pelas estimativas é restrita a modelos identificaveis. Veja, por
exemplo, o ultimo pardgrafo da pagina 652 de Basawa & Lund (2001)).

Conjuntos de dados reais frequentemente apresentam observagoes atipicas, ou outliers.
Em geral, esses dados aberrantes comprometem os métodos de inferéncia classicos. Na
literatura, em geral, trés tipos de outliers sdo considerados (DENBY; MARTIN, (1979):
outliers de inovacao (IO), que afeta todas observagoes subsequentes; outliers aditivos
(AO); e outliers de reposicao (RO). Os dois dltimos nao afetam observagoes futuras. |[Ma
& Genton| (2000)) ressaltam que AO e RO tém o mesmo efeito e sdo muito mais prejudiciais

do que IO. Nesse contexto, |[Fajardo, Reisen & Cribari-Neto| (2009)) estudaram o efeito do
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AO em processos de memoria longa e mostraram que, nesse caso, o processo contaminado
apresenta a propriedade de perda de memdria, isto €, as funcoes de autocorrelagao tedrica
e amostral convergem para zero com o aumento da magnitude do outlier. No contexto
de processos PS, Sarnaglia, Reisen & Lévy-Leduc (2010) chegaram a mesma conclusao.
Naturalmente, estimadores classicos apresentam alta sensibilidade a presenca de outliers,
devido ao impacto dessas observacoes atipicas na estrutura de covariancia amostral. Por
esse motivo, metodologias robustas tém sido sugeridas na literatura.

No dominio do tempo, Ma & Genton| (2000) propuseram uma metodologia de es-
timacao da funcao de autocovariancia, baseada no estimador robusto da escala @,. Os
autores também estudaram a robustez do método proposto contra RO. Baseados nesse
estudo, |Fajardo, Reisen & Cribari-Neto| (2009)) propuseram um método robusto para a
estimacao do parametro de diferenciagao fracionaria de processos ARFIMA. [Sarnaglia,
Reisen & Lévy-Leduc (2010) estenderam a proposta de [Ma & Genton| (2000) para realizar
a estimagao robusta da funcao de autocovariancia periédica e dos parametros de modelos
PAR. Robustez para modelos PAR também tem sido considerada por [Shao| (2008).

No dominio da frequéncia, estimadores robustos da densidade espectral foram intro-
duzidos recentemente como alternativas ao periodograma classico. O periodograma tem
relagao com o estimador de minimos quadrados dos coeficientes do modelo de regressao li-
near, onde as covaridveis sao dadas por senoides (seno e cosseno) avaliados nas frequéncias
harmonicas, veja por exemplo, Priestley (1981). Nesse contexto, diversos autores suge-
rem, em vez de minimos quadrados, realizar a estimacao do modelo de regressao através
do método nao linear de estimadores M, o que da origem aos periodogramas M. Para
séries univariadas com memdria curta, como, por exemplo, processos ARMA, [Li (2008])
estuda o caso especial do periodograma de Laplace, onde o método de minimos quadrados
¢é substituido por minimo valor absoluto. Extensao dessa metodologia é proposta por |Li
(2010). No contexto de memodria longa, Fajardo et al. (2015) se baseiam nos resultados
de [Koul| (1992) para estudar as propriedades do periodograma M.

No contexto multivariado, o periodograma M ainda permanece inexplorado. Em
adicao, estimadores robustos para modelos PARMA ainda nao foram introduzidas na
literatura. Dessa forma, a utilizacao do periodograma M multivariado em conjunto com
a metodologia de Whittle para realizar o ajuste de processos PARMA constitui uma linha
de pesquisa interessante.

Em muitas situagoes a série temporal nao pode ser completamente observada. Nesse
contexto, os dados faltantes impedem a utilizacao de técnicas de inferéncia classicas.
Portanto, varios autores tém desenvolvido metodologias especiais para a analise de séries
temporais incompletas. Por exemplo, [Metaxoglou & Smith| (2007)), Drake, Knapik &
Leskow| (2014)) e |Drake, Knapik & Leskow (2015) sugerem a utilizagdo de algoritmos do
tipo Ezxpectation-Mazimization (EM) para tratar esse problema. Essa abordagem tem a

desvantagem de assumir uma distribuicao especifica (em geral, gaussiana) para os dados.
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Alternativamente, uma abordagem promissora é constituida da utilizacao de proces-
sos de amplitude modulada, onde a andlise é realizada por meio de uma série temporal
alternativa em que as observacoes faltantes sao substituidas por zeros. Por exemplo,
para processos de memoria curta, Dunsmuir & Robinson (1981a) e [Yajima & Nishino
(1999) estudaram o comportamento assintotico de diferentes estimadores da fungao de
autocorrelagao de processos estacionarios com dados faltantes. Baseados na densidade es-
pectral assintética de processos de amplitude modulada, Dunsmuir & Robinson| (1981b)
propuseram um estimador de Whittle para coeficientes do modelo ARMA e [Dunsmuir
& Robinson| (1981¢) estudaram a distribuicao assintética dessa metodologia. Outras re-
feréncias que tratam da andlise de séries temporais com dados faltantes sao |Bondon &
Bahamonde| (2012)) que estudam a estimagao de modelos autoregressivos condicionalmente
heterocedasticos e Efromovich (2014 que propéem uma metodologia ndo paramétrica de
estimacao da densidade espectral.

O estudo de séries temporais PS com dados faltantes ainda se encontra em sua infancia.
Nesse sentido, a literatura é relativamente escassa e as principais contribuigoes sao dadas
nos seguintes artigos: |[Drake, Knapik & Leskow (2014); Drake, Knapik & Leskow| (2015);
e|Drake, Leskow & Garay| (2015). Os dois primeiros trabalhos propdem algoritmos do tipo
EM para estimar os parametros do modelo AR com amplitude modulada por senoides.
O dltimo propoe quatro algoritmos para estimacgao de séries temporais K-dependentes
amplitude moduladas por senoides. O caso mais geral, onde os dados sao gerados por
processos PARMA aparentemente nao foi explorado na literatura.

O estudo conduzido nesta tese tem como objetivo apresentar solugoes para as lacunas
discutidas anteriormente, a saber, identificabilidade, robustez e observacoes faltantes em
processos PARMA. Os resultados obtidos sao apresentados em trés artigos. O primeiro,
intitulado Identifiability and Whittle Estimation of Periodic ARMA Models e apresentado
no Capitulo 2] introduz condigdes para identificabilidade de processos PARMA e investiga
as propriedades assintoticas do estimador de Whittle para esse modelo. O Capitulo
apresenta o artigo M -regression spectral estimator for periodic ARMA models: a robust
method against additive outliers and heavy tail distributions. Esse artigo aborda o tema de
robustez em séries temporais PARMA no dominio da frequéncia, propondo a utilizacao
do periodograma M multivariado na metodologia de Whittle. A terceira contribuicao
desta tese é apresentada no Capitulo 4] no formato do artigo On the use of classical
and M periodograms to fit periodic ARMA models to time series with missing data and
additive outliers. Esse artigo investiga de maneira concatenada os temas de robustez e
observagoes faltantes em séries temporais PARMA, propondo dois estimadores no dominio

da frequéncia.
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2 ldentifiability and Whittle Estimation of
Periodic ARMA Models

Abstract

This paper provides verifiable conditions for the identifiability of periodic autore-
gressive moving average (PARMA) models and proposes the Whittle likelihood estimator
(WLE) for the parameters. This estimator is proved to be strongly consistent and asymp-
totically normal. Monte Carlo simulation results show that the WLE is a very attractive
alternative to the gaussian maximum likelihood estimator (MLE) for large data sets since
both estimators have similar preciseness while the computational cost of the latter is
much larger. The two estimation methods are applied to fit a PARMA model to the
sulfur dioxide (SO3) daily average pollutant concentrations in the city of Vitéria (ES),

Brazil.

KEYWORDS. Periodic stationarity, PARMA models, identifiability, Whittle estimation,

sulfur dioxide.

2.1 Introduction

Seasonal phenomena are frequently observed in many fields such as hydrology, clima-
tology, air pollution, radio astronomy, econometrics, communications, signal processing,
among others. A standard approach in the literature is to fit a stationary seasonal model
after removing any trend. As pointed out by [Tiao & Grupe, (1980)), standard time series
tools may indicate stationary models even if the true covariance structure has a periodic
(or cyclic) nonstationary behavior. The model mispecification usually deteriorates the
forecast performance even if the standard residual diagnostic checking does not reveal
any anomaly.

Processes with periodically varying covariances are introduced in the seminal paper
of (Gladyshev| (1961)) and are denominated periodically correlated (PC), periodically sta-
tionary or cyclostationary. The occurrence of periodic correlation is corroborated by real
applications in many areas. For example, (Gardner & Franks (1975) investigate cyclosta-
tionarity in electrical engineering and |Bloomfield, Hurd & Lund|(1994) study stratospheric
ozone data. For recent reviews on PC processes, see e.g. |Gardner, Napolitano & Paura
(2006) and [Hurd & Miamee, (2007)).

The simplest way to build models for PC processes is to allow the parameters of sta-
tionary models to vary periodically with time. In this context, the periodic autoregressive

model emerges as an extension of the well-known autoregressive framework. Parameter
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estimation of a periodic autoregressive model is already well documented in the literature,
see e.g. Sarnaglia, Reisen & Lévy-Leduc (2010)) and references therein. However, some
data sets require large periodic autoregressive orders to provide an adequate fit. Thus, a
more parsimonious model can be built by considering jointly ARMA coefficients, which
leads naturally to the PARMA model. However, this model has not been widely used in
real applications yet, perhaps, due to the difficulty and high computational cost of the
implementation of the standard estimation methods.

The exact Gaussian PARMA likelihood is derived by |Li & Hui| (1988), but the method
requires the Choleski decomposition of a matrix whose dimension is the number of data.
This can be a serious handicap for large data sets and [Lund & Basawa, (2000) propose an
efficient algorithm to evaluate the Gaussian likelihood which does not require any matrix
inversion.

It is well known that a PARMA model has a vector ARMA (VARMA) representa-
tion, see e.g. Basawa & Lund| (2001), however a VARMA model needs to satisfy the
conditions given by Dunsmuir & Hannan| (1976)) to be identifiable. These conditions are
tacitly assumed in the literature on PARMA models, see e.g. |Basawa & Lund (2001)).
Here, we show that the identifiability conditions of Dunsmuir & Hannan (1976|) do not
transpose trivially to the PARMA model, and one contribution of this paper is to provide
identifiability conditions for the PARMA model.

To our knowledge, only time domain estimation methods have been proposed for
PARMA models in the literature. In the frequency domain, the well-known Whittle
approximation can be used to circumvent the inversion of the covariance matrix, see
e.g. Whittle (1953)), [Dunsmuir & Hannan| (1976)), Deistler, Dunsmuir & Hannan| (1978)
and [Fox & Taqqu (1986). Here, we propose to apply the Whittle’s methodology for
estimating the parameters of a PARMA model and we establish the strong consistency
and the asymptotic normality of the WLE.

The rest of the paper is organized as follows. PC processes and PARMA models are
described in Section [2.2) where the identifiability results are also presented. In Section [2.3]
the WLE of a PARMA model is introduced and its asymptotic properties are derived. In
Section [2.4] we compare, via Monte Carlo simulations, the MLE and the WLE. The two
estimation methods are applied to fit a PARMA model to air pollution data in Section[2.5]
Proofs are deferred to Section 2.6l

2.2 Model description

Let Z be the set of integer numbers and (X;), t € Z, be a real-valued stochastic process
satisfying E(X?) < oo for all t € Z. Denote the mean and autocovariance functions of

(X¢) by pe = E(Xy) and (1) = Cov(Xy, X¢—.), respectively. (X;) is said to be PC with
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period 8 > 0 if, for every pair (t,7) € Z?,

peys = pr - and  Yeys(7) = Y(7), (2.1)
and there are no smaller values of § for which (2.1 is satisfied. This definition implies

that u; and v(7) are periodic functions in ¢ and need to be known only for t =1,...,8.
If § =1, (X;) is weakly stationary in the usual sense.

The natural extension for PC processes of the well-known ARMA model is the PARMA
model. (X;) is said to follow a PARMA model with period 8 > 0 if it is a solution to the

difference equation

Pv qu
(Xn8+1/ - ﬂu) + Z ¢u,k(Xn8+ufk - /’Lllfk) = Ens+v + Z eu,kEnSJrufk‘; (22)
k=1 k=1
where X5, is the series during the vth season, v =1,...,8, of cycle n € Z, and (,,84,)

is a sequence of zero mean uncorrelated random variables with E(elg,,) = 02, = 0p.

The period § is taken to be the smallest positive integer satisfying . When 8§ =1,
corresponds to the standard ARMA model. During season v, p, > 0 and ¢, > 0 are
the AR and MA orders, respectively, ¢, = [¢p1,...,¢up, ) and 8, = [0,1,...,0,,] are
the AR and MA parameters, respectively, where A’ denotes the transpose of matrix A.
The parameter vector of model is then ¢ = [@}, vp, ¢,]" where o4 = [¢y,..., &),
wp=101,...,05] and o, = [0%,...,08].

In the following, we set

p = max py, ¢ur =0 when p, < k < p,

- v 01/ - h v k<7
g = Wax gy, k=0 when g, <k <gq

for every v = 1,...,8, and we refer to as the PARMA(p, ¢)s model. We assume
without loss of generality that p, = 0 for v = 1,...,8. Note that, in practical situations,
the sample periodic means are, in general, removed from the series before model fitting.

Let (X,,)nez be the S-variate time series defined by X,, = [X,s11,. .., Xnses]. It is
well known (BASAWA; LUND| 2001) that (X;) satisfies if and only if (X,,) is a
solution to the vector ARMA (VARMA) difference equation

P Q
Y o Xk = Orens, (2.3)
k=0 k=0

where €, = [€ns41, - - -, Ensts)’s the sequence (g,) is uncorrelated and E(e,e!,) = ¥ where
Y is diagonal with element [X];; = o7 for [ = 1,...,8. The VARMA orders are P = [p/§]
and @ = [¢/8], wherein [z] stands for the smallest integer greater than or equal to x.
For every k =0,..., P, the § X § matrix ¢, has (I, m)th entries
0 I <m,
[@olim = 1 [ =m, [@p)im = ks +1-m, 1<k<P (24)

¢l,l7m [ > m,
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and the entries of 8y, for k = 0,...,Q, are similarly obtained by replacing ¢;,, by 0, ,, in
(2.4). It follows from (12.4) that, for every v =1,....8,

(

[(ﬁo]u,ufk if 1 <k< v,

v,84+v— if v S k<v + S,
N [ o

\ [@p)vpsiv—r fv+(P—-1)8 <k <p,

and 0, is similarly obtained by replacing ¢, by 6 in . Moreover, o2 = [X],,.
Therefore, ¢ is uniquely obtained from the 8 x (P + @ + 3)8 matrix defined by n =
(bos -, Pp, 00, ...,00,X]. In other words, n = fi(p) where f; is an injective function.
Since ¢, and 6, are both unit lower triangular matrices and therefore are invertible, (2.3))
is called “triangular” VARMA representation of (X,,).

Note that, the VARMA representation of (X,,) given by does not follow the
standard VARMA framework, since ¢, and 6, in are not the 8§ x § identity matrix
I. However, since ¢, and 8, are invertible, is equivalent to the standard form

P Q
k=1 k=1
where
br = b5 Drs 01 = dg 0105 by, (2.7)
and £, = ¢ '0oe,. We have E(§,£) = ©* where
S = 10,260,005 " (2.8)
Let n* be the § x (P + Q + 1)8 matrix defined by n* = [¢],...,¢p,07,...,05, 2.

The parameters n* are a function of parameters ¢, say n* = fo(p). However, f; is not

necessarily injective as illustrated by the two following examples.

Example 2.1. Consider a PARMA(1, 1), process (X;) with ¢11 = 611 = 0. The nonzero
parameters in its triangular VARMA representation (2.3) are

1 1 2
b, = 0 0, = 0 - o 0 .
P21 1 01 1 0 U%

The corresponding standard representation (2.6)) reduces to the bivariate white noise (§,,)

with covariance matrix

s o (621 — d21)of

(21 — ¢21)07 (021 — ¢21)%07 + 03
It is easy to see that, for any a € R, the PARMA(1,1), process (X2) with parameters
¢t =01, =0, 05, = ¢21+a, 02, = 051 +a and the same matrix ¥ as (X;) has the same
representation (2.6 as X,,, i.e. XA = €4 where X4* = ¥*.

(2.9)




Capitulo 2. Identifiability and Whittle Estimation of Periodic ARMA Models 19

Example 2.2. Consider a PARMA(1, 2), process (X;) with ¢y 1 = 612 = 0. Its triangular
VARMA representation (2.3 has the nonzero parameters

1 0 1 0 0 6 20
¢0: 700: 791: b , u = o1 2]
¢2,1 1 02,1 1 0 ‘9272 O (72
Its standard VARMA representation (2.6)) is X,, = &,, + 07€,,_, where

o — [ 611(621 — 05,1) 011
(022 — 01102,1) (P21 — O21) b2 — 011021
and X* is given by (2.9). It is easy to see that, for any a € R, the PARMA(L,2),
process (X*) with parameters ¢, = 0f, =0, ¢, = ¢o1 +a, 03, = 01 +a, 0, = 011,
035 = 02 + 0110 and the same matrix ¥ as (X;) has the same VARMA representation
as X,,, .e. XA =¢84+ 07€h | where 4% = 3%,

The fact that different PARMA models, with the same orders, may have the same
standard VARMA representation implies identifiability problems of PARMA models based
on representation ([2.6). Finding conditions to ensure that map f5 be injective is, therefore,

an important issue. In this context, the following assumptions are introduced:

(A1) The AR orders p,’s of the PARMA process (X;) are the same for every v =1,...,8
in (22).

