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Resumo

Este trabalho propõe um novo estimador de mı́nima distância (MDE) para

os parâmetros de modelos de memória curta e longa. Este estimador de

mı́nima distância com correção de v́ıcio (BCMDE) considera uma correção

para o MDE usual de modo a levar em consideração o v́ıcio da função de

autocorrelação amostral quando a média é desconhecida. Provamos a con-

cistência fraca do BCMDE para modelo ARFIMA(p, q, d) geral e derivamos

sua distribuição assintótica no caso dos modelos ARFIMA(0, d, 0), AR(1) e

MA(1). Estudos de simulação mostram que para tamanhos amostrais finitos

o BCMDE frequentemente possui erro quadrático médio menor que o estima-

dor Whittle (para memória longa) e estimador de máxima verossimilhança

(para memória curta). Ademais, quando a média do processo não é constante

no tempo, o BCMDE é também menos viciado que o estimador Whittle.

Palavras-chave: funções de autocorrelação e autocovariância, modelos

ARMA e ARFIMA, média desconhecida, estimador Whittle.



Abstract

This work proposes a new minimum distance estimator (MDE) for the pa-

rameters of short and long memory models. This bias corrected minimum

distance estimator (BCMDE) considers a correction in the usual MDE to

account for the bias of the sample autocorrelation function when the mean

is unknown. We prove the weak consistency of the BCMDE for the general

ARFIMA(p, d, q) model and derive its asymptotic distribution in the case

of the ARFIMA(0, d, 0), AR(1) and MA(1) models. Simulation studies show

that for finite sample sizes, the BCMDE often has a lower mean squared error

compared to the commonly used Whittle estimator (for long memory) and

the maximum likelihood estimator (for short memory). Additionaly, when

the mean of the process is non constant in time, the BCMDE is also less

biased than the Whittle estimator.

Keywords: sample autocorrelation and autocovariance functions, ARMA

and ARFIMA models, unknown mean, Whittle estimator.
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Chapter 1

Introduction

A stochastic process is a family of random variables indexed in time and

a time series can be defined as one of its realizations. The most used model

for time series is the so-called ARMA(p, q) model (Box and Jenkins, 1976),

ARMA standing for autoregressive moving average. In a series that follows

an ARMA model, each value linearly depends on the last p values of the

series and on the last q values of a white noise process which are the random

errors of the model. The popularity of the ARMA model stems from its

simplicity and the variety of autocorrelation function forms it can assume. A

peculiarity of the ARMA model is that the autocorrelation function always

has an exponential decay. That is, ρk ∼ ck, where ρk is the autocorrelation

function at lag k and |c| < 1.

The autoregressive integrated moving average (ARIMA) model is a gen-

eralization of the ARMA model for non-stationary time series. A non-

stationary process follows the ARIMA model if an integer number of dif-

ferentiations of the process leads to a process following the ARMA model.

The fact that the ARMA model has autocorrelations functions with fast

decay created the need for models that allow for slow decay. The ARFIMA

model (Hosking, 1981, Granger and Joyeux, 1980) is a generalization of the

ARIMA model for time series with the long memory property. Besides the

usual p autoregressive and q moving average parameters , the ARFIMA model
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includes a so-called memory parameter (usually denoted by d) which regu-

lates the long term behavior of the autocorrelation. In the ARFIMA model,

the autocorrelation function has hyperbolic decay, that is, ρk ∼ kc. As such,

the autocorrelation function is not absolutely summable:
∑∞

i=1 |ρi| =∞. Au-

tocorrelation functions with that behaviour are called slowly-decaying func-

tions.

The SARFIMA (Porter-Hudak, 1990) model is an extension to the ARFIMA

model for seasonal time series. It can be also seen as an extension to the

SARIMA model (seasonal ARIMA) for series with long memory. Series which

follows the SARFIMA model may present short memory seasonality as well

as long memory seasonality. Its non-seasonal components may also present

long memory or short memory. For some properties of invertibility and sta-

tionarity on SARFIMA models see Bisognin and Lopes (2009).

The most common estimator for the memory parameter of both ARFIMA

and SARFIMA models is the Whittle estimator (Whittle, 1951, Fox and

Taqqu, 1986), an approximation of the maximum likelihood estimator. The

Whittle estimator is based on the periodogram, an estimator of the spectral

function consisting in a Fourier transform of the autocorrelation function.

Many other estimators have arised in the literature, for example, the estima-

tor of Haslett-Raftery (Haslett and Raftery, 1989), the GPH (Geweke and

Porter-Hudak, 1983) and the SPR (Reisen, 1994). The Haslett-Raftery esti-

mator is an approximate minimum square error estimator with truncation.

The GPH estimator is based on a linear regression on the lower frequencies

of the periodogram. The SPR is also based on a linear regression, but on

the lower frequencies of a smoothed periodogram. Simulation studies show

that the Whittle estimator possesses a good combination of accuracy and

computational simplicity (Rea et al. 2013, Palma, 2007).

Recently, many estimators have appeared in the literature based on the

sample autocorrelations which have some intuitive appeals. For example,

sample correlations are consistent at each lag, even for long-memory pro-

cesses (Hosking, 1996). Back in 1986, Andel suggested using the first sam-
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ple autocorrelation to estimate d for the ARFIMA(0, d, 0) model. Tieslau

et al. (1996) introduced the minimum distance estimator (MDE), which

allows for the use of more than one lag of sample autocorrelations for the

ARFIMA(p, d, q) model and derived its asymptotic distribution for d ∈ (−0.5,

0.25). The MDE minimizes the distance between the sample autocorrela-

tions and the respective theoretical autocorrelations. Zevallos and Palma

(2013) proposed a filtered version of the MDE estimator in order to obtain

an asymptotic distribution also for d ∈ [0.25, 0.5), henceforth called the MD-

EFF. Another minimum distance estimator is the one of Mayoral (2007)

which minimizes the distance between the sample and theoretical autocor-

relations of the residuals. The theoretical autocorrelations of the residuals,

evidently, are supposed to be zero for any lag different from zero. As far as the

author knows, the MDE, MDEFF and Mayoral estimators were never tested

in the literature to SARFIMA models, nor were the asymptotic properties

in such cases studied.

When the mean of the process is unknown, a very common situation in

practice, sample autocovariances and autocorrelations are biased. There are

many studies in the literature about this subject going as far as Marriott

and Pope (1954). For instance, Hassani et al. (2012) discuss how this bias

may affect the identification of long memory processes. Arnau and Bono

(2001) and Huitema and McKean (1994) suggest alternative autocorrelation

estimators with lower bias. Although these alternative estimators do tend to

reduce the bias, they do not take into account the fact that the bias is not a

function of the sample size alone. The values of autocorrelation in other lags

can affect the bias too.

If the sample autocorrelations are biased, the same could be expected to

happen to the minimum distance estimators, as they rely on these statistics.

Thus, the main objective of this work is to propose a minimum distance esti-

mator that takes these sample autocorrelation and autocovariance bias into

account, instead of trying to correct them. This can be done by minimiz-

ing the distance between the sample autocorrelations and their expectations,
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given a set of parameters and sample size. It is very complicated to calcu-

late the exact expectation of sample autocorrelations as they are not a linear

combination of the sample, unlike the sample autocovariance. But instead

we use a reasonable approximation for it. We call this new estimator the

bias corrected minimum distance estimator (BCMDE).

Several models were contemplated in this work. Besides the ARFIMA

and SARFIMA models, we have also considered the short memory ARMA

model. Finally, models in which the mean is not a constant function of time

are also presented. For instance, models with structural break or models in

which the mean is a linear function of time.

We show that the BCMDE is weakly consistent and we obtain its asymp-

totic distribution in the case of ARFIMA(0, d, 0), AR(1) and MA(1) models.

We have also performed a large simulation study to assess the small sample

properties of the BCMDE and make a comparison with some other estimators

in the literature. The simulation studies showed that the BCMDE is more

precise on many instances. In particular, for ARFIMA(0, d, 0) with constant

mean or not, ARFIMA(1,d,0) and AR(1) models. The BCMDE also reduced

the bias (compared to the Whittle) in the simulations for models AR(1) and

ARFIMA(0, d, 0) with non constant mean.

It should be clear here that the expression ”bias corrected” in the BCMDE

name refers to a correction for the bias of the sample autocorrelation. It is a

statement about how it is constructed, not necessarily about its properties.

This work is organized in the following way. In Chapter 2 we review basic

definitions of stationarity as some properties of the autocorrelation and au-

tocovariance functions and their estimation. In Chapter 3 the ARFIMA and

SARFIMA models are defined and the main methods of estimation of their

parameters are reviewed. In Chapter 4 we introduce the main contribution

of this work, the Bias Corrected Minimum Distance Estimator. Chapter 5

presents simulation results in order to compare the BCMDE with other es-

timators in the literature. In Chapter 6 a simple application to a real time

series is presented. Finally, Chapter 7 includes conclusion and future works.
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Chapter 2

Stationary time series and

estimation of the

autocovariance and

autocorrelation functions

We deal in this work with a class of stochastic process in which time is

discrete. Henceforth, any reference to a stochastic process here should be

understood as a reference to a stochastic process in discrete time. Likewise,

whenever the term ’time series’ is used here, it should also be understood in

the same way.

The autocovariance function of a stochastic process, {Xt}, t ∈ Z is defined

as

γt1,t2 = Cov(Xt1 , Xt2).

Note that γt1,t2 = γt2,t1 . A stochastic process is called weakly stationary if

1. E(Xt) = µ, for any t ∈ Z, where µ ∈ R.

2. Var(Xt) = σ2, for any t ∈ Z, where σ2 <∞.

3. Cov(Xt1 , Xt1+k) = Cov(Xt2 , Xt2+k) for any t1, t2, k ∈ Z.
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From now on, for simplicity, we will call a weakly stationary stochastic pro-

cess as a stationary stochastic process. In a stationary time series, the au-

tocovariance function depends only on the difference between the indexes,

therefore the autocovariance function is represented as a function of a single

argument:

γk = Cov(Xt, Xt+k), t, k ∈ Z.

Naturally, γk = γ−k. The autocorrelation function of a stationary time series

is defined as

ρk =
γk
γ0

, k ∈ Z.

Obvious consequences of this definition are that ρ0 = 1 and |ρk| ≤ 1 for all

k ∈ Z.

The spectral function of a stationary time series with autocovariance func-

tion γ is defined as

f(ω) =
1

2π

∞∑
j=−∞

γje
−iωj, ω ∈ [−π, π].

Another equivalent representation of the spectral function of stationary series

that dispenses the use of complex numbers is

f(ω) =
γ0

2π
+

1

π

∞∑
k=1

γk cos(ωk), ω ∈ [−π, π].

The spectral function of a stationary process is an even function, so it is

common to represent it only on the interval (0, π].

2.1 Estimation of γk in the presence of a con-

stant mean

Let {Xt} be a stationary stochastic process. For a realization of size T of

a stochastic process one possible estimator for the autocovariance, γk, is

γ̃k =

∑T−k
j=1 (Xj − X̄)(Xj+k − X̄)

T
, k = 0, ..., T − 1. (2.1)
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Another possible estimator is

γ̂k =

∑T−k
j=1 (Xj − X̄)(Xj+k − X̄)

T − k
, k = 0, ..., T − 1. (2.2)

The estimator γ̃k is more commonly used in the literature (see, for example,

Brockwell and Davis, 1991), but here we will use both γ̃k and γ̂k. For example,

we will use γ̃k to calculate the periodogram, while γ̂k will be employed to

calculate minimum distance estimators, which are defined in Section 3.4.2

and Chapter 4.

If the true mean of the process is known, it can replace the sample mean

in (2.1) and (2.2), and the following estimators can be built:

γ̃,k =

∑T−k
j=1 (Xj − µ)(Xj+k − µ)

T
, k = 0, ..., T − 1,

and

γ̂,k =

∑T−k
j=1 (Xj − µ)(Xj+k − µ)

T − k
, k = 0, ..., T − 1.

