
Alessandro José Queiroz Sarnaglia

Estimação de séries ARMA periódicas
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ao passo que a imaginação abrange o mundo inteiro.”

(Albert Einstein)



Resumo

Esta tese propõe estudos teóricos, simulados e aplicados, em processos ARMA Periódicos

(PARMA), nos contextos de identificabilidade, robustez e observações faltantes. No que

tange ao problema de identificabilidade, suposições são determinadas para garantir uni-

cidade na identificação do processo, teoria que não tem sido ainda explicitamente inves-

tigada na literatura de processos PARMA. As condições de identificabilidade sugeridas

permitiram o desenvolvimento da teoria assintótica para o estimador de Whittle desse

modelo. O estudo de robustez é baseado no domı́nio da frequência e em regressão M

para obter o estimador da matriz de densidade espectral, que é aplicado ao método de

Whittle, com o objetivo de propor um estimador robusto do modelo PARMA quando

a série é contaminada por outliers aditivos ou é gerada por distribuições simétricas de

caudas pesadas, como por exemplo, t-student ou exponencial dupla. A Estimação de

modelos PARMA com outliers aditivos e observações faltantes é a terceira contribuição

desta tese. Nesse contexto, é proposto um estimador que tem propriedades de robustez e

pode ser aplicado em series temporais incompletas. A metodologia é baseada no domı́nio

da frequência por meio da convolução entre função espectral e periodograma. Todas as

propostas são utilizadas na aplicação à dados reais provenientes da área da poluição do

ar. Essas três contribuições cient́ıficas estão, respectivamente, apresentadas nesta tese por

meio dos seguintes artigos: Identifiability and Whittle Estimation of Periodic ARMA Mo-

dels ; M-regression spectral estimator for periodic ARMA models: a robust method against

additive outliers and heavy tail distributions ; e On the use of classical and M periodograms

to fit periodic ARMA models to time series with missing data and additive outliers.

Palavras-chave: Processos periodicamente estacionários. Modelo PARMA. Estimador

de Whittle. Identificabilidade. Robustez. Dados faltantes.



Abstract

This thesis proposes theoretical, simulated and applied studies on Periodic Autoregressive

Moving Average (PARMA) processes in the identifiability, robustness and missing data

contexts. Regarding the identifiability problem, conditions have been established to en-

sure the uniqueness of PARMA representation, which has not been explicitly investigated

in the literature of PARMA processes yet. The proposed conditions have allowed the

development of the asymptotic theory of Whittle estimator of PARMA parameters. The

robustness study is based on the frequency domain and M -regression used to obtain an

estimator of the spectral density matrix, which is applied in the Whittle’s method, aiming

to propose a robust estimator of the PARMA model for time series contaminated by ad-

ditive outliers or generated by symmetric heavy tailed distributions, such as t-student or

double exponential. The estimation of PARMA models with additive outliers and miss-

ing data is the third contribution of this thesis. In this context, it is proposed a robust

estimator which can be applied to fit incomplete time series. The methodology is based

on the frequency domain through convolution of spectral density and periodogram. All

proposals are used in applications to real air pollution datasets. These three contribu-

tions are, respectively, presented in this thesis through the following papers: Identifiability

and Whittle Estimation of Periodic ARMA Models; M -regression spectral estimator for

periodic ARMA models: a robust method against additive outliers and heavy tail distri-

butions; and On the use of classical and M periodograms to fit periodic ARMA models

to time series with missing data and additive outliers.

Keywords: Periodically stationary processes. PARMA model. Whittle estimator. Iden-

tifiability. Robustness. Missing data.
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1 Introdução

Dados coletados no tempo usualmente violam a suposição de independência, que é

uma das principais condições dos procedimentos estat́ısticos mais básicos. Nesse con-

texto, a análise de séries temporais se torna uma metodologia alternativa apropriada para

realizar inferência em dados correlacionados no tempo. Formalmente, uma série temporal

representa uma realização finita de um processo estocástico que pode ser indexado pelo

tempo, espaço ou ambos. No que tange a séries temporais, em geral, a estacionariedade

de segunda ordem, ou fraca, é um dos requisitos básicos. Essa condição estabelece que os

momentos de primeira e segunda ordens não dependem do tempo. Uma suposição mais

forte é a de estacionariedade estrita, a qual impõe que todas as distribuições conjuntas

finito-dimensionais do processo sejam invariantes sob translações do tempo. Pode-se mos-

trar que estacionariedade estrita aliada a momentos de segunda ordem finitos implica a

de segunda ordem, enquanto o oposto não necessariamente é válido. Nesta tese, o termo

estacionariedade se referirá a estacionariedade de segunda ordem. Ver Brockwell & Davis

(2006) e Priestley (1981), para mais informações acerca de processos estacionários.

A suposição de estacionariedade nem sempre é apropriada na prática e pode ser vi-

olada de diversas formas, de modo que métodos especiais necessitam ser desenvolvidos

para tratar cada fenômeno separadamente. Em particular, processos cuja estrutura de

covariância varia no tempo de maneira periódica, ou periodicamente estacionários (PS),

têm ganhado atenção especial desde o artigo pioneiro de Gladyshev (1961). Tiao & Grupe

(1980) investigaram os efeitos de utilizar modelos estacionários que negligenciam a periodi-

cidade da verdadeira estrutura de covariância, observaram que essa má especificação pode

deteriorar o desempenho das predições e mostraram que esse fenômeno não é detectado

pelo diagnóstico da qualidade de ajuste padrão. Nesse contexto, alguns autores propuse-

ram métodos para identificar correlação periódica oculta em séries temporais. Veja, por

exemplo, Hurd & Gerr (1991) e Vecchia & Ballerini (1991). Evidências da ocorrência de

processos PS em situações práticas foram documentadas em Gardner & Franks (1975),

Bloomfield, Hurd & Lund (1994), Lund et al. (1995), entre outros.

Em geral, processos estacionários são base para a concepção de modelos para séries

temporais PS, onde se admite que os parâmetros variem periodicamente no tempo. O

modelo Periódico Autoregressivo (PAR) é um dos mais abordados nesse contexto. A

famı́lia PAR foi originalmente introduzida por Thomas & Fiering (1962) para o ajuste e

a simulação de fluxos de rios, um estudo sistemático das propriedades desses sistemas foi

realizado por Troutman (1979) e McLeod (1994) desenvolveu a metodologia de diagnóstico

da qualidade de ajuste para esses processos e mostrou várias desvantagens do modelo

Periódico Autoregressivo de Médias Móveis (PARMA), tal como a inviabilidade do uso

de critérios automáticos de seleção das ordens do modelo, devido, principalmente, à alta
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complexidade computacional envolvida. Diante dessa limitação, somente poucos artigos

investigaram a famı́lia PARMA. Como exemplo, pode-se citar Vecchia (1985) e Li & Hui

(1988).

O avanço tecnológico ocorrido a partir do final da década de 90, no entanto, motivou

diversos pesquisadores a retomarem o estudo de processos PARMA com função de autoco-

variância absolutamente somável (memória curta), dedicando especial atenção à métodos

de estimação desses modelos. No domı́nio do tempo, Anderson, Meerschaert & Vecchia

(1999) desenvolveram o innovations algorithm para a estimação de sistemas PARMA, An-

derson & Meerschaert (2005) investigaram as caracteŕısticas assintóticas desse estimador,

Lund & Basawa (2000) usaram essa metodologia na construção de um procedimento recur-

sivo simples de predições um passo à frente, o qual foi utilizado no desenvolvimento de um

algoritmo eficiente para avaliar a verosimilhança exata de séries temporais PARMA gaus-

sianas e Basawa & Lund (2001) estudaram as propriedades assintóticas do estimador de

mı́nimos quadrados ponderados para esses modelos. No domı́nio da frequência, Sarnaglia,

Reisen & Bondon (2015) sugeriram a utilização da metodologia de Whittle para estimar

os parâmetros do modelo PARMA. No contexto de memória longa, ou seja, quando a

função de autocovariância não é absolutamente somável, Franses & Ooms (1997) e Ko-

opman, Ooms & Carnero (2007) estudaram processos PARMA de Integração Fracionária

(PARFIMA).

Em geral, no contexto de estimação, assume-se que a famı́lia de modelos considerada

é identificável no sentido de Reinsel (1997) ou Deistler, Dunsmuir & Hannan (1978). Em

poucas palavras, identificabilidade de uma famı́lia de modelos significa que uma estrutura

de covariância (ou matriz de densidade espectral) determina um, e somente um, membro

dessa famı́lia. Portanto, não identificabilidade resulta em uma superf́ıcie de verossimi-

lhança com mais de um máximo (BROCKWELL; DAVIS, 2006, página 431). Nesse

sentido, a investigação de condições que asseguram a identificabilidade do modelo é um

tópico extremamente importante. No que tange a processos ARMA Vetoriais (VARMA),

condições suficientes foram introduzidas por Dunsmuir & Hannan (1976) e Deistler, Duns-

muir & Hannan (1978). No entanto, para a famı́lia PARMA, esse tópico ainda é inexplo-

rado, sendo que as pesquisas dedicadas a estimação desses processos somente assumem

implicitamente que a busca pelas estimativas é restrita à modelos identificáveis. Veja, por

exemplo, o último parágrafo da página 652 de Basawa & Lund (2001).

Conjuntos de dados reais frequentemente apresentam observações at́ıpicas, ou outliers.

Em geral, esses dados aberrantes comprometem os métodos de inferência clássicos. Na

literatura, em geral, três tipos de outliers são considerados (DENBY; MARTIN, 1979):

outliers de inovação (IO), que afeta todas observações subsequentes; outliers aditivos

(AO); e outliers de reposição (RO). Os dois últimos não afetam observações futuras. Ma

& Genton (2000) ressaltam que AO e RO têm o mesmo efeito e são muito mais prejudiciais

do que IO. Nesse contexto, Fajardo, Reisen & Cribari-Neto (2009) estudaram o efeito do
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AO em processos de memória longa e mostraram que, nesse caso, o processo contaminado

apresenta a propriedade de perda de memória, isto é, as funções de autocorrelação teórica

e amostral convergem para zero com o aumento da magnitude do outlier. No contexto

de processos PS, Sarnaglia, Reisen & Lévy-Leduc (2010) chegaram a mesma conclusão.

Naturalmente, estimadores clássicos apresentam alta sensibilidade à presença de outliers,

devido ao impacto dessas observações at́ıpicas na estrutura de covariância amostral. Por

esse motivo, metodologias robustas têm sido sugeridas na literatura.

No domı́nio do tempo, Ma & Genton (2000) propuseram uma metodologia de es-

timação da função de autocovariância, baseada no estimador robusto da escala Qn. Os

autores também estudaram a robustez do método proposto contra RO. Baseados nesse

estudo, Fajardo, Reisen & Cribari-Neto (2009) propuseram um método robusto para a

estimação do parâmetro de diferenciação fracionária de processos ARFIMA. Sarnaglia,

Reisen & Lévy-Leduc (2010) estenderam a proposta de Ma & Genton (2000) para realizar

a estimação robusta da função de autocovariância periódica e dos parâmetros de modelos

PAR. Robustez para modelos PAR também tem sido considerada por Shao (2008).

No domı́nio da frequência, estimadores robustos da densidade espectral foram intro-

duzidos recentemente como alternativas ao periodograma clássico. O periodograma tem

relação com o estimador de mı́nimos quadrados dos coeficientes do modelo de regressão li-

near, onde as covariáveis são dadas por senoides (seno e cosseno) avaliados nas frequências

harmônicas, veja por exemplo, Priestley (1981). Nesse contexto, diversos autores suge-

rem, em vez de mı́nimos quadrados, realizar a estimação do modelo de regressão através

do método não linear de estimadores M , o que dá origem aos periodogramas M . Para

séries univariadas com memória curta, como, por exemplo, processos ARMA, Li (2008)

estuda o caso especial do periodograma de Laplace, onde o método de mı́nimos quadrados

é substitúıdo por mı́nimo valor absoluto. Extensão dessa metodologia é proposta por Li

(2010). No contexto de memória longa, Fajardo et al. (2015) se baseiam nos resultados

de Koul (1992) para estudar as propriedades do periodograma M .

No contexto multivariado, o periodograma M ainda permanece inexplorado. Em

adição, estimadores robustos para modelos PARMA ainda não foram introduzidas na

literatura. Dessa forma, a utilização do periodograma M multivariado em conjunto com

a metodologia de Whittle para realizar o ajuste de processos PARMA constitui uma linha

de pesquisa interessante.

Em muitas situações a série temporal não pode ser completamente observada. Nesse

contexto, os dados faltantes impedem a utilização de técnicas de inferência clássicas.

Portanto, vários autores têm desenvolvido metodologias especiais para a análise de séries

temporais incompletas. Por exemplo, Metaxoglou & Smith (2007), Drake, Knapik &

Leśkow (2014) e Drake, Knapik & Leśkow (2015) sugerem a utilização de algoritmos do

tipo Expectation-Maximization (EM) para tratar esse problema. Essa abordagem tem a

desvantagem de assumir uma distribuição espećıfica (em geral, gaussiana) para os dados.



Caṕıtulo 1. Introdução 14

Alternativamente, uma abordagem promissora é constitúıda da utilização de proces-

sos de amplitude modulada, onde a análise é realizada por meio de uma série temporal

alternativa em que as observações faltantes são substitúıdas por zeros. Por exemplo,

para processos de memória curta, Dunsmuir & Robinson (1981a) e Yajima & Nishino

(1999) estudaram o comportamento assintótico de diferentes estimadores da função de

autocorrelação de processos estacionários com dados faltantes. Baseados na densidade es-

pectral assintótica de processos de amplitude modulada, Dunsmuir & Robinson (1981b)

propuseram um estimador de Whittle para coeficientes do modelo ARMA e Dunsmuir

& Robinson (1981c) estudaram a distribuição assintótica dessa metodologia. Outras re-

ferências que tratam da análise de séries temporais com dados faltantes são Bondon &

Bahamonde (2012) que estudam a estimação de modelos autoregressivos condicionalmente

heterocedásticos e Efromovich (2014) que propõem uma metodologia não paramétrica de

estimação da densidade espectral.

O estudo de séries temporais PS com dados faltantes ainda se encontra em sua infância.

Nesse sentido, a literatura é relativamente escassa e as principais contribuições são dadas

nos seguintes artigos: Drake, Knapik & Leśkow (2014); Drake, Knapik & Leśkow (2015);

e Drake, Leśkow & Garay (2015). Os dois primeiros trabalhos propõem algoritmos do tipo

EM para estimar os parâmetros do modelo AR com amplitude modulada por senoides.

O último propõe quatro algoritmos para estimação de séries temporais K-dependentes

amplitude moduladas por senoides. O caso mais geral, onde os dados são gerados por

processos PARMA aparentemente não foi explorado na literatura.

O estudo conduzido nesta tese tem como objetivo apresentar soluções para as lacunas

discutidas anteriormente, a saber, identificabilidade, robustez e observações faltantes em

processos PARMA. Os resultados obtidos são apresentados em três artigos. O primeiro,

intitulado Identifiability and Whittle Estimation of Periodic ARMA Models e apresentado

no Caṕıtulo 2, introduz condições para identificabilidade de processos PARMA e investiga

as propriedades assintóticas do estimador de Whittle para esse modelo. O Caṕıtulo 3

apresenta o artigo M-regression spectral estimator for periodic ARMA models: a robust

method against additive outliers and heavy tail distributions. Esse artigo aborda o tema de

robustez em séries temporais PARMA no domı́nio da frequência, propondo a utilização

do periodograma M multivariado na metodologia de Whittle. A terceira contribuição

desta tese é apresentada no Caṕıtulo 4 no formato do artigo On the use of classical

and M periodograms to fit periodic ARMA models to time series with missing data and

additive outliers. Esse artigo investiga de maneira concatenada os temas de robustez e

observações faltantes em séries temporais PARMA, propondo dois estimadores no domı́nio

da frequência.
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2 Identifiability and Whittle Estimation of

Periodic ARMA Models

Abstract

This paper provides verifiable conditions for the identifiability of periodic autore-

gressive moving average (PARMA) models and proposes the Whittle likelihood estimator

(WLE) for the parameters. This estimator is proved to be strongly consistent and asymp-

totically normal. Monte Carlo simulation results show that the WLE is a very attractive

alternative to the gaussian maximum likelihood estimator (MLE) for large data sets since

both estimators have similar preciseness while the computational cost of the latter is

much larger. The two estimation methods are applied to fit a PARMA model to the

sulfur dioxide (SO2) daily average pollutant concentrations in the city of Vitória (ES),

Brazil.

Keywords. Periodic stationarity, PARMA models, identifiability, Whittle estimation,

sulfur dioxide.

2.1 Introduction

Seasonal phenomena are frequently observed in many fields such as hydrology, clima-

tology, air pollution, radio astronomy, econometrics, communications, signal processing,

among others. A standard approach in the literature is to fit a stationary seasonal model

after removing any trend. As pointed out by Tiao & Grupe (1980), standard time series

tools may indicate stationary models even if the true covariance structure has a periodic

(or cyclic) nonstationary behavior. The model mispecification usually deteriorates the

forecast performance even if the standard residual diagnostic checking does not reveal

any anomaly.

Processes with periodically varying covariances are introduced in the seminal paper

of Gladyshev (1961) and are denominated periodically correlated (PC), periodically sta-

tionary or cyclostationary. The occurrence of periodic correlation is corroborated by real

applications in many areas. For example, Gardner & Franks (1975) investigate cyclosta-

tionarity in electrical engineering and Bloomfield, Hurd & Lund (1994) study stratospheric

ozone data. For recent reviews on PC processes, see e.g. Gardner, Napolitano & Paura

(2006) and Hurd & Miamee (2007).

The simplest way to build models for PC processes is to allow the parameters of sta-

tionary models to vary periodically with time. In this context, the periodic autoregressive

model emerges as an extension of the well-known autoregressive framework. Parameter
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estimation of a periodic autoregressive model is already well documented in the literature,

see e.g. Sarnaglia, Reisen & Lévy-Leduc (2010) and references therein. However, some

data sets require large periodic autoregressive orders to provide an adequate fit. Thus, a

more parsimonious model can be built by considering jointly ARMA coefficients, which

leads naturally to the PARMA model. However, this model has not been widely used in

real applications yet, perhaps, due to the difficulty and high computational cost of the

implementation of the standard estimation methods.

The exact Gaussian PARMA likelihood is derived by Li & Hui (1988), but the method

requires the Choleski decomposition of a matrix whose dimension is the number of data.

This can be a serious handicap for large data sets and Lund & Basawa (2000) propose an

efficient algorithm to evaluate the Gaussian likelihood which does not require any matrix

inversion.

It is well known that a PARMA model has a vector ARMA (VARMA) representa-

tion, see e.g. Basawa & Lund (2001), however a VARMA model needs to satisfy the

conditions given by Dunsmuir & Hannan (1976) to be identifiable. These conditions are

tacitly assumed in the literature on PARMA models, see e.g. Basawa & Lund (2001).

Here, we show that the identifiability conditions of Dunsmuir & Hannan (1976) do not

transpose trivially to the PARMA model, and one contribution of this paper is to provide

identifiability conditions for the PARMA model.

To our knowledge, only time domain estimation methods have been proposed for

PARMA models in the literature. In the frequency domain, the well-known Whittle

approximation can be used to circumvent the inversion of the covariance matrix, see

e.g. Whittle (1953), Dunsmuir & Hannan (1976), Deistler, Dunsmuir & Hannan (1978)

and Fox & Taqqu (1986). Here, we propose to apply the Whittle’s methodology for

estimating the parameters of a PARMA model and we establish the strong consistency

and the asymptotic normality of the WLE.

The rest of the paper is organized as follows. PC processes and PARMA models are

described in Section 2.2 where the identifiability results are also presented. In Section 2.3,

the WLE of a PARMA model is introduced and its asymptotic properties are derived. In

Section 2.4, we compare, via Monte Carlo simulations, the MLE and the WLE. The two

estimation methods are applied to fit a PARMA model to air pollution data in Section 2.5.

Proofs are deferred to Section 2.6.

2.2 Model description

Let Z be the set of integer numbers and (Xt), t ∈ Z, be a real-valued stochastic process

satisfying E(X2
t ) < ∞ for all t ∈ Z. Denote the mean and autocovariance functions of

(Xt) by µt = E(Xt) and γt(τ) = Cov(Xt, Xt−τ ), respectively. (Xt) is said to be PC with
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period S > 0 if, for every pair (t, τ) ∈ Z2,

µt+S = µt and γt+S(τ) = γt(τ), (2.1)

and there are no smaller values of S for which (2.1) is satisfied. This definition implies

that µt and γt(τ) are periodic functions in t and need to be known only for t = 1, . . . , S.

If S = 1, (Xt) is weakly stationary in the usual sense.