(A2) The MA orders ¢,’s of the PARMA process (X;) are the same for every v =1,...,8
in (22).

Lemma 2.1. If (A1) and/or (A2) hold, then f5 is an injective function.

Proof. The proof is given in Subsection [2.6.1 [

Assumptions (A1) and (A2) are easy to be verified and give sufficient conditions to
guarantee that fy be injective. However, these conditions may not be necessary for some

subclasses of PARMA models as shown by the following example.

Example 2.3. Consider the class of PARMA(1, 1), processes (X;) satisfying ¢o1 = 6011 =
0. The corresponding triangular VARMA representation (2.3) is X,, + ¢, X,,_1 = 0pe,
0 ¢11

where
1 0
s 00 = ;
0 0 01 1

and the standard representation (2.6)) is X,, + ¢, X,,_1 = §,, where

P, =

2 2

S 02,107
| 0y102 02,02+ 02
2,191 2,191 2

It is readily seen that the parameter vector (¢; 1,041, 0%,03) is uniquely determined from
¢, and X*, while (A1) and (A2) are not satisfied.
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2.2.1 ldentifiability of the PARMA model

For all z € C, let

P P
B(2) =) 2t (2) =T+ ¢;",
k=0 k=1

0 5 (2.10)
O(z) = > 02", ©°(2)=T1+) 6;2"
k=0 k=1
It results from that
()= ¢y'0(z) and ©7(2) = ¢5'0()0; by @.11)

Since (X;) in is PC with period 8, the vector process (X,,) in is weakly sta-
tionary. The autocovariance matrix function of (X,,) is I'(7) = Cov(X,, X,—,) and is
related to v:(7) by [I'(7)]im = (78 +1—m) for every I,m = 1,...,8. The causality and
invertibility of (X;) are equivalent respectively to the causality and invertibility of (X,,).
For more details, we refer to |Gladyshev (1961) and Hurd & Miamee (2007). Therefore,
(X;) is a causal solution of if and only if (X,,) is a stationary causal solution of
(2.6), and this is the case according to Brockwell & Davis| (2006, Theorem 11.3.1) when-
ever det ®*(z) # 0 for |z| < 1. Similar arguments jointly with Brockwell & Davis (2006,
Theorem 11.3.2) show that (X;) is a PC invertible solution of when det ©*(z) # 0
for |z| < 1.

Causality and invertibility properties do not ensure that ¥*, ®*(z) and ©*(z) are
uniquely determined by the autocovariance matrix function of (X,,), or equivalently by
the spectral density matrix of (X,,), see e.g. Brockwell & Davis (2006, page 431) and
Reinsel (1997, section 2.3). This identifiability problem results in a likelihood surface with
more than one maximum. Further restrictions have to be imposed in order to obtain an
identifiable model, and these are discussed as follows.

Following |[Dunsmuir & Hannan (1976)), two 8 x 8§ matrices of polynomials ¢g(z) and h(z)
are said to be left prime when they have no common left factors other than unimodular
ones, that is, if g(z) = e(2)g1(z) and h(z) = e(2)h1(2) where e(z), g1(z), h1(z) are again
matrices of polynomials, then e(z) has constant determinant. It is known (HEYMANN]|
1975) that ¢g(z) and h(z) are left prime if and only if the 8 x 28§ matrix [g(z), h(z)] has
rank 8§ for all z € C.

Now, following Deistler, Dunsmuir & Hannan (1978), for every i = 1,...,8, let g;(z)
and h;(z) be the ith column of g(z) and h(z) (respectively), p; and ¢; be the maximum
degrees of g;(z) and h;(2), ¢g;(j) and h;(j) be the vectors of coefficients of 27 in g;(z) and
hi(z). Let

H(g, h) = [g1(p1), - -, 9s(ps), ha(qr), - -, his(gs)].

We introduce the following additional assumptions:
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(A3) det ®(z) # 0 and det O(z) # 0 for |z] < 1;
(A4) ®(z) and O(z) are left coprime;
(A5) rank H(P,0) = 8.

Theorem 2.1. If either (A1) or (A2) holds, and in addition (A3), (A4) and (A5)
are satisfied, then the parameter vector ¢ of model (2.2 is uniquely determined by the

autocovariance matrix function or the spectral density matrix of (X,,).
Proof. The proof is given in Subsection [2.6.2 [

Remark 2.1. It is easy to verify that the PARMA models in Examples 2.1 and [2.2] satisfy
(A4) and (A5). Moreover, (A3) is always satisfied in Example and is satisfied in
Example when |61 1021 —022] < 1. Then, under this restriction, the standard VARMA
representations in Examples and are identifiable in the sense of |Deistler, Dun-
smuir & Hannan| (1978) whereas, as shown above, the corresponding PARMA models

are not.

Remark 2.2. Theorem [2.1| holds if (A1) and (A2) are replaced by any condition which

guarantees that map fy be injective.

2.3 Whittle estimation

We define the parameter space P C RT3 as the set of points [¢],, p]’ which satisfy
assumptions (A1) or (A2), (A3), (A4) and (A5). In addition, we assume that the true
parameters [¢, ,¢p " € P. For simplicity, we suppose that the sample contains N full
periods of data which are indexed from 0 to N — 1 and we set X = [Xq,...,Xys| =
(X5, Xy 4]

We denote by R~ the set of positive real numbers. For any ¢ € P x RS, let T'y(¢)
be the N§ x N8 matrix with I'(m — [) in the (I, m)th block of § x 8 elements. Then,
In(po) = Cov(X, X). Let

~

Ln(p) = N"Hogdet Tn(p) + NTIXTRH (0)X,

be the Gaussian log likelihood with the scaling factor —2N 1. The gaussian MLE of ¢y

is
oy = argmin Z]N(@).
PEPXRS
In most cases the minimization of £y(¢) is performed through optimization algo-
rithms, which can demand high computational effort, since a priori it is necessary to
invert I'y(¢). One alternative is to resort to the recursive likelihood evaluation technique
proposed by [Lund & Basawa, (2000)). However, as illustrated in Section , this method
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may be inappropriate for large sample sizes. To circumvent this difficulty, we use the
multivariate version of Whittle’s methodology to approximate L ~n(®). The multivariate

periodogram of X at frequency w € [—m, 7] is I (w) = W (e )W’ (el) where, for all z € C,

F

W(z) = (2aN)"2Y " X, 2"

i
o

Also the spectral density matrix of (X,,) is f(w, ¢o) where

L1 (e7)07 () 570 (¢) 5 (6). (2.12)

Following Dunsmuir & Hannan (1976), we approximate L ~(®) by

N-1
Ln(p) =logdet B + N~ " tr[f " (wy, o) I (w;)], (2.13)
7=0
where w; = 27j/N and tr A is the trace of matrix A. This approximation is particularl
j J y

interesting from a computational point of view. According to (2.8)),

8
log det X" = logdet ¥ = Z log o7, (2.14)
I=1

and it follows from (2.8)) and ( - ) that

Lot )0(c )00/ ()0 ().

Then

tr[f~H (wj, 0) 1 (wy)] = W () (wy, w)W(e_i“j) =

—1w- —iw; —iw; 2
27?20[ DO (e )W (e J)H , (2.15)
and replacing ([2.14)) and - in - we get that
r —1w —iw; —iw; 2
Ln(p) = Z log o2 + N QZ\ DD (e W (e7)] | (2.16)
The WLE of ¢ is
on = argmin Ly(p).
©EPXRS |
For every [ = 1,...,8, the minimum of (2.16)) with respect to o7 is
~2 2m - -1/, —iw; —iw; —iw; 2
F(por0) = 5 3 [0 ()@ W (e )] (2.17)

<.
Il
=)
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Replacing (2.17) in (2.16)), we get that the WLE of [¢], | ¢p | is

s
[90¢N7909N] = argmin ZlOgUlN(90¢7909)
[‘10(15 ‘pg] Sy =1

Therefore, oy = [@;N,QIQN, @), where (@, = 65N(¢¢N, gy ). Observe that ¢ is
casier to calculate than ¢y since £y (¢) involves (p+q-+1)8 parameters while 57 n(pg, o)

is a function of (p + ¢)8 parameters.

Theorem 2.2. For any ¢y € P x RS, ¢n converges almost surely (a.s.) to ¢y as N

tends to infinity.

Proof. The proof is given in Subsection [2.6.3 m
To establish asymptotic normality, we introduce the following additional assumption:

(A6) Forallt€Zand 0 <r,s <8 —1,

a

o

Et€trEiys| Fim1) = Bi(r, 5) = Biys(r, s) as.,

/)<

where [;(r, s) is non random and JF; is the o-algebra generated by {es;s < t}.

C

) E(
) E(e?|Fi1) = 0? as,
) E(
d) E(e
Theorem 2.3. Under assumption (A6), for any ¢y € P x RS ), NV/2(5x — g) converges

in law as IV tends to infinity to a normal distribution with zero mean vector and covariance

matrix
VN( — o) ~ Na(0,7),
where ~» stands for convergence in distribution as N — oco. The covariance matrix T is
given by
T=[Q 20+ M1,

. 1 2 _1 8f0(w) _1 (9f0(w)
[Q]Lm = % ; tr (fO ((U)a—@lfo (Ct)) 8(pm )dw,

where

8 _ _
82* 1 82* 1
[H]l,m = Z eabcd |: :| |: :| =
a,b,c,d=1 a(Pl ab 6g0m cd
8
>F D
Z Gabcd [2*18_2*1} |:Z*18_2*1:| 7
a,b,c,d=1 8S0l ab &pm cd

= $;'0020,d; " and Coped = C[[€,]as [€, )0, [€,)e [€,]a], asb,c,d = 1,...,8, stand for

the fourth cumulants among the elements a, b, ¢ and d of the vector §,,.
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Proof. The proof is given in Subsection [2.6.4 m

Remark 2.3. If either we strengthen the assumption of non correlated to independent
white noise similarly to|Basawa & Lund (2001) or restrict to gaussian data, the covariance
matrix T simplificates to a block diagonal matrix. One block is related to AR and MA
parameters and the other one is associated to white noise variances, which means that
¢’s and @’s estimates are asymptotically independent from o?’s. Since the proof of this
fact is quite long, we just indicate it below.

We first show that the II matrix have a very simple form. Note that the cumulant

Cabea has the more concise formula

8

Cabea = Z[¢5190]aj (05 ' Oolb; (D5 O0les [0 ' Oolay Elensy),

j=1
which gives
:iE(gigﬂ.) o010, = wro| [o-1g = 4o
T8 |To Py, P ¥ 0 Pog, P

j=1 J JJ

Obviously, if & > 0,

_lo1g. 9% v —
tnggit] =[] -o

For k = 0, define the (8 x §) matrix 1;,, by [1;]ap = L{a=1,5=m} and note that

[ ¢°a[¢0] $0o sz—[05115,m¢51002—}j7j—[(eglll,maleoz—)’]u

J5J

= —207 [0 ' Lmpy 0o] = —207 [65"] ., [d5 0], ;- (2.18)

Observe that, by construction, k& = 0 implies [ > m and, because 8;' and ¢;'0, are
both unit lower triangular, 05" # 0 and [¢y 'O0)m; # 0 only if 5 > [ and m > j.
Therefore equals zero, since otherwise j should satisfy j>1l>m>3j Ina

similar fashion, it can be shown that [8; ¢, 8202; .05 ;; = 0. Finally, it is easy to

see that [0 "¢, 2 307 >0, ]M = 1yj=}. Therefore, recalling that ¢ = [(p;,’e, gof,]/, where
/
Ppo = [90;5, gog,] we have

I = Op+)sx(p+)s  Optq)sxs

Y

Osx (p+q)s 11,

where I, is the (8 x 8) diagonal matrix with j diagonal element given by E(e}g, ;)/05.
We now turn to the investigation of the {2 matrix. For simplicity, we shall drop the w
term when no confusion arises. Note that

2

Ui = s = =5 [ 51085 /020 0o/ D)



Capitulo 2. Identifiability and Whittle Estimation of Periodic ARMA Models 25

We now turn to evaluation of 9f;*/0[¢,],; and 9fy/0c2. Observe that

o :( ov )@—1’2—1@—1q>+¢'@—1’2—1@—1( 0 )

O, ]s.s Ol ]s.s 0|, s
. a¢r —iwr / 1 / 1/y—1 a¢7“ —iwr
= (8[¢T]st ) o'y le e+ o et (—(9[(%]3,56 )

_ 1t78@—1’2—1@—1¢,6iwr + @/@—1’2—1@—118,?56—&17”

and

o _yg (82 ) oo =o7'01,,007",

2 2
do? Oo?

where A’ stands for the conjugate transpose of the complex matrix A. Now,

of ofy] of 1 of,
" |:8[¢ staa21 Z|i ¢ Staay:|aa

a=1

lw’f‘

Mm

[1ts@ Uy-11,,0'0" 1’] (2.19)

a,a

Q

Mmi

e [cp’@-l’z-l@-l1S,t<1>-1@1y,,,@'c1>-1’] . (2.20)
a—1 a,a
In one hand, we have that
8
220) = ey [@OSTO ], 2710, [0,
a=1
8
= V0710, Y [0 ], Je'e S0,
a=1
_ e_iwr[(I)_l@]t,y[@/(D_llcpl@_llz_l@_l]ms _ e—iwr[(D—l@]t’y[z—l@—l]l/’s
e—iwr B B
= O, 5[@ 'O,
and, on the other hand,
B19) = <" [0S, [0/ V), = [0V, [0 ], = @20)
o

where @ stands for the complex conjugate of the number a. Observe that, by Assumption
(A3), O71(2) = > 77, Co-1(h)2" and ®71(2)0(z) = > 7, Co-10(h)2", with Ce-1(0) =
0,' and Cy-16(0) = ¢;'0,. Therefore, = U%ZZ‘;O Cyst(h)e @ h+) and +
= 25 2onc Cuyst(h) coslw(h +1)], where C,;4(0) = [65"],,5[dbg ' G0l Thus

1 2 afal 8f0 R 2
A i) e VRS

hO

The last integral vanishes if h + r > 0, such that for » > 0 the asymptotic covariance

between the estimates of [¢,]s; and 2 equals zero. Therefore, the only non trivial case
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is for r = 0. Note that in this case the only non zero term in the last sum is obtained for
h = 0, such that

- t d = — 0_ v.s . 0 v

o7 0 r <a[¢0]s,t 80'3 W 20_12/[ 0 ] ) [¢0 0]t7

Observe that, by construction, » = 0 implies s > ¢ and, because 6, U and b0 19, are both
unit lower triangular, [0, 1],,75 # 0 and [¢, 100],5,,, # 0 only if v > s and ¢t > v. Therefore
the above equation equals zero, since otherwise v should satisfy v > s > ¢t > v. We

conclude that the entries of 2 related to [¢,]s; and o2 are zero. Similar arguments can

2

be used to prove that the entries relating [6,]s: and o}

/ . .
¢ = [@ye, ] again, gives

are also zero. Hence, writing

Q¢76 0
0 Q5

)

where the ((p + ¢)8 x (p + ¢)8) matrix Q4 has the similar definition such as in € in
Dunsmuir & Hannan| (1976 and Q, is (8 x 8). Finally, the asymptotic covariance matrix

is given by

2.4 Monte Carlo study

We compare by Monte Carlo simulations the finite sample properties of the WLE and
the exact MLE obtained with the algorithm in [Lund & Basawa; (2000). In each of the
M = 1000 replications, a PARMA series with § = 2 and N = 50,200 full periods is
generated. Intermediate sample sizes were considered, however the results do not change
the conclusions, so that they are not displayed here to save space. The bias, the root
mean squared error (RMSE) and the computation time of the WLE and the MLE are
analyzed.

Consider a PARMA(1, 1), model. The nonzero parameters in its triangular VARMA

representation (2.3 are
1 0 0 1 0 0 6 2.0

bo = P L A L BN L
P21 1 0 0 O 1 0 0 0 o3

Then, for all z € C,

O(z) = L fuz and O(z) = ! 01’12.
¢21 1 61 1

Condition (A1), respectively (A2), is equivalent to ¢y 1021 # 0, respectively 0 1651 # 0.
Condition (A3) writes ’¢171¢271’ < 1 and |617162,1| < 1. When (bl,l % 91’1 or ¢271 # 62,1,
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[®(2),O(2)] has rank 2 for all z € C. We have

I 0in 1 ¢
o1 0 o1 O |

and then, rank H(®,©) = 2 since necessarily ¢;; or 0 is nonzero and ¢ or 6y is

H(®,0) =

nonzero.