It is easy to verify that E(γ̃,k) = γk(T − k)/T and E(γ̂,k) = γk. The unbiased

estimator under known mean, γ̂,k, has some drawbacks. For example, when

k is big, the variance of this estimator is excessively large. This can result in

an estimation of the spectral function that is too inaccurate. Details on the

estimation of the spectral function can be found on Section 2.3. The sample

autocovariance is also impaired by the high variance at the higher lags, with

the autocovariance function assuming unusual values at these lags (this fact

will be illustrated in Section 4.1 for the ARFIMA process). This happens

because when k is close to T , γ̂,k is based on fewer sums of the quantity

(Xj − µ)(Xj+k − µ). This does not happen for γ̃,k because the denominator

is T , instead of T − k. For minimum distance estimators, though, this is not

an issue. These estimators tend to use the smaller lags of the autocovariance

function, so the large variance of γ̂k at higher lags will not cause any damage

on them.

In practice, though, a known mean is a rare situation. Thus, the esti-

mation of the autocovariance function is usually made through γ̃k and γ̂k.
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The issues regarding the variance at higher lags discussed in the previous

paragraph are also present in the estimators. Furthermore, both γ̃k and γ̂k

are biased estimators for the autocovariance function, a fact which is already

proven in the literature (see Shkolnisky et al, 2008, Priestley, 1981).

In Shkolnisky et al. (2008) the bias of E(γ̂k) is given by an equation

with number of operations of order T 2. The expectation of γ̂k is given in

the following proposition, with number of operations of order T . To obtain

E(γ̃k), one just needs to multiply E(γ̂k) by (T − k)/T .

Proposition 1: The expectation of γ̂k can be written as

E(γ̂k) = γk −
T + k

T − k

[
Tγ0 +

∑T−1
i=1 2(T − i)γi
T 2

]
+ 2

∑k
i=1

∑T
j=1 γ|i−j|

T (T − k)
, (2.3)

which is an equation with number of operations of order of magnitude T .

Proof in Appendix A.

The bias of γ̂k originates from the fact that X̄ was used to estimate µ. We

should note that V ar(X̄) appears in the expectation of γ̂k, in Equation (2.3),

as

V ar(X̄) =
Tγ0 +

∑T−1
i=1 2(T − i)γi
T 2

.

Throughout this work, we will use the following notations

Bγ
T,k = −T + k

T − k

[
Tγ0 +

∑T−1
i=1 2(T − i)γi
T 2

]
+ 2

∑k
i=1

∑T
j=1 γ|i−j|

T (T − k)
, (2.4)

Bρ
T,k = −T + k

T − k

[
Tρ0 +

∑T−1
i=1 2(T − i)ρi
T 2

]
+ 2

∑k
i=1

∑T
j=1 ρ|i−j|

T (T − k)
. (2.5)

Note that Bρ
T,k = Bγ

T,k/γ0. Equation (2.4) provides the bias of the sample

autocovariance in the context of a model with a single constant mean which

is estimated through X̄ =
∑T

i=1Xi/T . Other types of models, like the ones

in Section 2.2, may have a different formula for the bias. Both Bγ
T,k and Bρ

T,k

converge to zero as T →∞. A detailed proof of that can be seen in the proof

of Proposition 6, more specifally on Lemma 2. In a broad way, it is suffices

to note that Bγ
T,k is a function of weighted means of the autocovariance
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function from lag 0 to T − 1 and that the autocovariance function goes to

zero as T →∞ (and therefore so does the weighted means).

For any estimator of the autocovariance function, the autocorrelation at

lag k can be estimated as the ratio between the sample autocovariance at lag

k and the sample autocovariance at lag 0.

2.2 Estimation of γk in the presence of a non-

constant mean

Time series models may be generalized to cases where the mean is not a

constant. In what follows, let µt be the mean of the process at time t. In

the previous section, it was shown that the mean estimation in a model with

constant mean causes bias in the autocovariance estimators. Intuitively, the

same could be expected to happen if the mean is non-constant. In this work,

three specific cases of time series with time varying mean will be considered:

• Simple structural break: µt = α for t ≤ T0, µt = β for t > T0.

• Simple linear regression: µt = α + βzt, t = 1, ..., T where z1, ..., zT are

non-stochastic regressing variables.

• Non-stochastic seasonality: µt = αt−sb(t−1)/sc, where s is the period and

b.c is the floor function.

Under these conditions, the interest is not in estimating the autocovari-

ance function of the series Xt (which is non-stationary), but that of the

stationary series Xt − µt. As typically the values of µt are not known, it is

not possible to calculate the sample autocovariances through Xt − µt. But

it is possible to estimate µt and calculate

γ̂k =

∑T−k
t=1 (Xt − µ̂t)(Xt+k − µ̂t+k)

T − k
, (2.6)

where µ̂t is an unbiased estimator of µt. Recall that we will use γ̂k instead of

γ̃k in order to calculate the sample autocovariances when using the minimum
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distance estimators. Thus in this section the results will be obtained only

for γ̂k.

The following subsections show the calculation of µ̂t for each of the three

scenarios listed above and the consequences on the sample autocovariance

expectations.

2.2.1 Simple Structural Break

If the series Xt presents a simple structural break at T0, the mean, before

and after the structural break, can be estimated as

α̂ =

∑T0
i=1 Xi

Tα
,

β̂ =

∑T
i=T0+1Xi

Tβ
,

where Tα = T0 and Tβ = T − T0 represent, respectively, the time series size

before and after the break. The value of µt is then estimated as

µ̂t =

α̂, t ≤ T0

β̂, t > T0

.

Proposition 2: In the case of simple structural break, and when T0−k >
0, T − T0 − k > 0, the expectation of γ̂k is given by

E(γ̂k) = γk −
2
∑T0−k

t=1 fα̂(t) + 2
∑T−k

t=T0+1 fβ̂(t)

T − k

−
∑T0

t=T0−k+1[fβ̂(t) + fα̂(t+ k)]

T − k
+

(Tα − k)fα̂2 + (Tβ − k)fβ̂2 + kfα̂,β̂
T − k

,

where

fα̂(t) =

∑T0
i=1 γ|t−i|
Tα

,

fβ̂(t) =

∑T
i=T0+1 γ|t+k+i|

Tβ
,
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fα̂2 =
γ0 + 2

∑Tα−1
i=1 (Tα − i)γi
T 2
α

,

fβ̂2 =
γ0 + 2

∑Tβ−1
i=1 (Tβ − i)γi
T 2
β

,

fα̂,β̂ =

∑T0
i=1

∑T
j=T0+1 γ|i−j|

TαTβ
,

Proof in Appendix B.

2.2.2 Simple linear regression

In the case of a simple linear regression, given the independent variable,

z1, ..., zT , the parameters α and β in the equation µt = α + βzt can be

estimated through the ordinary least squares method:

β̂ =

∑T
t=1 z̃tXt∑T
t=1 z̃

2
t

α̂ = X̄ − β̂z̄,

where z̃t = zt − z̄, and z̄ is the mean of the dependent variable. Then the

estimator of µt is given by

µ̂t = α̂ + β̂zt

= X̄ + β̂z̃t.

We can also note that:

µt = α + β(zt − z̄ + z̄)

µt = α + βz̄ + βz̃t.

We will call the unknown constant α + βz̄ as µ1:T .
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Proposition 3: In the case of a simple linear regression, the expectation

of γ̂k is given by

E(γ̂k) = γk −
2
∑T−k

t=1

∑T
i=1 γ|t−i|

(T − k)T
−
∑T−k

t=1

∑T
i=1(z̃t+kz̃iγ|t−i| + z̃tz̃iγ|t+k−i|)

(T − k)
∑T

i=1 z̃
2
i

+
[
∑T−k

t=1 (z̃t + z̃t+k)]
∑T

i=1

∑T
j=1 z̃jγ|i−j|

(T − k)T
∑T

i=1 z̃
2
i

+
[
∑T−k

t=1 z̃tz̃t+k]
∑T

i=1

∑T
j=1 z̃iz̃jγ|i−j|

(T − k)(
∑T

i=1 z̃
2
i )

2
+

∑T
i=1

∑T
j=1 γ|i−j|

T 2
.

(2.7)

Proof in Appendix C.

In the particular case where zt = zt−1 + 1, t = 2, ..., T , as when zt is the

time, the formula of the expectation of γ̂k can be simplified, as it is shown

in Proposition 4.

Proposition 4: In the case of a simple linear regression, if the inde-

pendent variable, zt, satisfies zt = zt−1 + 1, the expectation of γ̂k is given

by

E(γ̂k) = γk −
2
∑T−k

t=1

∑T
i=1 γ|t−i|

(T − k)T
−

24
∑T−k

t=1

∑T
i=1 zt+kziγ|t−i|

(T − k)(T 3 − T )

+
12[(T − k)3 − (T − k)(3k2 + 1)]

∑T
i=1

∑T
j=1 zizjγ|i−j|

(T − k)(T 3 − T )2
+

∑T
i=1

∑T
j=1 γ|i−j|

T 2
.

Proof in Appendix D.

2.2.3 Non-stochastic seasonality

In the case of non-stochastic seasonality the mean at time t is given by

µt = αt−sb(t−1)/sc. That is, µ1 = α1, µ2 = α2, µs = αs, µs+1 = α1, µs+2 = α2,

etc. Each constant term αl is estimated as

α̂l =

∑b(T−l)/sc
i=0 Xl+si

b(T − l)/sc+ 1
, l = 1, ..., s

and the estimate of µt is given by

µ̂t = α̂t−sb(t−1)/sc.
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In order to ease the notation, define the functions

s1(t) = t− sb(t− 1)/sc

and

s2(t) = b(T − s1(t))/sc+ 1.

The function s1 gives, for each time t, a value between 1 and s in a way such

that if µt = αr, then s1(t) = r. The function s2 gives, for each time t, the

number of times with mean αs1(t).

Proposition 5: In the case of non-stochastic seasonality, the expectation

of γ̂k is given by

E(γ̂k) = γk −
T−k∑
t=1

∑s2(t+k)−1
i=0 γ|t−s1(t+k)−si|

(T − k)s2(t+ k)
−

T−k∑
t=1

∑s2(t)−1
i=0 γ|t+k−s1(t)−si|

s2(t)

+
s∑
t=1

(⌊T − k − t
s

⌋
+ 1

)∑s2(t)−1
i=0

∑s2(t+k)−1
j=0 γ|s1(t)+Si−s1(t+k)−sj|

(T − k)s2(t)s2(t+ k)
.

Proof in Appendix E.

2.3 Estimation of the spectral function

The most common estimator of the spectral function is the periodogram,

which is given by

I(ω) =
γ̃0

2π
+

1

π

T−1∑
k=1

γ̃k cos(ωk), ω ∈ R.

The periodogram can be estimated at any frequency but in practice it is

usually calculated at the Fourier frequencies: ωj = 2πj/T , j = 1, 2, ..., bT/2c.
Note that the formula of I(ω) is dependent on γ̃0, ..., γ̃T−1 and the weight of

each lag is dependent on the frequency. This is why a high variance at

higher lags of the sample autocorrelation function can be so detrimental to

the periodogram. In Chapter 4 an empirical example of this fact will be

presented for the ARFIMA process.
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For any frequencies 0 < ω1 < ... < ωm < π, the periodogram at these

points converges in distribution to independent exponential random variables

with mean f(ω1), .., f(ωm) (see Brillinger, 1975).
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Chapter 3

Definition and Estimation of

ARIMA, ARFIMA and

SARFIMA processes

This chapter presents the methodology for ARIMA and ARFIMA pro-

cesses and their seasonal generalization, the SARFIMA processes. The ba-

sic properties of such processes are presented, including the autocorrelation,

autocovariance and spectral function and their estimators. Additionally, es-

timation in short and long memory models is discussed.