The natural extension for PC processes of the well-known ARMA model is the PARMA

model. (Xt) is said to follow a PARMA model with period S > 0 if it is a solution to the

difference equation

(XnS+ν − µν) +

pν∑
k=1

φν,k(XnS+ν−k − µν−k) = εnS+ν +

qν∑
k=1

θν,kεnS+ν−k, (2.2)

where XnS+ν is the series during the νth season, ν = 1, . . . , S, of cycle n ∈ Z, and (εnS+ν)

is a sequence of zero mean uncorrelated random variables with E(ε2
nS+ν) = σ2

nS+ν = σ2
ν .

The period S is taken to be the smallest positive integer satisfying (2.2). When S = 1,

(2.2) corresponds to the standard ARMA model. During season ν, pν ≥ 0 and qν ≥ 0 are

the AR and MA orders, respectively, φν = [φν,1, . . . , φν,pν ]
′ and θν = [θν,1, . . . , θν,qν ]

′ are

the AR and MA parameters, respectively, where A′ denotes the transpose of matrix A.

The parameter vector of model (2.2) is then ϕ = [ϕ′φ, ϕ
′
θ, ϕ

′
σ]′ where ϕφ = [φ′1, . . . , φ

′
S]
′,

ϕθ = [θ′1, . . . , θ
′
S]
′ and ϕσ = [σ2

1, . . . , σ
2
S]′.

In the following, we set

p = max
1≤ν≤S

pν , φν,k = 0 when pν < k ≤ p,

q = max
1≤ν≤S

qν , θν,k = 0 when qν < k ≤ q,

for every ν = 1, . . . , S, and we refer to (2.2) as the PARMA(p, q)S model. We assume

without loss of generality that µν = 0 for ν = 1, . . . , S. Note that, in practical situations,

the sample periodic means are, in general, removed from the series before model fitting.

Let (Xn)n∈Z be the S-variate time series defined by Xn = [XnS+1, . . . , XnS+S]
′. It is

well known (BASAWA; LUND, 2001) that (Xt) satisfies (2.2) if and only if (Xn) is a

solution to the vector ARMA (VARMA) difference equation

P∑
k=0

φkXn−k =

Q∑
k=0

θkεn−k, (2.3)

where εn = [εnS+1, . . . , εnS+S]
′, the sequence (εn) is uncorrelated and E(εnε

′
n) = Σ where

Σ is diagonal with element [Σ]l,l = σ2
l for l = 1, . . . , S. The VARMA orders are P = dp/Se

and Q = dq/Se, wherein dxe stands for the smallest integer greater than or equal to x.

For every k = 0, . . . , P , the S× S matrix φk has (l,m)th entries

[φ0]l,m =


0 l < m,

1 l = m,

φl,l−m l > m,

[φk]l,m = φl,kS+l−m, 1 ≤ k ≤ P, (2.4)
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and the entries of θk, for k = 0, . . . , Q, are similarly obtained by replacing φl,m by θl,m in

(2.4). It follows from (2.4) that, for every ν = 1, . . . , S,

φν,k =



[φ0]ν,ν−k if 1 ≤ k < ν,

[φ1]ν,S+ν−k if ν ≤ k < ν + S,
...

[φP ]ν,PS+ν−k if ν + (P − 1)S ≤ k ≤ p,

(2.5)

and θν,k is similarly obtained by replacing φk by θk in (2.5). Moreover, σ2
ν = [Σ]ν,ν .

Therefore, ϕ is uniquely obtained from the S × (P + Q + 3)S matrix defined by η =

[φ0, . . . ,φP ,θ0, . . . ,θQ,Σ]. In other words, η = f1(ϕ) where f1 is an injective function.

Since φ0 and θ0 are both unit lower triangular matrices and therefore are invertible, (2.3)

is called “triangular” VARMA representation of (Xn).

Note that, the VARMA representation of (Xn) given by (2.3) does not follow the

standard VARMA framework, since φ0 and θ0 in (2.4) are not the S× S identity matrix

I. However, since φ0 and θ0 are invertible, (2.3) is equivalent to the standard form

Xn +
P∑
k=1

φ∗kXn−k = ξn +

Q∑
k=1

θ∗kξn−k, (2.6)

where

φ∗k = φ−1
0 φk, θ

∗
k = φ−1

0 θkθ
−1
0 φ0, (2.7)

and ξn = φ−1
0 θ0εn. We have E(ξnξ

′
n) = Σ∗ where

Σ∗ = φ−1
0 θ0Σθ′0φ

′−1
0 . (2.8)

Let η∗ be the S × (P + Q + 1)S matrix defined by η∗ = [φ∗1, . . . ,φ
∗
P ,θ

∗
1, . . . ,θ

∗
Q,Σ

∗].

The parameters η∗ are a function of parameters ϕ, say η∗ = f2(ϕ). However, f2 is not

necessarily injective as illustrated by the two following examples.

Example 2.1. Consider a PARMA(1, 1)2 process (Xt) with φ1,1 = θ1,1 = 0. The nonzero

parameters in its triangular VARMA representation (2.3) are

φ0 =

[
1 0

φ2,1 1

]
, θ0 =

[
1 0

θ2,1 1

]
, Σ =

[
σ2

1 0

0 σ2
2

]
.

The corresponding standard representation (2.6) reduces to the bivariate white noise (ξn)

with covariance matrix

Σ∗ =

[
σ2

1 (θ2,1 − φ2,1)σ2
1

(θ2,1 − φ2,1)σ2
1 (θ2,1 − φ2,1)2σ2

1 + σ2
2

]
. (2.9)

It is easy to see that, for any a ∈ R, the PARMA(1, 1)2 process (XNt ) with parameters

φN1,1 = θN1,1 = 0, φN2,1 = φ2,1 +a, θN2,1 = θ2,1 +a and the same matrix Σ as (Xt) has the same

representation (2.6) as Xn, i.e. XNn = ξNn where ΣN∗ = Σ∗.
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Example 2.2. Consider a PARMA(1, 2)2 process (Xt) with φ1,1 = θ1,2 = 0. Its triangular

VARMA representation (2.3) has the nonzero parameters

φ0 =

[
1 0

φ2,1 1

]
, θ0 =

[
1 0

θ2,1 1

]
, θ1 =

[
0 θ1,1

0 θ2,2

]
, Σ =

[
σ2

1 0

0 σ2
2

]
.

Its standard VARMA representation (2.6) is Xn = ξn + θ∗1ξn−1 where

θ∗1 =

[
θ1,1(φ2,1 − θ2,1) θ1,1

(θ2,2 − θ1,1φ2,1)(φ2,1 − θ2,1) θ2,2 − θ1,1φ2,1

]
and Σ∗ is given by (2.9). It is easy to see that, for any a ∈ R, the PARMA(1, 2)2

process (XNt ) with parameters φN1,1 = θN1,2 = 0, φN2,1 = φ2,1 + a, θN2,1 = θ2,1 + a, θN1,1 = θ1,1,

θN2,2 = θ2,2 + θ1,1a and the same matrix Σ as (Xt) has the same VARMA representation

(2.6) as Xn, i.e. XNn = ξNn + θ∗1ξ
N
n−1 where ΣN∗ = Σ∗.

The fact that different PARMA models, with the same orders, may have the same

standard VARMA representation implies identifiability problems of PARMA models based

on representation (2.6). Finding conditions to ensure that map f2 be injective is, therefore,

an important issue. In this context, the following assumptions are introduced:

(A1) The AR orders pν ’s of the PARMA process (Xt) are the same for every ν = 1, . . . , S

in (2.2).

(A2) The MA orders qν ’s of the PARMA process (Xt) are the same for every ν = 1, . . . , S

in (2.2).

Lemma 2.1. If (A1) and/or (A2) hold, then f2 is an injective function.

Proof. The proof is given in Subsection 2.6.1

Assumptions (A1) and (A2) are easy to be verified and give sufficient conditions to

guarantee that f2 be injective. However, these conditions may not be necessary for some

subclasses of PARMA models as shown by the following example.

Example 2.3. Consider the class of PARMA(1, 1)2 processes (Xt) satisfying φ2,1 = θ1,1 =

0. The corresponding triangular VARMA representation (2.3) is Xn + φ1Xn−1 = θ0εn

where

φ1 =

[
0 φ1,1

0 0

]
, θ0 =

[
1 0

θ2,1 1

]
,

and the standard representation (2.6) is Xn + φ1Xn−1 = ξn where

Σ∗ =

[
σ2

1 θ2,1σ
2
1

θ2,1σ
2
1 θ2

2,1σ
2
1 + σ2

2

]
.

It is readily seen that the parameter vector (φ1,1, θ2,1, σ
2
1, σ

2
2) is uniquely determined from

φ1 and Σ∗, while (A1) and (A2) are not satisfied.
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2.2.1 Identifiability of the PARMA model

For all z ∈ C, let

Φ(z) =
P∑
k=0

φkz
k, Φ∗(z) = I +

P∑
k=1

φ∗kz
k,

Θ(z) =

Q∑
k=0

θkz
k, Θ∗(z) = I +

Q∑
k=1

θ∗kz
k.

(2.10)

It results from (2.7) that

Φ∗(z) = φ−1
0 Φ(z) and Θ∗(z) = φ−1

0 Θ(z)θ−1
0 φ0. (2.11)

Since (Xt) in (2.2) is PC with period S, the vector process (Xn) in (2.3) is weakly sta-

tionary. The autocovariance matrix function of (Xn) is Γ(τ) = Cov(Xn,Xn−τ ) and is

related to γt(τ) by [Γ(τ)]l,m = γl(τS+ l−m) for every l,m = 1, . . . , S. The causality and

invertibility of (Xt) are equivalent respectively to the causality and invertibility of (Xn).

For more details, we refer to Gladyshev (1961) and Hurd & Miamee (2007). Therefore,

(Xt) is a causal solution of (2.2) if and only if (Xn) is a stationary causal solution of

(2.6), and this is the case according to Brockwell & Davis (2006, Theorem 11.3.1) when-

ever det Φ∗(z) 6= 0 for |z| ≤ 1. Similar arguments jointly with Brockwell & Davis (2006,

Theorem 11.3.2) show that (Xt) is a PC invertible solution of (2.2) when det Θ∗(z) 6= 0

for |z| ≤ 1.

Causality and invertibility properties do not ensure that Σ∗, Φ∗(z) and Θ∗(z) are

uniquely determined by the autocovariance matrix function of (Xn), or equivalently by

the spectral density matrix of (Xn), see e.g. Brockwell & Davis (2006, page 431) and

Reinsel (1997, section 2.3). This identifiability problem results in a likelihood surface with

more than one maximum. Further restrictions have to be imposed in order to obtain an

identifiable model, and these are discussed as follows.

Following Dunsmuir & Hannan (1976), two S×S matrices of polynomials g(z) and h(z)

are said to be left prime when they have no common left factors other than unimodular

ones, that is, if g(z) = e(z)g1(z) and h(z) = e(z)h1(z) where e(z), g1(z), h1(z) are again

matrices of polynomials, then e(z) has constant determinant. It is known (HEYMANN,

1975) that g(z) and h(z) are left prime if and only if the S × 2S matrix [g(z), h(z)] has

rank S for all z ∈ C.

Now, following Deistler, Dunsmuir & Hannan (1978), for every i = 1, . . . , S, let gi(z)

and hi(z) be the ith column of g(z) and h(z) (respectively), pi and qi be the maximum

degrees of gi(z) and hi(z), gi(j) and hi(j) be the vectors of coefficients of zj in gi(z) and

hi(z). Let

H(g, h) = [g1(p1), . . . , gS(pS), h1(q1), . . . , hS(qS)].

We introduce the following additional assumptions:
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(A3) det Φ(z) 6= 0 and det Θ(z) 6= 0 for |z| ≤ 1;

(A4) Φ(z) and Θ(z) are left coprime;

(A5) rankH(Φ,Θ) = S.

Theorem 2.1. If either (A1) or (A2) holds, and in addition (A3), (A4) and (A5)

are satisfied, then the parameter vector ϕ of model (2.2) is uniquely determined by the

autocovariance matrix function or the spectral density matrix of (Xn).

Proof. The proof is given in Subsection 2.6.2

Remark 2.1. It is easy to verify that the PARMA models in Examples 2.1 and 2.2 satisfy

(A4) and (A5). Moreover, (A3) is always satisfied in Example 2.1 and is satisfied in

Example 2.2 when |θ1,1θ2,1−θ2,2| < 1. Then, under this restriction, the standard VARMA

representations (2.6) in Examples 2.1 and 2.2 are identifiable in the sense of Deistler, Dun-

smuir & Hannan (1978) whereas, as shown above, the corresponding PARMA models (2.2)

are not.

Remark 2.2. Theorem 2.1 holds if (A1) and (A2) are replaced by any condition which

guarantees that map f2 be injective.

2.3 Whittle estimation

We define the parameter space P ⊂ R(p+q)S as the set of points [ϕ′φ, ϕ
′
θ]
′ which satisfy

assumptions (A1) or (A2), (A3), (A4) and (A5). In addition, we assume that the true

parameters [ϕ′φ0 , ϕ
′
θ0

]′ ∈ P. For simplicity, we suppose that the sample contains N full

periods of data which are indexed from 0 to N − 1 and we set X = [X1, . . . , XNS]
′ =

[X′0, . . . ,X
′
N−1]′.

We denote by R>0 the set of positive real numbers. For any ϕ ∈ P× RS
>0, let ΓN(ϕ)

be the NS × NS matrix with Γ(m − l) in the (l,m)th block of S × S elements. Then,

ΓN(ϕ0) = Cov(X,X). Let

L̂N(ϕ) = N−1 log det ΓN(ϕ) +N−1X′Γ−1
N (ϕ)X,

be the Gaussian log likelihood with the scaling factor −2N−1. The gaussian MLE of ϕ0

is

ϕ̂N = argmin
ϕ∈P×RS

>0

L̂N(ϕ).

In most cases the minimization of L̂N(ϕ) is performed through optimization algo-

rithms, which can demand high computational effort, since a priori it is necessary to

invert ΓN(ϕ). One alternative is to resort to the recursive likelihood evaluation technique

proposed by Lund & Basawa (2000). However, as illustrated in Section 2.4, this method
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may be inappropriate for large sample sizes. To circumvent this difficulty, we use the

multivariate version of Whittle’s methodology to approximate L̂N(ϕ). The multivariate

periodogram of X at frequency ω ∈ [−π, π] is I(ω) = W (e−iω)W ′(eiω) where, for all z ∈ C,

W (z) = (2πN)−1/2

N−1∑
n=0

Xnz
n.

Also the spectral density matrix of (Xn) is f(ω, ϕ0) where

f(ω, ϕ) =
1

2π
Φ∗−1(e−iω)Θ∗(e−iω)Σ∗Θ∗′(eiω)Φ∗′−1(eiω). (2.12)

Following Dunsmuir & Hannan (1976), we approximate L̂N(ϕ) by

L̃N(ϕ) = log det Σ∗ +N−1

N−1∑
j=0

tr[f−1(ωj, ϕ)I(ωj)], (2.13)

where ωj = 2πj/N and trA is the trace of matrix A. This approximation is particularly

interesting from a computational point of view. According to (2.8),

log det Σ∗ = log det Σ =
S∑
l=1

log σ2
l , (2.14)

and it follows from (2.8) and (2.11) that

f(ω, ϕ) =
1

2π
Φ−1(e−iω)Θ(e−iω)ΣΘ′(eiω)Φ′−1(eiω).

Then

tr[f−1(ωj, ϕ)I(ωj)] = W ′(eiωj)f−1(ωj, ϕ)W (e−iωj) =

2π
S∑
l=1

σ−2
l

∣∣[Θ−1(e−iωj)Φ(e−iωj)W (e−iωj)
]
l

∣∣2 , (2.15)

and replacing (2.14) and (2.15) in (2.13), we get that

L̃N(ϕ) =
S∑
l=1

[
log σ2

l +
2π

Nσ2
l

N−1∑
j=0

∣∣[Θ−1(e−iωj)Φ(e−iωj)W (e−iωj)
]
l

∣∣2] . (2.16)

The WLE of ϕ0 is

ϕ̃N = argmin
ϕ∈P×RS

>0

L̃N(ϕ).

For every l = 1, . . . , S, the minimum of (2.16) with respect to σ2
l is

σ̃2
l,N(ϕφ, ϕθ) =

2π

N

N−1∑
j=0

∣∣[Θ−1(e−iωj)Φ(e−iωj)W (e−iωj)
]
l

∣∣2 . (2.17)
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Replacing (2.17) in (2.16), we get that the WLE of [ϕ′φ0 , ϕ
′
θ0

]′ is

[ϕ̃′φN , ϕ̃
′
θN

]′ = argmin
[ϕ′φ,ϕ

′
θ]′∈P

S∑
l=1

log σ̃2
l,N(ϕφ, ϕθ).

Therefore, ϕ̃N = [ϕ̃′φN , ϕ̃
′
θN
, ϕ̃′σN ]′, where [ϕ̃σN ]l = σ̃2

l,N(ϕ̃φN , ϕ̃θN ). Observe that ϕ̃N is

easier to calculate than ϕ̂N since L̂N(ϕ) involves (p+q+1)S parameters while σ̃2
l,N(ϕφ, ϕθ)

is a function of (p+ q)S parameters.

Theorem 2.2. For any ϕ0 ∈ P × RS
>0, ϕ̃N converges almost surely (a.s.) to ϕ0 as N

tends to infinity.

Proof. The proof is given in Subsection 2.6.3

To establish asymptotic normality, we introduce the following additional assumption:

(A6) For all t ∈ Z and 0 ≤ r, s ≤ S− 1,

a) E(εt|Ft−1) = 0 a.s.,

b) E(ε2
t |Ft−1) = σ2

t a.s.,

c) E(εtεt+rεt+s|Ft−1) = βt(r, s) = βt+S(r, s) a.s.,

d) E(ε4
t ) <∞,

where βt(r, s) is non random and Ft is the σ-algebra generated by {εs; s ≤ t}.

Theorem 2.3. Under assumption (A6), for any ϕ0 ∈ P×RS
>0, N1/2(ϕ̃N −ϕ0) converges

in law as N tends to infinity to a normal distribution with zero mean vector and covariance

matrix √
N(ϕ̃− ϕ0) Nd(0,Υ),

where  stands for convergence in distribution as N → ∞. The covariance matrix Υ is

given by

Υ = [Ω−1(2Ω + Π)Ω−1],

where

[Ω]l,m =
1

2π

∫ 2π

0

tr

(
f−1
0 (ω)

∂f0(ω)

∂ϕl
f−1
0 (ω)

∂f0(ω)

∂ϕm

)
dω,

[Π]l,m =
S∑

a,b,c,d=1

Cabcd

[
∂Σ∗−1

∂ϕl

]
ab

[
∂Σ∗−1

∂ϕm

]
cd

=

S∑
a,b,c,d=1

Cabcd

[
Σ∗−1∂Σ∗

∂ϕl
Σ∗−1

]
ab

[
Σ∗−1 ∂Σ∗

∂ϕm
Σ∗−1

]
cd

,

Σ∗ = φ−1
0 θ0Σθ′0φ

−1
0

′
and Cabcd = C [[ξn]a, [ξn]b, [ξn]c, [ξn]d], a, b, c, d = 1, . . . , S, stand for

the fourth cumulants among the elements a, b, c and d of the vector ξn.
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Proof. The proof is given in Subsection 2.6.4

Remark 2.3. If either we strengthen the assumption of non correlated to independent

white noise similarly to Basawa & Lund (2001) or restrict to gaussian data, the covariance

matrix Υ simplificates to a block diagonal matrix. One block is related to AR and MA

parameters and the other one is associated to white noise variances, which means that

φ’s and θ’s estimates are asymptotically independent from σ2’s. Since the proof of this

fact is quite long, we just indicate it below.

We first show that the Π matrix have a very simple form. Note that the cumulant

Cabcd has the more concise formula

Cabcd =
S∑
j=1

[φ−1
0 θ0]aj[φ

−1
0 θ0]bj[φ

−1
0 θ0]cj[φ

−1
0 θ0]dj E(ε4

nS+j),

which gives

[Π]l,m =
S∑
j=1

E(ε4
nS+j)

σ8
j

[
θ−1

0 φ0

∂Σ∗

∂ϕl
φ′0θ

−1
0

′
]
j,j

[
θ−1

0 φ0

∂Σ∗

∂ϕm
φ′0θ

−1
0

′
]
j,j

.

Obviously, if k > 0,[
θ−1

0 φ0

∂Σ∗

∂[φk]l,m
φ′0θ

−1
0

′
]
j,j

=

[
θ−1

0 φ0

∂Σ∗

∂[θk]l,m
φ′0θ

−1
0

′
]
j,j

= 0.

For k = 0, define the (S× S) matrix 1l,m by [1l,m]a,b = 1{a=l,b=m} and note that[
θ−1

0 φ0

∂Σ∗

∂[φ0]l,m
φ′0θ

−1
0

′
]
j,j

= −
[
θ−1

0 1l,mφ
−1
0 θ0Σ−

]
j,j
−
[(
θ−1

0 1l,mφ
−1
0 θ0Σ−

)′]
j,j

= −2σ2
j

[
θ−1

0 1l,mφ
−1
0 θ0

]
j,j

= −2σ2
j

[
θ−1

0

]
j,l

[
φ−1

0 θ0

]
m,j

. (2.18)

Observe that, by construction, k = 0 implies l > m and, because θ−1
0 and φ−1

0 θ0 are

both unit lower triangular, [θ−1
0 ]j,l 6= 0 and [φ−1

0 θ0]m,j 6= 0 only if j ≥ l and m ≥ j.