The Monte Carlo experiments are made with the four PARMA(1, 1), models whose
parameters are given in Table and whose innovation process (¢;) is gaussian. These
models satisfy (A1), (A2), (A3), (A4), (A5), (A6), and are chosen in order to evaluate
the effect caused by closeness of the parameters to noncausality and noninvertibility re-
gions. Model 1 is far from both noncausality and noninvertibility regions. Models 2 and 3
are close to noncausality and noninvertibility regions, respectively. Model 4 is close from
both noncausality and noninvertibility regions. The numerical optimization procedures

are initialized with the true values of the parameters.

Table 2.1 - PARMA(1, 1), models.

Parameters
v=1 v=2
Model ¢11 61 U% 21 01 0%
1 -0.7 04 1.0 -0.5 0.8 1.0
-1.0 04 1.0 -0.7 0.8 1.0
-0.7 0.6 1.0 -05 1.1 1.0
-1.0 06 1.0 -0.7 1.1 1.0

=~ N

2.4.1 Bias

Let ¢ and @y be respectively the MLE and the WLE of ¢, obtained in the kth
experiment, k = 1,..., M. The empirical bias of the MLE and the WLE are respectively,

M M
M= gnk—@o and M7 @y — go.
s |

Table displays the empirical bias of the MLE and the WLE, for models 1, 2, 3 and 4.
This table shows that the bias decreases as the sample size increases for both estimators.
Furthermore, both estimators overestimate the AR parameters. However, the MLE and
the WLE behave differently in the estimation of the MA parameters and the white noise
variances. The MLE overestimates the MA parameters, while the WLE underestimates
them. The MLE underestimates the white noise variances, and the WLE overestimates
them. Closeness to noncausality or noninvertibility regions seems to have no significant
effect in the bias of the MLE. However, mainly for the estimation of the MA parameters
and the white noise variances, this seems to increase substantially the bias of the WLE
and, as expected, the worse results are obtained for Model 4. Although the MLE has the

smallest bias, the bias of the WLE is also small, especially for large sample sizes.
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Table 2.2 — Empirical bias of the MLE and the WLE.

Bias
V= v=2
N ¢1,1 91,1 0% ¢2,1 92,1 0%
MLE 50 0.014 0.027 -0.023 0.017 0.036 -0.051
Model 1 - - - - 200 _0.001_ 0.001 -0.007 _ 0.003 0.008 -0.010
WLE 50 0.026 -0.003 0.067 0.014 -0.034 0.004
200 0.005 -0.006 0.018 0.003 -0.011 0.006
77777777 MLE 50 0.015 0.031 -0.036  0.015 0.035 -0.057
Model 2 - — - — - - 200 _0.004_ 0.005 -0.008 _ 0.004 0.009 -0.013
WLE 50 0.035 -0.023 0.266 0.014 -0.126 0.069
200 0.009 -0.015 0.082 0.004 -0.051 0.035
77777777 MLE 50 0.012 0.030 -0.038  0.019 0.040 -0.062
Model 3 - - — - - — 200 0.003__0.006  -0.011 _ 0.005_0.007_ -0.020
WLE 50 0.025 -0.063 0.118 0.018 -0.105 0.092
200 0.007 -0.026 0.039 0.005 -0.043 0.035
77777777 MLE 50  0.012 0.040 -0.037  0.015 0.049 -0.056
Model 4 - — - — - - 200 0.000_ 0.007_ -0.008 _ 0.000 0.006_ -0.015
WLE 50 0.034 -0.118 0471 0.017 -0.263 0.273

200 0.006 -0.062 0.142 0.001 -0.120 0.121

2.4.2 Root mean squared error

The empirical RMSE of the MLE and the WLE are respectively,

(M_l i(@N,k - 900)2>1/2 and (M_l i(@N,k - 900)2>

k=1 k=1

1/2

Tables displays the empirical RMSE of the MLE and the WLE, for models 1, 2, 3
and 4. This table shows that the RMSE decreases as the sample size increases for both
estimators. Again, closeness to noncausality or noninvertibility regions seems to have
no significant effect in the RMSE of the MLE. In fact, we observe that the RMSE are
smaller (especially for the estimation of the AR parameters) for Models 2, 3 and 4 than
for Model 1. The same phenomenon appears with the WLE for the estimation of the AR
parameters. Now, for the estimation of the MA parameters and the white noise variances,
the distance to noncausality or noninvertibility regions increases significantly the RMSE
of the 6, ; and o2 parts of the WLE, and the worse results are obtained for Model 4.
However, for large sample sizes, the RMSE of the MLE and the WLE are of the same

order of magnitude.

2.4.3 Computation time

For each estimator, the mean computation time is the average of the computation

times obtained in each Monte Carlo experiment. For each simulation, the computation
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Table 2.3 — Empirical RMSE of the MLE and the WLE.

RMSE
v=1 v=2
N ¢1,1 91,1 U% ¢2,1 92,1 03
MLE 50 0.098 0.156 0.210 0.120 0.178 0.200
Model 1 - - - - - - 200 0.046_ 0.070_0.100 __ 0.058 0.085 0.097
WLE 50 0.104 0.161 0.258 0.124 0.195 0.216
200 0.047 0.072 0.110 0.059 0.090 0.101
******** ML; 50  0.058 0.139 0.205  0.064 0.151 0.202
Model 2 - - - 200 0.029  0.059_0.106 _ 0.031 0.069 0.102
WLE 50 0.077 0.151 0.559 0.066 0.240 0.267
200 0.032 0.066 0.190 0.031 0.109 0.123
******** ML; 50 0.080 0.129 0.205  0.111 0.169 0.208
Model 3 - - — - - - 200 0.039_0.055_0.102 _ 0.053_0.081_ 0.103
WLE 50 0.090 0.165 0.319 0.116 0.239 0.284
200 0.041 0.072 0.129 0.054 0.108 0.130
******** MLE 50 0.056 0.112 0.210  0.065 0.140 0.202
Model 4 - — - — - 200 0.026_ 0.044_0.100 _ 0.030_ 0.059 0.101
WLE 50 0.075 0.197 0.840 0.069 0.377 0.459

time is defined as the time required by the optimization algorithm to converge. Here,
each optimization is performed by the function constrOptim.nl of the package “alabama”
of the free software environment R.

Figures figure and figure display, as a function of IV, the mean computation
time of each estimator and their ratio, respectively. For both estimators, the computa-
tion time is nearly the same for each model, the largest computation time being obtained
for Model 4. The computation time is larger for the MLE than the WLE. This is cer-
tainly because the MLE of the white noise variances o2 for v = 1,...,8 are obtained by
minimizing L ~(®), while their WLE are obtained by calculation and do not require any
numerical optimization. As expected, the computation time increases monotonously with
N, but the slope is much more important for the MLE than the WLE. For instance for
Model 1, the ratio of the mean computation times of the MLE and the WLE is 239 when
N = 50 whereas it is 374 when N = 200. Therefore, the larger the sample size is, the
greater the benefit of the WLE. Now, for small sample sizes where the computation time
of the MLE is reasonable, this should be the preferable estimation method, especially for
models with parameters close to noncausality or noninvertibility regions. Hauser| (1999))
comes to the same conclusion for the estimation of ARMA models.

In this Monte Carlo study we have taken & = 2 to limit the number of parameters to
estimate. However, it is worth noting that the difference between the computation time
of the MLE and the WLE increases with 8§, and in practice, the calculation of the MLE

may become impracticable. For example, this may be the case in the context of automatic
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Mean computation time in seconds of the MLE and the WLE as a function
of N (a); Ratio of the mean computation times of the MLE and the WLE
as a function of N (b).

model selection through information criteria like Akaike and Schwarz criteria.

2.5 Application

We analyze the daily mean concentrations of sulfur dioxide (SOj) observed from Jan-

uary 1, 2005 to December 31, 2009 at the monitoring station of environment and water

resources state institute located in Vitoria, Espirito Santo, Brazil. Figure displays the

data.
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Figure 2.2 — Daily mean concentrations of SOs in Vitéria, ES, Brazil.

Since one data per day is collected, a PARMA model with period 8 = 7 seems to be

appropriated. We fit a PARMA model to the mean-corrected data obtained by subtracting

the sample periodic mean from the original data. The first N§ = 1603 observations are

used to fit the model and the last 7' = 223 observations are considered for the out-of-
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sample forecast study. The sample periodic autocorrelation and partial autocorrelation
functions indicate the ARMA ordersp, = 1,1,1,1,1,1,1and ¢, = 1,1,1,1,0,0, 1 (observe
that this model satisfies (A1)). We set the initial AR and MA parameters as zero. As it

was seen in Section [2.4] the initial values for the white noise variances (o7, ..., 02) have an
impact on the computation time of the MLE which is not the case for the WLE. Indeed,
for the MLE, taking as initial values (1,...,1), (6%,...,0%) and (6% ,,...,0%g), the

computation time is 381.9 seconds, 261,1 seconds and 148,9 seconds, respectively, while
for the WLE, the computation time is 2.9 seconds for all initial values. These different
initial values do not have influence on the values of the MLE, even for the estimate of
o2. Therefore, the WLE is at least 50 times faster than the MLE. This huge difference
discourages the use of the MLE in a repetitive context such as automatic model selection
through information criteria like Akaike and Schwarz criteria. The estimates obtained by
both methods are presented in Table [2.4] and are almost the same. Finally, the sample
autocorrelation function of the WLE residuals for each season is plotted in Figure [2.3] and
confirms they are uncorrelated. This result is also corroborated by the periodic extension
of the Ljung-Box test proposed by McLeod (1994) which presents p-value smaller than

0.05. The MLE presents the same results.

Table 2.4 — Fitted PARMA model to SO, data.

MLE WLE

v ¢V,1 9u,1 03 Qby,l 91/,1 03
1 -0.72 -0.49 28.97 -0.72 -0.48 28.95
2 -1.14 -0.75 28.38 -1.13 -0.74 28.41
3 -0.80 -0.54 23.49 -0.80 -0.54 23.49
4 -0.89 -0.50 19.56 -0.89 -0.50 19.57
5 -0.58 — 2593 -0.58 — 2594
6 -061 — 3285 -0.61  — 3285
7

-0.69 -0.36 32.40 -0.70 -0.36 32.40

We now turn to the forecasting performance. The empirical RMSE is defined by

NS+T 12
RMSE = <T‘1 3 (- Xt)2>

t=NS+1
where )?t is the one-step head predictor of X;. As we see in Table , the RMSE is
the same when X, is calculated from the model fitted by MLE or WLE. Hence, both
models have the same predictive performance. Figure plots the remaining 233 data
and their one-step-ahead forecasts obtained from the model fitted by WLE. Similar results
are obtained with the MLE. Visual inspection of this figure shows that the forecasts follow

satisfactorily the actual data.
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Figure 2.3 — Sample autocorrelation function of the WLE residuals.
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Figure 2.4 — Out of sample SOy data and their one-step-ahead predictors.

2.6 Proofs

2.6.1 Proof of Lemma 2.1]

Since n = f1(¢) where f; is injective, it is sufficient to prove that 1 is uniquely defined
by n* under (A1) or (A2). Since the product ¢;'8 is unit lower triangular and ¥ is
diagonal, is the Cholesky decomposition of ¥*. Therefore, ¥ and the product ¢, 19,
are uniquely obtained from the Cholesky decomposition of ¥*. We shall prove that ¢’
can be uniquely determined from [¢], ..., ¢»] when (A1) holds. Then 8 is obtained from
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Table 2.5 — Empirical RMSE of the one-step-ahead predictor.

MLE WLE
In-sample 5.23  5.23
Out-of-sample 4.55  4.55

@50, and it follows from that for every positive integer k, ¢, and 6 are uniquely
determined from ¢; and @} by the relations ¢, = ¢y0; and 0, = P,0;d;'0p. In the
proof we distinguish the cases where p = 8§, p > 8 and p < 8. In a similar way, when (A2)
holds, it can be shown by distinguishing the cases ¢ = S, ¢ > S and ¢ < S that 65" can
be uniquely determined from [0y ¢8; ¢, 0o, ..., 05" 05, '60] (this proof is omitted).
Then ¢, is obtained from ¢, 10, and the matrices ¢, and 6}, are uniquely determined

from ¢, and 6, as above.
Case p = 8. Then the AR order P = [p/8] of the VARMA representation is equal to

1,
1 o -0 b1s DPis—1 o P11
$2.1 1 - 0 0 Gas P2
Po = : : o and ¢, = | : . :
Gss—1 Pss—2 - 1 0 0 - ¢ss

Setting L = ¢! and U = ¢, we have ¢} = LU which is a LU decomposition of ¢
since L is lower triangular with unit diagonal and U is upper triangular. It follows from
(A1) that the diagonal elements of U are nonzero. Then ¢] is nonsingular and the LU
decomposition is unique, see e.g. |Golub & Loan| (2012, Theorem 3.2.1). This implies that
o) ! is uniquely determined from ¢?.

Case p > 8. Then P > 1. If p/8 is an integer, we have p = P8 and we define

¢1,p (bl,pfl ¢1,p75+1

0 B
Umgp— || P T e 2.21)

0 0 Ce ¢S,p

If p/8 is not an integer, we have P — 1 < p/8 < P. Setting x = (P — 1)8, we have

-0 (bl,p ¢1,p—1 T ¢1,m+1-

0 -+ 0 P2 -0 Poure
¢)P: o ... 0 0 (bpfn,p

0 0 0 0

0 0 0 0
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and -~ .
¢1,H e ¢1,p—8+1 e ¢1,H—5+1
¢2,/~t+1 e ¢2,p78+2 T ¢2,n78+2
d)P—l = (bpfn,pfl e ¢pfm,2prS U (bpfn,pfs
pr—f-c—&-l,p e ¢p—n+172p—P8+1 T ¢p—ﬂ+1,p—8+1
i 0 ce ¢S,p R ¢S,n

We define U as the § x § matrix formed by the concatenation of the last p — k columns of
¢p and the first K —p+ 8 columns of ¢p_;. We see that U coincides with the right hand
side of . Therefore, the expression of U is the same for all p > 8§ and U is upper
triangular. Now, we define U* exactly as U by replacing ¢p and ¢p_; by ¢p and ¢p_1,
respectively. Since ¢% = ¢y '¢pp and ¢h_ | = ¢y dp_,, we have U* = ¢, U. Setting
L = ¢;', we see that U* = LU is a LU decomposition of U*. According to (A1), the
diagonal elements of U are nonzero. Then U* is nonsingular, the LU decomposition is
unique and ¢, ! is uniquely determined from U*.

Case p < 8. Then P = 1. To simplify the notations, let L = ¢;', U = ¢, and
M=¢;=LU. Ifp=0, ¢, =1. We assume that p > 0 and we partition The matrices

as follows,

L— Lll OpXS—p ’ U= OpXS—p U12 and M = OpXS—p M12 :
L21 L22 087p><87p OSprp 057p><87p M22

where the unit lower triangular matrices L1; and Ly have dimensions pxp and S—px8—p,

respectively, and the p x p matrix Uy, is

OPrp Oip—1 0 P11
0 .

Up=| | Cb%p . ¢22
0 0 e bpp
We have M5 = L;; U5 where Uy, is upper triangular and all diagonal elements of Uy,
are nonzero according to (A1l). Then Lj;Ujs is the unique LU decomposition of M;s.
Since Moy = Lo Uqg, Ly = MggUl_Ql. Thus Li; and Lg; are uniquely determined from
¢7. To identify ¢ ! it remains to determine Ly,. For this, we shall distinguish the cases
where p =8/2,8/2 <p<8Sand 0 <p < 8§/2. We set F = ¢,,.

Assume that p = §/2. Then we can rewrite

Fll 0p><p
F21 F22

)
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where all blocks are p x p matrices, F1; and Fyy are unit lower triangular and

¢p+1,p ¢p+17p—1 T ¢p+1,1
0 Pprap 0 Ppr22

Fy = _ _ ‘ _
0 0 . Qpr,p

Since LF = Ig where Ig is the § x § identity matrix, we have F{; = Lﬁl and —Ly Fq; =
LosFy;. Since Fop is upper triangular and invertible by (A1), LyyF9; is the unique LU
decomposition of —L21L1_11, and thus Ly is uniquely determined from ¢7.

Consider now the case where §/2 < p < 8. We rewrite

Is =

F21 F22 F23

Ill 112 OpXS—p
OS—pXS—p 05—p><2p—8 123

Fiu Fp OpXS—p]

where Iy, I1o] =1, I3 = Is_,, [F11, Fi1a] and Fy3 are unit lower triangular matrices with

dimensions p x p and 8§ — p X 8 — p, respectively, and the § — p X § — p matrix Fq; is

¢p+l,p ¢p+l,p—1 e ¢p+1,2p—8+1
0 Ppt2p 0 Opr2,2p-8+2
Fy = . . .
0 0 - ¢s,p

Since LF = I, [F11, Fio] = Lj} and —Ly F; = LyyFy; where Ly, is unit lower triangular
and Fg; is invertible by (A1). Then LgyF9; is the unique LU decomposition of —Ly;Fyy,
and thus Ly is uniquely determined from ¢7.