3.1 ARIMA Process

The ARIMA(p, d, q) process (Box and Jenkins, 1976) is the most com-

monly used model for time series. It satisfies the equation

φ(B)(Xt − µ) = (1−B)−dθ(B)at, t ∈ Z,

where φ(B) = (1 − φ1B − ... − φpB
p), θ(B) = (1 + θ1B + ... + θqB

q), B

is the backward shift operator such that BkXt = Xt−k, φ1, ..., φp, θ1, ..., θq

are real numbers, µ is the mean of the process, at, is a zero-mean white

noise process with V ar(at) = σ2 < ∞ and d is a non-negative integer. The
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parameters φ1, ..., φp are called the autoregressive parameters, θ1, ..., θq are

called the moving average parameters and d is the differentiation parameter.

When d = 0, it is called an ARMA(p, q) process and satisfies (Xt − µ) =

φ1(Xt−1 − µ) + ... + φp(Xt−p − µ) + θ1at−1 + ... + θqat− q + at. If Xt is

an ARIMA(p, d, q) process and d = 1, then Xt − Xt−1 is an ARMA (p, q)

process. The ARMA process is stationary if all roots of φ(B) lay outside

the unit circle in the complex plane. The process is invertible if d > −0.5

and θ(B) has all its roots outside the unitary circle of the complex plane. A

process in invertible if it can be written at time t as a linear combination

of all past values plus the error at time t and the weights of such linear

combination are absolutely summable.

If p > 0 and q = 0 the process is called an autoregressive process (AR(p))

and if p = 1, the autocorrelation function is given by ρk = φk. For larger

values of p the autocorrelation function has a more complicate formula, but

it is known to satisfy the recursion ρk = φ1ρk−1 + ... + φpρk−p. If p = 0

and q > 0 the process is called a moving average process (MA(q)) and its

autocorrelation function is given by ρk =
∑q

i=0 θiθi+k/
∑q

i=0 θ
2
i , considering

that θ0 = 1 and θi = 0 for i > q. The autocorrelation function for the gen-

eral ARMA(p,q) model can be achieved through the splitting method that

is described in details in Section 3.2. A common characteristic of the auto-

correlation functions of ARMA processes is that all of them are absolutely

summable.

The spectral density of the ARMA process is given by

f(ω) =
σ2

2π

|θ(e−iω)|2

|φ(e−iω)|2
, ω ∈ R.

3.2 ARFIMA Process

A stochastic process {Xt} is an ARFIMA(p, d, q) process (Hosking, 1981,

Granger and Joyeux, 1980) if it satisfies

Xt − µ = (1−B)−dUt, t ∈ Z, (3.1)
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where Ut = θ(B)
φ(B)

at is an ARMA(p, q) where d ∈ R is the memory parameter

and

(1−B)−d = 1 +
∞∑
k=1

d(1 + d)...(k − 1 + d)

k!
Bk. (3.2)

For d 6= 0,−1,−2, ..., Equation (3.2) can be written as

(1−B)−d =
∞∑
k=0

Γ(k + d)

Γ(d)Γ(k + 1)
Bk. (3.3)

An ARFIMA process described as in (3.2) is a generalization of ARIMA

processes for cases in which the parameter d may assume other values be-

sides non-negative integers. It will be stationary if d < 0.5 and if all roots of

φ(B) lay outside the unit circle in the complex plane. The process is called

invertible if d > −0.5 and if θ(B) has all its roots outside the unitary circle

of the complex plane. If d ∈ (0, 0.5) the process has the property of long

memory, characterized by an autocorrelation function that is not absolutely

summable. For any ARFIMA process, the autocorrelation and autocovari-

ance functions decay asymptotically proportionally to c2d−1 (Hosking, 1996),

where c is any positive constant.

Even though the ARFIMA model is often called invertible in the lit-

erature when d ∈ (−0.5, 0), its infinite autoregressive representation does

not have absolutely summable coefficients in this interval. To show this,

let ϕk, k = 1, 2, ..., be the coefficients of its infinite autoregressive form

Xt − µ =
∑∞

k=1 ϕk(Xt−k − µ) + at. From equation (3.2), it is easy to show

that ϕk = ϕk−1(k − 1− d)/k, k ≥ 1. Therefore, for d < 0, the sequence ϕk,

k = 1, 2, ..., decays more slowly than the harmonic sequence, which satisfies,

for any term bk, k ≥ 2, bk = bk−1(k−1)/k. Accordingly, because the terms of

the infinite moving average representation are equal to the terms of the infi-

nite autoregressive representation for the opposite values of d, it follows that

for d ∈ (0, 0.5), the infinite moving average representation is not absolutely

summable.

When p, q = 0 the process is called a fractional white noise. In this

case, for d < 0.5, V ar(Xt) = γ0 = (−2d)!/(−d)!2 (Hosking, 1981). Its
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autocorrelation function, for d < 0.5, is given by

ρk =
k∏
i=1

i− 1 + d

i− d
, k ∈ Z. (3.4)

If p > 0 or q > 0 the autocorrelation function is more difficult to be obtained,

but it can be accurately calculated through the splitting method (Brockwell

and Davis, 1991, Bertelli and Caporin, 2002). Following this method, if

γ
(1)
k is the autocovariance function of the ARMA component and γ

(2)
k the

autocovariance function of the fractional white noise component, then the

autocovariance of the ARFIMA process, γk, can be decomposed as

γk = σ−2

∞∑
i=−∞

γ
(1)
i γ

(2)
i−k, k ∈ Z, (3.5)

and the autocorrelation function can be calculated as

ρk =

∑∞
i=−∞ γ

(1)
i γ

(2)
i−k∑∞

i=−∞ γ
(1)
i γ

(2)
i

, k ∈ Z. (3.6)

The splitting method is valid even if the infinite autoregressive represen-

tations of the ARFIMA model for d < 0 are not absolutely summable. The

origin of the splitting method is Proposition 3.1.2 in Brockwell and Davis

(1991), stablishing sufficient conditions in order for the process Yt = A(B)Zt

be a stationary process, where A(B) is a polynomial in B and Zt is a station-

ary process. Nevertheless, if Yt = A(B)Zt is stationary, the splitting method

is still valid for A(B) non-absolutely summable, as it can be easily seen in

the proof of the proposition, though such fact is not mentioned there, nor in

Bertelli and Caporin (2002).

Let % be a vector of autocorrelations of an ARFIMA process with d ∈
(−0.5, 0.25) and %̂ the vector of sample autocorrelations of %. Hosking (1996)

shows that √
T (%̂− %)

D−→ N(0, C),

where C is a matrix whose element Cij is given by

Cij =
∞∑
l=1

(ρl−i + ρl+i − 2ρiρl)(ρl−j + ρl+j − 2ρjρl). (3.7)
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The spectral density of the ARFIMA process is given by

f(ω) =
σ2

2π

(
2 sin

ω

2

)−2d |θ(e−iω)|2

|φ(e−iω)|2
, ω ∈ R.

Let fU be the spectral density of the differentiated series, {Ut}, an ARMA(p,q)

model with same parameters of the short memory components of the orig-

inal ARFIMA(p, d, q) model. Note that it is possible to write the spectral

function of {Xt} as

f(ω) =
(

2 sin
ω

2

)−2d

fU(ω).

For d > 0, the spectral function satisfies limω→0 f(ω) =∞.

3.3 SARFIMA process

The SARFIMA (Porter-Hudak, 1990) process is a generalization of both

the ARFIMA and the SARIMA processes (seasonal ARIMA) to account for

seasonality and long memory (which might be seasonal or not). The process

{Xt} is a SARFIMA(p, d, q)× (ps, ds, qs)s process if it satisfies the equation

φ(B)Φ(Bs)Xt = (1−B)−d(1−Bs)−dsθ(B)Θ(Bs)at, t ∈ Z,

where Φ(Bs) = (1−Φ1B
s− ...−ΦpsB

sps), Θ(Bs) = (1+Θ1B
s+ ...+ΘqsB

sqs),

φ(B) and θ(B) are given as in Section 3.1, ds ∈ R is the seasonal memory

parameter, d ∈ R is the non-seasonal memory parameter and s is the seasonal

period. There are SARFIMA models with more than one period, but this

work will focus on models with one period. The stationarity and invertibility

conditions are given by Bisognin and Lopes (2009). It will be stationary if

d + ds < 0.5, ds < 0.5 and φ(B)Φ(Bs) has all roots outside the unit circle

and invertible if d < 0.5, ds < 0.5 and θ(B)Θ(Bs) has all roots outside the

unit circle.

Let {Xt} be a SARFIMA(0, 0, 0) × (ps, ds, qs)s process. The autoco-

variance and autocorrelation functions of {Xt} satisfy γX,k = γY,k/s and

ρX,k = ρY,k/s for k = 0,±s,±2s, ... and γX,k = 0 and ρX,k = 0 otherwise,

where γY and ρY are the autocovariance and autocorrelation functions of an
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ARFIMA (ps,ds,qs) process. The general form of the autocovariance func-

tion and hence the autocorrelation is rather complicated but it can also be

calculated through the splitting method, after obtaining the autocovariances

of the seasonal and non-seasonal components. It should be noted, though,

that the convolution of two slowly-decreasing functions may take time to

converge. Take, as an example, a SARFIMA(0, 0.2, 0)× (0, 0.2, 0)12 process.

Let m be the number of sums actually calculated in (3.6). Setting a large

value for m (say m = 5× 104) in order to obtain approximations to the true

autocorrelations of order 1 and 12, leads to ρ1 ≈ 0.3388 and ρ12 ≈ 0.3746, re-

spectively. Assuming these values to be the truth, it is necessary, so that the

error due to the truncation be less than 2%, to use m = 8639 and m = 6786

for the first and twelfth autocorrelations respectively.

The spectral function of a SARFIMA process is given by

f(ω) =
σ2

2π

(
2 sin

ω

2

)−2d |θ(e−iω)|2

|φ(e−iω)|2
(

2 sin
ωs

2

)−2ds |Θ(e−iωs)|2

|Φ(e−iωs)|2
, ω ∈ R.

As in the case of an ARFIMA process, for d > 0, we have limω→0 f(ω) =∞.

Furthermore, for ds > 0, limω→2kπ/s f(ω) =∞ for any k ∈ 0, 1, 2, .... At these

points the spectral function is undefined.

3.4 Parameter estimation

In this section we review some of the common estimators for ARIMA and

ARFIMA models in the literature. The mean, µ, can be estimated separately

by µ̂ = X̄. The methods here described will be applied to Zt = Xt − X̄,

t = 1, ..., T .

3.4.1 Estimation in ARIMA processes

This subsection reviews two of the most common methods of obtaining

estimators for the ARMA model: conditional sum of squares (CSS) and the

maximum likelihood (ML). We are interested in estimating the parameter

vector δ = (φ1, ..., φp, θ1, ..., θq)
′. Note that here the differentiation parameter,
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d, is not included in δ. Usually the value of d is chosen in a subjective way.

For example, through an analysis of the sample autocorrelation function.

The CSS estimator searchs for the parameter vector δ that minimizes

CSS(δ) =
T∑

t=p+1

[Zt − Ẑt(δ, t− 1, ..., 1)]2,

where Ẑt(δ, t− 1, ..., 1) is calculated as

Ẑt(δ, t− 1, ..., 1) =
∞∑
i=1

πi(δ)Zt−i,

where πi(δ), i = 1, 2, ..., are the coefficients of the pure autoregressive form

of the ARMA process given the parameters δ. For t < 0, Zt is set to be zero.