Therefore (2.18) equals zero, since otherwise j should satisfy j ≥ l > m ≥ j. In a

similar fashion, it can be shown that [θ−1
0 φ0

∂Σ∗

∂[θ0]l,m
φ′0θ

−1
0

′
]j,j = 0. Finally, it is easy to

see that [θ−1
0 φ0

∂Σ∗

∂σ2
ν
φ′0θ

−1
0

′
]j,j = 1{j=ν}. Therefore, recalling that ϕ =

[
ϕ′φ,θ, ϕ

′
σ

]′
, where

ϕφ,θ =
[
ϕ′φ, ϕ

′
θ

]′
we have

Π =

[
0(p+q)S×(p+q)S 0(p+q)S×S

0S×(p+q)S Πσ

]
,

where Πσ is the (S× S) diagonal matrix with j diagonal element given by E(ε4
nS+j)/σ

8
j .

We now turn to the investigation of the Ω matrix. For simplicity, we shall drop the ω

term when no confusion arises. Note that

[Ω]l,m = [Ω]m,l = − 1

2π

∫ 2π

0

tr[(∂f−1
0 /∂ϕl)(∂f0/∂ϕm)]dω.
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We now turn to evaluation of ∂f−1
0 /∂[φr]s,t and ∂f0/∂σ

2
ν . Observe that

∂f−1
0

∂[φr]s,t
=

(
∂Φ′

∂[φr]s,t

)
Θ−1′Σ−1Θ−1Φ + Φ′Θ−1′Σ−1Θ−1

(
∂Φ

∂[φr]s,t

)
=

(
∂φr

∂[φr]s,t
e−iωr

)′
Θ−1′Σ−1Θ−1Φ + Φ′Θ−1′Σ−1Θ−1

(
∂φr

∂[φr]s,t
e−iωr

)
= 1t,sΘ

−1′Σ−1Θ−1Φeiωr + Φ′Θ−1′Σ−1Θ−11s,te
−iωr

and
∂f0
∂σ2

ν

= Φ−1Θ

(
∂Σ

∂σ2
ν

)
Θ′Φ−1′ = Φ−1Θ1ν,νΘ

′Φ−1′,

where A′ stands for the conjugate transpose of the complex matrix A. Now,

tr

[
∂f−1

0

∂[φr]s,t

∂f0
∂σ2

ν

]
=

S∑
a=1

[
∂f−1

0

∂[φr]s,t

∂f0
∂σ2

ν

]
a,a

= eiωr
S∑
a=1

[
1t,sΘ

−1′Σ−11ν,νΘ
′Φ−1′

]
a,a

(2.19)

+ e−iωr
S∑
a=1

[
Φ′Θ−1′Σ−1Θ−11s,tΦ

−1Θ1ν,νΘ
′Φ−1′

]
a,a
. (2.20)

In one hand, we have that

(2.20) = e−iωr
S∑
a=1

[Φ′Θ−1′Σ−1Θ−1]a,s[Φ
−1Θ]t,ν [Θ

′Φ−1′]ν,a

= e−iωr[Φ−1Θ]t,ν

S∑
a=1

[Θ′Φ−1′]ν,a[Φ
′Θ−1′Σ−1Θ−1]a,s

= e−iωr[Φ−1Θ]t,ν [Θ
′Φ−1′Φ′Θ−1′Σ−1Θ−1]ν,s = e−iωr[Φ−1Θ]t,ν [Σ

−1Θ−1]ν,s

=
e−iωr

σ2
ν

[Θ−1]ν,s[Φ
−1Θ]t,ν

and, on the other hand,

(2.19) = eiωr[Θ−1′Σ−1]s,ν [Θ
′Φ−1′]ν,t =

eiωr

σ2
ν

[Θ−1′]s,ν [Θ
′Φ−1′]ν,t = (2.20)

where a stands for the complex conjugate of the number a. Observe that, by Assumption

(A3), Θ−1(z) =
∑∞

h=0CΘ−1(h)zh and Φ−1(z)Θ(z) =
∑∞

h=0 CΦ−1Θ(h)zh, with CΘ−1(0) =

θ−1
0 and CΦ−1Θ(0) = φ−1

0 θ0. Therefore, (2.20) = 1
σ2
ν

∑∞
h=0Cν,s,t(h)e−iω(h+r) and (2.19) +

(2.20) = 1
σ2
ν

∑∞
h=0Cν,s,t(h) cos[ω(h+ r)], where Cν,s,t(0) = [θ−1

0 ]ν,s[φ
−1
0 θ0]t,ν . Thus

− 1

2π

∫ 2π

0

tr

(
∂f−1

0

∂[φr]s,t

∂f0
∂σ2

ν

)
dω = − 1

2πσ2
ν

∞∑
h=0

Cν,s,t(h)

{∫ 2π

0

cos[ω(h+ r)]dω

}
.

The last integral vanishes if h + r > 0, such that for r > 0 the asymptotic covariance

between the estimates of [φr]s,t and σ2
ν equals zero. Therefore, the only non trivial case
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is for r = 0. Note that in this case the only non zero term in the last sum is obtained for

h = 0, such that

− 1

2π

∫ 2π

0

tr

(
∂f−1

0

∂[φ0]s,t

∂f0
∂σ2

ν

)
dω =

1

2σ2
ν

[θ−1
0 ]ν,s[φ

−1
0 θ0]t,ν .

Observe that, by construction, r = 0 implies s > t and, because θ−1
0 and φ−1

0 θ0 are both

unit lower triangular, [θ−1
0 ]ν,s 6= 0 and [φ−1

0 θ0]t,ν 6= 0 only if ν ≥ s and t ≥ ν. Therefore

the above equation equals zero, since otherwise ν should satisfy ν ≥ s > t ≥ ν. We

conclude that the entries of Ω related to [φr]s,t and σ2
ν are zero. Similar arguments can

be used to prove that the entries relating [θr]s,t and σ2
ν are also zero. Hence, writing

ϕ =
[
ϕ′φ,θ, ϕ

′
σ

]′
again, gives

Ω =

[
Ωφ,θ 0

0 Ωσ

]
,

where the ((p + q)S × (p + q)S) matrix Ωφ,θ has the similar definition such as in Ω in

Dunsmuir & Hannan (1976) and Ωσ is (S×S). Finally, the asymptotic covariance matrix

is given by

Υ =

[
2Ω−1

φ,θ 0

0 Ω−1
σ (2Ωσ + Πσ)Ω−1

σ

]
.

2.4 Monte Carlo study

We compare by Monte Carlo simulations the finite sample properties of the WLE and

the exact MLE obtained with the algorithm in Lund & Basawa (2000). In each of the

M = 1000 replications, a PARMA series with S = 2 and N = 50, 200 full periods is

generated. Intermediate sample sizes were considered, however the results do not change

the conclusions, so that they are not displayed here to save space. The bias, the root

mean squared error (RMSE) and the computation time of the WLE and the MLE are

analyzed.

Consider a PARMA(1, 1)2 model. The nonzero parameters in its triangular VARMA

representation (2.3) are

φ0 =

[
1 0

φ2,1 1

]
, φ1 =

[
0 φ1,1

0 0

]
, θ0 =

[
1 0

θ2,1 1

]
, θ1 =

[
0 θ1,1

0 0

]
, Σ =

[
σ2

1 0

0 σ2
2

]
.

Then, for all z ∈ C,

Φ(z) =

[
1 φ1,1z

φ2,1 1

]
and Θ(z) =

[
1 θ1,1z

θ2,1 1

]
.

Condition (A1), respectively (A2), is equivalent to φ1,1φ2,1 6= 0, respectively θ1,1θ2,1 6= 0.

Condition (A3) writes |φ1,1φ2,1| < 1 and |θ1,1θ2,1| < 1. When φ1,1 6= θ1,1 or φ2,1 6= θ2,1,
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[Φ(z),Θ(z)] has rank 2 for all z ∈ C. We have

H(Φ,Θ) =

[
1 θ1,1 1 φ1,1

θ2,1 0 φ2,1 0

]
,

and then, rankH(Φ,Θ) = 2 since necessarily φ1,1 or θ1,1 is nonzero and φ2,1 or θ2,1 is

nonzero.

The Monte Carlo experiments are made with the four PARMA(1, 1)2 models whose

parameters are given in Table 2.1 and whose innovation process (εt) is gaussian. These

models satisfy (A1), (A2), (A3), (A4), (A5), (A6), and are chosen in order to evaluate

the effect caused by closeness of the parameters to noncausality and noninvertibility re-

gions. Model 1 is far from both noncausality and noninvertibility regions. Models 2 and 3

are close to noncausality and noninvertibility regions, respectively. Model 4 is close from

both noncausality and noninvertibility regions. The numerical optimization procedures

are initialized with the true values of the parameters.

Table 2.1 – PARMA(1, 1)2 models.

Parameters
ν = 1 ν = 2

Model φ1,1 θ1,1 σ2
1 φ2,1 θ2,1 σ2

2

1 -0.7 0.4 1.0 -0.5 0.8 1.0
2 -1.0 0.4 1.0 -0.7 0.8 1.0
3 -0.7 0.6 1.0 -0.5 1.1 1.0
4 -1.0 0.6 1.0 -0.7 1.1 1.0

2.4.1 Bias

Let ϕ̂N,k and ϕ̃N,k be respectively the MLE and the WLE of ϕ0 obtained in the kth

experiment, k = 1, . . . ,M . The empirical bias of the MLE and the WLE are respectively,

M−1

M∑
k=1

ϕ̂N,k − ϕ0 and M−1

M∑
k=1

ϕ̃N,k − ϕ0.

Table 2.2 displays the empirical bias of the MLE and the WLE, for models 1, 2, 3 and 4.

This table shows that the bias decreases as the sample size increases for both estimators.

Furthermore, both estimators overestimate the AR parameters. However, the MLE and

the WLE behave differently in the estimation of the MA parameters and the white noise

variances. The MLE overestimates the MA parameters, while the WLE underestimates

them. The MLE underestimates the white noise variances, and the WLE overestimates

them. Closeness to noncausality or noninvertibility regions seems to have no significant

effect in the bias of the MLE. However, mainly for the estimation of the MA parameters

and the white noise variances, this seems to increase substantially the bias of the WLE

and, as expected, the worse results are obtained for Model 4. Although the MLE has the

smallest bias, the bias of the WLE is also small, especially for large sample sizes.
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Table 2.2 – Empirical bias of the MLE and the WLE.

Bias
ν = 1 ν = 2

N φ1,1 θ1,1 σ2
1 φ2,1 θ2,1 σ2

2

Model 1
MLE

50 0.014 0.027 -0.023 0.017 0.036 -0.051
200 0.001 0.001 -0.007 0.003 0.008 -0.010

WLE
50 0.026 -0.003 0.067 0.014 -0.034 0.004
200 0.005 -0.006 0.018 0.003 -0.011 0.006

Model 2
MLE

50 0.015 0.031 -0.036 0.015 0.035 -0.057
200 0.004 0.005 -0.008 0.004 0.009 -0.013

WLE
50 0.035 -0.023 0.266 0.014 -0.126 0.069
200 0.009 -0.015 0.082 0.004 -0.051 0.035

Model 3
MLE

50 0.012 0.030 -0.038 0.019 0.040 -0.062
200 0.003 0.006 -0.011 0.005 0.007 -0.020

WLE
50 0.025 -0.063 0.118 0.018 -0.105 0.092
200 0.007 -0.026 0.039 0.005 -0.043 0.035

Model 4
MLE

50 0.012 0.040 -0.037 0.015 0.049 -0.056
200 0.000 0.007 -0.008 0.000 0.006 -0.015

WLE
50 0.034 -0.118 0.471 0.017 -0.263 0.273
200 0.006 -0.062 0.142 0.001 -0.120 0.121

2.4.2 Root mean squared error

The empirical RMSE of the MLE and the WLE are respectively,

(
M−1

M∑
k=1

(ϕ̂N,k − ϕ0)2
)1/2

and
(
M−1

M∑
k=1

(ϕ̃N,k − ϕ0)2
)1/2

.

Tables 2.3 displays the empirical RMSE of the MLE and the WLE, for models 1, 2, 3

and 4. This table shows that the RMSE decreases as the sample size increases for both

estimators. Again, closeness to noncausality or noninvertibility regions seems to have

no significant effect in the RMSE of the MLE. In fact, we observe that the RMSE are

smaller (especially for the estimation of the AR parameters) for Models 2, 3 and 4 than

for Model 1. The same phenomenon appears with the WLE for the estimation of the AR

parameters. Now, for the estimation of the MA parameters and the white noise variances,

the distance to noncausality or noninvertibility regions increases significantly the RMSE

of the θν,j and σ2
ν parts of the WLE, and the worse results are obtained for Model 4.

However, for large sample sizes, the RMSE of the MLE and the WLE are of the same

order of magnitude.

2.4.3 Computation time

For each estimator, the mean computation time is the average of the computation

times obtained in each Monte Carlo experiment. For each simulation, the computation
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Table 2.3 – Empirical RMSE of the MLE and the WLE.

RMSE
ν = 1 ν = 2

N φ1,1 θ1,1 σ2
1 φ2,1 θ2,1 σ2

2

Model 1
MLE

50 0.098 0.156 0.210 0.120 0.178 0.200
200 0.046 0.070 0.100 0.058 0.085 0.097

WLE
50 0.104 0.161 0.258 0.124 0.195 0.216
200 0.047 0.072 0.110 0.059 0.090 0.101

Model 2
MLE

50 0.058 0.139 0.205 0.064 0.151 0.202
200 0.029 0.059 0.106 0.031 0.069 0.102

WLE
50 0.077 0.151 0.559 0.066 0.240 0.267
200 0.032 0.066 0.190 0.031 0.109 0.123

Model 3
MLE

50 0.080 0.129 0.205 0.111 0.169 0.208
200 0.039 0.055 0.102 0.053 0.081 0.103

WLE
50 0.090 0.165 0.319 0.116 0.239 0.284
200 0.041 0.072 0.129 0.054 0.108 0.130

Model 4
MLE

50 0.056 0.112 0.210 0.065 0.140 0.202
200 0.026 0.044 0.100 0.030 0.059 0.101

WLE
50 0.075 0.197 0.840 0.069 0.377 0.459
200 0.028 0.100 0.259 0.030 0.185 0.220

time is defined as the time required by the optimization algorithm to converge. Here,

each optimization is performed by the function constrOptim.nl of the package “alabama”

of the free software environment R.

Figures figure 2.1a and figure 2.1b display, as a function of N , the mean computation

time of each estimator and their ratio, respectively. For both estimators, the computa-

tion time is nearly the same for each model, the largest computation time being obtained

for Model 4. The computation time is larger for the MLE than the WLE. This is cer-

tainly because the MLE of the white noise variances σ2
ν for ν = 1, . . . , S are obtained by

minimizing L̂N(ϕ), while their WLE are obtained by calculation and do not require any

numerical optimization. As expected, the computation time increases monotonously with

N , but the slope is much more important for the MLE than the WLE. For instance for

Model 1, the ratio of the mean computation times of the MLE and the WLE is 239 when

N = 50 whereas it is 374 when N = 200. Therefore, the larger the sample size is, the

greater the benefit of the WLE. Now, for small sample sizes where the computation time

of the MLE is reasonable, this should be the preferable estimation method, especially for

models with parameters close to noncausality or noninvertibility regions. Hauser (1999)

comes to the same conclusion for the estimation of ARMA models.

In this Monte Carlo study we have taken S = 2 to limit the number of parameters to

estimate. However, it is worth noting that the difference between the computation time

of the MLE and the WLE increases with S, and in practice, the calculation of the MLE

may become impracticable. For example, this may be the case in the context of automatic
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Figure 2.1 – Mean computation time in seconds of the MLE and the WLE as a function
of N (a); Ratio of the mean computation times of the MLE and the WLE
as a function of N (b).

model selection through information criteria like Akaike and Schwarz criteria.

2.5 Application

We analyze the daily mean concentrations of sulfur dioxide (SO2) observed from Jan-

uary 1, 2005 to December 31, 2009 at the monitoring station of environment and water

resources state institute located in Vitória, Esṕırito Santo, Brazil. Figure 2.2 displays the

data.

2005 2006 2007 2008 2009

10
20

30
40

Figure 2.2 – Daily mean concentrations of SO2 in Vitória, ES, Brazil.

Since one data per day is collected, a PARMA model with period S = 7 seems to be

appropriated. We fit a PARMA model to the mean-corrected data obtained by subtracting

the sample periodic mean from the original data. The first NS = 1603 observations are

used to fit the model and the last T = 223 observations are considered for the out-of-
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sample forecast study. The sample periodic autocorrelation and partial autocorrelation

functions indicate the ARMA orders pν = 1, 1, 1, 1, 1, 1, 1 and qν = 1, 1, 1, 1, 0, 0, 1 (observe

that this model satisfies (A1)). We set the initial AR and MA parameters as zero. As it

was seen in Section 2.4, the initial values for the white noise variances (σ2
1, . . . , σ

2
S) have an

impact on the computation time of the MLE which is not the case for the WLE. Indeed,

for the MLE, taking as initial values (1, . . . , 1), (σ̂2
X , . . . , σ̂

2
X) and (σ̂2

X,1, . . . , σ̂
2
X,S), the

computation time is 381.9 seconds, 261,1 seconds and 148,9 seconds, respectively, while

for the WLE, the computation time is 2.9 seconds for all initial values. These different

initial values do not have influence on the values of the MLE, even for the estimate of

σ2
ν . Therefore, the WLE is at least 50 times faster than the MLE. This huge difference

discourages the use of the MLE in a repetitive context such as automatic model selection

through information criteria like Akaike and Schwarz criteria. The estimates obtained by

both methods are presented in Table 2.4 and are almost the same. Finally, the sample

autocorrelation function of the WLE residuals for each season is plotted in Figure 2.3 and

confirms they are uncorrelated. This result is also corroborated by the periodic extension

of the Ljung-Box test proposed by McLeod (1994) which presents p-value smaller than

0.05. The MLE presents the same results.

Table 2.4 – Fitted PARMA model to SO2 data.

MLE WLE
ν φν,1 θν,1 σ2

ν φν,1 θν,1 σ2
ν

1 -0.72 -0.49 28.97 -0.72 -0.48 28.95
2 -1.14 -0.75 28.38 -1.13 -0.74 28.41
3 -0.80 -0.54 23.49 -0.80 -0.54 23.49
4 -0.89 -0.50 19.56 -0.89 -0.50 19.57
5 -0.58 — 25.93 -0.58 — 25.94
6 -0.61 — 32.85 -0.61 — 32.85
7 -0.69 -0.36 32.40 -0.70 -0.36 32.40

We now turn to the forecasting performance. The empirical RMSE is defined by

RMSE =
(
T−1

NS+T∑
t=NS+1

(Xt − X̂t)
2
)1/2

where X̂t is the one-step head predictor of Xt. As we see in Table 2.5, the RMSE is

the same when X̂t is calculated from the model fitted by MLE or WLE. Hence, both

models have the same predictive performance. Figure 2.4 plots the remaining 233 data

and their one-step-ahead forecasts obtained from the model fitted by WLE. Similar results

are obtained with the MLE. Visual inspection of this figure shows that the forecasts follow

satisfactorily the actual data.
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Figure 2.3 – Sample autocorrelation function of the WLE residuals.
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Figure 2.4 – Out of sample SO2 data and their one-step-ahead predictors.

2.6 Proofs

2.6.1 Proof of Lemma 2.1

Since η = f1(ϕ) where f1 is injective, it is sufficient to prove that η is uniquely defined

by η∗ under (A1) or (A2). Since the product φ−1
0 θ0 is unit lower triangular and Σ is

diagonal, (2.8) is the Cholesky decomposition of Σ∗. Therefore, Σ and the product φ−1
0 θ0

are uniquely obtained from the Cholesky decomposition of Σ∗. We shall prove that φ−1
0

can be uniquely determined from [φ∗1, . . . ,φ
∗
P ] when (A1) holds. Then θ0 is obtained from
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Table 2.5 – Empirical RMSE of the one-step-ahead predictor.

MLE WLE
In-sample 5.23 5.23

Out-of-sample 4.55 4.55

φ−1
0 θ0 and it follows from (2.7) that for every positive integer k, φk and θk are uniquely

determined from φ∗k and θ∗k by the relations φk = φ0φ
∗
k and θk = φ0θ

∗
kφ
−1
0 θ0. In the

proof we distinguish the cases where p = S, p > S and p < S. In a similar way, when (A2)

holds, it can be shown by distinguishing the cases q = S, q > S and q < S that θ−1
0 can

be uniquely determined from [θ−1
0 φ0θ

∗
1φ
−1
0 θ0, . . . ,θ

−1
0 φ0θ

∗
Qφ
−1
0 θ0] (this proof is omitted).