Suppose that 0 < p < §/2. Remember that the first p columns of L are uniquely

determined from ¢] and partition the matrices as follows,

Ill 0p><8—2p Op><p Lll 0p><p Op><5—2p Fll 0p><5—2p 0p><p
Is = Opo I, I23 aL = |Lai L Op><872p aF = Fy Fy F23
Os—2pxp I, I3 Ls; L3 L33 Os—2pxp  Fao Fs3

where I; =1, Lj;, Lo, L3z and Fy; are unit lower triangular matrices with dimensions
PXPp,pXp &—2px38&—2 and p X p, respectively, the p X p matrix Fo; and the
8 — 2p x & — 2p matrix F3o are upper triangular and their diagonal elements are nonzero
according to (A1). Since LF = I, we have Fy; = Lj}', —Lo;Fy; = LyyFy; is the unique
LU decomposition of —Lg1Fj; so that Lgy and Fg; are uniquely determined from ¢7,
Lsy = —L31F11F511, Fy = L;;IQQ, I35 — Li3sF9y = L33F3s is the unique LU decomposition
of Iyo — L3sF9s so that Lgs is uniquely determined from ¢j. Therefore, all the elements

of L are identified in a unique way from ¢7.
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2.6.2 Proof of Theorem 2.1

We first prove that it is equivalent ®, 0O or ¢* ©* satisfying (A3), (A4) and (A5).
By relations in (2.11)), we note that, if (A3) holds for ®, O, then

. . det &(2)det O(2) @)
det *(z) det ©*(2) = det(qb) Tot 00( ) #0, |z] <1,
0

where inequality (1) follows by (A3) and invertibility of ¢», and 6. The converse is proven
similarly. Now, suppose that ®,© satisfy (A4) and that there exists some polynomial
matrix e*(z) such that ®*(z) = e*(2)®i(z) and ©*(2) = €*(2)©i(2). We have to show
that det e*(z) = ¢* constant. In fact, by relations in (2.11]), we have that

O (2) = ¢y @(2) = €"(2)0](2) = D(2) = e(2)P1(2)

and

0%(2) = ¢ 0(2)8y ¢y = ¢*(2)0](2) = O(2) = e(2)01(2)

where e(z) = @ye*(z), ®1(2) = ®i(2) and O,(2) = O%(2)¢, '0y. Now, by (A4), ¢ =
det e(z) = det ¢, det e*(z), which in turn implies that det e*(2) = ¢* = ¢/ det ¢, constant.
Therefore, ®*, ©* are left prime. The converse is shown in the same manner. Finally,
assume that ¢, O satisfy (A5) and let A be the 28 x 28 block diagonal matrix with § x §
block entries A = 061(]50, Ay = Ay =0 and Ay, = 1. In addition, from the relations
in (2.11)), it can be shown that H(0*, ®*) = ¢, H (O, ®)A. Therefore,

rank (0%, ®*) = rank [(¢, 'H(0, ®)) A] 2 rank (¢ 'H(0, ®))
2 rank H(0, ®) 2 8,

where equalities (1) and (2) hold, respectively, by the following rank properties: if
rank C,xx = n, then rank(BC) = rank B; and if rank D;y,, = m, then rank(DB) =
rank B. Equality (3) follows by (A5).

Now, by the above equivalencies and the results in |[Dunsmuir & Hannan| (1976]) and
Deistler, Dunsmuir & Hannan| (1978)), (A3), (A4) and (A5) ensure identifiability of the
standard VARMA form in (2.6). See also pages 36 and 37 of Reinsel (1997). In addition,
by Lemma 2.1} either (A1) or (A2) guarantee that the standard VARMA representation
can be generated by just one PARMA model. Therefore, we conclude that the PARMA

model is identifiable.

2.6.3 Proof of Theorem 2.2

Define ¢} = vec|@y, ..., ¢p, 071, ...,0p], 5 as the vector of the elements of and below
the diagonal of ¥* and ¢* = [p*, ¢3/]'. By construction of ¢*, relations (2.7) and (2.8
induce continuous constraints in ¢*. In addition, by definition of hs, Lemma [2.1] ensures

that, under (A1) and/or (A2), there is a one-to-one continuous function h such that
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©* = h(y), with continuous inverse h~!. Define £%(¢*,X) = Lx(h " (¢*),X) and P* =
h(P x RS) and let

¢ = argmin Ly (", X)
4,0* eg)*

be the WLE of ¢} € P*. By Theorem [2.1] the additional Assumptions (A3), (A4) and
(A5) ensure identifiability of the PARMA process. Therefore, in light of Theorems 4 of
Dunsmuir & Hannan| (1976) and 4’ of |Deistler, Dunsmuir & Hannan| (1978) and their
respective remarks, @} is a strongly consistent estimator of ¢f. It is not hard to see
that, for one-to-one functions, WLE has the so-called invariance property, which ensures
that the WLE of ¢ is given by ¢y = h™1(p%). Finally, the continuous map theorem

guarantees that
on =h"H(@N) = hH(9p) = o

2.6.4 Proof of Theorem 2.3

Theorem 3 of Deistler, Dunsmuir & Hannan (1978) can be changed to show that
P x RS is open in R8®*+4+D . Note that the elements [f(w, ¢)]im, [,m = 1,...,8, of the
spectral matrix f(w, ¢) are division of polynomials with respect to the elements of ¢ and,
therefore, are twice continuously differentiable functions of p € P x RS . These second
order derivatives being continuous in w € [—7,7|. Hence, C2.1. of Dunsmuir| (1979) is
satisfied. As discussed in Dunsmuir (1979)), in this VARMA case f(w; ) and 0f (w; ) /0y,
have elements belonging to the Lipschitz class of degree o, A, (see page 42 of |Zygmund
(2002) for the definition), for a > 1/2, such that C2.2. and C2.4. of Dunsmuir| (1979)
are satisfied for the PARMA model. Finally, it can be shown that (A6) implies C2.3.
of Dunsmuir| (1979). Therefore, Corollary 2.2. of |Dunsmuir| (1979)) applies directly to
provide the CLT for NY2(@x — o).
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3 M-regression spectral estimator for pe-
riodic ARMA models: a robust method
against additive outliers and heavy tail dis-

tributions

Abstract

This paper proposes a robust approach based on the M-regression method to es-
timate periodic autoregressive moving average (PARMA) processes. The estimator is
based on the frequency domain approach and makes use of the standard Whittle estima-
tor adapted for PARMA models. Empirical studies are addressed to analyse the finite
sample size performance of the proposed estimator under the scenarios of contaminated
and uncontaminated PARMA processes with additive outliers (AO). The maximum gaus-
sian and Whittle likelihood estimators are also considered in the simulation aiming to
show that, under the non-contaminated scenario, the three methods present comparable
estimates which indicates that they have similar convergence properties. However, in the
case of PARMA series with AO, the latter methods give estimates dramatically biased,
which is an unsurprising empirical evidence, while the proposed methodology presents
almost unchanged estimates. An application to Carbon Monoxide (CO) concentrations

is considered in order to show the usefulness of the proposed method in a real scenario.

KEYWORDS. Periodic stationarity, PARMA models, robust estimation, outliers, Whittle

estimation.

3.1 Introduction

Stochastic processes exhibiting Periodic Correlation (PC) are frequently named as
periodically correlated, Periodically Stationary (PS) or cyclostationary. Tiao & Grupe
(1980) point out that PC may be neglected and misspecified as stationary seasonality if
the standard time series tools are used. Since the introduction of PS processes in the
literature by Gladyshev (1961), many authors have identified the PC phenomenon in
time series of different areas, see e.g. |Gardner & Franks| (1975) and |Bloomfield, Hurd
& Lund (1994). Recent reviews on PS processes can be found, for instance, in |Gardner,
Napolitano & Pauraj (2006) and Hurd & Miamee, (2007)).

The standard stationary models, such as, the Autoregressive Moving Average (ARMA)

processes, are, in general, the base of the cyclostationary counterparts in which the pa-
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rameters vary periodically in time. In this context, the Periodic ARMA (PARMA) frame-
work represents a natural candidate for parsimoniously fitting PS time series. Estimation
methods for PARMA models have been investigated in the literature. For example, Lund
& Basawa/ (2000)) have considered the Gaussian Maximum Likelihood Estimator (MLE),
Basawa & Lund (2001) have studied the least square method and Sarnaglia, Reisen &
Bondon| (2015)) have proposed a Whittle Likelihood Estimator (WLE). All these papers
assume tacitly that the process to be estimated is identifiable in the sense of [Dunsmuir
& Hannan| (1976)). Conditions to ensure PARMA identifiability have been recently the
motivation of the work by |Sarnaglia, Reisen & Bondon| (2016a). In that paper, the au-
thors have shown empirically that the MLE and WLE have similar good finite sample
performance for PARMA time series. However, the behaviour of these methods can be
dramatically changed in a scenario wherein atypical observations, or outliers, may occur.

There are several types of outliers which cause different effects on the estimates. How-
ever, in general, the following three types are usually considered (DENBY; MARTIN]|
1979)): innovation outliers (I0), which affect all subsequent observations; additive outliers
(AO) or replacement outliers (RO), which have no effect on subsequent observations. AO
affect the parameter estimates more than 10O, and they have the same effect as RO (MA;
GENTON| 2000). In the case of PS processes, the effect of AO in the theoretical and
sample autocorrelation functions has been discussed in [Sarnaglia, Reisen & Leévy-Leduc
(2010). These authors have proposed a robust autocovariance function for PS processes
which is used in the periodic Yule-Walker equations to provide robust estimates for Pe-
riodic Autoregressive (PAR) models. Shao (2008) has also suggested a robust estimation
method for PAR models.

In the frequency domain, robust estimators of the spectral density have been re-
cently introduced as alternatives to the classical periodogram. It is well-known that
the periodogram is related to the least square estimator of the coefficients of a linear
regression model with sine and cosine regressors, see, for example, Priestley (1981). Al-
ternatively, several authors have defined M-periodogram by using the non-linear method
of M-regression, see e.g. |Li (2008) and |Li (2010)). In Fajardo et al|(2015), the authors
have studied the M-periodogram for long-memory processes based on the M-regression
approach discussed in Koul| (1992).

In this paper, we have extended the method proposed by [Fajardo et al. (2015) to
PARMA models by introducing a multivariate M-periodogram spectral estimator on the
Whittle likelihood function given in Sarnaglia, Reisen & Bondon| (2016a). The empirical
performance of the proposed methodology is evaluated through an extensive Monte Carlo
simulation study. The results show very similar behavior of the proposed methodology
compared to the MLE and WLE in the uncontaminated scenario. On the other hand,
in the contaminated time series with AO scheme, the empirical results show that both

estimation methods MLE and WLE are destroyed and, also, the superiority of the robust
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method over these two approaches.

The rest of the paper is structured as follows: Section describes the PARMA model
with AO; Section introduces the robust Whittle estimation method; The finite sample
performance of the robust estimator is investigated through a Monte Carlo study and the
results are discussed in Section [3.4} An application of the methodology to CO daily mean

concentrations is the motivation of Section 3.5l

3.2 PARMA model with additive outliers

Let Z be the set of integer numbers and (Z;);cz be a real valued stochastic process
satisfying E(Z?) < oo for all t € Z. Let uz, = E(Z;) and vz,(7) = Cov(Z;, Z;_,). We
say that (Z;) is PS with period 8§ (PSs) if, for every (t,7) € Z?,

pzirs = fzy and ’YZ,t+S(T) = ’YZ,t(T), (3.1)

and there are no smaller values of 8 > 0 for which holds. This definition implies that
pzy and vz,(7) are periodic functions in ¢ and need to be known only for t =1,...,8. If
(Z;) is PS; then it is weakly stationary in the usual sense. In the following, we assume
without loss of generality that pz; = 0 for all t € Z, and we use the notation t = (r—1)8+v
where r € Z and the season v =1,...,8.

One of the most popular PSg process is the PARMA model which generalizes the
ARMA model, see e.g. Vecchia (1985). (Z;) is said to be a PARMA model if it satisfies

the difference equation

Pv qv
Z bvi L (r-1)84v—j = Z O k€ (r—1)8+v—k» (3.2)
Jj=0 k=0

where, for each season v, p, and ¢, are the AR and MA orders, respectively, ¢,.1, ..., ¢,p,

and 6,1, ...,60,, are the AR and MA coefficients, respectively, and ¢, = 6,0 = 1. The
sequence (g;) is zero-mean and uncorrelated, and has periodic variances with period §,
ie. E(g%r—l)s—i—u) =02 for v =1,...,8. In the following, we set p = max, p,, ¢ = max, q,,
¢v; =0for j > p,, 0, =0 for k > ¢,, and we refer to as the PARMA (p, ¢)s model.

Let (Z,)rcz be the S-variate time series defined by Z! = [Z;_1)s41s- -5 Zr—1)s4s)
where Z! denotes the transpose of Z,. It is well known that (Z;) is PSg if and only if (Z,)
is weakly stationary. The covariance matrix function of (Z,) is I'z(7) = Cov(Z,,Z,_,)
and is related to vz.(7) by [['z(7)]im = v2,(78 +1 —m) for every I,m =1,...,8. Now
is equivalent to the vector ARMA (VARMA) difference equation

P Q
Z (I)jz'r—j = Z ®k€'r—k7
=0 k=0

where P = [p/8], @ = [q/8] and [z] denotes the smallest integer greater than or equal

to z. The entries of matrix ®; are [®,];,, = ¢ js+1—m With the convention that )., =0
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when [ < m. The definition of ©y is similar. The white noise vector process (&, ) is defined
by &, = [E(—1)8+1, - - -, E—1)s+s] and has the covariance matrix ¥, = diag(o7, ..., 03).

For all complex number z € C, let

P Q
O(2) = Z ;27 and O(z) = Z (ST
j=0 k=0

and assume that det ®(2)O(z) # 0 for |z| < 1. Therefore, (Z,) is causal and invertible
and the spectral density matrix of (Z,) is

1
o

fz(w) e )0 (e) 8O0/ () (), w e (—m, 7.

The causality and invertibility do not ensure that ., ®(z) and ©(z) are uniquely de-
termined by the covariance matrix function I'z(7), or equivalently the spectral matrix
fz(w), see e.g. Brockwell & Davis (2006, page 431). Additional restrictions have to
be imposed in order to obtain identifiable models, see |Dunsmuir & Hannan| (1976) and
Deistler, Dunsmuir & Hannan (1978). In the following, we assume that model is
identifiable.

Example 3.1. Whenp, =¢q¢, =1forallv=1,...,8, wehavep=q=1, P=Q =1,

1 0 0 0O -+ - .. ¢1,1_

$o1 1 o -0 0 O cor eee e Q)
Oo=10 ¢3; 1 - 0], &= [: : and

0 e sy 1 0 oo e e 0

8
det ®(2) = det(Py + ®12) = 1 + (—1) (H QS,,J) z.
v=1

The results for Oy, ©1 and det ©(z) are similar. The causality condition det ®(z) # 0 for
|z] <1, and the invertibility condition det ©(z) # 0 for |z] < 1 are equivalent respectively
to

) )
9o =[[l6val <1 and 05 =[]0l <1. (3.3)
v=1 v=1

As discussed in Section [3.1], we shall consider AO since they cause the more deleterious
effect in the inference of time series. Sarnaglia, Reisen & Lévy-Leduc| (2010)) have shown,
for periodic processes, that this contamination can induce a spurious memory loss by
increasing the variance of the process, both theoretically and empirically. Let (Y;) be
defined as

Y, = 7, + 0B, (3.4)

where ¢ > 0 is the magnitude of the outlier and (By);cz is a sequence of independent

and identically distributed random variables assuming —1,0,1 values with probabilities
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P(Bi=0)=1—Cand P(By=—-1)=P(B;=1) = %, where ¢ € (0,1) is the probability
of occurrence of an outlier. We assume that (B;) and (Z;) are independent processes.
Note that the definition of the process in ensures equal probabilities for positive and
negative outliers. Observe that if either ( = 0 or o = 0, then Y; = Z;, such that (Y})
is uncontaminated. It is worth to point out that, for the AO process defined in ,
the location of the outliers is chosen at random, which seems to be more appropriate in
real applications, since the position or even the occurrence of the outliers in the sample
is usually unknown. There are other ways to describe atypical observations. For exam-
ple, one can consider heavy-tailed distributions for the white noise process (&), see e.g.
Katkovnik (1998). However, in this kind of outlier generating mechanism, there is no
explicit definition for the magnitude of the outliers and their investigation can not be
performed directly.

The effects of outliers in the spectral density and the classical periodogram have been
investigated by [Fajardo, Reisen & Cribari-Neto| (2009) for long memory processes. The
autocovariance function vy (7) = Cov(Y;, Y;_,) of the contaminated process (Y;) in (3.4)
is given by

v2:(0) + 0°¢, T =0,

Vz,4(T), T # 0,
while E(Y;) = pyt = p1z+. Therefore, (Y;) is also a PSg process but with larger variance
than (Z;). Let Y, = [Y,—1)s+1,- -, Yr—1)s4s] and I'y(7) = Cov(Y,,Y,_;). Then

Vyi(T) =

I'y(1) =Tz(7) + D1—g), (3.5)

where D is the (8 x 8) diagonal matrix with diagonal entries (D);; = ¢*¢, [ = 1,...,8.
Therefore, the spectral density matrix of the contaminated vector process (Y,) is given
by
1
fy(w) = fz(w) + 2—D, w € (—m, 7.
i
Note that, letting o — oo makes the diagonal matrix D dominate fy, which becomes

close to the spectral density of a vector white noise process. This is the frequency domain

counterpart of the memory loss property of AO processes.