Let Σδ be the autocovariance matrix for Z = (Z1, ..., ZT ) given δ. Under

the assumption of Gaussian errors, the maximum likelihood (ML) estimator

maximizes

l(δ, σ2) = − 1

2T
log(σ−2 det Σδ)−

1

2Tσ2
Z ′(Σδ)

−1Z.

In order to evaluate the likelihood function, the necessity of calculating the

determinant and the inverse of a T × T matrix can make this procedure

rather unpractical. Fortunately, for ARMA processes this is not necessary,

as to maximize L(δ, σ2) is the same as to maximize

L(δ, σ2)∗ = (v1...vT )−1/2 exp

{
−1

2

T∑
t=1

[Zt − Ẑ∗t (δ, t− 1, ..., 1)]2/vt

}
,

where vt, t = 1, ..., T are the mean squared errors of Zt − Ẑ∗t (δ, t − 1, ..., 1)

as predictors of Zt and Zt− Ẑ∗t (δ, t− 1, ..., 1) is the best predictor under δ of

Zt given Z1, ..., Zt−1. See Brockwell and Davis (1991) to learn in details how

v1, ..., vT and Ẑ∗1|δ, ..., Ẑ
∗
T |δ are calculated.

Define the autoregressive processes Ut and Vt that satisfy the equation

φ(B)Ut = at, θ(B)Vt = at. Here again at is a white noise process. Finally

define the vectors U = (Ut, ...,Ut−1+p)
′ and V = (Vt, ...,Vt−1+p)

′. The matrix
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of asymptotic covariances of the ML estimator is given by (Brockwell and

Davis, 1981)

V ar(δ̂) =

[
E(UU ′) E(UV ′)
E(VU ′) E(VV ′)

]−1

.

The CSS estimator has the same asymptotic variance than the maximum

likelihood estimator (Brockwell and Davis, 1981).

3.5 Estimation in ARFIMA and SARFIMA

processes

This section reviews some estimators for the parameters for ARFIMA and

SARFIMA models, which are the maximum likelihood estimator, the Whit-

tle (Whittle, 1951, Fox and Taqqu, 1986) estimator, the minimum distance

estimator (Tieslau et al., 1996) and the minimum distance estimator of the

filtered series (Zevallos and Palma, 2013). The first three can be used for both

ARFIMA and SARFIMA models, but the last one only for ARFIMA models.

The aim is to estimate the parameter vector λ = (φ1, ..., φp, d, θ1, ..., θq)
′ or

λs = (φ1, ..., φp, d, θ1, ..., θq,Φ1 , ...,Φps , ds, Θ1, ...,Θqs)
′, if the process is an

ARFIMA or a SARFIMA model, respectively.

The most common estimator for λ in the literature is the Whittle estima-

tor (Whittle, 1951, Fox and Taqqu, 1986). The Whittle estimator is based

on minimizing an approximation of the log-likelihood function given by

lw(λ, σ2) =

bT/2c∑
j=1

[
log fλ,σ2(ωj) +

I(ωj)

fλ,σ2(ωj)

]
(3.8)

where ωj = 2πj/T , j = 1, 2, ..., bT/2c, are the Fourier frequencies, and fλ,σ2

is the spectral function given λ and σ2. Numeric procedures are necessary

to find the values of λ and σ2 that minimize (3.8).

The asymptotic distribution of both the exact maximum likelihood and

the Whittle (λ̂W ) estimators are the same. Let λi, i = 1, ..., k be the elements
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of the k-sized parameter vector λ, then
√
T (λ̂W − λ)

D−→ N(0, V −1), where V

is a matrix with elements Vij given by

Vij =
1

4π

∫ π

−π

[
∂ log fλ,σ2(ω)

∂λi

] [
∂ log fλ,σ2(ω)

∂λj

]
dω.

For SARFIMA processes with ds > 0, some of the Fourier frequencies may

coincide with points in which the spectral function is undefined. One possible

approach under these conditions is to restrict the sum in (3.8) to values

where the spectral function is well defined. The Whittle estimator combines

relatively little computational complexity and good accuracy (Palma, 2007,

Rea et al, 2013).

The minimum distance estimator (MDE) for ARFIMA processes was pro-

posed by Tieslau et al. (1996). The idea is to minimize the difference between

the theoretical autocorrelations and the sample autocorrelations. Define %̂ as

a vector of sample autocorrelations and %(λ) as the vector of corresponding

theoretical autocorrelations, given the parameter vector λ. The minimum

distance estimator is the one that minimizes

S(λ) = [%̂− %(λ)]′W [%̂− %(λ)], (3.9)

where W , the weighting matrix, is a symmetric, positive-definite matrix. The

asymptotically optimal W matrix is W = C−1, where C is the asymptotic

autocovariance matrix of the sample autocorrelations (Tieslau et al., 1996)

whose elements are given in (3.7). It should be noted, though, that if the

parameters are unknown, so is C. Tieslau et al. (1996) show that for d ∈
(−0.5, 0.25),

√
T (λ̂mde − λ)

D−→ N(0, (D′WD)−1D′WCWD(D′WD)−1)

when T → ∞, where D is the matrix of derivatives of ρ(λ) with respect to

λ. The inverval (−0.5, 0.25) is the inverval in which ρ̂k has an asymptotic

variance that decays as T−1. For d = 0.25, Hosking (1996) shows that the

asymptotic variance of ρ̂k decays as T−1 log T , while for d ∈ (0.25, 0.5), ρ̂k

decays as T 2(1−2d). Tieslau does not calculate the asymptotic variance of λ̂
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in these cases, but it is reasonable to conjecture that it will be similar to the

asymptotic variances of ρ̂k also for d ≥ 0.25.

If W = C1 the variance matrix of the asymptotic distribution simplifies

to D′C−1D. Meanwhile if W is the identity matrix, the variance matrix of

the asymptotic distribution becomes (D′D)−1D′CD(D′D)−1. Tieslau et al.

calculated the asymptotic variance of the MDE estimator using W = C−1

using autocorrelations in the lag 1, ..., k. Higher efficiency was obtained the

higher was the value of k.

Zevallos and Palma (2013) try to overcome the problem of the limiting

distribution for d ∈ [0.25, 0.5) by applying a fractional filtering. Instead of

estimating the autocorrelations for the original series, they use the sample

autocorrelations of the filtered series

Yt = (1−B)1/2(Xt − X̄), t ∈ Z, (3.10)

which will be approximately an ARFIMA(p, d− 0.5, q) process, if {Xt} is an

ARFIMA(p, d, q) process. This estimator was called the MDEFF estimator

by the authors. The asymptotic distribution of λ̂mdeff for an ARFIMA(p, d, q)

process is the same one of an ARFIMA(p, d− 0.5, q) process for the MDE.

The weighting matrix W in the MDE and the MDEFF is formally de-

fined as a fixed constant. Nevertheless, there is intuitive appeal to use a

weighting matrix that depends on the parameter vector: W (λ). Consider-

ing that the asymptotic optimal is W = C−1, one could consider definying

W (λ) = C(λ)−1, where C(λ) is the matrix of asymptotic variances of %. It is

important to note, though, that the proofs in the literature about consistence

and asymptotic distribution of the estimators are for fixed W .

So far, minimum distance estimators have not been used to estimate the

parameters of SARFIMA processes. In the case of the MDE, the extension

is straightforward. The MDE estimator for SARFIMA may be defined in a

way such that it minimizes an equation like Equation (3.9), replacing λ by

λs. But there is not a straightforward intuitive generalization of the MDEFF

for SARFIMA processes. The MDEFF filters the original series in order to

generate a new series without long memory. Applying a filter like the one

26



in (3.10) in a SARFIMA process will not necessarily generate a series without

the long memory property. Evidently, a generalization of the MDEFF for

SARFIMA processes can be thought about, but this is not in the main scope

of this work.
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Chapter 4

Bias Corrected Minimum

Distance Estimator

This chapter focus on the main proposal of this work, the bias corrected

minimum distance estimator (BCMDE). We begin by discussing the be-

haviour of the bias of autocovariance and autocorrelation estimators. Mini-

mum distance estimators depend on estimators of the autocorrelation, there-

fore, their bias are likely to cause a negative impact on the MDE. This is

the main motivation of this work. The MDEFF is not much affected by this

problem because the filtered series does not have the property of long mem-

ory. Filtering a series generates a series which follows an ARFIMA model

with d equal to the original series minus 0.5. If the original series is station-

ary, the filtered series will have a value of d not greater than 0. After the

problems with the sample autocorrelation and autocovariance are analysed,

this chapter closes defining a minimum distance estimator that tries to take

this bias into account.
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4.1 Empiral analysis of the bias in the sample

autocovariance and autocorrelation func-

tions

In Chapter 2 we derived the exact values of the bias of the sample auto-

covariance function as a function of the values of the autocovariance function

at the lags 0, ..., T − 1. Calculation for the bias of the sample autocorrela-

tion is far more complicated. In this section we provide some examples of

how the sample autocovariance function can be affected by the bias in its

estimation through a comparison with the theoretical function. In the case

of the autocorrelation function, we discuss an approximation for calculating

the expectation of its estimator.

Estimation of the autocovariance, autocorrelation and spectral functions

are important not only because they help to identify the correct model, but

also because they are frequently used in the estimation of model parameters.

Therefore, it is essential to understand their behaviour and how an under (or

over) estimation of these functions may affect parameter estimation.

In what follows, we will perform some empirical examples using the

ARFIMA process. Regarding autocovariance and periodogram functions,

we compare the behavior of the expectation of their estimators with respect

to the theoretical autocovariance and spectral function, respectively. Con-

cerning the estimator of the autocorrelation function, as its expectation is

difficult to calculate, we make some simulations to assess the behavior of an

approximation for the expectation of the sample autocorrelation.

Figure 4.1 shows, for an ARFIMA(0, 0.3, 0) process with T = 100, the

difference in the behavior of the expectation of the autocovariance estimator

γ̂k compared to the theoretical autocovariance function. By analysing Figure

4.1, some interesting conclusions can be reached. The first one is that all lags

of the sample autocovariance in the figure are different from its expectation.

The second one is that the expectation of the sample autocovariance appears

to behave more like the autocovariance functions of short memory process,
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Figure 4.1: Autocovariance function (bars) and expectation (full line) of the

estimator γ̂k for ARFIMA(0,0.3,0) with T = 100.

possessing a rapid decay.

As a function of sample autocovariances, which may be strongly biased,

it could be thought that the same problem would affect the periodogram.

But empirical analysis indicates this is not a problem. The bias affects each

frequency in a way such that the expectation of the periodogram tends to

have a shape similar to the spectrum, as it can be seen in Figure 4.2 for an

ARFIMA(0, 0.3, 0) with T = 100.

For any estimator of the autocovariance function, the autocorrelation at

lag k can be estimated as ρ̂k = γ̂k/γ̂0. A derivation of the bias for the sample

autocorrelations is more complicated, and it is likely distribution-dependent,

as γ̂0 enters in the denominator of ρ̂k. One approach is to approximate E(ρ̂k)

by E(γ̂k)/E(γ̂0). This approach makes sense asymptotically, as E(γ̂k)→ γk

and E(γ̂0) → γ0 and therefore E(γ̂k)/E(γ̂0) → ρk. To verify if it works

reasonably well also for small samples, a Monte Carlo with 1000 replications

study was performed for ARFIMA(0,d,0) processes with T = 100. Table

4.1 shows the results of this study for d = 0.2, 0.3, 0.4 and k = 1, 2, 3. In

this simulation we compared the approximation E(γ̂k)/E(γ̂0) with Ê(ρ̂k),

which is the mean in the simulation of the sample autocorrelations (an em-
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Figure 4.2: Standardized spectrum (solid line) and expectation of the peri-

odogram (dashed line) for ARFIMA(0,0.3,0) with T = 100. The lines are

indistinguishable at naked eye.

pirical estimation of E(ρ̂k)). From the results it seems the approximation is

adequate.