Then φ0 is obtained from φ−1
0 θ0 and the matrices φk and θk are uniquely determined

from φ∗k and θ∗k as above.

Case p = S. Then the AR order P = dp/Se of the VARMA representation is equal to

1,

φ0 =


1 0 · · · 0

φ2,1 1 · · · 0
...

...
. . .

...

φS,S−1 φS,S−2 · · · 1

 and φ1 =


φ1,S φ1,S−1 · · · φ1,1

0 φ2,S · · · φ2,2

...
...

. . .
...

0 0 · · · φS,S

 .
Setting L = φ−1

0 and U = φ1, we have φ∗1 = LU which is a LU decomposition of φ∗1

since L is lower triangular with unit diagonal and U is upper triangular. It follows from

(A1) that the diagonal elements of U are nonzero. Then φ∗1 is nonsingular and the LU

decomposition is unique, see e.g. Golub & Loan (2012, Theorem 3.2.1). This implies that

φ−1
0 is uniquely determined from φ∗1.

Case p > S. Then P > 1. If p/S is an integer, we have p = PS and we define

U = φP =


φ1,p φ1,p−1 · · · φ1,p−S+1

0 φ2,p · · · φ2,p−S+2

...
...

. . .
...

0 0 · · · φS,p

 . (2.21)

If p/S is not an integer, we have P − 1 < p/S < P . Setting κ = (P − 1)S, we have

φP =



0 · · · φ1,p φ1,p−1 · · · φ1,κ+1

0 · · · 0 φ2,p · · · φ2,κ+2

...
. . .

...
...

. . .
...

0 · · · 0 0 · · · φp−κ,p

0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...

0 · · · 0 0 · · · 0
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and

φP−1 =



φ1,κ · · · φ1,p−S+1 · · · φ1,κ−S+1

φ2,κ+1 · · · φ2,p−S+2 · · · φ2,κ−S+2

...
. . .

...
. . .

...

φp−κ,p−1 · · · φp−κ,2p−PS · · · φp−κ,p−S

φp−κ+1,p · · · φp−κ+1,2p−PS+1 · · · φp−κ+1,p−S+1

...
. . .

...
. . .

...

0 · · · φS,p · · · φS,κ


.

We define U as the S×S matrix formed by the concatenation of the last p−κ columns of

φP and the first κ− p+ S columns of φP−1. We see that U coincides with the right hand

side of (2.21). Therefore, the expression of U is the same for all p > S and U is upper

triangular. Now, we define U∗ exactly as U by replacing φP and φP−1 by φ∗P and φ∗P−1,

respectively. Since φ∗P = φ−1
0 φP and φ∗P−1 = φ−1

0 φP−1, we have U∗ = φ−1
0 U. Setting

L = φ−1
0 , we see that U∗ = LU is a LU decomposition of U∗. According to (A1), the

diagonal elements of U are nonzero. Then U∗ is nonsingular, the LU decomposition is

unique and φ−1
0 is uniquely determined from U∗.

Case p < S. Then P = 1. To simplify the notations, let L = φ−1
0 , U = φ1 and

M = φ∗1 = LU. If p = 0, φ0 = I. We assume that p > 0 and we partition The matrices

as follows,

L =

[
L11 0p×S−p

L21 L22

]
, U =

[
0p×S−p U12

0S−p×S−p 0S−p×p

]
and M =

[
0p×S−p M12

0S−p×S−p M22

]
,

where the unit lower triangular matrices L11 and L22 have dimensions p×p and S−p×S−p,
respectively, and the p× p matrix U12 is

U12 =


φ1,p φ1,p−1 · · · φ1,1

0 φ2,p · · · φ2,2

...
...

. . .
...

0 0 · · · φp,p

 .
We have M12 = L11U12 where U12 is upper triangular and all diagonal elements of U12

are nonzero according to (A1). Then L11U12 is the unique LU decomposition of M12.

Since M22 = L21U12, L21 = M22U
−1
12 . Thus L11 and L21 are uniquely determined from

φ∗1. To identify φ−1
0 , it remains to determine L22. For this, we shall distinguish the cases

where p = S/2, S/2 < p < S and 0 < p < S/2. We set F = φ0.

Assume that p = S/2. Then we can rewrite

F =

[
F11 0p×p

F21 F22

]
,
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where all blocks are p× p matrices, F11 and F22 are unit lower triangular and

F21 =


φp+1,p φp+1,p−1 · · · φp+1,1

0 φp+2,p · · · φp+2,2

...
...

. . .
...

0 0 · · · φ2p,p

 .

Since LF = IS where IS is the S× S identity matrix, we have F11 = L−1
11 and −L21F11 =

L22F21. Since F21 is upper triangular and invertible by (A1), L22F21 is the unique LU

decomposition of −L21L
−1
11 , and thus L22 is uniquely determined from φ∗1.

Consider now the case where S/2 < p < S. We rewrite

IS =

[
I11 I12 0p×S−p

0S−p×S−p 0S−p×2p−S I23

]
and F =

[
F11 F12 0p×S−p

F21 F22 F23

]
,

where [I11, I12] = Ip, I23 = IS−p, [F11,F12] and F23 are unit lower triangular matrices with

dimensions p× p and S− p× S− p, respectively, and the S− p× S− p matrix F21 is

F21 =


φp+1,p φp+1,p−1 · · · φp+1,2p−S+1

0 φp+2,p · · · φp+2,2p−S+2

...
...

. . .
...

0 0 · · · φS,p

 .

Since LF = IS, [F11,F12] = L−1
11 and −L21F11 = L22F21 where L22 is unit lower triangular

and F21 is invertible by (A1). Then L22F21 is the unique LU decomposition of −L21F11,

and thus L22 is uniquely determined from φ∗1.

Suppose that 0 < p < S/2. Remember that the first p columns of L are uniquely

determined from φ∗1 and partition the matrices as follows,

IS =

 I11 0p×S−2p 0p×p

0p×p I22 I23

0S−2p×p I32 I33

 ,L =

L11 0p×p 0p×S−2p

L21 L22 0p×S−2p

L31 L32 L33

 ,F =

 F11 0p×S−2p 0p×p

F21 F22 F23

0S−2p×p F32 F33

 ,
where I11 = Ip, L11, L22, L33 and F11 are unit lower triangular matrices with dimensions

p × p, p × p, S − 2p × S − 2p and p × p, respectively, the p × p matrix F21 and the

S− 2p× S− 2p matrix F32 are upper triangular and their diagonal elements are nonzero

according to (A1). Since LF = IS, we have F11 = L−1
11 , −L21F11 = L22F21 is the unique

LU decomposition of −L21F11 so that L22 and F21 are uniquely determined from φ∗1,

L32 = −L31F11F
−1
21 , F22 = L−1

22 I22, I32−L32F22 = L33F32 is the unique LU decomposition

of I32 − L32F22 so that L33 is uniquely determined from φ∗1. Therefore, all the elements

of L are identified in a unique way from φ∗1.
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2.6.2 Proof of Theorem 2.1

We first prove that it is equivalent Φ,Θ or Φ∗,Θ∗ satisfying (A3), (A4) and (A5).

By relations in (2.11), we note that, if (A3) holds for Φ,Θ, then

det Φ∗(z) det Θ∗(z) =
det Φ(z) det Θ(z)

detφ0 detθ0

(1)

6= 0, |z| ≤ 1,

where inequality (1) follows by (A3) and invertibility of φ0 and θ0. The converse is proven

similarly. Now, suppose that Φ,Θ satisfy (A4) and that there exists some polynomial

matrix e∗(z) such that Φ∗(z) = e∗(z)Φ∗1(z) and Θ∗(z) = e∗(z)Θ∗1(z). We have to show

that det e∗(z) = c∗ constant. In fact, by relations in (2.11), we have that

Φ∗(z) = φ−1
0 Φ(z) = e∗(z)Φ∗1(z)⇒ Φ(z) = e(z)Φ1(z)

and

Θ∗(z) = φ−1
0 Θ(z)θ−1

0 φ0 = e∗(z)Θ∗1(z)⇒ Θ(z) = e(z)Θ1(z)

where e(z) = φ0e
∗(z), Φ1(z) = Φ∗1(z) and Θ1(z) = Θ∗1(z)φ−1

0 θ0. Now, by (A4), c =

det e(z) = detφ0 det e∗(z), which in turn implies that det e∗(z) = c∗ = c/ detφ0 constant.

Therefore, Φ∗,Θ∗ are left prime. The converse is shown in the same manner. Finally,

assume that Φ,Θ satisfy (A5) and let A be the 2S× 2S block diagonal matrix with S×S

block entries A11 = θ−1
0 φ0, A12 = A21 = 0 and A22 = I. In addition, from the relations

in (2.11), it can be shown that H(Θ∗,Φ∗) = φ−1
0 H(Θ,Φ)A. Therefore,

rankH(Θ∗,Φ∗) = rank
[(
φ−1

0 H(Θ,Φ)
)
A
] (1)

= rank
(
φ−1

0 H(Θ,Φ)
)

(2)
= rankH(Θ,Φ)

(3)
= S,

where equalities (1) and (2) hold, respectively, by the following rank properties: if

rankCn×k = n, then rank(BC) = rankB; and if rankDl×m = m, then rank(DB) =

rankB. Equality (3) follows by (A5).

Now, by the above equivalencies and the results in Dunsmuir & Hannan (1976) and

Deistler, Dunsmuir & Hannan (1978), (A3), (A4) and (A5) ensure identifiability of the

standard VARMA form in (2.6). See also pages 36 and 37 of Reinsel (1997). In addition,

by Lemma 2.1, either (A1) or (A2) guarantee that the standard VARMA representation

can be generated by just one PARMA model. Therefore, we conclude that the PARMA

model is identifiable.

2.6.3 Proof of Theorem 2.2

Define ϕ∗1 = vec[φ∗1, . . . ,φ
∗
P ,θ

∗
1, . . . ,θ

∗
Q], ϕ∗2 as the vector of the elements of and below

the diagonal of Σ∗ and ϕ∗ = [ϕ∗1
′, ϕ∗2

′]
′
. By construction of ϕ∗, relations (2.7) and (2.8)

induce continuous constraints in ϕ∗. In addition, by definition of h2, Lemma 2.1 ensures

that, under (A1) and/or (A2), there is a one-to-one continuous function h such that
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ϕ∗ = h(ϕ), with continuous inverse h−1. Define L̃∗N(ϕ∗,X) = L̃N(h−1(ϕ∗),X) and P∗ =

h(P× RS
>0) and let

ϕ̃∗N = argmin
ϕ∗∈P∗

L̃∗N(ϕ∗,X)

be the WLE of ϕ∗0 ∈ P∗. By Theorem 2.1, the additional Assumptions (A3), (A4) and

(A5) ensure identifiability of the PARMA process. Therefore, in light of Theorems 4 of

Dunsmuir & Hannan (1976) and 4’ of Deistler, Dunsmuir & Hannan (1978) and their

respective remarks, ϕ̃∗N is a strongly consistent estimator of ϕ∗0. It is not hard to see

that, for one-to-one functions, WLE has the so-called invariance property, which ensures

that the WLE of ϕ0 is given by ϕ̃N = h−1(ϕ̃∗N). Finally, the continuous map theorem

guarantees that

ϕ̃N = h−1(ϕ̃∗N)
a.s.−→ h−1(ϕ∗0) = ϕ0.

2.6.4 Proof of Theorem 2.3

Theorem 3 of Deistler, Dunsmuir & Hannan (1978) can be changed to show that

P × RS
>0 is open in RS(p+q+1). Note that the elements [f(ω, ϕ)]l,m, l,m = 1, . . . , S, of the

spectral matrix f(ω, ϕ) are division of polynomials with respect to the elements of ϕ and,

therefore, are twice continuously differentiable functions of ϕ ∈ P × RS
>0. These second

order derivatives being continuous in ω ∈ [−π, π]. Hence, C2.1. of Dunsmuir (1979) is

satisfied. As discussed in Dunsmuir (1979), in this VARMA case f(ω;ϕ) and ∂f(ω;ϕ)/∂ϕj

have elements belonging to the Lipschitz class of degree α, Λα (see page 42 of Zygmund

(2002) for the definition), for α > 1/2, such that C2.2. and C2.4. of Dunsmuir (1979)

are satisfied for the PARMA model. Finally, it can be shown that (A6) implies C2.3.

of Dunsmuir (1979). Therefore, Corollary 2.2. of Dunsmuir (1979) applies directly to

provide the CLT for N1/2(ϕ̃N − ϕ0).
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3 M -regression spectral estimator for pe-

riodic ARMA models: a robust method

against additive outliers and heavy tail dis-

tributions

Abstract

This paper proposes a robust approach based on the M -regression method to es-

timate periodic autoregressive moving average (PARMA) processes. The estimator is

based on the frequency domain approach and makes use of the standard Whittle estima-

tor adapted for PARMA models. Empirical studies are addressed to analyse the finite

sample size performance of the proposed estimator under the scenarios of contaminated

and uncontaminated PARMA processes with additive outliers (AO). The maximum gaus-

sian and Whittle likelihood estimators are also considered in the simulation aiming to

show that, under the non-contaminated scenario, the three methods present comparable

estimates which indicates that they have similar convergence properties. However, in the

case of PARMA series with AO, the latter methods give estimates dramatically biased,

which is an unsurprising empirical evidence, while the proposed methodology presents

almost unchanged estimates. An application to Carbon Monoxide (CO) concentrations

is considered in order to show the usefulness of the proposed method in a real scenario.

Keywords. Periodic stationarity, PARMA models, robust estimation, outliers, Whittle

estimation.

3.1 Introduction

Stochastic processes exhibiting Periodic Correlation (PC) are frequently named as

periodically correlated, Periodically Stationary (PS) or cyclostationary. Tiao & Grupe

(1980) point out that PC may be neglected and misspecified as stationary seasonality if

the standard time series tools are used. Since the introduction of PS processes in the

literature by Gladyshev (1961), many authors have identified the PC phenomenon in

time series of different areas, see e.g. Gardner & Franks (1975) and Bloomfield, Hurd

& Lund (1994). Recent reviews on PS processes can be found, for instance, in Gardner,

Napolitano & Paura (2006) and Hurd & Miamee (2007).

The standard stationary models, such as, the Autoregressive Moving Average (ARMA)

processes, are, in general, the base of the cyclostationary counterparts in which the pa-
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rameters vary periodically in time. In this context, the Periodic ARMA (PARMA) frame-

work represents a natural candidate for parsimoniously fitting PS time series. Estimation

methods for PARMA models have been investigated in the literature. For example, Lund

& Basawa (2000) have considered the Gaussian Maximum Likelihood Estimator (MLE),

Basawa & Lund (2001) have studied the least square method and Sarnaglia, Reisen &

Bondon (2015) have proposed a Whittle Likelihood Estimator (WLE). All these papers

assume tacitly that the process to be estimated is identifiable in the sense of Dunsmuir

& Hannan (1976). Conditions to ensure PARMA identifiability have been recently the

motivation of the work by Sarnaglia, Reisen & Bondon (2016a). In that paper, the au-

thors have shown empirically that the MLE and WLE have similar good finite sample

performance for PARMA time series. However, the behaviour of these methods can be

dramatically changed in a scenario wherein atypical observations, or outliers, may occur.

There are several types of outliers which cause different effects on the estimates. How-

ever, in general, the following three types are usually considered (DENBY; MARTIN,

1979): innovation outliers (IO), which affect all subsequent observations; additive outliers

(AO) or replacement outliers (RO), which have no effect on subsequent observations. AO

affect the parameter estimates more than IO, and they have the same effect as RO (MA;

GENTON, 2000). In the case of PS processes, the effect of AO in the theoretical and

sample autocorrelation functions has been discussed in Sarnaglia, Reisen & Lévy-Leduc

(2010). These authors have proposed a robust autocovariance function for PS processes

which is used in the periodic Yule-Walker equations to provide robust estimates for Pe-

riodic Autoregressive (PAR) models. Shao (2008) has also suggested a robust estimation

method for PAR models.

In the frequency domain, robust estimators of the spectral density have been re-

cently introduced as alternatives to the classical periodogram. It is well-known that

the periodogram is related to the least square estimator of the coefficients of a linear

regression model with sine and cosine regressors, see, for example, Priestley (1981). Al-

ternatively, several authors have defined M -periodogram by using the non-linear method

of M -regression, see e.g. Li (2008) and Li (2010). In Fajardo et al. (2015), the authors

have studied the M -periodogram for long-memory processes based on the M -regression

approach discussed in Koul (1992).

In this paper, we have extended the method proposed by Fajardo et al. (2015) to

PARMA models by introducing a multivariate M -periodogram spectral estimator on the

Whittle likelihood function given in Sarnaglia, Reisen & Bondon (2016a). The empirical

performance of the proposed methodology is evaluated through an extensive Monte Carlo

simulation study. The results show very similar behavior of the proposed methodology

compared to the MLE and WLE in the uncontaminated scenario. On the other hand,

in the contaminated time series with AO scheme, the empirical results show that both

estimation methods MLE and WLE are destroyed and, also, the superiority of the robust
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method over these two approaches.

The rest of the paper is structured as follows: Section 3.2 describes the PARMA model

with AO; Section 3.3 introduces the robust Whittle estimation method; The finite sample

performance of the robust estimator is investigated through a Monte Carlo study and the

results are discussed in Section 3.4; An application of the methodology to CO daily mean

concentrations is the motivation of Section 3.5.

3.2 PARMA model with additive outliers

Let Z be the set of integer numbers and (Zt)t∈Z be a real valued stochastic process

satisfying E(Z2
t ) < ∞ for all t ∈ Z. Let µZ,t = E(Zt) and γZ,t(τ) = Cov(Zt, Zt−τ ). We

say that (Zt) is PS with period S (PSS) if, for every (t, τ) ∈ Z2,

µZ,t+S = µZ,t and γZ,t+S(τ) = γZ,t(τ), (3.1)

and there are no smaller values of S > 0 for which (3.1) holds. This definition implies that

µZ,t and γZ,t(τ) are periodic functions in t and need to be known only for t = 1, . . . , S. If

(Zt) is PS1 then it is weakly stationary in the usual sense. In the following, we assume

without loss of generality that µZ,t = 0 for all t ∈ Z, and we use the notation t = (r−1)S+ν

where r ∈ Z and the season ν = 1, . . . , S.

One of the most popular PSS process is the PARMA model which generalizes the

ARMA model, see e.g. Vecchia (1985). (Zt) is said to be a PARMA model if it satisfies

the difference equation

pν∑
j=0

φν,jZ(r−1)S+ν−j =

qν∑
k=0

θν,kε(r−1)S+ν−k, (3.2)

where, for each season ν, pν and qν are the AR and MA orders, respectively, φν,1, . . . , φν,pν

and θν,1, . . . , θν,qν are the AR and MA coefficients, respectively, and φν,0 = θν,0 = 1. The

sequence (εt) is zero-mean and uncorrelated, and has periodic variances with period S,

i.e. E(ε2
(r−1)S+ν) = σ2

ν for ν = 1, . . . , S. In the following, we set p = maxν pν , q = maxν qν ,

φν,j = 0 for j > pν , θν,k = 0 for k > qν , and we refer to (3.2) as the PARMA(p, q)S model.

Let (Zr)r∈Z be the S-variate time series defined by Z′r = [Z(r−1)S+1, . . . , Z(r−1)S+S],

where Z′r denotes the transpose of Zr. It is well known that (Zt) is PSS if and only if (Zr)

is weakly stationary. The covariance matrix function of (Zr) is ΓZ(τ) = Cov(Zr,Zr−τ )

and is related to γZ,t(τ) by [ΓZ(τ)]l,m = γZ,l(τS + l −m) for every l,m = 1, . . . , S. Now

(3.2) is equivalent to the vector ARMA (VARMA) difference equation

P∑
j=0

ΦjZr−j =

Q∑
k=0

Θkεr−k,

where P = dp/Se, Q = dq/Se and dxe denotes the smallest integer greater than or equal

to x. The entries of matrix Φj are [Φj]l,m = φl,jS+l−m with the convention that [Φ0]l,m = 0
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when l < m. The definition of Θk is similar. The white noise vector process (εr) is defined

by εr = [ε(r−1)S+1, . . . , ε(r−1)S+S]
′ and has the covariance matrix Σε = diag(σ2

1, . . . , σ
2
S).

For all complex number z ∈ C, let

Φ(z) =
P∑
j=0

Φjz
j and Θ(z) =

Q∑
k=0

Θkz
k,

and assume that det Φ(z)Θ(z) 6= 0 for |z| ≤ 1. Therefore, (Zr) is causal and invertible

and the spectral density matrix of (Zr) is

fZ(ω) =
1

2π
Φ−1(e−iω)Θ(e−iω)ΣεΘ

′(eiω)Φ′−1(eiω), ω ∈ (−π, π].