3.3 Robust Whittle M-estimator

We now introduce the estimation method proposed in this paper. Firstly, we de-
fine a robust alternative to the Fourier transform based on the non-linear M-regression

approach. Next, the robust Whittle-type method is presented.
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3.3.1 Robust Fourier Transform

Let (X, )rez be any 8-dimensional vector process and X = [X/, ..., Xy]" be a sample
of size N observed from (X,). The Fourier transform of X, at the frequency w € (—m, 7,
is defined as N
Wx(w) = 2rN)™/2 > " X,e™r, (3.6)
r=1
Equation can be rapidly obtained at the Fourier frequencies w; = 27j/N, j =
1,..., N, where N’ = | (N — 1)/2] is the greatest integer smaller than or equal to (N —
1)/2.
For any fixed frequency w;, the 8-dimensional vector Wx (w;) can be viewed as a linear
regression vector as follows. Let X, , be the vth component of vector X,, r =1,..., N,
v =1,...,8. Define the vector of covariates C,; = [cos(rw;),sin(rw;)]" and consider the

linear model

Xy = CyiBu(wy) + &rus
where &, is a random error term and the coefficient vector 5, (w;) = [Bu.1(w}), Bua(w;)]
can be seen as describing the impact of the jth harmonic in the time series X ,,,..., Xy .

The classical least square estimator of the vector §,(w;) is given by

N
B,(w;) = argmin Z o C;JB,,(wj))Q : (3.7)

ﬁu UJ] GRQ r=1

Now, define the vector d(w;) = [dy(w;), . .., ds(w;)], where d,,(w;) = Bu1(w;) — iBya(w;).

Similar arguments as those in [Fajardo et al.| (2015]) can be used in order to show that

D) =+/N/srd(w,), j=1,...,N.

As well known, B,,(wj) does not have the necessary robustness to withstand the effect of
neither atypical observations nor heavy-tailed distributions. For improving robustness,
one idea is to replace By(wj) by a non-linear M-regression estimator in Wx (w;). This will
lead to the robust periodogram for PS processes proposed here. The key idea is to replace

the quadratic loss function in (3.7) by an alternative function p(-), which gives

argmin Zp v = Cr3B(w;))

/Bl/w] ER r=1

Equivalently, one can define the M-estimator (3, (w;) of 8,(w;) as the solution of

N
> Cri o (Xpw = ChiBu(w))) =0,
r=1

where 1(+) is the derivative of p(-). In this paper, we use the Huber| (1964) function,

z%/2, 2| <6,
p(r) = (3.8)
§(|lz| —0/2), |z|>é.
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The choice of the tunning parameter 6 > 0 is quite important and provides the compromise
between robustness and efficiency of the M-estimators.
Finally, by defining dy(w;) similarly to d(w;) with £, (w;) replaced by B,.,(w;), the

robust alternative to Wx(w;) proposed here is given by

Wxﬂ/)(w]') = \/N/87Td¢((,dj), ] = 1,...,N/. (39)

3.3.2 Whittle M-estimator of PARMA parameters

Assume that 7, ..., Z, is a sample from a PARMA process with known orders p and
q. For simplicity, suppose that n = N§, such that every season v =1,...,8 is observed
N times. As previously, define the vector Z, = [Z(,,_l)gﬂ, cee Z(T_1)5+5]’ corresponding to
the rth cycle, the full sample being given by Z = [Z), ..., Z’y]". The parameter vector of
model is © = [0y, vy, ¥,]" where @, and @, contain all the AR and MA parameters,
respectively, and ¢, = [0%,...,02].

We define the parameter space P C RP*9 as the set of points [y’ for which
model is identifiable in the sense of |Deistler, Dunsmuir & Hannan (1978). We
denote by R~ the set of positive real numbers. For any ¢ € P x RS let I'y(y) be the
NS§ x N8 matrix with I'z(m — 1) in the (I, m)th block of § x 8§ elements, 1 < I,m < N.

The Gaussian log likelihood with the scaling factor —2N~1 is

Ln(p) = N togdet Ty (¢) + N7'Z'TH (¢)Z.

We denote by ¢ the true parameter vector ¢ from which the sample 7;,..., 7, is
generated. We assume that [, ,¢p |" € P, and we have I'n(pp) = Cov(Zi Z). The
Gaussian maximum likelihood estimator (MLE) of ¢q is ¢ = argmingcp, s  Ln(9).

To obtain ¢y, an optimization algorithm is used and can demand high computational
effort due to the fact that I'y(p) has to be inverted. To circumvent this difficulty, we
use the multivariate version of Whittle’s methodology proposed by |[Dunsmuir & Hannan
(1976) to approximate L ~n(¢). For a PARMA process, it was shown by [Sarnaglia, Reisen
& Bondon| (2015) that the corresponding Whittle likelihood estimator (WLE) of ¢ is

@N = [SE;SN’ SZ/GNa 85/01\/]/ where

8

[SE;N’ 95/91\7]/ = argmin Z log 6']2\7,1/(90@ 909):
(W;;»‘P;;)/E(P =1

N/
- - — —iw; —iw; 2
SheulPoo) = 20N Y| [O7 (e NB(e ) Wa(wy)], [, v =108 (3.10)
j=1
Wz(w;) is given by (3.6 in which X, is replaced by Z,, and the vth component of @, is
0% (Pon, Poy) for v=1,....,8.
Now, we define the robust WLE (RWLE) ¢n, of ¢y similarly as ¢y by replacing
Wyz(w;) in (3.10) by Wz 4(w;) defined in (3.9) where X, is replaced by Z,..



Capitulo 3. M -regression spectral estimator for periodic ARMA models 45

It was pointed out by Sarnaglia, Reisen & Bondon| (2015) that [}, p] involves (p+¢)3
parameters whereas the dimension of ¢ is (p+ ¢+ 1)S. Then @y is easier to calculate and
is obtained faster than ¢ . The same remark applies to the calculation of ¢y . However,
the computation time of ¢y, may be larger than ¢y because a numerical optimization
method is needed to obtain Wy ,(w;), since this function does not have a closed form

expression.

3.4 Monte Carlo study

In this section we investigate the finite sample behaviour of the proposed estimator.
Additionally, the MLE and WLE approaches are also considered in the study for com-
parison purposes. We consider uncontaminated and contaminated data with AO with
occurrence probability ¢ = 0.01 and magnitude ¢ = 10. Less detrimental contamination
parameters were also considered, however we prefer to show just the worst scenario in
order to highlight the advantages of the proposed methodology. We generate M = 1000
replicates of the PARMA(1,1)g process (Z;) in (3.2)), with 8§ = 2 and parameters given
in Table 3.1l Other PARMA models were also considered and the results shown similar

conclusions. They are not presented here to save space, but are available upon request.

Table 3.1 — Parameters.

v = v =2 Eq. (3.3)

Model ?1,10 91,10 0%0 ®2.1, 92,10 030 19(;5 Uy
1 —-0.2 00 1.0 —-0.5 0.0 1.0 0.1 0.0

2 —-0.2 —-05 1.0 —-0.5 —-0.2 1.0 0.1 0.1

3 —-1.0 0.0 1.0 —-0.5 00 1.0 0.5 0.0

4 —-1.0 —-0.5 1.0 —-0.5 —-0.2 1.0 0.5 0.1

The sample sizes are n = N8 = 300, 800 (N = 150, 400, respectively) and the
Huber (1964)) function is used with 6 = 1.345, which ensure that the M-estimator is
95% as efficient as the least squares estimator for univariate multiple linear models with
independent and identically distributed Gaussian white noise.

We evaluate the finite sample performance of the estimators by computing the sample
root mean square error (RMSE) and the results are displayed in Tables , and
BB The values with “x” refer to the RMSE for the contaminated series.



Table 3.2 - RMSE of Model 1 with ¥4 = 0.1 and ¥y = 0.0.

2

2

Method n o1, 011 o3 $2.1 621 o
300 0.067;0.121* — 0.117; 1.366* 0.079; 0.252* — 0.111; 1.363*
MLE 800 0.048:0.101* — 0.079; 1.122* 0.046; 0.239* — 0.074; 1.253*
300 0.068; 0.121* — 0.117; 1.368* 0.079; 0.252* — 0.111; 1.364*
WLE 800 0.048; 0.101* — 0.079: 1.122* 0.046; 0.239* — 0.074; 1.253"
300 0.067; 0.067° — 0.147; 0.179* 0.083; 0.089*  0.147; 0.189"
RWLE 800 0.051;0.054* — 0.118; 0.149* 0.051; 0.058* — 0.108; 0.152*
Table 3.3 — RMSE of Model 2 with ¥4 = 0.1 and ¥y = 0.1.
Method n ¢171 0171 O'% ¢271 9271 O'%
300 0.364; 1.393* 0.371; 1.398* 0.120; 1.433* 0.638; 2.219* 0.649; 2.249* 0.114; 1.257*
MLE 800 0.171; 0.492* 0.184; 0.500* 0.065; 1.118* 0.167; 1.007* 0.171; 1.031* 0.064; 1.102*
300 0.369; 0.981* 0.377; 0.985* 0.119; 1.433* 0.545; 1.309* 0.559; 1.340* 0.114; 1.255*
WLE 800 0.171; 0.439* 0.184; 0.448* 0.065; 1.119* 0.167; 0.466* 0.171; 0.504* 0.064; 1.102*
300 0.357; 0.344* 0.371; 0.363* 0.135; 0.164* 0.747; 0.704* 0.760; 0.714* 0.150; 0.180*
RWLE 800 0.178;0.186* 0.193; 0.201* 0.101; 0.132* 0.189; 0.200* 0.194; 0.206* 0.101; 0.131*
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Table 3.4 — RMSE of Model 3 with ¥4 = 0.5 and ¥y = 0.0.

2

2

Method n 011 011 o3 ®2.1 621 o
300 0.064; 0.394* — 0.107; 1.770* 0.047; 0.159* — 0.107; 1.327*
MLE 800 0.036; 0.373* — 0.069; 1.642* 0.030; 0.142* — 0.070; 1.279*
300 0.066; 0.397* — 0.116; 1.780* 0.047; 0.159* — 0.107; 1.328*
WLE 800 0.037;0.374* — 0.073; 1.646* 0.030; 0.142* — 0.070; 1.279*
300 0.080; 0.107* — 0.193; 0.334* 0.058; 0.067* — 0.156; 0.227*
RWLE 800 0.053; 0.077* — 0.168; 0.317* 0.038; 0.047* — 0.134; 0.215*
Table 3.5 — RMSE of Model 4 with ¥4 = 0.5 and ¥y = 0.1.
Method n ¢171 9171 O'% ¢271 9271 0'%
300 0.233; 1.539* 0.252; 1.594* 0.118; 1.307* 0.124; 0.319* 0.150; 0.350* 0.107; 1.337*
MLE 800 0.140; 0.278* 0.146; 0.376* 0.068; 1.230* 0.077; 0.134* 0.089; 0.181* 0.071; 1.141*
300 0.236; 0.792* 0.255; 0.864* 0.121; 1.313* 0.125; 0.238* 0.150; 0.280* 0.107; 1.336*
WLE 800 0.141;0.276* 0.147; 0.372* 0.068; 1.233* 0.077; 0.133* 0.089; 0.180* 0.071; 1.141*
300 0.272; 0.296* 0.288; 0.311* 0.153; 0.207* 0.134; 0.140* 0.148; 0.152* 0.141; 0.183*
RWLE 800 0.150; 0.149* 0.155; 0.154* 0.112; 0.169* 0.082; 0.085* 0.094; 0.097* 0.107; 0.145*

§1poUL YWY 2tpotiad 4of 4030wigsd [04309ds U0issaibos-pyy g opmgpdny)
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In the uncontaminated data scenario, in general, all estimators present similar be-
haviour in the AR and MA counterparts. Relating to the estimation of the variance of
the innovations, the MLE and WLE seems to be more precise which is an expected result
since the data is Gaussian with zero-mean and these two methods are asymptotically
equivalents. The RMSE of the estimators decreases as the sample size increases. In ad-
dition, increasing the model order will also affect the estimates. However, the conclusion
by comparing the tree methods are similar.

Now, the discussion is related to the case where the process is contaminated with
additive outliers. As expected, the MLE and WLE estimates are totally corrupted by
the atypical observations since their sample RMSEs increases substantially. Therefore,
these methods should be avoided when the series contains additive outliers. The robust
estimator (RWLE) presents generally accurate estimates even for the largest proportion
of contamination we have considered. Its superiority over the MLE and WLE methods is
clearly shown in the above tables.

We also display in Figure the empirical distributions of the estimates provided by
the MLE, the WLE and the RWLE for Model 3. It is clear the AO effect in the MLE and
the WLE, while the RWLE remains almost unchanged.

In addition to the above empirical investigation, the robust method was also considered
when dealing with PARMA model with heavy tail distributions, such as t-student and
double exponential. The results have leaded to similar conclusions with AO ones. These

are not presented here to save space but are available upon request.

3.5 Application

We analyze the daily mean concentrations of Carbon Monoxide (CO) in Ibes, Vila
Velha, ES, Brazil, observed from January 1, 2005 to March 31, 2007 at the monitoring
station of environment and water resources state institute. Since the time series is daily
collected, a PARMAg model with § = 7 seems to be appropriate. The first n = N§ = 728
observations (almost two years) are used to fit the model. The last 92 records are kept to
perform a forecast study, see Figure

Since the MLE takes a large amount of time to provide the estimates (SARNAGLIA;
REISEN: BONDON| 2016a)), we consider in this application only the WLE and the RWLE
in order to be able to use the Schwarz Information Criterion (BIC) for model identification.
The RWLE is obtained using the Huber discrepancy function (see Equation such as
in the simulation study. For WLE, the BIC is given by

8
BIC = NZlogaNl, +10g(N) > (py + @),
v=1

v=1
while, for RWLE, one just have to replace 6]\,71, by 5N,u,w in the above equation. For

WLE, the original data are centralized by subtracting the sample periodic means, while
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Figure 3.1 — Box-plot of the estimates of the MLE, the WLE and the RWLE of Model
3 for n = 300. On each subfigure the left and the right boxes represent,
respectively, the uncontaminated and the contaminated time series scenarios.
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Figure 3.2 — Daily mean concentrations of CO in Ibes, Vila Velha, ES, Brazil.

for RWLE they are corrected by subtracting the huber location M-estimator evaluated
periodically. The initial values for AR and MA estimates were set as zero, and for white
noise variances, as S_%QN which is the data sample variance of the period v. We compare
the BIC just of identifiable models by imposing the restrictions of |[Sarnaglia, Reisen &
Bondon| (2016a). The BIC has selected the constant AR order p, = 1 for both estimators
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and the MA orders [qi,...,¢s) = [0,0,1,0,1,1,1) and [g1,...,qs] = [0,0,0,1,0,0,1]
for WLE and RWLE, respectively. The BIC values were 7126.90 and 7041.92 and the
estimation times were 32.61 and 38.05 seconds for WLE and RWLE, respectively. These
estimates were obtained in an intel core i7-2630QM computer with 8 GB of RAM. Table
3.6l shows WLE and RWLE estimates for the series.

Table 3.6 - WLE and RWLE (with a “x”) estimates.

v ¢V,1 61/,1 03

1 -0.73; =0.70"  — — 118.59; 119.86*
2 -0.74, -0.73* — —  115.50; 109.73*
3 —1.18; —=0.89* —-0.37 — 123.08; 116.98*
4 —-0.65; =0.78  —  —=0.04* 153.92; 131.06*
5 —0.77; —0.71* —024 ——  129.12; 109.07*
6 —0.94; —0.77" —026 ——  129.26; 135.31*
7 —0.97; -0.95* —-0.41; -0.26" 137.22; 138.77*

We first observe in Figure large spikes incompatible with the overall dynamics of
the times series. Also, BIC has selected different models for WLE and RWLE. In addition,
we observe from Table that WLE and RWLE estimates are quite different for some
periods. See for example the reduction of the white noise variance estimates of the RWLE
compared to the WLE. This may be the indication of the presence of outliers. The Median
Absolute Deviation (MAD) for MLE and RWLE are, respectively, 75.51 and 74.45 for the
residuals and 58.59 and 56.15 for the 92 discarded values. The RMSE was also calculated
and presents for the residuals smaller value for WLE (130.09 versus 132.45), which is
expected since WLE is asymptotically equivalent to Least Square Estimator. The out-
of-sample RMSE is almost similar for both estimators: 107.9 for WLE; and 107.17 for
RWLE. We observe that RWLE provide better fit and forecast performance with respect
to MAD. Figure displays the one-step-ahead forecasts and 95% forecast intervals. One
may note the difference in the intervals due to the contrast in the white noise variance
estimates provided by the WLE and the RWLE.
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Figure 3.3 — Forecast of the discarded PM, concentrations.
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Abstract

This paper proposes two estimators for Periodic Autoregressive Moving Average mod-
els with missing data. The first one is based on the frequency domain and uses the asymp-
totic spectrum of an amplitude modulated process. In order to improve robustness, the
second estimator is built from the first one by replacing the classical periodogram by the
M-periodogram of [Sarnaglia, Reisen & Bondon| (2016b)). The finite sample properties
of the proposed methodologies are investigated through an extensive Monte Carlo study.
The results show that, under absence of additive outliers, both methods behave satisfac-
torily well compared to the complete sample estimates. However, under the presence of
outliers the first method becomes corrupted, whilst the robust alternative remains reli-
able. In order to illustrate the usefulness in applications, an air pollution time series is

fitted using the proposed methodologies.