With the results on Table 1 in mind, we can further investigate the ap-

proximation E(ρ̂k) ≈ E(γ̂k)/E(γ̂0). The exact value of E(ρ̂k) is given by

E(ρ̂k) = E(γ̂k)E(γ̂−1
0 ) + Cov(γ̂k, γ̂

−1
0 ).

The quantities E(γ̂−1
0 ) and Cov(γ̂k, γ̂

−1
0 ) are both unknown. It is possi-

ble to say, though, that E(γ̂−1
0 ) ≥ E(γ̂0)−1, and therefore E(γ̂k)E(γ̂−1

0 ) ≥
E(γ̂k)E(γ̂0)−1. This is because γ̂0 is a positive random variable and f(x) =

1/x is a convex function on R+ (Jensen’s inequality). But in all simulations

we encounter Ê(ρ̂k) > E(γ̂k)/E(γ̂0). Therefore, this underestimation of the

bias caused by the approximation (and overestimation of the mean) in these

simulations is a resulf of the negative autocovariance between γ̂k and γ̂−1
0 .

We now proceed to compare theoretical autocorrelations with the ap-

proximation for the expectation of the sample autocorrelations seen in the

last paragraph. This can be seen in Figure 4.3 for an ARFIMA(0, 0.3, 0)

process with T = 100. We can see observations similar to those that were

31



Table 4.1: Monte Carlo simulation for ARFIMA(0, d, 0) with d = 0.2, 0.3, 0.4 and

T = 100. E(γ̂k)/E(γ̂0) are the ratios of the means of autocovariance estimators,

and Ê(ρ̂k) is the estimated mean of the autocorrelation estimator.

ρ1 ρ2 ρ3

d = 0.2 E(γ̂k)/E(γ̂0) 0.2108 0.1231 0.0855

Ê(ρ̂k) 0.1982 0.1115 0.0762

d = 0.3 E(γ̂k)/E(γ̂0) 0.3374 0.2205 0.1642

Ê(ρ̂k) 0.3205 0.2062 0.1496

d = 0.4 E(γ̂k)/E(γ̂0) 0.4727 0.3408 0.2698

Ê(ρ̂k) 0.4511 0.3156 0.2452

made for Figure 4.1: strong bias and behaviour similar to short memory pro-

cesses. Naturally there are caveats about the fact that we are dealing with

approximations in Figure 4.3.

We now show empirically in Figure 4.4 how the use of γ̂k or γ̃k may

affect the periodogram. Using γ̂k as an estimator for the autocovariance

instead of γ̃k leads to less accuracy in the estimation of the spectrum. Fig-

ure 4.4 was built using 999 Monte Carlo simulated periodograms from an

ARFIMA(0, 0.3, 0) model.

4.2 The bias corrected MDE

As shown in Sections 2.1, 2.2 and 4.1, the autocovariance estimators are

biased when the mean must be estimated. The sample autocorrelations also

show strong signs of bias, though they can not be calculated analytically.

These biases can cause many negative effects on the MDE, specially in the

case of small samples. The idea of the bias corrected MDE (BCMDE) is to

minimize the distance, not between sample and theoretical autocorrelations,

but between sample autocorrelation and one approximation of its expecta-
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Figure 4.3: Autocorrelation function (bars) and approximation for the ex-

pectation (full line) of the estimator ρ̂k for ARFIMA(0,0.3,0) with T = 100.

Figure 4.4: Empirical confidence intervals for the periodogram of a

ARFIMA(0, 0.3, 0) model. The lines from top to bottom are the upper bound

of the 95% confidence interval using γ̂k, the upper bound of the 95% con-

fidence interval using γ̃k, the theoretical spectrum and the lower bounds of

the confidence intervals (which are indistinguishable in this figure).
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tion, using the approximation given in Section 4.1 of the sample autocorre-

lations given the parameters, that is E(ρ̂k) ≈ E(γ̂k)/E(γ̂0).

Let ρT,k be the ratio between E(γ̂k) and E(γ̂0) whose formulas was given

in Proposition 1. Thus ρT,k can be written as

ρT,k =
ρk +Bρ

T,k

1 +Bρ
T,0

, (4.1)

where Bρ
T,k is given in (2.5). Note that the equation above is written as

function of autocorrelations instead of autocovariances. That is because γ0

can be isolated either in the numerator and the denominator. Furthermore,

ρ0 is always equal to one. Let %̂ be a vector of sample autocorrelations and

%T be the vector corresponding to ρT,k. The BCMDE minimizes

S(λ) = (%̂− %T (λ))′W (%̂− %T (λ)). (4.2)

The weighting matrix W in (4.2) can be any symmetric positive definite

matrix in order that S(λ) becomes a measure of distance (not in the strict

mathematical sense) between %̂ and %T . It can be the matrix of asymptotic

covariances of the sample autocorrelations or the identity matrix (specially

in cases where the asymptotic covariances are unknown). If only one lag of

autocorrelation is being used, the choice of W , a single number in this case,

is irrelevant. What minimizes (%̂ − %T (λ))2/w1, minimizes (%̂ − %T (λ))2/w1,

w1, w2 ∈ R. We will see that in the BCMDE the choice of W impacts in the

variance of the asymptotic distribution, as it was the case for the MDE. What

would be a choice of W that reduces uniformly the asymptotic variance, if it

even exists, could be a subject of future research.

An obvious question regarding the vector of sample autocorrelation, %̂, is

which lags should be chosen to be part of %̂. For an ARFIMA model, the most

intuitive choice for the lags in the vectors %̂ and % is 1, ...,m, m ∈ N. Tieslau

et al. (1996) showed that for an ARFIMA(0, d, 0) process this choice reduces

the asymptotic variance of the MDE estimator compared to the choice of the

lags k, ..., k+m, for any k ≥ 2. For a SARFIMA model it might be a better

idea to include the first lags of order multiple of the seasonal period.
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We will proceed now to prove the weak consistency of the BCMDE esti-

mator. For the proof to be valid, it is necessary first to establish the following

proposition:

Proposition 6: Let {Xt} be an ARFIMA(p, d, q) process, d ∈ (−1, 0.5),

in a compact parametric space with constant mean in which the mean is

estimated as X̄ =
∑T

t=1Xt/T . Assume that the autoregressive parameters

are such that
∑p

i=1 |φi| ≤ K < 1, where K is the maximum value in the

parametric space of the sum of the absolute value of the autoregressive pa-

rameters. Then ρT,k defined in (4.1) converges uniformly to ρk as T → ∞.

Proof in Appendix F.

Proposition 6 combined with the following theorem proves the weak con-

sistency of the BCMDE in the case of ARFIMA processes with constant

mean.

Theorem 1: Let {Xt} be an ARFIMA(p, d, q) process, d ∈ (−1, 0.5),

for which ρT,k converges uniformly to ρk in a compact parametric space Λ.

In addition, let the vector of theoretical autocovariances % = (ρk1 , ..., ρkm),

k1, ..., km ∈ N, be such that % : Λ → Rm is injective. Then, λ̂ converges in

probability to λ0, the real parameter values, as T → ∞. Proof in Appendix

G.

In some cases it is easy to check and guarantee that % is injective. For

example, in the case of ARFIMA(0, d, 0) processes, the first theoretical auto-

correlation is monotonous as a function of d. Therefore, if the first lag of the

autocorrelation is present, % is injective. It is even more trivial to guarantee

the injectivity of AR(1) or MA(1) processes.

The following result establishes the asymptotic distribution of the BCMDE

in the case of an ARFIMA(0, d, 0) process.

Theorem 2: Let Λ be a compact parametric space. Let % = (ρk1 , ..., ρkm),

k1, ..., km ∈ N, be such that % : Λ→ Rm is injective.If {Xt} is an ARFIMA(0, d, 0)

with d < 0.25 and constant mean, then as T →∞,

√
T (λ̂− λ)

D−→ N(0, (D′WD)−1D′WCWD(D′WD)−1),

where D is the matrix of derivatives of % with respect to the parameters.
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Proof in Appendix H.

Theorem 2 is also valid for AR(1) and MA(1) processes. Nevertheless,

it is worth mentioning some particularities. The bias of the sample auto-

covariance of both the AR(1) and the MA(1) processes decay faster than
√
T . The derivative of the autocorrelation function of the AR(1) process is

given by ρ′k(φ) = kφk−1. In a compact parametric space, ρ′k(φ) clearly con-

verges uniformly to zero. The derivative of the autocorrelation function of

the MA(1) process is zero after the first lag. Finally, as in the case of the

ARFIMA(0, d, 0) process, a non-zero derivative is guaranteed adding the first

lag to %.
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Chapter 5

Monte Carlo simulations

In order to compare the small sample properties of the different estimators

for the different models, Monte Carlo simulations were performed. When

generating the Monte Carlo series a burn-in of size 1000 was used. In each

instance, 1000 Monte Carlo replications were used.

5.1 ARMA model

In this section we compare the performance of the conditional sum of

squares estimator (CSSE), maximum likelihood estimator (MLE), MDE and

BCMDE for the ARMA model with constant and unknown mean. The simu-

lations were performed for AR(1) and MA(1) models, with parameter values

fixed at 0.4 and 0.8.

In each case, the sample sizes were T = 25 and T = 100 and the errors

were generated from a standard normal distribution. In all models only the

first sample autocorrelation was used in the BCMDE. For every estimator,

mean, standard deviation and square root of the mean squared error (RMSE)

were calculated.

Table 5.1 shows the results for the autoregressive model. The MDE was

not used in this case as it is in this case almost identical to the CSS. The

BCMDE has a significantly better performance particularly in terms of bias,
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Table 5.1: Mean, standard deviation and RMSE for AR(1)

CSS MLE BCMDE

T = 25, φ = 0.4

Mean 0.31011 0.31063 0.37297

SD 0.19154 0.19163 0.19358

RMSE 0.21149 0.21136 0.19536

T = 100, φ = 0.4

Mean 0.37975 0.37962 0.39495

SD 0.08913 0.08916 0.09012

RMSE 0.09136 0.09142 0.09021

CSS MLE BCMDE

T = 25, φ = 0.8

Mean 0.66003 0.66549 0.74346

SD 0.16515 0.16135 0.18487

RMSE 0.21643 0.21000 0.19324

T = 100, φ = 0.8

Mean 0.76736 0.76854 0.78625

SD 0.06842 0.06697 0.07047

RMSE 0.07578 0.07396 0.07176

Obs.: In bold are the means closest to the real value of the parameter and the

smallest SD and RMSE

but also in terms of the RMSE. This is true for both parameter values and

sample sizes used.

Table 5.2 shows the results for the moving average model. Contrary to

the case of the AR(1) model seen in Table 5.1, the estimators ML and CSS

are significantly better than the BCMDE both in terms of bias and RMSE,

regardless the sample size and parameter value. The MDE does have smaller

RMSE for θ = 0.4 and T = 25, but this result is not replicated for other

parameter values and sample sizes.

The contrast between the performance of the estimators in the case AR(1)
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Table 5.2: Mean, standard deviation and RMSE for MA(1)

CSSE MLE MDE BCMDE

T = 25, θ = 0.4

Mean 0.39558 0.39105 0.27558 0.43643

SD 0.27751 0.25771 0.16770 0.30192

RMSE 0.27741 0.25774 0.20874 0.30396

T = 100, θ = 0.4

Mean 0.38980 0.39096 0.38888 0.40870

SD 0.10107 0.10231 0.15907 0.16647

RMSE 0.10153 0.10266 0.15938 0.16661

CSSE MLE MDE BCMDE

T = 25, θ = 0.8

Mean 0.81376 0.80827 0.62133 0.69885

SD 0.26854 0.19653 0.31137 0.29998

RMSE 0.26876 0.19661 0.35886 0.31643

T = 100, θ = 0.8

Mean 0.79335 0.80902 0.75738 0.78187

SD 0.07597 0.07646 0.23142 0.22398

RMSE 0.07622 0.07695 0.23520 0.22460

Obs.: In bold are the means closest to the real value of the parameter and the

smallest SD and RMSE
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and in the case MA(1) deserves some comments. The bias of the autocovari-

ance estimators are linear combinations of the autocovariance function. In

the MA(1) model, the autocovariance function is zero for lags greater than

one, causing the bias of sample autocovariances to be irrelevant. Further-

more, sample autocovariances and autocorrelations seem simply not to be

good identifiers of the MA(1) model.