The causality and invertibility do not ensure that Σε, Φ(z) and Θ(z) are uniquely de-

termined by the covariance matrix function ΓZ(τ), or equivalently the spectral matrix

fZ(ω), see e.g. Brockwell & Davis (2006, page 431). Additional restrictions have to

be imposed in order to obtain identifiable models, see Dunsmuir & Hannan (1976) and

Deistler, Dunsmuir & Hannan (1978). In the following, we assume that model (3.2) is

identifiable.

Example 3.1. When pν = qν = 1 for all ν = 1, . . . , S, we have p = q = 1, P = Q = 1,

Φ0 =



1 0 · · · · · · 0

φ2,1 1 · · · · · · 0

0 φ3,1 1 · · · 0
...

...
. . . . . .

...

0 · · · · · · φS,1 1


, Φ1 =



0 · · · · · · · · · φ1,1

0 · · · · · · · · · 0
... · · · · · · · · · ...
... · · · · · · · · · ...

0 · · · · · · · · · 0


and

det Φ(z) = det(Φ0 + Φ1z) = 1 + (−1)S+1

(
S∏

ν=1

φν,1

)
z.

The results for Θ0, Θ1 and det Θ(z) are similar. The causality condition det Φ(z) 6= 0 for

|z| ≤ 1, and the invertibility condition det Θ(z) 6= 0 for |z| ≤ 1 are equivalent respectively

to

ϑφ =
S∏

ν=1

|φν,1| < 1 and ϑθ =
S∏

ν=1

|θν,1| < 1. (3.3)

As discussed in Section 3.1, we shall consider AO since they cause the more deleterious

effect in the inference of time series. Sarnaglia, Reisen & Lévy-Leduc (2010) have shown,

for periodic processes, that this contamination can induce a spurious memory loss by

increasing the variance of the process, both theoretically and empirically. Let (Yt) be

defined as

Yt = Zt + %Bt, (3.4)

where % > 0 is the magnitude of the outlier and (Bt)t∈Z is a sequence of independent

and identically distributed random variables assuming −1, 0, 1 values with probabilities
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P(Bt = 0) = 1− ζ and P(Bt = −1) = P(Bt = 1) = ζ
2
, where ζ ∈ (0, 1) is the probability

of occurrence of an outlier. We assume that (Bt) and (Zt) are independent processes.

Note that the definition of the process in (3.4) ensures equal probabilities for positive and

negative outliers. Observe that if either ζ = 0 or % = 0, then Yt = Zt, such that (Yt)

is uncontaminated. It is worth to point out that, for the AO process defined in (3.4),

the location of the outliers is chosen at random, which seems to be more appropriate in

real applications, since the position or even the occurrence of the outliers in the sample

is usually unknown. There are other ways to describe atypical observations. For exam-

ple, one can consider heavy-tailed distributions for the white noise process (εt), see e.g.

Katkovnik (1998). However, in this kind of outlier generating mechanism, there is no

explicit definition for the magnitude of the outliers and their investigation can not be

performed directly.

The effects of outliers in the spectral density and the classical periodogram have been

investigated by Fajardo, Reisen & Cribari-Neto (2009) for long memory processes. The

autocovariance function γY,t(τ) = Cov(Yt, Yt−τ ) of the contaminated process (Yt) in (3.4)

is given by

γY,t(τ) =

γZ,t(0) + %2ζ, τ = 0,

γZ,t(τ), τ 6= 0,

while E(Yt) = µY,t = µZ,t. Therefore, (Yt) is also a PSS process but with larger variance

than (Zt). Let Y′r = [Y(r−1)S+1, . . . , Y(r−1)S+S] and ΓY(τ) = Cov(Yr,Yr−τ ). Then

ΓY(τ) = ΓZ(τ) + D1{τ=0}, (3.5)

where D is the (S × S) diagonal matrix with diagonal entries (D)l,l = %2ζ, l = 1, . . . , S.

Therefore, the spectral density matrix of the contaminated vector process (Yr) is given

by

fY(ω) = fZ(ω) +
1

2π
D, ω ∈ (−π, π].

Note that, letting % → ∞ makes the diagonal matrix D dominate fY, which becomes

close to the spectral density of a vector white noise process. This is the frequency domain

counterpart of the memory loss property of AO processes.

3.3 Robust Whittle M -estimator

We now introduce the estimation method proposed in this paper. Firstly, we de-

fine a robust alternative to the Fourier transform based on the non-linear M -regression

approach. Next, the robust Whittle-type method is presented.
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3.3.1 Robust Fourier Transform

Let (Xr)r∈Z be any S-dimensional vector process and X = [X′1, . . . ,X
′
N ]′ be a sample

of size N observed from (Xr). The Fourier transform of X, at the frequency ω ∈ (−π, π],

is defined as

WX(ω) = (2πN)−1/2

N∑
r=1

Xre
−irω. (3.6)

Equation (3.6) can be rapidly obtained at the Fourier frequencies ωj = 2πj/N , j =

1, . . . , N ′, where N ′ = b(N − 1)/2c is the greatest integer smaller than or equal to (N −
1)/2.

For any fixed frequency ωj, the S-dimensional vector WX(ωj) can be viewed as a linear

regression vector as follows. Let Xr,ν be the νth component of vector Xr, r = 1, . . . , N ,

ν = 1, . . . , S. Define the vector of covariates Cr,j = [cos(rωj), sin(rωj)]
′ and consider the

linear model

Xr,ν = C ′r,jβν(ωj) + ξr,ν ,

where ξr,ν is a random error term and the coefficient vector βν(ωj) = [βν,1(ωj), βν,2(ωj)]
′

can be seen as describing the impact of the jth harmonic in the time series X1,ν , . . . , XN,ν .

The classical least square estimator of the vector βν(ωj) is given by

β̂ν(ωj) = argmin
βν(ωj)∈R2

[
N∑
r=1

(
Xr,ν − C ′r,jβν(ωj)

)2

]
. (3.7)

Now, define the vector d(ωj) = [d1(ωj), . . . , dS(ωj)]
′, where dν(ωj) = β̂ν,1(ωj) − iβ̂ν,2(ωj).

Similar arguments as those in Fajardo et al. (2015) can be used in order to show that

WX(ωj) =
√
N/8π d(ωj), j = 1, . . . , N ′.

As well known, β̂ν(ωj) does not have the necessary robustness to withstand the effect of

neither atypical observations nor heavy-tailed distributions. For improving robustness,

one idea is to replace β̂ν(ωj) by a non-linear M -regression estimator in WX(ωj). This will

lead to the robust periodogram for PS processes proposed here. The key idea is to replace

the quadratic loss function in (3.7) by an alternative function ρ(·), which gives

argmin
βν(ωj)∈R2

[
N∑
r=1

ρ(Xr,ν − C ′r,jβν(ωj))

]
.

Equivalently, one can define the M -estimator β̂ν,ψ(ωj) of βν(ωj) as the solution of

N∑
r=1

Cr,j ψ
(
Xr,ν − C ′r,jβ̂ν,ψ(ωj)

)
= 0,

where ψ(·) is the derivative of ρ(·). In this paper, we use the Huber (1964) function,

ρ(x) =

x2/2, |x| ≤ δ,

δ(|x| − δ/2), |x| > δ.
(3.8)
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The choice of the tunning parameter δ > 0 is quite important and provides the compromise

between robustness and efficiency of the M -estimators.

Finally, by defining dψ(ωj) similarly to d(ωj) with β̂ν(ωj) replaced by β̂ν,ψ(ωj), the

robust alternative to WX(ωj) proposed here is given by

WX,ψ(ωj) =
√
N/8π dψ(ωj), j = 1, . . . , N ′. (3.9)

3.3.2 Whittle M -estimator of PARMA parameters

Assume that Z1, . . . , Zn is a sample from a PARMA process with known orders p and

q. For simplicity, suppose that n = NS, such that every season ν = 1, . . . , S is observed

N times. As previously, define the vector Zr = [Z(r−1)S+1, . . . , Z(r−1)S+S]
′ corresponding to

the rth cycle, the full sample being given by Z = [Z′1, . . . ,Z
′
N ]′. The parameter vector of

model (3.2) is ϕ = [ϕ′φ, ϕ
′
θ, ϕ

′
σ]′ where ϕφ and ϕθ contain all the AR and MA parameters,

respectively, and ϕσ = [σ2
1, . . . , σ

2
S]′.

We define the parameter space P ⊂ R(p+q)S as the set of points [ϕ′φ, ϕ
′
θ]
′ for which

model (3.2) is identifiable in the sense of Deistler, Dunsmuir & Hannan (1978). We

denote by R>0 the set of positive real numbers. For any ϕ ∈ P × RS
>0, let ΓN(ϕ) be the

NS × NS matrix with ΓZ(m − l) in the (l,m)th block of S × S elements, 1 ≤ l,m ≤ N .

The Gaussian log likelihood with the scaling factor −2N−1 is

L̂N(ϕ) = N−1 log det ΓN(ϕ) +N−1Z′Γ−1
N (ϕ)Z.

We denote by ϕ0 the true parameter vector ϕ from which the sample Z1, . . . , Zn is

generated. We assume that [ϕ′φ0 , ϕ
′
θ0

]′ ∈ P, and we have ΓN(ϕ0) = Cov(Z,Z). The

Gaussian maximum likelihood estimator (MLE) of ϕ0 is ϕ̂N = argminϕ∈P×RS
>0

L̂N(ϕ).

To obtain ϕ̂N , an optimization algorithm is used and can demand high computational

effort due to the fact that ΓN(ϕ) has to be inverted. To circumvent this difficulty, we

use the multivariate version of Whittle’s methodology proposed by Dunsmuir & Hannan

(1976) to approximate L̂N(ϕ). For a PARMA process, it was shown by Sarnaglia, Reisen

& Bondon (2015) that the corresponding Whittle likelihood estimator (WLE) of ϕ0 is

ϕ̃N = [ϕ̃′φN , ϕ̃
′
θN
, ϕ̃′σN ]′ where

[ϕ̃′φN , ϕ̃
′
θN

]′ = argmin
(ϕ′φ,ϕ

′
θ)′∈P

S∑
ν=1

log σ̃2
N,ν(ϕφ, ϕθ),

σ̃2
N,ν(ϕφ, ϕθ) = 2πN ′−1

N ′∑
j=1

∣∣[Θ−1(e−iωj)Φ(e−iωj)WZ(ωj)
]
ν

∣∣2 , ν = 1, . . . , S, (3.10)

WZ(ωj) is given by (3.6) in which Xr is replaced by Zr, and the νth component of ϕ̃σN is

σ̃2
N,ν(ϕ̃φN , ϕ̃θN ) for ν = 1, . . . , S.

Now, we define the robust WLE (RWLE) ϕ̃N,ψ of ϕ0 similarly as ϕ̃N by replacing

WZ(ωj) in (3.10) by WZ,ψ(ωj) defined in (3.9) where Xr is replaced by Zr.
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It was pointed out by Sarnaglia, Reisen & Bondon (2015) that [ϕ′φ, ϕ
′
θ] involves (p+q)S

parameters whereas the dimension of ϕ is (p+ q+ 1)S. Then ϕ̃N is easier to calculate and

is obtained faster than ϕ̂N . The same remark applies to the calculation of ϕ̃N,ψ. However,

the computation time of ϕ̃N,ψ may be larger than ϕ̃N because a numerical optimization

method is needed to obtain WZ,ψ(ωj), since this function does not have a closed form

expression.

3.4 Monte Carlo study

In this section we investigate the finite sample behaviour of the proposed estimator.

Additionally, the MLE and WLE approaches are also considered in the study for com-

parison purposes. We consider uncontaminated and contaminated data with AO with

occurrence probability ζ = 0.01 and magnitude % = 10. Less detrimental contamination

parameters were also considered, however we prefer to show just the worst scenario in

order to highlight the advantages of the proposed methodology. We generate M = 1000

replicates of the PARMA(1, 1)S process (Zt) in (3.2), with S = 2 and parameters given

in Table 3.1. Other PARMA models were also considered and the results shown similar

conclusions. They are not presented here to save space, but are available upon request.

Table 3.1 – Parameters.

ν = 1 ν = 2 Eq. (3.3)
Model φ1,10 θ1,10 σ2

10
φ2,10 θ2,10 σ2

20
ϑφ ϑθ

1 −0.2 0.0 1.0 −0.5 0.0 1.0 0.1 0.0
2 −0.2 −0.5 1.0 −0.5 −0.2 1.0 0.1 0.1
3 −1.0 0.0 1.0 −0.5 0.0 1.0 0.5 0.0
4 −1.0 −0.5 1.0 −0.5 −0.2 1.0 0.5 0.1

The sample sizes are n = NS = 300, 800 (N = 150, 400, respectively) and the

Huber (1964) function (3.8) is used with δ = 1.345, which ensure that the M -estimator is

95% as efficient as the least squares estimator for univariate multiple linear models with

independent and identically distributed Gaussian white noise.

We evaluate the finite sample performance of the estimators by computing the sample

root mean square error (RMSE) and the results are displayed in Tables 3.2, 3.3, 3.4 and

3.5. The values with “∗” refer to the RMSE for the contaminated series.
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Table 3.2 – RMSE of Model 1 with ϑφ = 0.1 and ϑθ = 0.0.

Method n φ1,1 θ1,1 σ2
1 φ2,1 θ2,1 σ2

2

300 0.067; 0.121∗ — 0.117; 1.366∗ 0.079; 0.252∗ — 0.111; 1.363∗

MLE 800 0.048; 0.101∗ — 0.079; 1.122∗ 0.046; 0.239∗ — 0.074; 1.253∗

300 0.068; 0.121∗ — 0.117; 1.368∗ 0.079; 0.252∗ — 0.111; 1.364∗

WLE 800 0.048; 0.101∗ — 0.079; 1.122∗ 0.046; 0.239∗ — 0.074; 1.253∗

300 0.067; 0.067∗ — 0.147; 0.179∗ 0.083; 0.089∗ — 0.147; 0.189∗

RWLE 800 0.051; 0.054∗ — 0.118; 0.149∗ 0.051; 0.058∗ — 0.108; 0.152∗

Table 3.3 – RMSE of Model 2 with ϑφ = 0.1 and ϑθ = 0.1.

Method n φ1,1 θ1,1 σ2
1 φ2,1 θ2,1 σ2

2

300 0.364; 1.393∗ 0.371; 1.398∗ 0.120; 1.433∗ 0.638; 2.219∗ 0.649; 2.249∗ 0.114; 1.257∗

MLE 800 0.171; 0.492∗ 0.184; 0.500∗ 0.065; 1.118∗ 0.167; 1.007∗ 0.171; 1.031∗ 0.064; 1.102∗

300 0.369; 0.981∗ 0.377; 0.985∗ 0.119; 1.433∗ 0.545; 1.309∗ 0.559; 1.340∗ 0.114; 1.255∗

WLE 800 0.171; 0.439∗ 0.184; 0.448∗ 0.065; 1.119∗ 0.167; 0.466∗ 0.171; 0.504∗ 0.064; 1.102∗

300 0.357; 0.344∗ 0.371; 0.363∗ 0.135; 0.164∗ 0.747; 0.704∗ 0.760; 0.714∗ 0.150; 0.180∗

RWLE 800 0.178; 0.186∗ 0.193; 0.201∗ 0.101; 0.132∗ 0.189; 0.200∗ 0.194; 0.206∗ 0.101; 0.131∗
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Table 3.4 – RMSE of Model 3 with ϑφ = 0.5 and ϑθ = 0.0.

Method n φ1,1 θ1,1 σ2
1 φ2,1 θ2,1 σ2

2

300 0.064; 0.394∗ — 0.107; 1.770∗ 0.047; 0.159∗ — 0.107; 1.327∗

MLE 800 0.036; 0.373∗ — 0.069; 1.642∗ 0.030; 0.142∗ — 0.070; 1.279∗

300 0.066; 0.397∗ — 0.116; 1.780∗ 0.047; 0.159∗ — 0.107; 1.328∗

WLE 800 0.037; 0.374∗ — 0.073; 1.646∗ 0.030; 0.142∗ — 0.070; 1.279∗

300 0.080; 0.107∗ — 0.193; 0.334∗ 0.058; 0.067∗ — 0.156; 0.227∗

RWLE 800 0.053; 0.077∗ — 0.168; 0.317∗ 0.038; 0.047∗ — 0.134; 0.215∗

Table 3.5 – RMSE of Model 4 with ϑφ = 0.5 and ϑθ = 0.1.

Method n φ1,1 θ1,1 σ2
1 φ2,1 θ2,1 σ2

2

300 0.233; 1.539∗ 0.252; 1.594∗ 0.118; 1.307∗ 0.124; 0.319∗ 0.150; 0.350∗ 0.107; 1.337∗

MLE 800 0.140; 0.278∗ 0.146; 0.376∗ 0.068; 1.230∗ 0.077; 0.134∗ 0.089; 0.181∗ 0.071; 1.141∗

300 0.236; 0.792∗ 0.255; 0.864∗ 0.121; 1.313∗ 0.125; 0.238∗ 0.150; 0.280∗ 0.107; 1.336∗

WLE 800 0.141; 0.276∗ 0.147; 0.372∗ 0.068; 1.233∗ 0.077; 0.133∗ 0.089; 0.180∗ 0.071; 1.141∗

300 0.272; 0.296∗ 0.288; 0.311∗ 0.153; 0.207∗ 0.134; 0.140∗ 0.148; 0.152∗ 0.141; 0.183∗

RWLE 800 0.150; 0.149∗ 0.155; 0.154∗ 0.112; 0.169∗ 0.082; 0.085∗ 0.094; 0.097∗ 0.107; 0.145∗
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In the uncontaminated data scenario, in general, all estimators present similar be-

haviour in the AR and MA counterparts. Relating to the estimation of the variance of

the innovations, the MLE and WLE seems to be more precise which is an expected result

since the data is Gaussian with zero-mean and these two methods are asymptotically

equivalents. The RMSE of the estimators decreases as the sample size increases. In ad-

dition, increasing the model order will also affect the estimates. However, the conclusion

by comparing the tree methods are similar.

Now, the discussion is related to the case where the process is contaminated with

additive outliers. As expected, the MLE and WLE estimates are totally corrupted by

the atypical observations since their sample RMSEs increases substantially. Therefore,

these methods should be avoided when the series contains additive outliers. The robust

estimator (RWLE) presents generally accurate estimates even for the largest proportion

of contamination we have considered. Its superiority over the MLE and WLE methods is

clearly shown in the above tables.

We also display in Figure 3.1 the empirical distributions of the estimates provided by

the MLE, the WLE and the RWLE for Model 3. It is clear the AO effect in the MLE and

the WLE, while the RWLE remains almost unchanged.

In addition to the above empirical investigation, the robust method was also considered

when dealing with PARMA model with heavy tail distributions, such as t-student and

double exponential. The results have leaded to similar conclusions with AO ones. These

are not presented here to save space but are available upon request.

3.5 Application

We analyze the daily mean concentrations of Carbon Monoxide (CO) in Ibes, Vila

Velha, ES, Brazil, observed from January 1, 2005 to March 31, 2007 at the monitoring

station of environment and water resources state institute. Since the time series is daily

collected, a PARMAS model with S = 7 seems to be appropriate. The first n = NS = 728

observations (almost two years) are used to fit the model. The last 92 records are kept to

perform a forecast study, see Figure 3.2.

Since the MLE takes a large amount of time to provide the estimates (SARNAGLIA;

REISEN; BONDON, 2016a), we consider in this application only the WLE and the RWLE

in order to be able to use the Schwarz Information Criterion (BIC) for model identification.

The RWLE is obtained using the Huber discrepancy function (see Equation 3.8) such as

in the simulation study. For WLE, the BIC is given by

BIC = N
S∑

ν=1

log(σ̃2
N,ν) + log(N)

S∑
ν=1

(pν + qν),

while, for RWLE, one just have to replace σ̃2
N,ν by σ̃2

N,ν,ψ in the above equation. For

WLE, the original data are centralized by subtracting the sample periodic means, while
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Figure 3.1 – Box-plot of the estimates of the MLE, the WLE and the RWLE of Model
3 for n = 300. On each subfigure the left and the right boxes represent,
respectively, the uncontaminated and the contaminated time series scenarios.
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Figure 3.2 – Daily mean concentrations of CO in Ibes, Vila Velha, ES, Brazil.

for RWLE they are corrected by subtracting the huber location M -estimator evaluated

periodically. The initial values for AR and MA estimates were set as zero, and for white

noise variances, as S2
X,ν , which is the data sample variance of the period ν. We compare

the BIC just of identifiable models by imposing the restrictions of Sarnaglia, Reisen &

Bondon (2016a). The BIC has selected the constant AR order pν = 1 for both estimators
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and the MA orders [q1, . . . , qS]
′ = [0, 0, 1, 0, 1, 1, 1]′ and [q1, . . . , qS]

′ = [0, 0, 0, 1, 0, 0, 1]′

for WLE and RWLE, respectively. The BIC values were 7126.90 and 7041.92 and the

estimation times were 32.61 and 38.05 seconds for WLE and RWLE, respectively. These

estimates were obtained in an intel core i7-2630QM computer with 8 GB of RAM. Table

3.6 shows WLE and RWLE estimates for the series.