KEYWORDS. Periodic stationarity, PARMA models, Missing data, Robust estimation,
Additive outliers, Whittle estimation.

4.1 Introduction

Processes with periodically varying covariances have been introduced in the seminal
paper by Gladyshev| (1961)) and are usually denominated as periodically correlated, Peri-
odically Stationary (PS) or cyclostationary. Tiao & Grupe, (1980) have shown the effects
of misspecification of PS processes. Their importance has been corroborated by real
applications in many areas. For example, Gardner & Franks| (1975) have investigated cy-
clostationarity in electrical engineering and Bloomfield, Hurd & Lund (1994) have studied
periodic correlation in stratospheric ozone data. For recent reviews on PS processes, see
e.g., Gardner, Napolitano & Paura| (2006) and Hurd & Miamee (2007)).

The Periodic Autoregressive Moving Average (PARMA) model has been considerably
investigated in the literature. In special, estimation methodologies for PARMA param-

eters. For example, Lund & Basawa (2000)), have proposed an efficient algorithm to
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evaluate the exact gaussian likelihood of the PARMA models, Basawa & Lund| (2001)
have studied the least square estimation of these models and [Sarnaglia, Reisen & Bondon
(2015) have proposed a Whittle type estimator and [Sarnaglia, Reisen & Bondon| (20164)
have investigated its asymptotics.

The good performance of the previous estimation methods for PARMA time series
has been evidenced by theoretical and simulation results. See e.g. [Sarnaglia, Reisen &
Bondon! (2016al). However, in the presence of Additive Outliers (AO), these estimators are
generally deteriorated. This kind of outlier is usually investigated due to its more delete-
rious effect in parameter estimates. In this context, Sarnaglia, Reisen & Bondon (2016b])
have suggested a robust estimation methodology based on a alternative periodogram ob-
tained through M-regression, which generalizes the idea of Fajardo et al. (2015) to the
periodic scenario. They have shown that this method presents similar performance to the
classical alternatives in the absence of outliers and it is still robust for AO contaminated
PARMA time series.

Frequently, in real applications, the data set is not completely observable. Obviously,
the classical tools can not be used in the missing observations scenario. On one hand,
one can deal with this problem by Expectation-Maximization type algorithms. This
approach has the disadvantage of assuming an specific distribution (gaussian in general)
for the data set. On the other hand, many papers extend standard tools to the incomplete
sample perspective, for example Yajima & Nishino (1999) have studied the asymptotics of
three different estimators of the sample autocorrelation function of stationary time series,
Dunsmuir & Robinson| (1981b)) propose a Whittle type estimation method in the presence
of missing data and Dunsmuir & Robinson| (1981¢|) studied its asymptotics. Other recent
examples of extentions of classical tools to the missing data situation are Bondon &
Bahamonde| (2012)) and |[Efromovich| (2014)).

To our best knowledge, fitting PARMA models to incomplete time series is still a
little exploited subject and methods for PARMA time series with missing data and addi-
tive outliers have never been investigated. This paper aim to deal with these problems.
More specifically, we shall propose two estimation methods. The first one is a Whittle
type estimator based on the asymptotic spectrum of the amplitude modulated model
generated by the missing data which generalizes the method of [Dunsmuir & Robinson
(1981b), Dunsmuir & Robinson, (1981¢)). In order to improve robustness, we shall suggest
another estimator based on the first one by replacing the classical periodogram by the M-
periodogram of |Sarnaglia, Reisen & Bondon/ (2016b)), so that it can be used in situations
with additive outliers and missing data simultaneously.

The rest of the paper is structured as follows: Section defines the PARMA model
with AO; Section introduces the Asymptotically Periodically Stationary processes,
studies some of their properties and investigates the amplitude modulated model. Section

proposes two estimation methods and investigates some effects of additive outliers;
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The finite sample performances of these estimators are investigated and compared through
an extensive Monte Carlo study presented in Section [4.5 An application to air pollution
is presented in Section [4.6]

4.2 PARMA model with additive outliers

We first introduce some notation. A stochastic process observed over the integer set
Z, say (Zi)tez, will be denoted by the cleaner notation (Z;). The scalar [A];,, will refer
to the [, m entry of the matrix A, that is the element in the /th row and mth column
A. The Ith row and mth column of the matrix A are denoted, respectively, by [A],e and
[Ale;,. The transpose of the matrix A is denoted by A’. The conjugate transpose of a
complex matrix A is denoted by A% Vectors will be treated as one column matrices, i.e.,
a n-dimensional vector x has ith entry given by [z]; = [z];1, ¢ = 1,...,n. In this paper,
we follow the usual practice and will not differ from notations of a process and a time
series, the difference will be made clear from the context.

Let (Z;) be a stochastic process with expectation and autocovariance functions given,
respectively, by w7z = E(Z;) and 7, z(7) = Cov(Z;, Z,—;). One says that the process
(Z;) is Periodically Stationary (or cyclostationary) with season length 8 (PSg) if y; 7 and

Y.z = Y.z (T) are periodic functions in ¢ with period 8, that is,

fez = feys,z  and Yz = Vipsz, VitELZL.

These processes have been first considered in the seminal paper of (Gladyshev| (1961) and
a broad collection of results in this area is given in Hurd & Miamee| (2007). From now
on, we shall consider the case where p1,z =0,t=1,...,8.

The Periodic Autoregressive Moving-Average model with season length § (PARMAg)
plays an important role in the analysis of PSg processes. It is a generalization of the so-
called ARMA models to the periodic scenario, see e.g. |Box, Jenkins & Reinsel (2008)). In
the definition of PARMA models, in order to emphasize which period is being considered,
we shall use the periodic time index notation t = r8 4+ v, r € Z, v = 1,...,8. One says
that (Z;) follows a PARMAg model if it satisfies the difference equations

Pv qv
Zrs v + Z OvjLrstv—j = Ersqwv T Z 0y iErs+v—j, (4.1)

j=1 j=1
where ¢,1,...,0,p, and 0,,1,...,0,,, and p, and g, are, respectively, the AR and MA
coefficients and orders of the period v. The process (g;) is a zero mean white noise
sequence with periodic variances o7 = o2 ' s- We can always consider the AR orders to be
constant, otherwise we can take p = max, p, and make the additional AR coefficients to
be zero. The same can be done for MA orders. Therefore, from now on, we shall assume

p, =p and g, = ¢ constant inv =1,...,8.
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It is well-known (see e.g. |Gladyshev| (1961))) that (Z;) is a PSg process if, and only
if, the vector process (Z,) defined as Z, = [Z,s11, ..., Zrsts) is weakly stationary in the
vector sense. In addition, it is well-known that if (Z;) follows the PARMAg model in
Equation its vector counterpart (Z,) follows the VARMA model

P Q
Y Z;=) O (4.2)
=0 =0

where the orders P = [£] and ) = [¢], wherein [z] denotes the smallest integer greater
than or equal to . The AR matricial coefficients are given by [®;]1.m = @1 js+1—m, Wherein
the conventions ¢, o = 1 and ¢, = 0, £ < 0,k > p, have been made. The definition of the
©,’s is similar. The white noise vector process (&,) is defined by €, = [g;s41, .- ., Ersts]
and has variance matrix ¥ with entries given by [X];,, = 07 Ly=my, ,m =1,...,8, where
1 is the indicator function. Define the AR and MA matricial polynomials, respectively,
by

We shall assume that causality and invertibility of (Z,) which are given, respectively, by
det®(z) #0 and detO(z) #0, |z] <1,

hold. These assumptions ensure the existence of the spectral density matrix of (Z,) which

is given by
1

T or

where € = cosx + isinx is the Euler’s formula, or complex exponential. It can be seen

fr(w) = 5B (e )0 H)S[@ (e )O(e )P, (43)

that, for PARMA(1, 1)s models, causality and invertibility conditions simplify to

8
H ¢Z/,1
v=1

respectively. Hereafter, besides these conditions, we also assume that the process (Z,)

8

H 91/,1

r=1

Uy i= <1 and Up:= <1, (4.4)

is identifiable in the sense of |Dunsmuir & Hannan (1976). Identifiability is particularly
important to avoid a likelihood surface with more than one maxima. See conditions
on PARMA parameters for identifiability in the paper of Sarnaglia, Reisen & Bondon
(2016a)).

As previously discussed, we shall consider AO since it causes the more deleterious
effect in the inference of time series. Let (Z;) be a scalar stochastic process and define
the AO process (X;) by

X =B,0,+ Zy, (4.5)

where (B;) is an independent Bernoulli sequence with success (outlier) probability P(B; =

1) = ¢, the (O,) is an i.i.d. sequence of some contamination zero mean symmetric random
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variable (r.v.), By, Oy, Z4, u, s,t € Z, are independent r.v. and, in this paper, (Z;) will be
a PARMA process. The symmetry of the marginal distribution of O, is imposed to ensure
equal probabilities of positive and negative outliers. In general, the r.v. O, may have
a heavy-tailed distribution, or even the same marginal distribution of (Z;) with larger
variance. The contamination process considered by [Sarnaglia, Reisen & Bondon! (2016b])
is a special case of wherein the r.v. O; obeys the following marginal law:

PO, = 0) = P(0, = ~0) = 3, (16)
where in this case o represents the outlier’s magnitude.

Note that in Equation if ( =0, then X; = Z;, such that (X;) is uncontaminated.
It is worth to point out that, for the AO process defined in Equation the location of
the outliers is chosen at random, which seems to be more appropriate in real applications,
since the position or even the occurrence of the outliers in the sample is usually unknown.
There are other ways to describe atypical observations. For example, one can consider
heavy-tailed distributions to the data. See e.g. Katkovnik| (1998]).

The effects of outliers in the spectral density and the classical periodogram have been
investigated in Fajardo, Reisen & Cribari-Neto| (2009)) for scalar long memory processes.
For periodic processes, when the contamination r.v. O is defined as in (4.6]), the effect
on correlation structure is presented by Sarnaglia, Reisen & Lévy-Leduc (2010) in the
time domain, while, in the frequency domain, Sarnaglia, Reisen & Bondon (2016b) have
shown that the spectral density of the S-dimensional vector process (X,.), r € Z, wherein
(X, = Xpsqw, v=1,...,8, is given by

1

fx(w) = fz((.d) -+ %D,

where D is a (8 x 8) diagonal matrix with diagonal entries [D];; = ¢°¢, [ =1,...,8 and fz
is the spectral density matrix of the uncontaminated vector process (Z,) defined similarly
to (X,). See[Sarnaglia, Reisen & Bondon| (2016b)) for more details. We shall extend these
results in Section for the more general model in Equation with missing values.

4.3 APS processes and missing data

We now extend some of the results of |Dunsmuir & Robinson| (1981a)) to periodic pro-
cesses. Consider the (random or deterministic) sequence (n;):>1. For each 8§ € {1,2,...},

define the partial sums

N-1 N-1
_ 1 1
MuS.N 1= N ZO Nrsey and Cl,’mg’N(T) = N ; Mg+ Mrstv—r, 0 < T < N8+ v —3,

where 7* is the smallest 0 < r < N such that 7*8 + v — 7 > 0. The (n;) is said to be
Asymptotically PSs (APSs) if, and only if, 8 is the smallest value in {1,2,...} such that

= lim 7,55y and ¢, (7) = lim c,, s N
P = G0 T, vn(T) N Cuns,
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exist almost surely (a.s.) for fixed 7. In this context, ji,,,, and v,,(7) = 6, (T) — fwpbv—r.n
are referred to as the asymptotic periodic mean and autocovariance functions of (7;),
respectively. One can show that these functions satisfy the periodic relations: f, s, =

Hoy and Y8, (T) = Y0, (7). In addition, v, (7) = Yppry(—7).
It can be shown that the sample autocovariance

1 N-1

Vv, N (T) = N Z (anJru - ﬁu,N>(77TS+uf'r - ﬁVfT,N) (4~7)

r=r*

of the APSs process (1) satisfies imy_,o0 Yo n(7) = Y00 (7) a.s., for fixed 7.

Asymptotically periodically stationary processes naturally arise through amplitude
modulation of PS processes in a similar manner as described in [Parzen (1963). Let (X;)
be the AO process in and (U;) be a sequence which can be random or deterministic.
We define (Y;) as the process (X;) amplitude modulated by (U;), that is

Y,=U,-X,, teZ (4.8)

We now introduce necessary conditions on (U, X;) to ensure that (Y;) in (4.8) is an
APSg process.

(A1) Us, Xy, s,t € Z, are independent;

(A2) (U;) is an APSg process with asymptotic mean and autocovariance functions given
by p,u and v, (7), respectively, and satisfies E(|U;|*™7) < K < oo, t > 1, for

some dy > 0. In this case, we define ¢,y (7) = 1,0 (7) + v t—rU;
(A3) (Z;) is a PSg process satisfying:

8) Zrsis = o0 Yugrsiumys where v, = s, with sup, 3,0 lty| < oo and
(g¢) is a zero mean white noise sequence with periodic variances o2 = Var(g;) =

2 .
01185

b) E(|g*"%) < K < o0, t > 1, for some 6. > 0;
(A4) The sequence (O,) satisfies E(|O,>7%) < K < oo, t > 1.

Condition (A1) is standard in literature and, as reinforced by Dunsmuir & Robinson
(1981c), the more general case allowing dependence between (U;) and (X;) seems to be
much harder to deal with. Moreover, the case wherein the actual process (X;) and the
missing mechanism do not affect each other seems to be natural in most (but not all)
cases, such that (A1) does not seem to be very restrictive. Conditions (A2) and (A3)
extend Assumptions A and B4 of Dunsmuir & Robinson (1981a)) to the periodic case. The
causal PARMA process satisfies (A3a). (A4) bounds the magnitudes of the outliers. One
can consider dy = 0. = do = 0 in (A2), (A3b) and (A4) without any loss of generality,

otherwise we can choose ¢ = min(dy, d¢, dp), so that these conditions remain valid.
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Theorem 4.1. Let (Y;) = (U;- X}) be the amplitude modulated process in (4.8]). Assume
(A1), (A2), (A3) and (A4) hold. Then (Y;) is an APSg process with asymptotic
periodic mean and autocovariance functions given, respectively, by p,y = 0 and v,y (7) =

Sou(™nx(t),r=1,...,8.
Proof. The proof is given in Subsection 4.7.1 O

One can take 8 = 1 in either (A2) or (A3) so that the following result still holds,
i.e., amplitude modulating either stationary process with APS or PS with asymptotically
stationary produces an APS process. Although it is not investigated here, we believe
that alternative conditions to (A3) extending B1, B2, B3 or B5 of Dunsmuir & Robinson
(1981a) can be formulated such that Theorem still holds.

Note that, Theorem and Equation |4.7|ensures that 4,y n(7) is a strongly consistent
estimator of ¢, ;7(7)v,, x(7). Since, by definition, (A2) imposes that limy_,o ¢, un(7) =
G (7) a.s., Continuous Map Theorem ensures that 9, x n(7) = J,y.n(T)/coun(T) is &
strongly consistent estimator of 7, x(7), when ¢, 7(7) # 0. This conclusion is summarized

in the following

Corollary 4.1. Suppose (A1), (A2), (A3) and (A4) hold and ¢y, (7) # 0. Define

_ '?V,Y,N(T)

Y, T .
xn (7) chuN(T)

Then limy 00 Y. x.8(7) = Y, x(7), a.s., for fixed 7.

Corollary 4.1| motivates the use of 4, x x(7) to evaluate the covariance structure of the
original process (X;). However, we point out that 4, x n(7) is not a positive semidefinite
function, so that it is not an actual autocovariance function. Therefore, for example,
its use to estimate autocorrelation coefficients could result in values with absolute value
greater than 1, at least in small sample sizes.

Parzen| (1961) has shown that asymptotically stationary time series possesses a gen-
eralized harmonic analysis. One can also introduce a similar treatment for APSg pro-
cesses in the sense of Hurd & Miamee| (2007). We will not pursue this topic here. In
turn, we shall consider the generalized harmonic analysis of the process (Y,) defined by
Y, = [Yisi1, -, Yesys], r € Z, v =1,...,8. The vector processes (X,), (U,) and (Z,)
are defined similarly to (Y,). It can be shown that (Y,) has an asymptotic (in a similar
sense to the definition of APSg processes) autocovariance matrix I'y (7) with entries given
by

Ty (T)]im =ny(T8+1—m) =qu(t8 +1—m)yx (18 +1—m)
= (o8 +1—m)+ upmu)nx (T8 +1—m)
= (Lo (M)]im + uku)im) [T (T)]m,
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where [I'x(7)];m is the [,m entry of the autocovariance matrix I'x (7) of (X,) and [py];
and [['y(7)].m are, respectively, the {th component of the asymptotic mean vector puy
and the [,m entry of the asymptotic autocovariance matrix I'y(7) of (U,). In matrix

notation the above equation simplifies to

I'y(7) = (Pu(7) + pypy) © Ix(7), (4.9)

where ® stands for the so-called Hadamard (entrywise or Schur) product of matrices.