5.2 ARFIMA model with constant mean

In this section we compare the performance of Whittle, MDE, MDEFF

and BCMDE estimators for the constant mean ARFIMA model, through

Monte Carlo simulations. Although in Section 4.2 we have only proved the

consistency of BCMDE for the ARFIMA(0,d,0), will also implement some

simulations for ARFIMA(1,d,0) and SARFIMA models, in order to verify

the empirical behavior of the BCMDE in these cases. The simulations were

performed for an ARFIMA(0, 0.3, 0) model with known and unknown mean,

ARFIMA(1, 0.3, 0) models with φ = 0.3, SARFIMA(0, 0.3, 0) × (0, 0.1, 0)12

and SARFIMA(0, 0.1, 0)× (0, 0.3, 0)12 with unknown mean.

In each case, the sample sizes were T = 100 and T = 500 and the errors

were generated from a standard normal distribution. For every estimator,

mean, standard deviation and square root of the mean squared error (RMSE)

were calculated.

The identity matrix was used as the weighting matrix for the MDE, the

BCMDE and the MDEFF. We also ran simulations for the MDEFF with a

non fixed weighting matrix, W (λ), W (λ) being the inverse of the asymptotic

distribution of % given the parameters. The MDEFF estimated this way will

be called MDEFF* in this section. For the ARFIMA(0, d, 0) model, only the

first sample autocorrelations were used for the MDE, MDEFF (fixed W ) and

the BCMDE. For the MDEFF* the first ten sample autocorrelations were

used. These choices on the number of sample autocorrelations were based

on the results of preliminary simulations. For the ARFIMA(1, d, 0) model,
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the first and second sample autocorrelation were used for all the minimum

distance estimators. For the SARFIMA(0, d, 0)× (0, d12, 0)12 model, the first

and the thirteenth sample autocorrelations.

Table 5.3 shows the result of the simulations for the ARFIMA(0, d, 0)

model. When the mean is known, the MDE and BCMDE are identical due to

the sample autocovariance being unbiased. Even though the MDE is slightly

more biased than the other estimators, it compensates for it by being more

precise, with a RMSE 22.5% smaller than the one of the Whittle estimator

and 17.5% smaller than the one of the MDEFF* for T = 100. For T =

500, the RMSE for the MDE is still the smallest one among the assessed

estimators, but the gap towards the other estimators shortens. The MDEFF

presents the largest RMSE.

Comparing the case of an ARFIMA(0, 0.3, 0) model with known and un-

known mean, still in Table 5.3, it is possible to see that the knowledge of

the mean poses little effect on the Whittle and MDEFF estimators. The

MDE, on the other hand, is heavily affected by it. When the mean is un-

known, the MDE is much more biased than the remaining estimators. The

BCDME is not affected that much by bias when the mean is unknown, but

its RMSE is grater than the RMSE of the MDE with known mean, reflecting

the difficulty of estimating the autocovariance function under this condition.

Notwithstanding, the BCMDE presents the smallest RMSE for T = 100 and

T = 500. The MDEFF has very small bias, for known or unknown mean,

but a very large standard deviation, resulting in higher values of RMSE. The

MDEFF* also has very small bias and its RMSE is much smaller than the

one of the MDEFF, though not beating the BCMDE in this aspect.

In the simulation of Table 5.3 with known mean and T = 100, we measure

the times taken by each estimator. The average estimation time in seconds

for each estimator was 0.00392 for the Whittle, 0.00017 for the MDE, 0.00687

for the BCMDE, 0.00123 for the MDEFF and 0.08314 for the MDEFF*.

Table 5.4 shows the results of the simulations for ARFIMA(0, 0.3, 0),

mean known and T = 2500. Even for this large sample size, the BCMDE
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Table 5.3: Mean, standard deviation and RMSE for ARFIMA(0, 0.3, 0)

Whittle MDE MDEFF MDEFF* BCMDE

T=100, known µ

Mean 0.29305 0.27954 0.29370 0.31093 0.27954

SD 0.09363 0.06982 0.13503 0.08760 0.06982

RMSE 0.09389 0.07275 0.13517 0.08827 0.07275

T=500, known µ

Mean 0.29901 0.29094 0.29820 0.30133 0.29094

SD 0.03876 0.03445 0.05918 0.03957 0.03445

RMSE 0.03877 0.03562 0.05921 0.03959 0.03562

Whittle MDE MDEFF MDEFF* BCMDE

T=100, unknown µ

Mean 0.29261 0.23825 0.29264 0.30251 0.29007

SD 0.09319 0.06773 0.13365 0.09064 0.08822

RMSE 0.09348 0.09165 0.13384 0.09067 0.08877

T=500, unknown µ

Mean 0.29942 0.27346 0.29935 0.30124 0.29735

SD 0.03807 0.03042 0.05898 0.03920 0.03689

RMSE 0.03807 0.04037 0.05898 0.03922 0.03698
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Table 5.4: Mean, standard deviation and RMSE for ARFIMA(0, 0.3, 0), T = 2500

Whittle MDE MDEFF BCMDE

Mean 0.29967 0.28683 0.29982 0.29852

SD 0.01648 0.01436 0.02665 0.01631

RMSE 0.01648 0.01948 0.02664 0.01637

is still competitive with the Whittle in RMSE and bias. Remember that

Whittle is an asymptotically efficient estimator and that we were not able to

proof the asymptotic distribution of the BCMDE for d > 0.25.

Table 5.5 shows the results for the ARFIMA(1, 0.3, 0). It is possible to see

that the MDEFF presents less bias, except in the case of the estimation of φ

for T = 100, when the BCMDE presented the smaller bias. The MDE again

showed the largest bias for both parameters. The behavior of the bias of the

Whittle estimator and the MDE are very similar, with a tendency towards

underestimating d and overestimating φ. In the case of the estimation of φ

for T = 100, though, the bias of the BCMDE was significantly smaller. The

BCMDE is, nevertheless, more precise in terms of RMSE than the Whittle

estimator and that is particularly clear for T = 100. Besides having a bigger

bias, the BCMDE is also more precise than the MDEFF.

Table 5.6 shows the results for the SARFIMA(0, d, 0) × (0, ds, 0) model.

Some observations are similar to those made for ARFIMA models. The MDE

is again heavily biased, for both d and d12, regardless their true values. With

respect to the estimation of d, the BCMDE is again slightly more biased than

the Whittle estimator. In terms of RMSE, though, the BCMDE outperforms

the Whittle estimator for d = 0.3, as it happened in the ARFIMA(0,0.3,0)

model. The Whittle behaves better compared to the BCMDE when d is

smaller. For d = 0.1, the Whittle estimator is better in terms of bias and

RMSE. Some similar observations can be made regarding the estimation

of d12. In particular, the Whittle estimator tends to behave comparatively

43



Table 5.5: Mean, standard deviation and RMSE for ARFIMA(1, d, 0).

Whittle MDE MDEFF BCMDE

T = 100 d = 0.3

Mean 0.21462 0.13020 0.29737 0.22770

SD 0.25472 0.15545 0.21848 0.19680

RMSE 0.26853 0.23016 0.21839 0.20957

φ = 0.3

Mean 0.35427 0.39579 0.26823 0.32358

SD 0.24946 0.17899 0.20822 0.20243

RMSE 0.25517 0.20293 0.21052 0.20370

Whittle MDE MDEFF BCMDE

T = 500 d = 0.3

Mean 0.27497 0.22617 0.29632 0.27223

SD 0.12231 0.09416 0.15569 0.10948

RMSE 0.12478 0.11962 0.15566 0.11289

φ = 0.3

Mean 0.32084 0.35553 0.29209 0.31948

SD 0.13197 0.12124 0.15037 0.13113

RMSE 0.13354 0.13330 0.15050 0.13250
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better for smaller values of d12.

5.3 ARFIMA model with non-constant mean

In this section we compare the performance of the Whittle estimator,

MDE, MDEFF and BCMDE for ARFIMA models with non-constant mean

through Monte Carlo simulations. Once again, we aim here to verify the

empirical behavior of the BCMDE, as the proofs of consistency were only

made for models with constant mean. The models with non-constant mean

are those described in Section 2.2: structural break, simple linear regres-

sion and non-stochastic seasonality. The simulations were performed for the

ARFIMA(0, d, 0) model with structural break, linear regression and non-

stochastic seasonality.

For each model, except in the case of structural break, where T = 100, the

sample sizes were T = 100 and T = 500 and the errors were generated from a

standard normal distribution. Only the first autocorrelation was used for the

MDE, BCMDE and MDEFF. For every estimator, mean, standard deviation

and square root of the mean squared error (RMSE) were calculated.

In the case of the structural break model, the break was set up at T0 = 40.

In the case of the linear regression model, time was the independent variable,

and the slope coefficient was equal to one. In the case of the non-stochastic

seasonality model, the period s = 12 was used.

Tables 5.7 shows the results for structural break. In the presence of

structural break, the Whittle estimator becomes significantly more biased

when compared to a model with constant mean. In this case, not only the

BCMDE is less biased but also it has much smaller RMSE for the two values

of d.

Table 5.8 show the results for the model in which the mean is a linear

function of time for d = 0.2, 0.4 and T = 100, 500. Once again, the Whittle

estimator is severely affected by the estimation of the mean, specially when

T = 100. The bias is smaller when T = 500, but still bigger than the bias
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Table 5.6: Mean, standard deviation and RMSE for SARFIMA(0, d, 0) ×
(0, d12, 0)12,

Whittle MDE BCMDE W MDE BCMDE

T=100 d=0.3 d12 = 0.1

Mean 0.29382 0.23359 0.28093 0.09199 -0.00385 0.07297

SD 0.09612 0.07991 0.08665 0.11915 0.10967 0.11283

RMSE 0.09627 0.10388 0.08868 0.11935 0.15100 0.11597

T=500

Mean 0.30167 0.26860 0.29687 0.09816 0.05044 0.09167

SD 0.03975 0.03327 0.03786 0.04043 0.04777 0.05131

RMSE 0.03976 0.04573 0.03797 0.04045 0.06882 0.05196

Whittle MDE BCMDE W MDE BCMDE

T=100 d=0.1 d12 = 0.3

Mean 0.08666 0.03901 0.08288 0.34628 0.23069 0.27195

SD 0.09970 0.09645 0.11241 0.12521 0.06489 0.06494

RMSE 0.10054 0.11407 0.11365 0.13343 0.09492 0.07071

T=500

Mean 0.09739 0.06660 0.09538 0.31525 0.26903 0.28433

SD 0.03877 0.04761 0.05653 0.04324 0.03086 0.03046

RMSE 0.03883 0.05814 0.05670 0.04583 0.04370 0.03424
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Table 5.7: Structural break, T = 100, d = 0.2, 0.4.

d = 0.2 Mean RSME SD

Whittle 0.15847 0.10801 0.09976

MDE 0.13767 0.10385 0.08311

MDEFF 0.19720 0.12994 0.12998

BCMDE 0.18743 0.10305 0.10233

d = 0.4 Mean RSME SD

Whittle 0.35532 0.10276 0.09259

MDE 0.28376 0.13198 0.06253

MDEFF 0.38210 0.12383 0.12259

BCMDE 0.38407 0.08915 0.08775

of the BCMDE or the MDEFF. In all cases the BCMDE has the smallest

RMSE. Although the MDEFF is the less biased, the bias of the BCMDE is

only slightly superior to the former.