Table 3.6 – WLE and RWLE (with a “∗”) estimates.

ν φν,1 θν,1 σ2
ν

1 −0.73; −0.70∗ —– —– 118.59; 119.86∗

2 −0.74; −0.73∗ —– —– 115.50; 109.73∗

3 −1.18; −0.89∗ −0.37 —– 123.08; 116.98∗

4 −0.65; −0.78∗ —– −0.04∗ 153.92; 131.06∗

5 −0.77; −0.71∗ −0.24 —– 129.12; 109.07∗

6 −0.94; −0.77∗ −0.26 —– 129.26; 135.31∗

7 −0.97; −0.95∗ −0.41; −0.26∗ 137.22; 138.77∗

We first observe in Figure 3.2 large spikes incompatible with the overall dynamics of

the times series. Also, BIC has selected different models for WLE and RWLE. In addition,

we observe from Table 3.6 that WLE and RWLE estimates are quite different for some

periods. See for example the reduction of the white noise variance estimates of the RWLE

compared to the WLE. This may be the indication of the presence of outliers. The Median

Absolute Deviation (MAD) for MLE and RWLE are, respectively, 75.51 and 74.45 for the

residuals and 58.59 and 56.15 for the 92 discarded values. The RMSE was also calculated

and presents for the residuals smaller value for WLE (130.09 versus 132.45), which is

expected since WLE is asymptotically equivalent to Least Square Estimator. The out-

of-sample RMSE is almost similar for both estimators: 107.9 for WLE; and 107.17 for

RWLE. We observe that RWLE provide better fit and forecast performance with respect

to MAD. Figure 3.3 displays the one-step-ahead forecasts and 95% forecast intervals. One

may note the difference in the intervals due to the contrast in the white noise variance

estimates provided by the WLE and the RWLE.

2007.0

20
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60
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10
00 Real

MLE
RWLE

Figure 3.3 – Forecast of the discarded PM10 concentrations.
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4 On the use of classical and M periodo-

grams to fit periodic ARMA models to time

series with missing data and additive outli-

ers

Abstract

This paper proposes two estimators for Periodic Autoregressive Moving Average mod-

els with missing data. The first one is based on the frequency domain and uses the asymp-

totic spectrum of an amplitude modulated process. In order to improve robustness, the

second estimator is built from the first one by replacing the classical periodogram by the

M -periodogram of Sarnaglia, Reisen & Bondon (2016b). The finite sample properties

of the proposed methodologies are investigated through an extensive Monte Carlo study.

The results show that, under absence of additive outliers, both methods behave satisfac-

torily well compared to the complete sample estimates. However, under the presence of

outliers the first method becomes corrupted, whilst the robust alternative remains reli-

able. In order to illustrate the usefulness in applications, an air pollution time series is

fitted using the proposed methodologies.

Keywords. Periodic stationarity, PARMA models, Missing data, Robust estimation,

Additive outliers, Whittle estimation.

4.1 Introduction

Processes with periodically varying covariances have been introduced in the seminal

paper by Gladyshev (1961) and are usually denominated as periodically correlated, Peri-

odically Stationary (PS) or cyclostationary. Tiao & Grupe (1980) have shown the effects

of misspecification of PS processes. Their importance has been corroborated by real

applications in many areas. For example, Gardner & Franks (1975) have investigated cy-

clostationarity in electrical engineering and Bloomfield, Hurd & Lund (1994) have studied

periodic correlation in stratospheric ozone data. For recent reviews on PS processes, see

e.g., Gardner, Napolitano & Paura (2006) and Hurd & Miamee (2007).

The Periodic Autoregressive Moving Average (PARMA) model has been considerably

investigated in the literature. In special, estimation methodologies for PARMA param-

eters. For example, Lund & Basawa (2000), have proposed an efficient algorithm to
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evaluate the exact gaussian likelihood of the PARMA models, Basawa & Lund (2001)

have studied the least square estimation of these models and Sarnaglia, Reisen & Bondon

(2015) have proposed a Whittle type estimator and Sarnaglia, Reisen & Bondon (2016a)

have investigated its asymptotics.

The good performance of the previous estimation methods for PARMA time series

has been evidenced by theoretical and simulation results. See e.g. Sarnaglia, Reisen &

Bondon (2016a). However, in the presence of Additive Outliers (AO), these estimators are

generally deteriorated. This kind of outlier is usually investigated due to its more delete-

rious effect in parameter estimates. In this context, Sarnaglia, Reisen & Bondon (2016b)

have suggested a robust estimation methodology based on a alternative periodogram ob-

tained through M -regression, which generalizes the idea of Fajardo et al. (2015) to the

periodic scenario. They have shown that this method presents similar performance to the

classical alternatives in the absence of outliers and it is still robust for AO contaminated

PARMA time series.

Frequently, in real applications, the data set is not completely observable. Obviously,

the classical tools can not be used in the missing observations scenario. On one hand,

one can deal with this problem by Expectation-Maximization type algorithms. This

approach has the disadvantage of assuming an specific distribution (gaussian in general)

for the data set. On the other hand, many papers extend standard tools to the incomplete

sample perspective, for example Yajima & Nishino (1999) have studied the asymptotics of

three different estimators of the sample autocorrelation function of stationary time series,

Dunsmuir & Robinson (1981b) propose a Whittle type estimation method in the presence

of missing data and Dunsmuir & Robinson (1981c) studied its asymptotics. Other recent

examples of extentions of classical tools to the missing data situation are Bondon &

Bahamonde (2012) and Efromovich (2014).

To our best knowledge, fitting PARMA models to incomplete time series is still a

little exploited subject and methods for PARMA time series with missing data and addi-

tive outliers have never been investigated. This paper aim to deal with these problems.

More specifically, we shall propose two estimation methods. The first one is a Whittle

type estimator based on the asymptotic spectrum of the amplitude modulated model

generated by the missing data which generalizes the method of Dunsmuir & Robinson

(1981b), Dunsmuir & Robinson (1981c). In order to improve robustness, we shall suggest

another estimator based on the first one by replacing the classical periodogram by the M -

periodogram of Sarnaglia, Reisen & Bondon (2016b), so that it can be used in situations

with additive outliers and missing data simultaneously.

The rest of the paper is structured as follows: Section 4.2 defines the PARMA model

with AO; Section 4.3 introduces the Asymptotically Periodically Stationary processes,

studies some of their properties and investigates the amplitude modulated model. Section

4.4 proposes two estimation methods and investigates some effects of additive outliers;
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The finite sample performances of these estimators are investigated and compared through

an extensive Monte Carlo study presented in Section 4.5; An application to air pollution

is presented in Section 4.6.

4.2 PARMA model with additive outliers

We first introduce some notation. A stochastic process observed over the integer set

Z, say (Zt)t∈Z, will be denoted by the cleaner notation (Zt). The scalar [A]l,m will refer

to the l,m entry of the matrix A, that is the element in the lth row and mth column

A. The lth row and mth column of the matrix A are denoted, respectively, by [A]l• and

[A]•m. The transpose of the matrix A is denoted by A′. The conjugate transpose of a

complex matrix A is denoted by AH. Vectors will be treated as one column matrices, i.e.,

a n-dimensional vector x has ith entry given by [x]i = [x]i,1, i = 1, . . . , n. In this paper,

we follow the usual practice and will not differ from notations of a process and a time

series, the difference will be made clear from the context.

Let (Zt) be a stochastic process with expectation and autocovariance functions given,

respectively, by µt,Z = E(Zt) and γt,Z(τ) = Cov(Zt, Zt−τ ). One says that the process

(Zt) is Periodically Stationary (or cyclostationary) with season length S (PSS) if µt,Z and

γt,Z = γt,Z(τ) are periodic functions in t with period S, that is,

µt,Z = µt+S,Z and γt,Z = γt+S,Z , ∀ t ∈ Z.

These processes have been first considered in the seminal paper of Gladyshev (1961) and

a broad collection of results in this area is given in Hurd & Miamee (2007). From now

on, we shall consider the case where µt,Z = 0, t = 1, . . . , S.

The Periodic Autoregressive Moving-Average model with season length S (PARMAS)

plays an important role in the analysis of PSS processes. It is a generalization of the so-

called ARMA models to the periodic scenario, see e.g. Box, Jenkins & Reinsel (2008). In

the definition of PARMA models, in order to emphasize which period is being considered,

we shall use the periodic time index notation t = rS + ν, r ∈ Z, ν = 1, . . . , S. One says

that (Zt) follows a PARMAS model if it satisfies the difference equations

ZrS+ν +

pν∑
j=1

φν,jZrS+ν−j = εrS+ν +

qν∑
j=1

θν,jεrS+ν−j, (4.1)

where φν,1, . . . , φν,pν and θν,1, . . . , θν,qν and pν and qν are, respectively, the AR and MA

coefficients and orders of the period ν. The process (εt) is a zero mean white noise

sequence with periodic variances σ2
t = σ2

t+S. We can always consider the AR orders to be

constant, otherwise we can take p = maxν pν and make the additional AR coefficients to

be zero. The same can be done for MA orders. Therefore, from now on, we shall assume

pν = p and qν = q constant in ν = 1, . . . , S.
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It is well-known (see e.g. Gladyshev (1961)) that (Zt) is a PSS process if, and only

if, the vector process (Zr) defined as Zr = [ZrS+1, . . . , ZrS+S]
′ is weakly stationary in the

vector sense. In addition, it is well-known that if (Zt) follows the PARMAS model in

Equation 4.1, its vector counterpart (Zr) follows the VARMA model

P∑
j=0

ΦjZr−j =

Q∑
j=0

Θjεr−j, (4.2)

where the orders P = dp
S
e and Q = d q

S
e, wherein dxe denotes the smallest integer greater

than or equal to x. The AR matricial coefficients are given by [Φj]l,m = φl,jS+l−m, wherein

the conventions φν,0 = 1 and φν,k = 0, k < 0, k > p, have been made. The definition of the

Θj’s is similar. The white noise vector process (εr) is defined by εr = [εrS+1, . . . , εrS+S]
′

and has variance matrix Σ with entries given by [Σ]l,m = σ2
l 1{l=m}, l,m = 1, . . . , S, where

1 is the indicator function. Define the AR and MA matricial polynomials, respectively,

by

Φ(z) =
P∑
j=0

Φjz
j and Θ(z) =

P∑
j=0

Θjz
j.

We shall assume that causality and invertibility of (Zr) which are given, respectively, by

det Φ(z) 6= 0 and det Θ(z) 6= 0, |z| ≤ 1,

hold. These assumptions ensure the existence of the spectral density matrix of (Zr) which

is given by

fZ(ω) =
1

2π
Φ−1(e−iω)Θ(e−iω)Σ[Φ−1(e−iω)Θ(e−iω)]H, (4.3)

where eix = cosx + i sinx is the Euler’s formula, or complex exponential. It can be seen

that, for PARMA(1, 1)S models, causality and invertibility conditions simplify to

ϑφ :=

∣∣∣∣∣
S∏

ν=1

φν,1

∣∣∣∣∣ < 1 and ϑθ :=

∣∣∣∣∣
S∏

ν=1

θν,1

∣∣∣∣∣ < 1, (4.4)

respectively. Hereafter, besides these conditions, we also assume that the process (Zr)

is identifiable in the sense of Dunsmuir & Hannan (1976). Identifiability is particularly

important to avoid a likelihood surface with more than one maxima. See conditions

on PARMA parameters for identifiability in the paper of Sarnaglia, Reisen & Bondon

(2016a).

As previously discussed, we shall consider AO since it causes the more deleterious

effect in the inference of time series. Let (Zt) be a scalar stochastic process and define

the AO process (Xt) by

Xt = BtOt + Zt, (4.5)

where (Bt) is an independent Bernoulli sequence with success (outlier) probability P(Bt =

1) = ζ, the (Ot) is an i.i.d. sequence of some contamination zero mean symmetric random
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variable (r.v.), Bu,Os, Zt, u, s, t ∈ Z, are independent r.v. and, in this paper, (Zt) will be

a PARMA process. The symmetry of the marginal distribution of Ot is imposed to ensure

equal probabilities of positive and negative outliers. In general, the r.v. Ot may have

a heavy-tailed distribution, or even the same marginal distribution of (Zt) with larger

variance. The contamination process considered by Sarnaglia, Reisen & Bondon (2016b)

is a special case of (4.5) wherein the r.v. Ot obeys the following marginal law:

P(Ot = %) = P(Ot = −%) =
1

2
, (4.6)

where in this case % represents the outlier’s magnitude.

Note that in Equation 4.5, if ζ = 0, then Xt = Zt, such that (Xt) is uncontaminated.

It is worth to point out that, for the AO process defined in Equation 4.5, the location of

the outliers is chosen at random, which seems to be more appropriate in real applications,

since the position or even the occurrence of the outliers in the sample is usually unknown.

There are other ways to describe atypical observations. For example, one can consider

heavy-tailed distributions to the data. See e.g. Katkovnik (1998).

The effects of outliers in the spectral density and the classical periodogram have been

investigated in Fajardo, Reisen & Cribari-Neto (2009) for scalar long memory processes.

For periodic processes, when the contamination r.v. Ot is defined as in (4.6), the effect

on correlation structure is presented by Sarnaglia, Reisen & Lévy-Leduc (2010) in the

time domain, while, in the frequency domain, Sarnaglia, Reisen & Bondon (2016b) have

shown that the spectral density of the S-dimensional vector process (Xr), r ∈ Z, wherein

[Xr]ν = XrS+ν , ν = 1, . . . , S, is given by

fX(ω) = fZ(ω) +
1

2π
D,

where D is a (S×S) diagonal matrix with diagonal entries [D]l,l = %2ζ, l = 1, . . . , S and fZ

is the spectral density matrix of the uncontaminated vector process (Zr) defined similarly

to (Xr). See Sarnaglia, Reisen & Bondon (2016b) for more details. We shall extend these

results in Section 4.4 for the more general model in Equation 4.5 with missing values.

4.3 APS processes and missing data

We now extend some of the results of Dunsmuir & Robinson (1981a) to periodic pro-

cesses. Consider the (random or deterministic) sequence (ηt)t≥1. For each S ∈ {1, 2, . . .},
define the partial sums

η̄ν,S,N :=
1

N

N−1∑
r=0

ηrS+ν and cν,η,S,N(τ) :=
1

N

N−1∑
r=r∗

ηrS+νηrS+ν−τ , 0 ≤ τ < NS + ν − S,

where r∗ is the smallest 0 ≤ r < N such that r∗S + ν − τ > 0. The (ηt) is said to be

Asymptotically PSS (APSS) if, and only if, S is the smallest value in {1, 2, . . .} such that

µν,η = lim
N→∞

η̄ν,S,N and ςν,η(τ) = lim
N→∞

cν,η,S,N
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exist almost surely (a.s.) for fixed τ . In this context, µν,η and γν,η(τ) := ςν,η(τ)−µν,ηµν−τ,η
are referred to as the asymptotic periodic mean and autocovariance functions of (ηt),

respectively. One can show that these functions satisfy the periodic relations: µν+S,η =

µν,η and γν+S,η(τ) = γν,η(τ). In addition, γν,η(τ) = γν+τ,η(−τ).

It can be shown that the sample autocovariance

γ̂ν,η,N(τ) =
1

N

N−1∑
r=r∗

(ηrS+ν − η̄ν,N)(ηrS+ν−τ − η̄ν−τ,N) (4.7)

of the APSS process (ηt) satisfies limN→∞ γ̂ν,η,N(τ) = γν,η(τ) a.s., for fixed τ .

Asymptotically periodically stationary processes naturally arise through amplitude

modulation of PS processes in a similar manner as described in Parzen (1963). Let (Xt)

be the AO process in (4.5) and (Ut) be a sequence which can be random or deterministic.

We define (Yt) as the process (Xt) amplitude modulated by (Ut), that is

Yt = Ut ·Xt, t ∈ Z. (4.8)

We now introduce necessary conditions on (Ut, Xt) to ensure that (Yt) in (4.8) is an

APSS process.

(A1) Us, Xt, s, t ∈ Z, are independent;

(A2) (Ut) is an APSS process with asymptotic mean and autocovariance functions given

by µν,U and γν,U(τ), respectively, and satisfies E(|Ut|2+δU ) ≤ K < ∞, t ≥ 1, for

some δU > 0. In this case, we define ςν,U(τ) = γν,U(τ) + µν,Uµν−τ,U ;

(A3) (Zt) is a PSS process satisfying:

a) ZrS+ν =
∑

j≥0 ψν,jεrS+ν−j, where ψν,j = ψν+S,j with supν
∑

j≥0 |ψν,j| < ∞ and

(εt) is a zero mean white noise sequence with periodic variances σ2
t = Var(εt) =

σ2
t+S;

b) E(|εt|2+δε) ≤ K <∞, t ≥ 1, for some δε > 0;

(A4) The sequence (Ot) satisfies E(|Ot|2+δO) ≤ K <∞, t ≥ 1.

Condition (A1) is standard in literature and, as reinforced by Dunsmuir & Robinson

(1981c), the more general case allowing dependence between (Ut) and (Xt) seems to be

much harder to deal with. Moreover, the case wherein the actual process (Xt) and the

missing mechanism do not affect each other seems to be natural in most (but not all)

cases, such that (A1) does not seem to be very restrictive. Conditions (A2) and (A3)

extend Assumptions A and B4 of Dunsmuir & Robinson (1981a) to the periodic case. The

causal PARMA process satisfies (A3a). (A4) bounds the magnitudes of the outliers. One

can consider δU = δε = δO = δ in (A2), (A3b) and (A4) without any loss of generality,

otherwise we can choose δ = min(δU , δε, δO), so that these conditions remain valid.
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Theorem 4.1. Let (Yt) ≡ (Ut ·Xt) be the amplitude modulated process in (4.8). Assume

(A1), (A2), (A3) and (A4) hold. Then (Yt) is an APSS process with asymptotic

periodic mean and autocovariance functions given, respectively, by µν,Y = 0 and γν,Y (τ) =

ςν,U(τ)γν,X(τ), ν = 1, . . . , S.

Proof. The proof is given in Subsection 4.7.1

One can take S = 1 in either (A2) or (A3) so that the following result still holds,

i.e., amplitude modulating either stationary process with APS or PS with asymptotically

stationary produces an APS process. Although it is not investigated here, we believe

that alternative conditions to (A3) extending B1, B2, B3 or B5 of Dunsmuir & Robinson

(1981a) can be formulated such that Theorem 4.1 still holds.

Note that, Theorem 4.1 and Equation 4.7 ensures that γ̂ν,Y,N(τ) is a strongly consistent

estimator of ςν,U(τ)γν,X(τ). Since, by definition, (A2) imposes that limN→∞ cν,U,N(τ) =

ςν,U(τ) a.s., Continuous Map Theorem ensures that γ̂ν,X,N(τ) := γ̂ν,Y,N(τ)/cν,U,N(τ) is a

strongly consistent estimator of γν,X(τ), when ςν,U(τ) 6= 0. This conclusion is summarized

in the following

Corollary 4.1. Suppose (A1), (A2), (A3) and (A4) hold and ςU,ν(τ) 6= 0. Define

γ̂ν,X,N(τ) =
γ̂ν,Y,N(τ)

cν,U,N(τ)
.

Then limN→∞ γ̂ν,X,N(τ) = γν,X(τ), a.s., for fixed τ .

Corollary 4.1 motivates the use of γ̂ν,X,N(τ) to evaluate the covariance structure of the

original process (Xt). However, we point out that γ̂ν,X,N(τ) is not a positive semidefinite

function, so that it is not an actual autocovariance function. Therefore, for example,

its use to estimate autocorrelation coefficients could result in values with absolute value

greater than 1, at least in small sample sizes.

Parzen (1961) has shown that asymptotically stationary time series possesses a gen-

eralized harmonic analysis. One can also introduce a similar treatment for APSS pro-

cesses in the sense of Hurd & Miamee (2007). We will not pursue this topic here. In

turn, we shall consider the generalized harmonic analysis of the process (Yr) defined by

Yr = [YrS+1, . . . , YrS+S]
′, r ∈ Z, ν = 1, . . . , S. The vector processes (Xr), (Ur) and (Zr)

are defined similarly to (Yr). It can be shown that (Yr) has an asymptotic (in a similar

sense to the definition of APSS processes) autocovariance matrix ΓY(τ) with entries given

by

[ΓY(τ)]l,m = γl,Y (τS + l −m) = ςl,U(τS + l −m)γl,X(τS + l −m)

= (γl,U(τS + l −m) + µl,Uµm,U)γl,X(τS + l −m)

= ([ΓU(τ)]l,m + [µUµ
′
U]l,m)[ΓX(τ)]l,m,
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where [ΓX(τ)]l,m is the l,m entry of the autocovariance matrix ΓX(τ) of (Xr) and [µU]l

and [ΓU(τ)]l,m are, respectively, the lth component of the asymptotic mean vector µU

and the l,m entry of the asymptotic autocovariance matrix ΓU(τ) of (Ur). In matrix

notation the above equation simplifies to

ΓY(τ) = (ΓU(τ) + µUµ
′
U)� ΓX(τ), (4.9)

where � stands for the so-called Hadamard (entrywise or Schur) product of matrices.