Now, the following matrix version of the Bochner representations

2m 2m
Cy(T) :/ ¢™Fy(dw) and I'x(7) :/ ey (w) dw,
0 0

where Fy and fx are the spectral distribution and the spectral density matrices of (U,)
and (X,), respectively, can be combined with Equation [4.9] to obtain the following

Corollary 4.2. The asymptotic matrix spectrum of (Y,) is given by

fy) = fw) © ot + | oo = ) o Fu(d ).

In addition, supposing that Fy(w) is absolutely continuous gives

27
fy(w) = fxl) © pupy + |l — =) 0 fo(=) d
0

where fy is the spectral density matrix associated to Fy(w).

Corollary extends to the vector case the convolution property of the scalar spectral
density of amplitude modulated models. See for example Equation 2.1 in Dunsmuir &
Robinson| (1981c).

The analysis of time series with missing values is a natural example of application of
amplitude modulate process. In the stationary case, if the original process (X;) is not fully
observed, the covariance matrix of the sample is not necessarily Toeplitz (DUNSMUIR;
ROBINSON; 1981c). In the periodic scenario it is not block Toeplitz. These features pre-
vent the straightforward use of Whittle methodologies in both cases, so that the Whittle
methods of [Sarnaglia, Reisen & Bondon| (2015), [Sarnaglia, Reisen & Bondon| (2016a),
Sarnaglia, Reisen & Bondon| (2016b) can not be used directly on the observations of (X;).
However, one can still use the nice block Toeplitz properties if we replace the original time
series, with its missing values, by a related sequence equally spaced which can be handled
in a similar way as periodically stationary processes. This particular sequence is given
by the amplitude modulated process (Y;) in (4.8]), wherein the (U;) denotes an indicator
sequence with U; = 1 or 0 if the observation X; is observed or missing, respectively. In
this framework (U;) will be referred to as the not missing indicator process. Roughly

speaking, the (U;) inputs zeroes in place of missing observations in order to produce an
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artificial “complete” time series observed from (Y;). This approach can be used in the
cases where the missing data is produced in a deterministic fashion, such as the regular
A—B sampling (DUNSMUIR; ROBINSON;, 1981a)), or driven by some random schematic,
as long as they satisfy Assumption (A2).

4.4 PARMA estimation with missing data

From now on, (X;), is a (possibly contaminated) time series generated by the process
(X:) in (4.5). This paper is concerned with the case where the sample (X;)i; is not
completely observable. Therefore, we consider the amplitude modulated model in ,
by defining the not missing indicators as (Uy)};, where U; = 1 or 0 if the observation X;
is observed or missing, respectively. The amplitude modulated time series is defined as
(Y3)i-; and given by Y; = U, - Xy, t = 1,...,n. In the case where the generating process
(X¢) in is contaminated, the (hidden) uncontaminated time series is denoted by
(Z¢)}—,. For simplicity, we assume the sample size n = N8, N € {1,2,...}, such that N
full cycles will be analysed. The 8-dimensional vector time series (X, )Y ' is defined by
X,], = Xosew, v =1,...,8, r =0,1,...,N — 1. The (U,)"', (Y,)X! and (Z,)t
are defined similarly. The parameters of the PARMA model are grouped in the vector ¢.
We assume that the true parameter vector g lies in the parameter space P whose points

satisfy the identifiability assumptions of Sarnaglia, Reisen & Bondon| (2016al).

4.4.1 Asymptotic Whittle likelihood estimator

We first consider the uncontaminated case, where (X;) = (Z;) and fx(w) = fy(w),
w € [0,27). Consider the complete vector time series (Y,)Y;'. In light of Corollary
and in analogy with the multivariate version of Whittle’s approximation of the gaussian

likelihood, one could estimate ¢y by choosing ¢ to minimize

p Z {tr [f5" (wy; ©) Iy (wy)] + log det fy (wj; ¢) } (4.10)

where fy (w;; ) is the asymptotic matrix spectrum of (Y,) in Corollary [1.2] evaluated at
,j=1,...,N', N = |(N —1)/2] is the greatest integer

smaller than or equal to (N — 1) /2, the term ¢ is now being used in fy to reinforce their

. . 2
the Fourier frequencies w; = ”

intrinsic dependency, and

N—-1
1 .
Wy (w) = Z Y, e " and Iy (w) = Wy (w)Wy(w)™
\/_
are, respectively, the discrete Fourier transform and the periodogram of (Y,)")' at w.
At the Fourier frequency w;, Wy (w;) can be efficiently obtained through the multivariate

version of the fast Fourier transform algorithm.



Capitulo 4. Fitting PARMA models to time series with missing data and additive outliers 60

Unfortunately, the expression in Equation may be inaccessible since Fy is usually
unknown. We follow Dunsmuir & Robinson| (1981¢) and circumvent this problem by

approximating the spectral density matrix fy(w;; ¢) by

N-1
fy (wj; @) = fx (wy; ) © UU' + — fo i — Wi ) © Ty (wy)
N=
1 N-1
=5 2 Ix(wj —wii9) © Tu(w), (4.11)
k=0

where Iy(wy) and Iy«(wy) are, respectively, the periodograms of the vector time series
(U,)N! and its centralized counterpart (U*)Y!, wherein U* = U,—-U,r =0,1,..., N—
1,and U = N >, U,. Now, fy can be replaced by fy in ((p) (Equation 4.10|) which gives

!

~

1 .
o) =+ > {tr [f (wj; o) Iy (w;) | + log det fy (w;; s@)} : (4.12)
j=1
We propose to estimate the parameter vector ¢ by

¢ = argmin /().
QP
This particular approximation lis prefered since it requires no prior knowledge of Fy. The
computation of the “Hadarmard convolution” required in can be done efficiently
through the fast Fourier transform algorithm applied entrywise. Henceforth, ¢ will be
called Asymptotic Whittle Likelihood Estimator (AWLE). Asymptotic properties of ¢ are
not easy to be obtained and deserve a paper uniquely devoted to this subject. We intend

to approach this in a forthcoming work.

4.4.1.1 Impact of additive outliers

We shall see in Section that the AWLE has a small loss of efficiency for incomplete
time series observed from the AO process (X;) when the probability ¢ = 0, that is when
(X¢) = (Z;). We now investigate some theoretical aspects which discourage the use of
AWLE when ¢ > 0.

Observe that

Yi.x(7) = Cov(Xy, X ) = Cov(B;Oy + Z4, By 2O+ + Z; ) = 03¢ Loy +71,2(7),

where 03 = Var(0;) = E(0?), which exists from (A4) and is constant by definition
of the sequence (O;). The above equation generalizes the result in Sarnaglia, Reisen &

Lévy-Leduc (2010) for the general AO process in (4.5). Now we have that

Fx(T) = Do ]1{7-:0} —{—Fz(T),
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where Dy is diagonal matrix with entries given by D], = (o3 L{=m). Therefore, the

spectral matrix of (X,) is given by

Replacing Equation in fy given in Corollary gives

fy() = | 3-Do +tale)| @ oy + K [5Do -+ fallo — )| © Fuld)

1 . 27 . 2T
— %Do ® |:[,l,U[J,U + / FU(dw)} + fz(w) © pypy +/ fz(w—w) ® Fy(dw)
0 0
1 , 27
— 5-D0 © Cu(0) + £2(w) © popy + [ fales — @) © Fu(d),
0

where Cy(7) is the asymptotic autocovariance matrix of (U,) which has entries given by

[Cu(M)im =suv(T8+1—m), l,m = .8, with ¢ (7) given in (A2). In addition,
) 1 =
fy((JJj;gO) = N fX<wj —(.U]g,@) QIU(wk)
k=0
| Nl 1 1 Nz
N pr Z(wj Cdk, 90) @ U(wk) + 27T 0 @ <N Z )
| vl 1 .
= N fz(Wj —wk;go) @IU(wk)_’_%DO@CU(O)v

k

Il
o

where Cy(r) = + >, U, U,__. These results are summarized in the following

Corollary 4.3. The asymptotic matrix spectrum of (Y,) is given by

1 . 2
fy(w) = —Dp ® Cy(0) + fz(w) © pypy + / fz(w — w) ©® Fy(dw)
0

2
and
N-1
By (w;i9) = —Do © Cu(0) + = 3 Falw; — wis9) © Tu(wr) (4.14)
Y \Wj; @ o O U Nk:oz j ks P UlWk). .

Sarnaglia, Reisen & Bondon| (2016b) have shown that, for the AO model with the
contamination given in , the matritial classical periodogram Ix is a r.v. whose
expected value is impacted by the outliers in the same amount as the spectral density.
One can easily extend this result for the more general model in . Observe that, for

€ (0,m),

N—-1N-1

E(Ix(w)) = EWx(w)Wx(w)™) = N Z Z B(X,X,)e =)

r=0 s=0
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Therefore, limy_, E(/x (w)) = fx(w) = fz(w) + 5=Do, such that it is expected that the
periodogram Ix will be impacted by AO in the same amount as the spectral density fx.
In order to extend this result to the amplitude modulated process, we have to impose

the following additional assumption, which is satisfied for the not missing indicator process
(U;) described at the end of Section

(A2) Uy <U,teZ,and E(U) < 0

Theorem 4.2. Let Iy(w) be the periodogram of (Y,)Y'. Then, under (A1), (A2) and
(A2’), (A3) and (A4), we have that, for w € (0, ),

1 2
B(ly(w)) = f(w) = 5 -Do®Cul0) +tz(w) Opukiy+ | talo-=)oFuld=), (415)
0
as N — oo.
Proof. The proof is given in Subsection [4.7.2] O

In Equation , the term %Do ® CU(O) — %Do ® Cy(0), N — oo, a.s., and
quantify the AO contribution to fy. At first, one may model the outliers influence directly
by specifying this additional term in / (p). However, the presence of outliers is unknown
in practical situations and the main reason in specifying them in the modelling is to
remove its effect, not necessarily to estimate it. Therefore, the inclusion of this additional
quantity could result in an unnecessary overparametrization, so that we neglect it in
é(gp) Nevertheless, from Equation m, it is expected that, in a contaminated time
series scenario, the periodogram Iy (w) presents the AO effect, so that maximizing /(i)
disregarding the term 5-Dg © Cu(0) will increase bias of the estimates. This motivates

us to replace Iy (w) in () by a robust estimator of

fa(w) © by + / " fpw — ) © Fu(dw), (4.16)

which is the proposal of the next subsection.

4.4.2 M-asymptotic Whittle likelihood estimator

We propose the use of the multivariate M-periodogram of Sarnaglia, Reisen & Bondon
(2016D)) to estimate the spectral density in Equation[£.16] Let C,.(w) = [cos(rw), sin(rw)]’,
we (0,m), r=0,1,...,N — 1. At the elementary frequencies, the multivariate peri-
odogram Iy (wj), j = 1,..., N, is related to the least square estimator of the multivariate

multiple linear model
YT :B(wj)'C’r(wj) +£T, r= 0,1,...,N— 1, (417)

where B(w;) = [B1(w;), ..., Bs(w;)] is a (2 x 8) coefficient matrix and &, = [§.1,...,&s],

r=0,1,...,N — 1, is a random error term. In this framework, the 2-dimensional vector
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B,(w;) can be seen as the impact of the jth harmonic in the vth time series ([Y,],)Y"

v =1,...,8. See Sarnaglia, Reisen & Bondon| (2016b) for more details.

In order to produce a robust estimator of the spectral density, Sarnaglia, Reisen &
Bondon| (2016b)) propose the use of M-regression techniques to estimate the model in
. More specifically, let p : R® — R be a suitable discrepancy function, one defines
the M-estimator of B(w;) by

N-1
B,(w;) = argmin {Z p(Y, - ﬂcr(wj))} . j=1,...,N. (4.18)
ﬁeszS —0
Equivalently, one can obtain 3 »(wj) as the zeroes of
N-1
S0 (Yo = Bylw) Crlw)) Crley)' = 050, (4.19)
r=0
where, in this context, ¥ = 1p(xq,...,zs) is the 8-dimensional vector gradient function

related to p with elements given by [tp(xy, ..., zs)]; = aixip(xl, ..., xg). Observe that the
classical least squares estimator is a particular case of M-estimator where p(z1,...,zs) =
Zle 2? and ¥ (zy,...,2s) = 2[z1,...,2s]. Finally, at the elementary frequencies, the

M-transform and M-periodogram of (Y,)Y-;! relative to p are, respectively, defined as

Wy p(ws) = VST (1B, — il8,(w5)]20) (4:20)
and
Iy p(w;) = W p(w;) Wy p(w;)™, (4.21)
where j =1,..., N’
Now, we define the M-Asymptotic Whittle Likelihood Estimator (M-AWLE) of PARMA

parameters as

pp = argmin gp(@)a

peP
where
. 1 X . .
Upl) = 7 > { 0[B! (w5 ) v plwy)] + logdet By (wyi )}
j=1

As we shall see in the next section, ¢, keeps the robust features of M-estimators and
has small loss of efficiency compared to ¢ in the uncontaminated time series scenario.
Obtaining asymptotics for ¢, seem to be very challenging and will be considered in a
forthcoming paper.

A natural choice for the 8-variate discrepancy function is given by p(zq,...,z5) =
Zle p(x;), where p is a convenient function, such as p(x) = p.(z) = |z|® or the well-
known Huber function (HUBER) 1964) given by

37’ el <0,

p(z) = ps(z) = { 5(]z| — g) ,|z| > 0.

The choice of the tunning parameters such as k, ¢ is quite important and provides a

(4.22)

interchange between robustness and efficiency of the M-estimators.
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4.5 Monte Carlo study

In this section we investigate the finite sample behaviour of the proposed estimator.
We consider three cases: (i) complete uncontaminated which will be considered as a
benchmark; (ii) incomplete and uncontaminated time series; and (iii) incomplete and
contaminated data.

We generate M = 1000 replicates of each scenario, where the data will be generated
from the AO process in (4.5) with contamination sequence (O;) given in (4.6), where
¢ € {0,0.01} and o = 10. The hidden process (Z;) is a PARMA(1,1)s model, with
S8 = 2 and parameters given in Table which are set in order to evaluate the influence
of closeness of non causality and/or non invertibility regions on the estimators. Other
coefficient configurations were also considered and presented similar results. They are
not displayed here to save space, but they are available upon request. The missing data
are chosen through independent Bernoulli trials with success (the data be not missing)
probability 0.95. We consider the sample sizes n = N8 = 300,800 (N = 150,400,
respectively).

We use the 8-variate discrepancy function p(zq,...,xs) = Z?Zl ps(x;), where ps(x) is
the Huber function defined in (4.22). As usual in literature, the tuning parameter is set
as 0 = 1.345, which ensure that the M-estimator is 95% as efficient as the least squares
estimator for univariate multiple linear models with i.i.d. gaussian white noise. It can be

even more efficient in many other cases, as the simulation results will show.

Table 4.1 — Simulated models.

Period 1 Period 2 Roots in (|4.4)
Model ®11 91,1 U% P21 92,1 a% T9¢ Vg
1 —-0.2 00 1.0 —-0.5 00 1.0 0.1 0.0
2 —-0.2 =05 1.0 —-0.5 =02 1.0 0.1 0.1
3 —-1.0 0.0 1.0 —-0.5 00 1.0 0.5 0.0
4 —-1.0 —-0.5 1.0 —-0.5 —0.2 1.0 0.5 0.1

We evaluate the finite sample performance of the estimators through empirical Root
Mean Square Error (RMSE). The BIAS and the Standard Error were also calculated,
however they are not shown here to save space, but they are available upon request. The
RMSE of the AWLE and M-AWLE are presented in Tables [4.2] [4.3] [£.4 and [4.5] Values
with “x” refer to the empirical RMSE of the M-AWLE estimates. Boldface numbers
represent comparable small RMSE.



Table 4.2 - RMSE of ¢ and ¢,, with “”, for Model 1 with ¥4 = 0.1 and ¥4 = 0.0.

Case n d11 011 U% $2,1 021 U%
300 0.070; 0.075* — 0.128; 0.152* 0.081; 0.089* — 0.114; 0.166*
(i) 800 0.047;0.049* — 0.072;0.097* 0.051; 0.058* — 0.064; 0.101*
300 0.074; 0.079* — 0.129; 0.155* 0.084; 0.090* — 0.118; 0.162*
(i) 800 0.050; 0.052* — 0.075;0.092* 0.055; 0.063* — 0.067; 0.098*
300 0.148; 0.081* — 1.309; 0.165* 0.272; 0.095* — 1.384; 0.209*
(iii) 800 0.127; 0.056* — 1.136; 0.116* 0.276; 0.070* — 1.253; 0.138*

Table 4.3 - RMSE of ¢ and ¢,, with “x”, for Model 2 with ¥4, = 0.1 and ¥y = 0.1.