Table 5.9 shows the results for the models with non-stochastic seasonality

for d = 0.2, 0.4 and T = 100, 500. Contrary to the other models with non-

constant mean, in this case the Whittle estimator is not so biased. Even for

T = 100, the Whittle estimator tends to have a smaller RMSE compared to

the BCMDE. For T = 500, Both the Whittle and the BCMDE have very

similar performances, both in terms of bias and RMSE.
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Table 5.8: Linear regression, T = 100, 500, d = 0.2, 0.4.

T = 100, d = 0.2 Mean RSME SD

Whittle 0.16878 0.10210 0.09725

MDE 0.14336 0.09879 0.08098

MDEFF 0.19954 0.12992 0.12998

BCMDE 0.19358 0.09996 0.09981

T = 500, d = 0.2 Mean RSME SD

Whittle 0.19022 0.03993 0.03874

MDE 0.18041 0.04024 0.03516

MDEFF 0.19751 0.06686 0.06685

BCMDE 0.19750 0.03954 0.03948

T = 100, d = 0.4 Mean RSME SD

Whittle 0.34751 0.10622 0.09239

MDE 0.27668 0.13828 0.06259

MDEFF 0.37896 0.12271 0.12096

BCMDE 0.37291 0.09187 0.08783

T = 500, d = 0.4 Mean RSME SD

Whittle 0.38220 0.041694 0.03772

MDE 0.33488 0.07025 0.02635

MDEFF 0.39369 0.05377 0.05342

BCMDE 0.39357 0.03893 0.03840
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Table 5.9: Non-stochastic seasonality, T = 100, 500, d = 0.2, 0.4.

T = 100, d = 0.2 Mean RSME SD

Whittle 0.21115 0.09880 0.09822

MDE 0.16674 0.09038 0.08408

MDEFF 0.19856 0.13337 0.13343

BCMDE 0.18673 0.09902 0.09817

T = 500, d = 0.2 Mean RSME SD

Whittle 0.20381 0.03686 0.03668

MDE 0.19073 0.03498 0.03375

MDEFF 0.20103 0.06712 0.06715

BCMDE 0.19935 0.03679 0.03681

T = 100, d = 0.4 Mean RSME SD

Whittle 0.40428 0.08250 0.08243

MDE 0.31507 0.10431 0.06059

MDEFF 0.39045 0.12783 0.12754

BCMDE 0.37980 0.08658 0.08423

T = 500, d = 0.4 Mean RSME SD

Whittle 0.40435 0.04158 0.04137

MDE 0.34985 0.05717 0.02746

MDEFF 0.39910 0.05274 0.05276

BCMDE 0.39508 0.04000 0.03971
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Chapter 6

Application to a real time series

Figure 6.1 shows the annual flow discharge of the Nile river at Aswan

between 1871 and 1970, measured in 108 m3. This specific series is part of a

larger set of Nile databases that were extensively analysed in the statistical

literature. The series in this work can be accessed in newer versions of the R

software by simply typing ”Nile”. It was originally used by Cobb (1978). In

Cobb’s work it is supposed, for the sake of giving a practical example to his

theory, that there is a structural break around 1898 and that before and after

that break, the annual flow follows independent normal distributions. Cobb

ponders that the break could be the result of the construction of a dam, but

he himself refutes that possibility because the break can also be observed in

rainfall series in the tropical regions near the upper Nile.

The most common Nile series is the one of Nile overflow between 622

and 1470 that was famously studied by Hurst (1951, 1957). It is a seminal

example of the presence of long memory in nature. In general, long memory

models have been extensively used in the literature to model hydrological

phenomena.

In this particular short times series that we will study in this work, an

indisputable evidence of long memory which eliminates any reasonable doubt

on contrary can not be presented. This is often the case for short time series,

in part for the reasons we have already discussed here: problems of bias in
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Figure 6.1: Annual flow of the River Nile at Ashwan between 1871 and 1970.

the estimation of the sample autocorrelation. But knowledge that this kind

of phenomena do usually carry long memory together with lack of evidence

on the contrary for this particular time series (as we will see in the next

paragraphs) makes the choice of a long memory model adequate.

The sample autocorrelation function of this series with respect to the

sample mean can be seen in Figure 6.2. Its periodogram is given in Figure

6.3. An analysis of Figures 6.2 and 6.3 suggests the existency of long memory

in the series: The sample autocorrelation function has a slow decay and the

periodogram peaks are in the lower frequencies, apparently tending to infinity

as the frequency goes to zero.

We fitted an ARFIMA(0, d, 0) model to the series from 1871 to 1960. Us-

ing the Whittle estimator we found d = 0.3758 while using BCMDE we found

d = 0.4216. Figure 6.4 shows the sample autocorrelation of the residuals of

the fitted model using the BCMDE and Figure 6.5 shows the periodogram of

these residuals. Visual analysis of Figures 6.4 and 6.5 suggest that the chosen

model was well fitted to the series. Similar conclusions can be reached using

the Whittle estimator.

Figure 6.6 shows the predictions 10 steps ahead using the Whittle esti-

mator and the BCMDE. As a result of estimating a higher value of d, the
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Figure 6.2: Sample autocorrelation function of the Nile flow series.

Figure 6.3: Periodogram of the Nile flow series.
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Figure 6.4: Autocorrelation function of the residuals of the fitted model.

Figure 6.5: Periodogram of the residuals of the fitted model.
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Figure 6.6: Prediction of the Nile flow series 10 steps ahead, using the Whittle

estimator (circle) and the BCMDE (triangle).

predictions of the BCMDE are slightly further away from the sample mean

than the predictions of the Whittle estimator. The squared prediction error

of the BCMDE was 21025.3 while for the Whittle estimator it was 21079.7.
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Chapter 7

Conclusion and future works

This work proposed a new estimator for short and long memory mod-

els, the BCMDE. This estimator belongs to the class of minimum distance

estimators which are based on the sample autocorrelation function.

Previous minimum distance estimators in the literature find the param-

eter values that minimize the distance between the sample autocorrelations

and the theoretical autocorrelations. A problem with this approach is that

the expectation of the sample autocorrelations may differ substantially from

the theoretical autocorrelations. We have shown the exact formula for the

bias of the sample autocovariance in different scenarios: constant mean,

structural break, regression and non-stochastic seasonality.

It has become clear that the bias caused by the necessity to estimate the

mean can not be neglected. There is enough empirical and intuitive reasons

to believe that bias also affect the sample autocorrelation, but the exact ex-

pectation of the sample autocorrelation is very difficult to be derived. The

central idea of the BCMDE is to find the parameter values that minimize

the distance between the sample autocorrelation and an approximation of its

expectation. The approximation we have chosen is the ratio of the expecta-

tion of the sample autocovariance at lags k and 0. Simulation studies show

that this is a good approximation, both in the sense of the BCMDE being a

good estimator (according to criteria like the RMSE) as well as in the sense
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of comparing this approximation with the average of sample autocorrelations

in a Monte Carlo study. This approximation can also be viewed as some kind

of penalizing function.

We have proved the weak consistency of the BCMDE in the case of a

constant mean and we have also derived its asymptotic distribution for the

ARFIMA(0, d, 0) (d < 0.25), AR(1) and MA(1) models. In these circum-

stances, both the BCMDE and the MDE have the same asymptotic distri-

bution.

Similarly to the case of the MDE, the BCMDE is not more efficient than

the Whittle estimator for the ARFIMA model (Tieslau et al. 1996). Nev-

ertheless, simulation studies have been performed to evaluate the behavior

of the BCMDE in small samples and the results were encouraging, as the

BCMDE has beaten its competitors in autoregressive models and long mem-

ory models in terms of the RMSE. This performance was observed through

simulations for AR(1), ARFIMA(1, d, 0) and ARFIMA(0, d, 0) models with

constant mean plus ARFIMA(0, d, 0) with structural break or with the mean

as a linear function of time. It is interesting to note that in many of these

cases, the BCMDE perform better even for samples of size 500. The BCMDE

also reduced the bias (compared to the Whittle)in the simulations for AR(1)

and ARFIMA(0, d, 0) models with structural break or mean as a linear func-

tion of the time.

Future works encompass the search for a better approximation for the

expectation of the sample autocorrelation and the proof of some asymptotic

properties that were not covered in this work, such as the asymptotic distri-

bution of the estimators when more than one parameter must be estimated.

Some of these aymptotic properties due to technical difficulties, some of them

due to time constraints. The rationale behind the BCMDE could also be ex-

panded to realms outside the area of time series, for instance, comparing a

sample statistic with its expectation, given the parameters. It would also

be interesting to perform simulations to a wider variety of parameters and

sample sizes.
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Appendix A

Proof of Proposition 1

Taking expectation in (2.2) we have,

E(γ̂k) =

∑T−k
i=1 E((Xi − X̄)(Xi+k − X̄))

T − k

=

∑T−k
i=1 E((Xi − µ)(Xi+k − µ))

T − k
−
∑T−k

i=1 E((Xi − µ)(X̄ − µ))

T − k

−
∑T−k

i=1 E((Xi+k − µ)(X̄ − µ))

T − k
+ E((X̄ − µ)2).

(A.1)

The first term in the right hand side of(A.1) is the autocorrelation of lag k,

γk. For the second and third terms we have that

E((Xi − µ)(X̄ − µ)) =

∑T
j=1E((Xi − µ)(Xj − µ))

T
=

∑T
j=1 γ|i−j|

T
.

For the fourth term,

E((X̄ − µ)2) = E

(∑T
j=1(Xj − µ)

T

)2


=

∑T
i=1

∑T
j=1 E((Xi − µ)(Xj − µ))

T 2

=

∑T
i=1

∑T
j=1 γ|i−j|

T 2
=
Tγ0 + 2

∑T−1
i=1 (T − i)γi
T 2

.
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Thus, using these equalities on Equation (A.1), we find that

E(γ̂k) = γk −
∑T−k

i=1

∑T
j=1 γ|i−j|

T (T − k)
−
∑T−k

i=1

∑T
j=1 γ|i+k−j|

T (T − k)

+
Tγ0 + 2

∑T−1
i=1 (T − i)γi
T 2

,

(A.2)

which is an equation with number of operations of order of magnitude T 2.

Now note that
∑T

i=1 γ|i−j| =
∑T

i=1 γ|i−(T−j+1)|. As a result
∑T−k

i=1

∑T
j=1 γ|i−j| =∑T−k

i=1

∑T
j=1 γ|i+k−j|. Therefore, Equation (A.2) becomes

E(γ̂k) = γk +
Tγ0 + 2

∑T−1
i=1 (T − i)γi
T 2

− 2

∑T−k
i=1

∑T
j=1 γ|i−j|

T (T − k)
.

Besides
∑T−k

i=1

∑T
j=1 γ|i−j| =

∑T
i=1

∑T
j=1 γ|i−j| −

∑k
i=1

∑T
j=1 γ|i−j|. Therefore,

E(γ̂k) = γk +

(
1

T 2
− 2

T (T − k)

)(
Tγ0 + 2

T−1∑
i=1

(T − i)γi

)
+ 2

[∑k
i=1

∑T
j=1 γ|i−j|

T (T − k)

]

= γk −
(T + k)

(T − k)

[
Tγ0 +

∑T−1
i=1 2(T − i)γi
T 2

]
+ 2

[∑k
i=1

∑T
j=1 γ|i−j|

T (T − k)

]
,

which is an equation with number of operations of order of magnitude T . �
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Appendix B

Proof of Proposition 2

Applying the expectation to the formula of γ̂k in (2.6), we get

E(γ̂k) =

∑T−k
t=1

(
E(XtXt+k)− E(Xtµ̂t+k)− E(µ̂tXt+k) + E(µ̂tµ̂t+k)

)
T − k

,

(B.1)

with µ̂t =
∑T0

i=1Xi/Tα for t ≤ T0 or µ̂t =
∑T

i=T0+1 Xi/Tβ for t > T0. The

summation in (B.1) can be partitioned in three parts: t = 1, ..., T0 − k,

t = T0 − k + 1, ..., T0 and t = T0 + 1, ..., T − k. These parts have size Tα − k,

k and Tβ − k respectively.