Now, the following matrix version of the Bochner representations

ΓU(τ) =

∫ 2π

0

eiτωFU(dω) and ΓX(τ) =

∫ 2π

0

eiτωfX(ω) dω,

where FU and fX are the spectral distribution and the spectral density matrices of (Ur)

and (Xr), respectively, can be combined with Equation 4.9 to obtain the following

Corollary 4.2. The asymptotic matrix spectrum of (Yr) is given by

fY(ω) = fX(ω)� µUµ
′
U +

∫ 2π

0

fX(ω −$)� FU(d$).

In addition, supposing that FU($) is absolutely continuous gives

fY(ω) = fX(ω)� µUµ
′
U +

∫ 2π

0

fX(ω −$)� fU($) d$,

where fU is the spectral density matrix associated to FU($).

Corollary 4.2 extends to the vector case the convolution property of the scalar spectral

density of amplitude modulated models. See for example Equation 2.1 in Dunsmuir &

Robinson (1981c).

The analysis of time series with missing values is a natural example of application of

amplitude modulate process. In the stationary case, if the original process (Xt) is not fully

observed, the covariance matrix of the sample is not necessarily Toeplitz (DUNSMUIR;

ROBINSON, 1981c). In the periodic scenario it is not block Toeplitz. These features pre-

vent the straightforward use of Whittle methodologies in both cases, so that the Whittle

methods of Sarnaglia, Reisen & Bondon (2015), Sarnaglia, Reisen & Bondon (2016a),

Sarnaglia, Reisen & Bondon (2016b) can not be used directly on the observations of (Xt).

However, one can still use the nice block Toeplitz properties if we replace the original time

series, with its missing values, by a related sequence equally spaced which can be handled

in a similar way as periodically stationary processes. This particular sequence is given

by the amplitude modulated process (Yt) in (4.8), wherein the (Ut) denotes an indicator

sequence with Ut = 1 or 0 if the observation Xt is observed or missing, respectively. In

this framework (Ut) will be referred to as the not missing indicator process. Roughly

speaking, the (Ut) inputs zeroes in place of missing observations in order to produce an
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artificial “complete” time series observed from (Yt). This approach can be used in the

cases where the missing data is produced in a deterministic fashion, such as the regular

A−B sampling (DUNSMUIR; ROBINSON, 1981a), or driven by some random schematic,

as long as they satisfy Assumption (A2).

4.4 PARMA estimation with missing data

From now on, (Xt)
n
t=1 is a (possibly contaminated) time series generated by the process

(Xt) in (4.5). This paper is concerned with the case where the sample (Xt)
n
t=1 is not

completely observable. Therefore, we consider the amplitude modulated model in (4.8),

by defining the not missing indicators as (Ut)
n
t=1, where Ut = 1 or 0 if the observation Xt

is observed or missing, respectively. The amplitude modulated time series is defined as

(Yt)
n
t=1 and given by Yt = Ut ·Xt, t = 1, . . . , n. In the case where the generating process

(Xt) in (4.5) is contaminated, the (hidden) uncontaminated time series is denoted by

(Zt)
n
t=1. For simplicity, we assume the sample size n = NS, N ∈ {1, 2, . . .}, such that N

full cycles will be analysed. The S-dimensional vector time series (Xr)
N−1
r=0 is defined by

[Xr]ν = XrS+ν , ν = 1, . . . , S, r = 0, 1, . . . , N − 1. The (Ur)
N−1
r=0 , (Yr)

N−1
r=0 and (Zr)

N−1
r=0

are defined similarly. The parameters of the PARMA model are grouped in the vector ϕ.

We assume that the true parameter vector ϕ0 lies in the parameter space P whose points

satisfy the identifiability assumptions of Sarnaglia, Reisen & Bondon (2016a).

4.4.1 Asymptotic Whittle likelihood estimator

We first consider the uncontaminated case, where (Xt) ≡ (Zt) and fX(ω) = fY(ω),

ω ∈ [0, 2π). Consider the complete vector time series (Yr)
N−1
r=0 . In light of Corollary 4.2

and in analogy with the multivariate version of Whittle’s approximation of the gaussian

likelihood, one could estimate ϕ0 by choosing ϕ to minimize

`(ϕ) =
1

N ′

N ′∑
j=1

{
tr
[
f−1
Y (ωj;ϕ)IY(ωj)

]
+ log det fY(ωj;ϕ)

}
, (4.10)

where fY(ωj;ϕ) is the asymptotic matrix spectrum of (Yr) in Corollary 4.2 evaluated at

the Fourier frequencies ωj = 2πj
N

, j = 1, . . . , N ′, N ′ = b(N − 1)/2c is the greatest integer

smaller than or equal to (N − 1)/2, the term ϕ is now being used in fY to reinforce their

intrinsic dependency, and

WY(ω) =
1√
N

N−1∑
r=0

Yre
−irω and IY(ω) = WY(ω)WY(ω)H

are, respectively, the discrete Fourier transform and the periodogram of (Yr)
N−1
r=0 at ω.

At the Fourier frequency ωj, WY(ωj) can be efficiently obtained through the multivariate

version of the fast Fourier transform algorithm.
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Unfortunately, the expression in Equation 4.10 may be inaccessible since FU is usually

unknown. We follow Dunsmuir & Robinson (1981c) and circumvent this problem by

approximating the spectral density matrix fY(ωj;ϕ) by

f̂Y(ωj;ϕ) = fX(ωj;ϕ)� ŪŪ′ +
1

N

N−1∑
k=0

fX(ωj − ωk;ϕ)� IU∗(ωk)

=
1

N

N−1∑
k=0

fX(ωj − ωk;ϕ)� IU(ωk), (4.11)

where IU(ωk) and IU∗(ωk) are, respectively, the periodograms of the vector time series

(Ur)
N−1
r=0 and its centralized counterpart (U∗r)

N−1
r=0 , wherein U∗r = Ur−Ū, r = 0, 1, . . . , N−

1, and Ū = 1
N

∑
rUr. Now, fY can be replaced by f̂Y in `(ϕ) (Equation 4.10) which gives

ˆ̀(ϕ) =
1

N ′

N ′∑
j=1

{
tr
[
f̂−1
Y (ωj;ϕ)IY(ωj)

]
+ log det f̂Y(ωj;ϕ)

}
. (4.12)

We propose to estimate the parameter vector ϕ by

ϕ̂ = argmin
ϕ∈P

ˆ̀(ϕ).

This particular approximation ˆ̀is prefered since it requires no prior knowledge of FU. The

computation of the “Hadarmard convolution” required in (4.11) can be done efficiently

through the fast Fourier transform algorithm applied entrywise. Henceforth, ϕ̂ will be

called Asymptotic Whittle Likelihood Estimator (AWLE). Asymptotic properties of ϕ̂ are

not easy to be obtained and deserve a paper uniquely devoted to this subject. We intend

to approach this in a forthcoming work.

4.4.1.1 Impact of additive outliers

We shall see in Section 4.5 that the AWLE has a small loss of efficiency for incomplete

time series observed from the AO process (Xt) when the probability ζ = 0, that is when

(Xt) ≡ (Zt). We now investigate some theoretical aspects which discourage the use of

AWLE when ζ > 0.

Observe that

γt,X(τ) = Cov(Xt, Xt−τ ) = Cov(BtOt + Zt,Bt−τOt−τ + Zt−τ ) = σ2
Oζ 1{τ=0}+γt,Z(τ),

where σ2
O = Var(Ot) = E(O2

t ), which exists from (A4) and is constant by definition

of the sequence (Ot). The above equation generalizes the result in Sarnaglia, Reisen &

Lévy-Leduc (2010) for the general AO process in (4.5). Now we have that

ΓX(τ) = DO 1{τ=0}+ΓZ(τ),
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where DO is diagonal matrix with entries given by [DO]l,m = ζσ2
O 1{l=m}. Therefore, the

spectral matrix of (Xr) is given by

fX(ω) = fZ(ω) +
1

2π
DO. (4.13)

Replacing Equation 4.13 in fY given in Corollary 4.2 gives

fY(ω) =

[
1

2π
DO + fZ(ω)

]
� µUµ

′
U +

∫ 2π

0

[
1

2π
DO + fZ(ω −$)

]
� FU(d$)

=
1

2π
DO �

[
µUµ

′
U +

∫ 2π

0

FU(d$)

]
+ fZ(ω)� µUµ

′
U +

∫ 2π

0

fZ(ω −$)� FU(d$)

=
1

2π
DO �CU(0) + fZ(ω)� µUµ

′
U +

∫ 2π

0

fZ(ω −$)� FU(d$),

where CU(τ) is the asymptotic autocovariance matrix of (Ur) which has entries given by

[CU(τ)]l,m = ςl,U(τS + l −m), l,m = 1, . . . , S, with ςl,U(τ) given in (A2). In addition,

f̂Y(ωj;ϕ) =
1

N

N−1∑
k=0

fX(ωj − ωk;ϕ)� IU(ωk)

=
1

N

N−1∑
k=0

fZ(ωj − ωk;ϕ)� IU(ωk) +
1

2π
DO �

(
1

N

N−1∑
k=0

IU(ωk)

)

=
1

N

N−1∑
k=0

fZ(ωj − ωk;ϕ)� IU(ωk) +
1

2π
DO � ĈU(0),

where ĈU(τ) = 1
N

∑
rUrU

′
r−τ . These results are summarized in the following

Corollary 4.3. The asymptotic matrix spectrum of (Yr) is given by

fY(ω) =
1

2π
DO �CU(0) + fZ(ω)� µUµ

′
U +

∫ 2π

0

fZ(ω −$)� FU(d$)

and

f̂Y(ωj;ϕ) =
1

2π
DO � ĈU(0) +

1

N

N−1∑
k=0

fZ(ωj − ωk;ϕ)� IU(ωk). (4.14)

Sarnaglia, Reisen & Bondon (2016b) have shown that, for the AO model with the

contamination given in (4.6), the matritial classical periodogram IX is a r.v. whose

expected value is impacted by the outliers in the same amount as the spectral density.

One can easily extend this result for the more general model in (4.5). Observe that, for

ω ∈ (0, π),

E(IX(ω)) = E(WX(ω)WX(ω)H) =
1

N

N−1∑
r=0

N−1∑
s=0

E(XrXs)e
−iω(r−s)

=
∑
|τ |<N

(
1− |τ |

N

)
ΓX(τ)e−iωτ .
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Therefore, limN→∞ E(IX(ω)) = fX(ω) = fZ(ω) + 1
2π
DO, such that it is expected that the

periodogram IX will be impacted by AO in the same amount as the spectral density fX.

In order to extend this result to the amplitude modulated process, we have to impose

the following additional assumption, which is satisfied for the not missing indicator process

(Ut) described at the end of Section 4.3:

(A2’) |Ut| ≤ U , t ∈ Z, and E(U) <∞

Theorem 4.2. Let IY(ω) be the periodogram of (Yr)
N−1
r=0 . Then, under (A1), (A2) and

(A2’), (A3) and (A4), we have that, for ω ∈ (0, π),

E(IY(ω))→ fY(ω) =
1

2π
DO�CU(0)+fZ(ω)�µUµ

′
U+

∫ 2π

0

fZ(ω−$)�FU(d$), (4.15)

as N →∞.

Proof. The proof is given in Subsection 4.7.2

In Equation 4.14, the term 1
2π
DO � ĈU(0) → 1

2π
DO � CU(0), N → ∞, a.s., and

quantify the AO contribution to f̂Y. At first, one may model the outliers influence directly

by specifying this additional term in ˆ̀(ϕ). However, the presence of outliers is unknown

in practical situations and the main reason in specifying them in the modelling is to

remove its effect, not necessarily to estimate it. Therefore, the inclusion of this additional

quantity could result in an unnecessary overparametrization, so that we neglect it in
ˆ̀(ϕ). Nevertheless, from Equation 4.15, it is expected that, in a contaminated time

series scenario, the periodogram IY(ω) presents the AO effect, so that maximizing ˆ̀(ϕ)

disregarding the term 1
2π
DO � ĈU(0) will increase bias of the estimates. This motivates

us to replace IY(ω) in ˆ̀(ϕ) by a robust estimator of

fZ(ω)� µUµ
′
U +

∫ 2π

0

fZ(ω −$)� FU(d$), (4.16)

which is the proposal of the next subsection.

4.4.2 M -asymptotic Whittle likelihood estimator

We propose the use of the multivariate M -periodogram of Sarnaglia, Reisen & Bondon

(2016b) to estimate the spectral density in Equation 4.16. Let Cr(ω) = [cos(rω), sin(rω)]′,

ω ∈ (0, π), r = 0, 1, . . . , N − 1. At the elementary frequencies, the multivariate peri-

odogram IY(ωj), j = 1, . . . , N ′, is related to the least square estimator of the multivariate

multiple linear model

Yr = β(ωj)
′Cr(ωj) + ξr, r = 0, 1, . . . , N − 1, (4.17)

where β(ωj) = [β1(ωj), . . . , βS(ωj)] is a (2× S) coefficient matrix and ξr = [ξr,1, . . . , ξr,S]
′,

r = 0, 1, . . . , N − 1, is a random error term. In this framework, the 2-dimensional vector
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βν(ωj) can be seen as the impact of the jth harmonic in the νth time series ([Yr]ν)
N−1
r=0 ,

ν = 1, . . . , S. See Sarnaglia, Reisen & Bondon (2016b) for more details.

In order to produce a robust estimator of the spectral density, Sarnaglia, Reisen &

Bondon (2016b) propose the use of M -regression techniques to estimate the model in

(4.17). More specifically, let ρ : RS 7→ R be a suitable discrepancy function, one defines

the M -estimator of β(ωj) by

β̂ρ(ωj) = argmin
β∈R2×S

{
N−1∑
r=0

ρ (Yr − β′Cr(ωj))

}
, j = 1, . . . , N ′. (4.18)

Equivalently, one can obtain β̂ρ(ωj) as the zeroes of

N−1∑
r=0

ψ
(
Yr − β̂ρ(ωj)′Cr(ωj)

)
Cr(ωj)

′ = 0S×2, (4.19)

where, in this context, ψ = ψ(x1, . . . , xS) is the S-dimensional vector gradient function

related to ρ with elements given by [ψ(x1, . . . , xS)]i = ∂
∂xi
ρ(x1, . . . , xS). Observe that the

classical least squares estimator is a particular case of M -estimator where ρ(x1, . . . , xS) =∑S

i=1 x
2
i and ψ(x1, . . . , xS) = 2[x1, . . . , xS]

′. Finally, at the elementary frequencies, the

M -transform and M -periodogram of (Yr)
N−1
r=0 relative to ρ are, respectively, defined as

WY,ρ(ωj) =
√
N/8π

(
[β̂ρ(ωj)]1• − i[β̂ρ(ωj)]2•

)
(4.20)

and

IY,ρ(ωj) = WY,ρ(ωj)WY,ρ(ωj)
H, (4.21)

where j = 1, . . . , N ′.

Now, we define theM -Asymptotic Whittle Likelihood Estimator (M -AWLE) of PARMA

parameters as

ϕ̂ρ = argmin
ϕ∈P

ˆ̀
ρ(ϕ),

where

ˆ̀
ρ(ϕ) =

1

N ′

N ′∑
j=1

{
tr
[
f̂−1
Y (ωj;ϕ)IY,ρ(ωj)

]
+ log det f̂Y(ωj;ϕ)

}
.

As we shall see in the next section, ϕ̂ρ keeps the robust features of M -estimators and

has small loss of efficiency compared to ϕ̂ in the uncontaminated time series scenario.

Obtaining asymptotics for ϕ̂ρ seem to be very challenging and will be considered in a

forthcoming paper.

A natural choice for the S-variate discrepancy function is given by ρ(x1, . . . , xS) =∑S

i=1 ρ(xi), where ρ is a convenient function, such as ρ(x) = ρκ(x) = |x|κ or the well-

known Huber function (HUBER, 1964) given by

ρ(x) = ρδ(x) =

{
1
2
z2 , |z| ≤ δ,

δ(|z| − δ
2
) , |z| > δ.

(4.22)

The choice of the tunning parameters such as κ, δ is quite important and provides a

interchange between robustness and efficiency of the M -estimators.
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4.5 Monte Carlo study

In this section we investigate the finite sample behaviour of the proposed estimator.

We consider three cases: (i) complete uncontaminated which will be considered as a

benchmark; (ii) incomplete and uncontaminated time series; and (iii) incomplete and

contaminated data.

We generate M = 1000 replicates of each scenario, where the data will be generated

from the AO process in (4.5) with contamination sequence (Ot) given in (4.6), where

ζ ∈ {0, 0.01} and % = 10. The hidden process (Zt) is a PARMA(1, 1)S model, with

S = 2 and parameters given in Table 4.1, which are set in order to evaluate the influence

of closeness of non causality and/or non invertibility regions on the estimators. Other

coefficient configurations were also considered and presented similar results. They are

not displayed here to save space, but they are available upon request. The missing data

are chosen through independent Bernoulli trials with success (the data be not missing)

probability 0.95. We consider the sample sizes n = NS = 300, 800 (N = 150, 400,

respectively).

We use the S-variate discrepancy function ρ(x1, . . . , xS) =
∑S

i=1 ρδ(xi), where ρδ(x) is

the Huber function defined in (4.22). As usual in literature, the tuning parameter is set

as δ = 1.345, which ensure that the M -estimator is 95% as efficient as the least squares

estimator for univariate multiple linear models with i.i.d. gaussian white noise. It can be

even more efficient in many other cases, as the simulation results will show.

Table 4.1 – Simulated models.

Period 1 Period 2 Roots in (4.4)
Model φ1,1 θ1,1 σ2

1 φ2,1 θ2,1 σ2
2 ϑφ ϑθ

1 −0.2 0.0 1.0 −0.5 0.0 1.0 0.1 0.0
2 −0.2 −0.5 1.0 −0.5 −0.2 1.0 0.1 0.1
3 −1.0 0.0 1.0 −0.5 0.0 1.0 0.5 0.0
4 −1.0 −0.5 1.0 −0.5 −0.2 1.0 0.5 0.1

We evaluate the finite sample performance of the estimators through empirical Root

Mean Square Error (RMSE). The BIAS and the Standard Error were also calculated,

however they are not shown here to save space, but they are available upon request. The

RMSE of the AWLE and M -AWLE are presented in Tables 4.2, 4.3, 4.4 and 4.5. Values

with “∗” refer to the empirical RMSE of the M -AWLE estimates. Boldface numbers

represent comparable small RMSE.
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Table 4.2 – RMSE of ϕ̂ and ϕ̂ρ, with “∗”, for Model 1 with ϑφ = 0.1 and ϑθ = 0.0.

Case n φ1,1 θ1,1 σ2
1 φ2,1 θ2,1 σ2

2

300 0.070; 0.075∗ — 0.128; 0.152∗ 0.081; 0.089∗ — 0.114; 0.166∗

(i) 800 0.047; 0.049∗ — 0.072; 0.097∗ 0.051; 0.058∗ — 0.064; 0.101∗

300 0.074; 0.079∗ — 0.129; 0.155∗ 0.084; 0.090∗ — 0.118; 0.162∗

(ii) 800 0.050; 0.052∗ — 0.075; 0.092∗ 0.055; 0.063∗ — 0.067; 0.098∗

300 0.148; 0.081∗ — 1.309; 0.165∗ 0.272; 0.095∗ — 1.384; 0.209∗

(iii) 800 0.127; 0.056∗ — 1.136; 0.116∗ 0.276; 0.070∗ — 1.253; 0.138∗

Table 4.3 – RMSE of ϕ̂ and ϕ̂ρ, with “∗”, for Model 2 with ϑφ = 0.1 and ϑθ = 0.1.

Case n φ1,1 θ1,1 σ2
1 φ2,1 θ2,1 σ2

2

300 0.328; 0.418∗ 0.334; 0.432∗ 0.112; 0.138∗ 0.400; 0.551∗ 0.415; 0.569∗ 0.122; 0.143∗

(i) 800 0.167; 0.174∗ 0.169; 0.177∗ 0.071; 0.087∗ 0.173; 0.186∗ 0.183; 0.196∗ 0.065; 0.101∗

300 0.372; 0.423∗ 0.380; 0.438∗ 0.117; 0.140∗ 0.464; 0.633∗ 0.478; 0.649∗ 0.124; 0.139∗

(ii) 800 0.176; 0.185∗ 0.178; 0.191∗ 0.071; 0.082∗ 0.181; 0.201∗ 0.189; 0.213∗ 0.069; 0.097∗

300 1.122; 0.461∗ 1.119; 0.479∗ 1.332; 0.163∗ 1.195; 0.609∗ 1.240; 0.630∗ 1.312; 0.158∗

(iii) 800 0.659; 0.198∗ 0.662; 0.201∗ 1.117; 0.103∗ 0.592; 0.206∗ 0.630; 0.221∗ 1.209; 0.130∗
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Table 4.4 – RMSE of ϕ̂ and ϕ̂ρ, with “∗”, for Model 3 with ϑφ = 0.5 and ϑθ = 0.0.