2

2

Case n P11 91,1 07 ®2.1 021 b
300 0.328; 0.418* 0.334; 0.432* 0.112; 0.138* 0.400; 0.551* 0.415; 0.569* 0.122; 0.143*
(i) 800 0.167;0.174* 0.169; 0.177* 0.071; 0.087* 0.173; 0.186* 0.183; 0.196* 0.065; 0.101*
300 0.372; 0.423* 0.380; 0.438* 0.117; 0.140* 0.464; 0.633* 0.478; 0.649* 0.124; 0.139*
(i) 800 0.176;0.185* 0.178;0.191* 0.071; 0.082* 0.181; 0.201* 0.189; 0.213* 0.069; 0.097*
300 1.122; 0.461* 1.119; 0.479* 1.332; 0.163* 1.195; 0.609* 1.240; 0.630* 1.312; 0.158*
(iii)) 800 0.659; 0.198* 0.662; 0.201* 1.117; 0.103* 0.592; 0.206* 0.630; 0.221*  1.209; 0.130*
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Table 4.4 — RMSE of ¢ and ¢,, with “x”, for Model 3 with ¥4 = 0.5 and ¥4 = 0.0.

Case n d11 011 U% $2,1 021 U%
300 0.070; 0.089* — 0.126; 0.207* 0.054; 0.063* — 0.118; 0.164*
(i) 800 0.044;0.054* — 0.070; 0.161* 0.031; 0.044* — 0.063; 0.134*
300 0.077; 0.100" — 0.144; 0.200* 0.054; 0.063* — 0.134;0.167*
(ii)) 800 0.044; 0.054* — 0.094;0.173* 0.031; 0.044* — 0.070; 0.130*
300 0.425; 0.118* — 1.632; 0.329* 0.170; 0.070* — 1.392; 0.237*
(iii) 800 0.434; 0.077* — 1.648; 0.307* 0.154; 0.054* — 1.243; 0.202*

Table 4.5 - RMSE of ¢ and ¢,, with “x”, for Model 4 with ¥4 = 0.5 and ¥y = 0.1.

2

2

Case n ¢1,1 011 07 ®2.1 021 b
300 0.212; 0.228" 0.228; 0.239* 0.104; 0.152* 0.126; 0.134* 0.141; 0.148* 0.114; 0.144*
(i) 800 0.118;0.130°* 0.130; 0.141* 0.070; 0.126* 0.077; 0.083* 0.083; 0.089* 0.063; 0.094*
300 0.235; 0.241* 0.253; 0.255* 0.109; 0.148* 0.130; 0.137* 0.148; 0.151* 0.118; 0.141*
(i) 800 0.126;0.148* 0.141; 0.164* 0.070; 0.118* 0.083; 0.094* 0.089; 0.094* 0.063; 0.089*
300 1.142; 0.251* 1.214; 0.263* 1.347; 0.190* 0.282; 0.144* 0.296; 0.154* 1.386; 0.173*
(iii) 800 0.341; 0.158" 0.409; 0.176* 1.237; 0.170* 0.161; 0.094* 0.204; 0.100* 1.080; 0.122*
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For complete and uncontaminated time series, Case (i), in general, both estimators
present similar performance for the AR and MA coefficients. Regarding the estimation of
white noise variances, AWLE seems to be more accurate. For both estimators, the RMSE
seems to present an overall decrease with sample size. The presence of MA structure
increase the RMSE of AR coefficients for both estimators, while the white noise variances
seem to be unaffected.

In the scenario where the time series has missing values and no outliers, Case (ii), all
conclusions in the previous paragraph still hold. However, we observe an overall increase
of RMSE which can be due to the fact that the original sample is not used in this case.

The results of Case (iii), where the data set is incomplete and contaminated by additive
outliers, are incontestable and show the remarkable superiority of M-AWLE over the
AWLE, while the latter is totally corrupted by the atypical observations, the former
presents RMSE almost unchanged compared to the uncontaminated data.

We also display in Figure the empirical distributions of the estimates provided by
the MLE, the WLE and the RWLE for Model 3. It is clear the AO effect in the MLE and
the WLE, while the RWLE remains almost unchanged.

Therefore, this simulation study shows that AWLE should be used in the case where
the user is sure about the absence of outliers. In contrast, in case of suspicion of the
presence of the aberrant data, the user should rather use the M-AWLE.

4.6 Application

In this section we analyze the daily mean concentrations of sulfur dioxide (SOg). The
raw series was observed from 1st January 2005 to 31st December 2009 at the monitoring
station of Environment and Water Resources State Institute located in Vitéria downtown,
Brazil. We prefer this data set since it is completely available and order identification
can be easily performed. For time series with missing data, identification can be handled
by using the autocovariance estimator in Corollary 4.1} Following [Sarnaglia, Reisen &
Bondon! (2016a), the first 1603 observations were considered in the model learning (es-
timation) stage and the remaining 223 observations were reserved for the out-of-sample
forecast study. Figure displays the SO, time series and the learning and prediction
values. Because data is completely observed, the missing data scenario is artificially gen-
erated by a binomial random sample with size 1603 and missing probability = 0.05, see
Figure for the stretch between 2005 and 2006. The observed percentual of missing
in the whole sample is 5.05%.

Since data is daily collected, the PARMA model with period § = 7 seems to be
appropriated to fit the series. As shown in [Sarnaglia, Reisen & Bondon (2016a), the
sample Periodic Autocorrelation and Partial Autocorrelation functions indicate a PARMA
model with orders p, = 1, Vv, and ¢, = 1,1,1,1,0,0,1. Note that, this model satisfies
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Figure 4.1 — Box-plot of ¢ (Cla) and ¢, (Rob) estimates of Model 3 for n = 300. Cases:
(i) no outlier and complete; (ii) uncontaminated and missing; and (iii) outlier
and incomplete time series.

the identifiability condition (A1) of [Sarnaglia, Reisen & Bondon| (2016al), while the other

restrictions are imposed as constraints in the optimization algorithm.

Due to the fact that the proposed estimation methods are implemented for zero mean
processes, a prior centralization by the periodic sample means has to be performed. For
the full sample, this is carried out by subtracting the usual periodic sample means. On
the other hand, for the time series with missing values we estimate the average by fi, x =
fivy / fuy,p which is a natural generalization of the sample mean for time series with missing
data, as used in Dunsmuir & Robinson| (1981b). The initial guess for the AR and MA
parts of the estimators was set as zero, that is a periodic white noise. The o2 parts

were set, in the full sample case, as the usual sample variance s3 = 39.4 and, in the

incomplete sample scenario, as the variance estimator 6% = s%. /iy = 39.6, where jiyy =

> Ui/1603 is the sample mean of the no missing indicator sample. See




Capitulo 4. Fitting PARMA models to time series with missing data and additive outliers

2|0 3‘|0 4|0

1|0

— Learning
- - Prediction

I
2005

(a) Full sample from January 1, 2005 to December 31, 2009.

I
2006

I
2007

I
2008

2009

4|O

?

lIO

- ) y IIIIIIIIIIIIIIIIIIIIIIIII i

2005

ing data.
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Robinson| (1981b)), [Dunsmuir & Robinson| (1981a) for more details. The model estimates
obtained are presented in Table [4.6]

Table 4.6 — Model estimates for complete and incomplete SO, daily mean concentrations.

v

Param. Scenario Method 1 2 3 4 5 6 7
AWLE -0.72 -—-1.14 -0.80 -0.89 -—-0.58 —0.61 —0.70
Complete M-AWLE -0.79 —-1.16 —-0.82 —-0.88 —0.58 —0.58 —0.64
AWLE -0.72 -113 -0.79 -0.83 —-0.60 —0.57 -—0.74
Du1 Missing M-AWLE -0.80 -1.12 —-0.81 -—-0.82 —-0.58 —0.56 —0.64
AWLE —-0.49 —-0.74 —-0.54 —0.50 — — —0.36
Complete M-AWLE -0.57 -0.79 —-0.52 —0.46 — — —0.31
AWLE —-0.46 —-0.71 —-0.53 —0.41 — — —0.41
0,1 Missing M-AWLE -0.56 —0.73 —0.50 —0.36 — — -0.30
AWLE 29.2 28.7 23.6 19.5 26.2 33.1 32.6

Complete M-AWLE  29.8 25.8 22.1 20.8 24.8 32.4 27.9
AWLE 29.1 29.2 23.4 20.2 26.3 32.2 33.5

0'3 Missing M-AWLE 30.5 26.4 21.8 21.2 25.8 31.8 28.0

From the results in Table [4.6] we observe that the estimates in the full sample case

using the classical periodogram are almost the same as in Sarnaglia, Reisen & Bondon

(2016a)). This is expected since the difference in their likelihood and the one considered

here is negligible for large sample sizes such as in this case. The other results in the

above table reflects the conclusion obtained in the simulation study. For some periods

there is no substantial difference in AR, MA and variance estimates from AWLE and
M-AWLE. However, there are periods on which the AWLE and the M-AWLE provide
notably different estimates, wherein the AWLE of AR and MA parts are smaller and the
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white noise variance parts are greater than the M-AWLE counterparts, e.g. for v = 1,2
and 7. This can be an indicative of the presence of outliers. The occurrence of missing

data does not change significantly the estimates.

4.7 Proofs

4.7.1 Proof of Theorem [£.1]

From now on, K represents a constant which may vary throughout the text. Let

a = 2 + ¢, then Markov inequality gives

N—

N—-1
_ 1 _ (1)
P([Yo| > €) < = (Vo |?) < Z (Yool 2 o D B Ursinl®) E( Xrsil?)
r=0 r=0
3) K
= N1+62+6°

where (1) follows from Jensen inequality, (2) from (A1) and (3) from (A2), (A3) and
(A4). From the integral test,

o0 oo K
D PTunl > < D Fmsges < oo
N=1 N=1

Therefore, the Borel-Cantelli Lemma ensures that YV, N — 0, N — o0, as..

In order to prove a.s. convergence of ¢,y n(7), we first note that

1
Cv)Y,N (7—> = N Z UT’S+I/XTS+VUTS+Z/77'X7'S+I/7T

1 1
N (Urs+oUrsyp—r — §V,U(7—))§V,X (7) + N Z(UTS+VUTS+V—T - gV,U(T))gu,X (),

r

which implies

1
CvY,N (T) - gl/,U<T)§Z/,X (7-) = N Z UTS+I/UT‘S+V77' (XTS+Z/XT‘S+I/7T — Sy, X (T)) (423)
1 r*
+ N Z(UTS+VUTS+V77 - CZ/,U<T))§1/,X(T> + Ngl/,X (7—) (424)

T

From (A2), [#24) — 0, N — oo, a.s., so that we just need to consider (4.23). Now,

let o =1 + g7 X:yr == XTS+VXTS+V—T - gy,X( ) U:V’r = UT5+VUTS+V—7— and SV,N _
> U iy T,,T Therefore,

E(|£8~]") = NEE(X, UL, Xf || U t € Z)]
< NE{E[(3, |U U, t € Z]},

MH Xiva)?
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by triangle inequality. Then

Sl < 3107, DU VXl

(1)

B DM [( A0 ) Rt AUl i DM (AR LA, G| L R
* (a_l)/a * * l/a

= (Zr |Ur,u,‘r|) (Zr |(UT,V,THXT,V,T| ) )

where (1) follows from Hélder’s inequality. Therefore, from (A1),

E(|Syn[*|Ust € Z) < (3, U2, ) S Uz, E (1X7,.1%) < K (5, 1U7,.1)°

since it can be shown that (A3) and (A4) and Minkowski and Cauchy-Schwarz inequal-
ities ensure E(|X/,  |*) < K < oco. Thus,

’I‘,I/,T|

B(lxSunl®) = E(|§ X, Ury X7, ") < NOKE[(Z, 107, 1) < NK Y, U rl®)-

From (A2) and Cauchy-Schwarz inquality, we have that E(|U,

7’71/,7"

@) < K < oo. Hence,

E(’%SV,NP) = E(‘% Zr UTS+1/UTS+ZHT(XTS+VXTS+V77 - gV,X<T>>’a) < KN'"* = KN/,

We now use the method of subsequences to show that %SM N = 0, N = o0, a.s.. More

NoSvNys k> 1, such that -5, v, — 0 and

specifically, we have to find a subsequence oA

M — 0, k — oo, a.s., where

1 1
M, = max —Sum — SN | -
Ne<m<Ngi1 [T Ny,

Take an h € {2,3,...} and put a =1 + g and N, = h*, k € N. Therefore,
P(I%Som| > €) < ZE(ESuwn|%) < KN = KN, = Kr*,

where 0 < 7 = h™%/2 < 1. Hence > o, P(\NLkSV,Nk\ > €) < oo and, from Borel-Cantelli
Lemma, we have that NLkSVaNk — 0, k — oo, a.s.. It remains to show that M, — 0,
k — o0, a.s.. Let Dy = maxy,<m<ny,, |Sv,m — Su,n,| and note that, for N, < m < Ny,
1Sum| < |Sun,| 4+ |Dx| and 1/m < 1/N;,. Hence, |+£S,,,| < |NikS,,,Nk\ + \NLka]. From

triangle inequality, we have

Dy
max —kl
N <m<Ng41 Ny,

1
_Su,m < 2

m

S,,,Nk +

1
M, < |—3S,
k_‘Nk N | T

5
The first term in the last inequality tends to 0 a.s., such that we just have to study the con-

vergence of the second term. Note that, for m > Ny, S, — Sun, = D e Net1 Urn n X0 7
thus Hoélder’s inequality and (A1), (A3) and (A4) give

E(Dg|U, t € 2) < K (S 107 )

which implies

E(Dy) < SV K < K(Ng — Ny) < KhF,
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from (A2) and Cauchy-Schwarz inquality. Therefore, E (%) < K % = KhFi=2) =

k
K7k, where 0 < 7 = h~%2 < 1. From Markov’s inequality and Borel-Cantelli Lemma, we

obtain that Dy/N; — 0 (and M} — 0), kK — oo, a.s., which ensures that

lim ¢,y n(T) = u(T)sx(7),
N—oo

almost surely.

4.7.2 Proof of Theorem 4.2

Firstly, observe that

=2

-1

E(UTS+ZXT‘S+ZUSS+mXSS+m)6_iw(T_S)

==

E([Iy(w)]im) =

~z
‘27:0
Dl

2|| =
H M

E(Ur8+lUsS+m) [FX (T - 3)]l7me_iW(r_s)

Z Lx(7)]im B([Cu(7)]im)e ™7,
|ITI<N

where Cy(r) = +>.,U,U,__. From (A2), we can show that E(|[Cu(T)im|) < K
independent of N. Therefore, E([/y(w)];m) converges, because Assumption (A3) implies
that Z‘r—foo er(’/')hm‘ < o00. Let bT = [Fx(T)]lyme_in and ar N = E([CU(T)]l,m)a ’T‘ S
N—-1a,y=0,|r| >N —1. Then

dim B([Iy (@))im) = lim _Z brasy = _Z by lim ar.y,
where (1) follows from the dominated convergence theorem. In addition, under (A2’),
|Uy| < U, teZ,and E(U) < oo, so that the dominated convergence theorem can be used
again to show that

lim ary = lim E([Cy()]m) = E ( lim [CU(T)]Z,m) = [Cu()im

N—o0 N—oo N—oo

Hence
o

A E([Iy (@)]m) = > Cx(D)m[Cu(7)ime ™ = fy (w).
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5 Conclusao

Esta tese investiga a estimagao de modelos PARMA para ajustar séries temporais em
diversas situacoes encontradas na pratica. As conclustes aqui expostas se baseiam em
resultados tedricos e empiricos obtidos nos capitulos anteriores.

O problema de identificabilidade desses modelos foi tratado diretamente e restrigoes
simples que asseguram essa propriedade foram encontradas. Em adicao, a consisténcia e
a normalidade assintoticas do estimador de Whittle foram obtidas sob suposicoes usuais
na literatura. O estudo de simulacao mostrou as vantagens da metodologia proposta,
principalmente no que tange ao tempo de convergéncia, comparado com o estimador de
maxima verossimilhanca gaussiano.

O ajuste de modelos PARMA a séries temporais, completas ou com dados faltantes,
acometidas por outliers aditivos também foi abordado. Um estimador robusto da ma-
triz de densidade espectral foi proposto. Essa alternativa ao periodograma foi utilizada
na verossimilhanca de Whittle com o objetivo de fornecer estimativas robustas para os
parametros do modelo PARMA. O estudo de simulagdo demonstrou a robustez do esti-
mador proposto quando a série temporal é acometida por outliers aditivos.

Um estimador da funcao de autocovariancia periédica apropriado a séries temporais
incompletas foi proposto e sua consisténcia forte foi determinada sob suposicoes similares
ao caso estacionario investigado por Dunsmuir & Robinson|(1981a)). Dois estimadores para
séries temporais PARMA com dados faltantes foram introduzidos. Ambos se destacam
por nao sofrer perda significante de eficiéncia comparados aos resultados para amostras
completas. Entretanto, sob a influéncia simultanea de observagoes atipicas e faltantes, o
estimador baseado no periodograma cldssico é completamente afetado, enquanto que a
alternativa robusta tem desempenho quase inalterado.

Este estudo cria diversas linhas de pesquisa promissoras e que podem ser persegui-
das futuramente, tais como: investigacao de propriedades assintéticas dos estimadores
propostos; ajuste do modelo PARMA a séries temporais incompletas, com volatilidade e
sob efeito de observacoes aberrantes; desenvolvimento de estimadores robustos da funcao
de autocovariancia e da matriz de densidade espectral de séries temporais com dados

faltantes, entre outras.
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