Case n φ1,1 θ1,1 σ2
1 φ2,1 θ2,1 σ2

2

300 0.070; 0.089∗ — 0.126; 0.207∗ 0.054; 0.063∗ — 0.118; 0.164∗

(i) 800 0.044; 0.054∗ — 0.070; 0.161∗ 0.031; 0.044∗ — 0.063; 0.134∗

300 0.077; 0.100∗ — 0.144; 0.200∗ 0.054; 0.063∗ — 0.134; 0.167∗

(ii) 800 0.044; 0.054∗ — 0.094; 0.173∗ 0.031; 0.044∗ — 0.070; 0.130∗

300 0.425; 0.118∗ — 1.632; 0.329∗ 0.170; 0.070∗ — 1.392; 0.237∗

(iii) 800 0.434; 0.077∗ — 1.648; 0.307∗ 0.154; 0.054∗ — 1.243; 0.202∗

Table 4.5 – RMSE of ϕ̂ and ϕ̂ρ, with “∗”, for Model 4 with ϑφ = 0.5 and ϑθ = 0.1.

Case n φ1,1 θ1,1 σ2
1 φ2,1 θ2,1 σ2

2

300 0.212; 0.228∗ 0.228; 0.239∗ 0.104; 0.152∗ 0.126; 0.134∗ 0.141; 0.148∗ 0.114; 0.144∗

(i) 800 0.118; 0.130∗ 0.130; 0.141∗ 0.070; 0.126∗ 0.077; 0.083∗ 0.083; 0.089∗ 0.063; 0.094∗

300 0.235; 0.241∗ 0.253; 0.255∗ 0.109; 0.148∗ 0.130; 0.137∗ 0.148; 0.151∗ 0.118; 0.141∗

(ii) 800 0.126; 0.148∗ 0.141; 0.164∗ 0.070; 0.118∗ 0.083; 0.094∗ 0.089; 0.094∗ 0.063; 0.089∗

300 1.142; 0.251∗ 1.214; 0.263∗ 1.347; 0.190∗ 0.282; 0.144∗ 0.296; 0.154∗ 1.386; 0.173∗

(iii) 800 0.341; 0.158∗ 0.409; 0.176∗ 1.237; 0.170∗ 0.161; 0.094∗ 0.204; 0.100∗ 1.080; 0.122∗
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For complete and uncontaminated time series, Case (i), in general, both estimators

present similar performance for the AR and MA coefficients. Regarding the estimation of

white noise variances, AWLE seems to be more accurate. For both estimators, the RMSE

seems to present an overall decrease with sample size. The presence of MA structure

increase the RMSE of AR coefficients for both estimators, while the white noise variances

seem to be unaffected.

In the scenario where the time series has missing values and no outliers, Case (ii), all

conclusions in the previous paragraph still hold. However, we observe an overall increase

of RMSE which can be due to the fact that the original sample is not used in this case.

The results of Case (iii), where the data set is incomplete and contaminated by additive

outliers, are incontestable and show the remarkable superiority of M -AWLE over the

AWLE, while the latter is totally corrupted by the atypical observations, the former

presents RMSE almost unchanged compared to the uncontaminated data.

We also display in Figure 4.1 the empirical distributions of the estimates provided by

the MLE, the WLE and the RWLE for Model 3. It is clear the AO effect in the MLE and

the WLE, while the RWLE remains almost unchanged.

Therefore, this simulation study shows that AWLE should be used in the case where

the user is sure about the absence of outliers. In contrast, in case of suspicion of the

presence of the aberrant data, the user should rather use the M -AWLE.

4.6 Application

In this section we analyze the daily mean concentrations of sulfur dioxide (SO2). The

raw series was observed from 1st January 2005 to 31st December 2009 at the monitoring

station of Environment and Water Resources State Institute located in Vitória downtown,

Brazil. We prefer this data set since it is completely available and order identification

can be easily performed. For time series with missing data, identification can be handled

by using the autocovariance estimator in Corollary 4.1. Following Sarnaglia, Reisen &

Bondon (2016a), the first 1603 observations were considered in the model learning (es-

timation) stage and the remaining 223 observations were reserved for the out-of-sample

forecast study. Figure 4.2a displays the SO2 time series and the learning and prediction

values. Because data is completely observed, the missing data scenario is artificially gen-

erated by a binomial random sample with size 1603 and missing probability = 0.05, see

Figure 4.2b for the stretch between 2005 and 2006. The observed percentual of missing

in the whole sample is 5.05%.

Since data is daily collected, the PARMA model with period S = 7 seems to be

appropriated to fit the series. As shown in Sarnaglia, Reisen & Bondon (2016a), the

sample Periodic Autocorrelation and Partial Autocorrelation functions indicate a PARMA

model with orders pν = 1, ∀ν, and qν = 1, 1, 1, 1, 0, 0, 1. Note that, this model satisfies
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Figure 4.1 – Box-plot of ϕ̂ (Cla) and ϕ̂ρ (Rob) estimates of Model 3 for n = 300. Cases:
(i) no outlier and complete; (ii) uncontaminated and missing; and (iii) outlier
and incomplete time series.

the identifiability condition (A1) of Sarnaglia, Reisen & Bondon (2016a), while the other

restrictions are imposed as constraints in the optimization algorithm.

Due to the fact that the proposed estimation methods are implemented for zero mean

processes, a prior centralization by the periodic sample means has to be performed. For

the full sample, this is carried out by subtracting the usual periodic sample means. On

the other hand, for the time series with missing values we estimate the average by µ̂ν,X =

µ̂ν,Y /µ̂ν,U which is a natural generalization of the sample mean for time series with missing

data, as used in Dunsmuir & Robinson (1981b). The initial guess for the AR and MA

parts of the estimators was set as zero, that is a periodic white noise. The σ2
ν parts

were set, in the full sample case, as the usual sample variance s2
X = 39.4 and, in the

incomplete sample scenario, as the variance estimator σ̂2
X = s2

Y /µ̂U = 39.6, where µ̂U =∑
t Ut/1603 is the sample mean of the no missing indicator sample. See Dunsmuir &
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Figure 4.2 – Evolution of SO2 daily mean concentrations in Vitória.

Robinson (1981b), Dunsmuir & Robinson (1981a) for more details. The model estimates

obtained are presented in Table 4.6.

Table 4.6 – Model estimates for complete and incomplete SO2 daily mean concentrations.

ν
Param. Scenario Method 1 2 3 4 5 6 7

AWLE −0.72 −1.14 −0.80 −0.89 −0.58 −0.61 −0.70
Complete M -AWLE −0.79 −1.16 −0.82 −0.88 −0.58 −0.58 −0.64

AWLE −0.72 −1.13 −0.79 −0.83 −0.60 −0.57 −0.74
φν,1 Missing M -AWLE −0.80 −1.12 −0.81 −0.82 −0.58 −0.56 −0.64

AWLE −0.49 −0.74 −0.54 −0.50 — — −0.36
Complete M -AWLE −0.57 −0.79 −0.52 −0.46 — — −0.31

AWLE −0.46 −0.71 −0.53 −0.41 — — −0.41
θν,1 Missing M -AWLE −0.56 −0.73 −0.50 −0.36 — — −0.30

AWLE 29.2 28.7 23.6 19.5 26.2 33.1 32.6
Complete M -AWLE 29.8 25.8 22.1 20.8 24.8 32.4 27.9

AWLE 29.1 29.2 23.4 20.2 26.3 32.2 33.5
σ2
ν Missing M -AWLE 30.5 26.4 21.8 21.2 25.8 31.8 28.0

From the results in Table 4.6, we observe that the estimates in the full sample case

using the classical periodogram are almost the same as in Sarnaglia, Reisen & Bondon

(2016a). This is expected since the difference in their likelihood and the one considered

here is negligible for large sample sizes such as in this case. The other results in the

above table reflects the conclusion obtained in the simulation study. For some periods

there is no substantial difference in AR, MA and variance estimates from AWLE and

M -AWLE. However, there are periods on which the AWLE and the M -AWLE provide

notably different estimates, wherein the AWLE of AR and MA parts are smaller and the
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white noise variance parts are greater than the M -AWLE counterparts, e.g. for ν = 1, 2

and 7. This can be an indicative of the presence of outliers. The occurrence of missing

data does not change significantly the estimates.

4.7 Proofs

4.7.1 Proof of Theorem 4.1

From now on, K represents a constant which may vary throughout the text. Let

α = 2 + δ, then Markov inequality gives

P(|Ȳν,N | > ε) ≤ 1

εα
E(|Ȳν,N |α)

(1)

≤ 1

Nαεα

N−1∑
r=0

E(|YrS+ν |α)
(2)
=

1

Nαεα

N−1∑
r=0

E(|UrS+ν |α) E(|XrS+ν |α)

(3)

≤ K

N1+δε2+δ
,

where (1) follows from Jensen inequality, (2) from (A1) and (3) from (A2), (A3) and

(A4). From the integral test,

∞∑
N=1

P(|Ȳν,N | > ε) ≤
∞∑
N=1

K

N1+δε2+δ
<∞.

Therefore, the Borel-Cantelli Lemma ensures that Ȳν,N → 0, N →∞, a.s..

In order to prove a.s. convergence of cν,Y,N(τ), we first note that

cν,Y,N(τ) =
1

N

∑
r

UrS+νXrS+νUrS+ν−τXrS+ν−τ

− 1

N

∑
r

(UrS+νUrS+ν−τ − ςν,U(τ))ςν,X(τ) +
1

N

∑
r

(UrS+νUrS+ν−τ − ςν,U(τ))ςν,X(τ),

which implies

cν,Y,N(τ)− ςν,U(τ)ςν,X(τ) =
1

N

∑
r

UrS+νUrS+ν−τ (XrS+νXrS+ν−τ − ςν,X(τ)) (4.23)

+
1

N

∑
r

(UrS+νUrS+ν−τ − ςν,U(τ))ςν,X(τ) +
r∗

N
ςν,X(τ). (4.24)

From (A2), (4.24) → 0, N → ∞, a.s., so that we just need to consider (4.23). Now,

let α = 1 + δ
2
, X∗r,ν,τ = XrS+νXrS+ν−τ − ςν,X(τ), U∗r,ν,τ = UrS+νUrS+ν−τ and Sν,N =∑

r U
∗
r,ν,τX

∗
r,ν,τ . Therefore,

E
(∣∣ 1
N
Sν,N

∣∣α) = N−α E[E(|
∑

r U
∗
r,ν,τX

∗
r,ν,τ |α|Ut, t ∈ Z)]

≤ N−α E{E[(
∑

r |U∗r,ν,τ ||X∗r,ν,τ |)α|Ut, t ∈ Z]},
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by triangle inequality. Then

|Sν,N | ≤
∑

r[(|U∗r,ν,τ |)1−1/α][|(U∗r,ν,τ )1/αX∗r,ν,τ |]
(1)

≤ {
∑

r[(|U∗r,ν,τ |)1−1/α]α/(α−1)}1−1/α{
∑

r[|(U∗r,ν,τ )1/αX∗r,ν,τ |]α}1/α

=
(∑

r |U∗r,ν,τ |
)(α−1)/α (∑

r |(U∗r,ν,τ ||X∗r,ν,τ |α
)1/α

,

where (1) follows from Hölder’s inequality. Therefore, from (A1),

E(|Sν,N |α|Ut, t ∈ Z) ≤
(∑

r |U∗r,ν,τ |
)(α−1)∑

r |U∗r,ν,τ |E
(
|X∗r,ν,τ |α

)
≤ K

(∑
r |U∗r,ν,τ |

)α
,

since it can be shown that (A3) and (A4) and Minkowski and Cauchy-Schwarz inequal-

ities ensure E(|X∗r,ν,τ |α) ≤ K <∞. Thus,

E(| 1
N
Sν,N |α) = E

(∣∣ 1
N

∑
r U
∗
r,ν,τX

∗
r,ν,τ

∣∣α) ≤ N−αK E[(
∑

r |U∗r,ν,τ |)α]
(1)

≤ N−αK
∑

r E(|U∗r,ν,τ |α).

From (A2) and Cauchy-Schwarz inquality, we have that E(|U∗r,ν,τ |α) ≤ K <∞. Hence,

E(| 1
N
Sν,N |α) = E(| 1

N

∑
r UrS+νUrS+ν−τ (XrS+νXrS+ν−τ − ςν,X(τ))|α) ≤ KN1−α = KN−δ/2.

We now use the method of subsequences to show that 1
N
Sν,N → 0, N →∞, a.s.. More

specifically, we have to find a subsequence 1
Nk
Sν,Nk , k ≥ 1, such that 1

Nk
Sν,Nk → 0 and

Mk → 0, k →∞, a.s., where

Mk = max
Nk≤m<Nk+1

∣∣∣∣ 1

m
Sν,m −

1

Nk

Sν,Nk

∣∣∣∣ .
Take an h ∈ {2, 3, . . .} and put α = 1 + δ

2
and Nk = hk, k ∈ N. Therefore,

P(| 1
Nk
Sν,Nk | > ε) ≤ 1

εα
E(| 1

Nk
Sν,Nk |α) ≤ KN1−α

k = KN
−δ/2
k = Krk,

where 0 < r = h−δ/2 < 1. Hence
∑∞

k=1 P(| 1
Nk
Sν,Nk | > ε) < ∞ and, from Borel-Cantelli

Lemma, we have that 1
Nk
Sν,Nk → 0, k → ∞, a.s.. It remains to show that Mk → 0,

k →∞, a.s.. Let Dk = maxNk≤m<Nk+1
|Sν,m − Sν,Nk | and note that, for Nk ≤ m < Nk+1,

|Sν,m| ≤ |Sν,Nk | + |Dk| and 1/m ≤ 1/Nk. Hence, | 1
m
Sν,m| ≤ | 1

Nk
Sν,Nk | + | 1

Nk
Dk|. From

triangle inequality, we have

Mk ≤
∣∣∣∣ 1

Nk

Sν,Nk

∣∣∣∣+ max
Nk≤m<Nk+1

∣∣∣∣ 1

m
Sν,m

∣∣∣∣ ≤ 2

∣∣∣∣ 1

Nk

Sν,Nk

∣∣∣∣+

∣∣∣∣Dk

Nk

∣∣∣∣ .
The first term in the last inequality tends to 0 a.s., such that we just have to study the con-

vergence of the second term. Note that, for m > Nk, Sν,m− Sν,Nk =
∑m

r=Nk+1 U
∗
r,ν,τX

∗
r,ν,τ ,

thus Hölder’s inequality and (A1), (A3) and (A4) give

E(Dα
k |Ut, t ∈ Z) ≤ K

(∑Nk+1−1
r=Nk+1 |U∗r,ν,τ |

)α
which implies

E(Dα
k ) ≤

∑Nk+1−1
r=Nk+1K ≤ K(Nk+1 −Nk) ≤ Khk,
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from (A2) and Cauchy-Schwarz inquality. Therefore, E
(
Dαk
Nα
k

)
≤ K hk

hαk
= Khk(1−α) =

Krk, where 0 < r = h−δ/2 < 1. From Markov’s inequality and Borel-Cantelli Lemma, we

obtain that Dk/Nk → 0 (and Mk → 0), k →∞, a.s., which ensures that

lim
N→∞

cν,Y,N(τ) = ςν,U(τ)ςν,X(τ),

almost surely.

4.7.2 Proof of Theorem 4.2

Firstly, observe that

E([IY(ω)]l,m) =
1

N

N−1∑
r,s=0

E(UrS+lXrS+lUsS+mXsS+m)e−iω(r−s)

=
1

N

N−1∑
r,s=0

E(UrS+lUsS+m)[ΓX(r − s)]l,me−iω(r−s)

=
∑
|τ |<N

[ΓX(τ)]l,m E([ĈU(τ)]l,m)e−iωτ ,

where ĈU(τ) = 1
N

∑
rUrU

′
r−τ . From (A2), we can show that E(|[ĈU(τ)]l,m|) ≤ K

independent of N . Therefore, E([IY(ω)]l,m) converges, because Assumption (A3) implies

that
∑∞

τ=−∞ |[ΓX(τ)]l,m| < ∞. Let bτ = [ΓX(τ)]l,me
−iωτ and aτ,N = E([ĈU(τ)]l,m), |τ | ≤

N − 1, aτ,N = 0, |τ | > N − 1. Then

lim
N→∞

E([IY(ω)]l,m) = lim
N→∞

∞∑
τ=−∞

bτaτ,N
(1)
=

∞∑
τ=−∞

bτ lim
N→∞

aτ,N ,

where (1) follows from the dominated convergence theorem. In addition, under (A2’),

|Ut| ≤ U , t ∈ Z, and E(U) <∞, so that the dominated convergence theorem can be used

again to show that

lim
N→∞

aτ,N = lim
N→∞

E([ĈU(τ)]l,m) = E
(

lim
N→∞

[ĈU(τ)]l,m

)
= [CU(τ)]l,m.

Hence

lim
N→∞

E([IY(ω)]l,m) =
∞∑

τ=−∞

[ΓX(τ)]l,m[CU(τ)]l,me
−iωτ = fY(ω).
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5 Conclusão

Esta tese investiga a estimação de modelos PARMA para ajustar séries temporais em

diversas situações encontradas na prática. As conclusões aqui expostas se baseiam em

resultados teóricos e emṕıricos obtidos nos caṕıtulos anteriores.

O problema de identificabilidade desses modelos foi tratado diretamente e restrições

simples que asseguram essa propriedade foram encontradas. Em adição, a consistência e

a normalidade assintóticas do estimador de Whittle foram obtidas sob suposições usuais

na literatura. O estudo de simulação mostrou as vantagens da metodologia proposta,

principalmente no que tange ao tempo de convergência, comparado com o estimador de

máxima verossimilhança gaussiano.

O ajuste de modelos PARMA a séries temporais, completas ou com dados faltantes,

acometidas por outliers aditivos também foi abordado. Um estimador robusto da ma-

triz de densidade espectral foi proposto. Essa alternativa ao periodograma foi utilizada

na verossimilhança de Whittle com o objetivo de fornecer estimativas robustas para os

parâmetros do modelo PARMA. O estudo de simulação demonstrou a robustez do esti-

mador proposto quando a série temporal é acometida por outliers aditivos.

Um estimador da função de autocovariância periódica apropriado a séries temporais

incompletas foi proposto e sua consistência forte foi determinada sob suposições similares

ao caso estacionário investigado por Dunsmuir & Robinson (1981a). Dois estimadores para

séries temporais PARMA com dados faltantes foram introduzidos. Ambos se destacam

por não sofrer perda significante de eficiência comparados aos resultados para amostras

completas. Entretanto, sob a influência simultânea de observações at́ıpicas e faltantes, o

estimador baseado no periodograma clássico é completamente afetado, enquanto que a

alternativa robusta tem desempenho quase inalterado.

Este estudo cria diversas linhas de pesquisa promissoras e que podem ser persegui-

das futuramente, tais como: investigação de propriedades assintóticas dos estimadores

propostos; ajuste do modelo PARMA à séries temporais incompletas, com volatilidade e

sob efeito de observações aberrantes; desenvolvimento de estimadores robustos da função

de autocovariância e da matriz de densidade espectral de séries temporais com dados

faltantes, entre outras.
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ANDERSON, P. L.; MEERSCHAERT, M. M. Parameter estimation for periodically
stationary time series. Journal of Time Series Analysis, v. 26, n. 14, p. 489–518, 2005.
Citado na página 12.

ANDERSON, P. L.; MEERSCHAERT, M. M.; VECCHIA, A. V. Innovations algorithm
for periodically stationary time series. Stochastic Processes and their Applications,
Elsevier, v. 83, n. 1, p. 149–169, 1999. Citado na página 12.

BASAWA, I. V.; LUND, R. B. Large sample properties of parameter estimates for
periodic ARMA models. Journal of Time Series Analysis, v. 22, p. 651–663, 2001.
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e 16.

LUND, R. B.; BASAWA, I. V. Recursive prediction and likelihood evaluation for periodic
ARMA models. Journal of Time Series Analysis, v. 21, p. 75–93, 2000. Citado 6 vezes
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e 31.

METAXOGLOU, K.; SMITH, A. Maximum Likelihood Estimation of VARMA Models
Using a State-Space EM Algorithm. Journal of Time Series Analysis, v. 28, n. 5, p.
666–685, 2007. Citado na página 13.

PARZEN, E. Spectral analysis of asymptotically stationary time series. [S.l.], 1961.
Citado na página 57.

PARZEN, E. On spectral analysis with missing observations and amplitude modulation.
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e 60.

SHAO, Q. Robust estimation for periodic autoregressive time series. Journal of Time
Series Analysis, v. 29, n. 2, p. 251–263, 2008. Citado 2 vezes nas páginas 13 e 39.
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