If t = 1, ..., T0 − k, then:

E(XtXt+k) = γk + α2

E(Xtµ̂t+k) = E(Xtα̂) = E
(
Xt

(∑T0
i=1Xi

Tα

))
=

∑T0
i=1 γ|t−i|
Tα

+ α2

E(µ̂tXt+k) = E(α̂Xt+k) =

∑T0
i=1 γ|t+k−i|
Tα

+ α2

E(µ̂tµ̂t+k) = E(α̂2) =

∑T0
i=1

∑T0
j=1 γ|i−j|

T 2
α

+α2 =
γ0 + 2

∑Tα−1
i=1 (Tα − 1)γi
T 2
α

+α2.

Analogous results can be found when t = T0 + 1, ..., T − k:

E(XtXt+k) = γk + β2
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E(Xtµ̂t+k) = E(Xtβ̂) =

∑T
i=T0+1 γ|t−i|

Tβ
+ β2

E(µ̂tXt+k) = E(β̂Xt+k) =

∑T
i=T0+1 γ|t+k−i|

Tβ
+ β2

E(µ̂tµ̂t+k) = E(β̂2) =
γ0 + 2

∑Tβ−1
i=1 (Tβ − 1)γi
T 2
β

+ β2

Finally, when t = T0 − k + 1, ..., T0:

E(XtXt+k) = γk + αβ

E(Xtµ̂t+k) = E(Xtβ̂) =

∑T
i=T0+1 γ|t−i|

Tβ
+ αβ

E(µ̂tXt+k) = E(α̂Xt+k) =

∑T0
i=1 γ|t+k−i|
Tα

+ αβ

E(µ̂tµ̂t+k) = E(α̂β̂) =

∑T0
i=1

∑T
j=T0+1 γ|i−j|

TαTβ
+ αβ

Now note that in each term of the summation in (B.1), the expressions

that depend on parameters, α2, β2 and αβ cancel themselves as they appear

twice with positive sign and twice with negative sign.

The second thing we should note is that E(X1µ̂1+k) = E(µ̂T0−kXT0),

E(X2µ̂2+k) = E(µ̂T0−k−1XT0−1), and so on.

More generally, E(Xtµ̂t+k) = E(µ̂T0−k−(t−1)XT0−(t−1)), t = 1, ..., T0 − k.

In a similar way, we can see that E(XT0+1µ̂T0+1+k) = E(µ̂T−kXT ), E(XT0+2µ̂T0+2+k) =

E(µ̂T−k−1XT−1), and so on.

More generally, E(Xtµ̂t+k) = E(µ̂T−k−(t−(T0+1))XT−(t−(T0+1))), t = T0 +

1, ..., T − k.

Because of these remarks,
∑T0−k

t=1 E(Xtµ̂t+k) =
∑T0−k

t=1 E(Xt+kµ̂t) and∑T−k
t=T0+1E(Xtµ̂t+k) =

∑T−k
t=T0+1E(Xt+kµ̂t).
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Therefore:

E(γ̂k) = γk −
2
∑T0−k

t=1 fα̂(t) + 2
∑T−k

t=T0+1 fβ̂(t)

T − k

−
∑T0

t=T0−k+1[fβ̂(t) + fα̂(t+ k)]

T − k

+
(Tα − k)fα̂2 + (Tβ − k)fβ̂2 + kfα̂,β̂

T − k
,

where fα̂(t), fβ̂(t), f
α̂2(t), fβ̂2(t) and fα̂,β̂ are as defined in Proposition 2. �
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Appendix C

Proof of Proposition 3

In this case, we have again

E(γ̂k) =

∑T−k
t=1 (E(XtXt+k)− E(Xtµ̂t+k)− E(µ̂tXt+k) + E(µ̂tµ̂t+k))

T − k
,

with µ̂t = X̄ + β̂z̃t. The value of E(XtXt+k) is given by:

E(XtXt+k) = γk + µtµt+k

= γk + (µ1:T + βz̃t)(µ1:T + βz̃t+k)

= γk + µ2
1:T + µ1:Tβ(z̃t + z̃t+k) + β2z̃tz̃t+k.

The value of E(Xtµ̂t+k) is given by:

E(Xtµ̂t+k) = E(Xt(X̄ + β̂z̃t+k))

= E(XtX̄) + E(Xtβ̂)z̃t+k.

The first term can be calculated as:

E(XtX̄) = E

(
Xt

(∑T
i=1Xi

T

))
= E

(∑T
i=1 XtXi

T

)
=

∑T
i=1E(XtXi)

T

=

∑T
i=1(γ|t−i| + µtµi)

T
=

∑T
i=1 γ|t−i|
T

+

∑T
i=1(µ1:T + βz̃t)(µ1:T + βz̃i)

T

=

∑T
i=1 γ|t−i|
T

+

∑T
i=1(µ2

1:T + µ1:Tβz̃i + µ1:Tβz̃t + β2z̃tz̃i)

T

=

∑T
i=1 γ|t−i|
T

+
Tµ2

1:T + Tµ1:Tβz̃T
T

=

∑T
i=1 γ|t−i|
T

+ µ1:T (µ1:T + βz̃t).
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And the second term as

E(Xtβ̂) = E

(
Xt

(∑T
i=1 z̃iXi∑T
i=1 z̃

2
i

))
=

∑T
i=1 z̃iE(XtXi)∑T

i=1 z̃
2
i

=

∑T
i=1 z̃i(γ|t−i| + µtµi)∑T

i=1 z̃
2
i

=

∑T
i=1 z̃iγ|t−i|∑T
i=1 z̃

2
i

+

∑T
i=1 z̃i(µ1:T + βz̃i)(µ1:T + βz̃i)∑T

i=1 z̃
2
i

=

∑T
i=1 z̃iγ|t−i|∑T
i=1 z̃

2
i

+

∑T
i=1 z̃i(µ

2
1:T + µ1:Tβz̃i + µ1:Tβz̃t + β2z̃tz̃i)∑T

i=1 z̃
2
i

=

∑T
i=1 z̃iγ|t−i|∑T
i=1 z̃

2
i

+
µ1:Tβ

∑T
i=1 z̃

2
i + β2z̃t

∑T
i=1 z̃

2
i∑T

i=1 z̃
2
i

=

∑T
i=1 z̃iγ|t−i|∑T
i=1 z̃

2
i

+ µ1:Tβ + β2z̃t.

Analogous results can be found to E(µ̂tXt+k).

The value of E(µ̂tµ̂t+k) is given by:

E(µ̂tµ̂t+k) = E((X̄ + β̂z̃t)(X̄ + β̂z̃t+k))

= E(X̄2) + E(X̄β̂)(z̃t + z̃t+k) + E(β̂2)z̃tz̃t+k.

Where:

E(X̄2) =

∑T
i=1

∑T
j=1E(XiXj)

T 2
=

∑T
i=1

∑T
j=1(γ|i−j| + µiµj)

T 2

=

∑T
i=1

∑T
j=1 γ|i−j|

T 2
+

∑T
i=1

∑T
j=1 µiµj

T 2

=

∑T
i=1

∑T
j=1 γ|i−j|

T 2
+

∑T
i=1

∑T
j=1(µ1:T + βz̃i)(µ1:T + βz̃j)

T 2

=

∑T
i=1

∑T
j=1 γ|i−j|

T 2
+

∑T
i=1

∑T
j=1(µ2

1:T + βz̃i + βz̃j + β2z̃iz̃j)

T 2

=

∑T
i=1

∑T
j=1 γ|i−j|

T 2
+
T 2µ2

1:T

T 2
=

∑T
i=1

∑T
j=1 γ|i−j|

T 2
+ µ2

1:T .
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E(X̄β̂) = E

((∑T
i=1 Xi

T

)(∑T
i=1 z̃iXi∑T
i=1 z̃

2
i

))
= E

(∑T
i=1

∑T
j=1 XiXj

T
∑T

i=1 z̃
2
i

)

=

∑T
i=1

∑T
j=1 z̃jE(XiXj)

T
∑T

i=1 z̃
2
i

=

∑T
i=1

∑T
j=1 z̃j(γ|i−j| + µiµj)

T
∑T

i=1 z̃
2
i

=

∑T
i=1

∑T
j=1 z̃jγ|i−j|

T
∑T

i=1 z̃
2
i

+

∑T
i=1

∑T
j=1 z̃jµiµj

T
∑T

i=1 z̃
2
i

=

∑T
i=1

∑T
j=1 z̃jγ|i−j|

T
∑T

i=1 z̃
2
i

+

(∑T
i=1 µi
T

)(∑T
i=1 µiz̃iµi∑T
i=1 z̃

2
i

)

=

∑T
i=1

∑T
j=1 z̃jγ|i−j|

T
∑T

i=1 z̃
2
i

+

(∑T
i=1(µ1:T + βz̃i)

T

)(∑T
i=1 z̃i(µ1:T + βz̃i)∑T

i=1 z̃
2
i

)

=

∑T
i=1

∑T
j=1 z̃jγ|i−j|

T
∑T

i=1 z̃
2
i

+

(
Tµ1:T

T

)(
β
∑T

i=1 z̃
2
i∑T

i=1 z̃
2
i

)

=

∑T
i=1

∑T
j=1 z̃jγ|i−j|

T
∑T

i=1 z̃
2
i

+ µ1:Tβ.

E(β̂2) = E

(∑T
i=1 z̃iXi∑T
i=1 z̃

2
i

)2
 = E

(∑T
i=1

∑T
j=1 z̃iz̃jXiXj

(
∑T

i=1 z̃i)
2

)

=

∑T
i=1

∑T
j=1 zizjE(XiXj)

(
∑T

i=1 z̃i)
2

=

∑T
i=1

∑T
j=1 zizj(γ|i−j| + µiµj)

(
∑T

i=1 z̃i)
2

=

∑T
i=1

∑T
j=1 zizjγ|i−j|

(
∑T

i=1 z̃i)
2

+

∑T
i=1

∑T
j=1 zizjµiµj

(
∑T

i=1 z̃i)
2

=

∑T
i=1

∑T
j=1 zizjγ|i−j|

(
∑T

i=1 z̃i)
2

+

(∑T
i=1 z̃iµi∑T
i=1 z̃

2
i

)2

=

∑T
i=1

∑T
j=1 zizjγ|i−j|

(
∑T

i=1 z̃i)
2

+ β2.

Joining together all the equation shown above we can simplify the calcula-

tions. Note that:

E[(Xt − µ̂t)(Xt+k − µ̂t+k)] =
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= γk + µ2
1:T + µ1:Tβ(z̃t + z̃t+k) + β2z̃tz̃t+k −

∑T
i=1 γ|t−i|
T

− µ2
1:T − µ1:Tβz̃t

− z̃t+k
∑T

i=1 z̃iγ|t−i|∑T
i=1 z̃

2
i

− µ1:Tβz̃t+k − β2z̃tz̃t+k −
∑T

i=1 γ|t+k−i|
T

− µ2
1:T − µ1:Tβz̃t+k

− z̃t
∑T

i=1 z̃iγ|t−i|∑T
i=1 z̃

2
i

− µ1:Tβz̃t − β2z̃tz̃t+k +

∑T
i=1 γ|i−j|
T

+ µ2
1:T

+ z̃t

∑T
i=1

∑T
j=1 z̃jγ|t−i|

T
∑T

i=1 z̃
2
i

(z̃t + z̃t+k) + µ1:Tβ(z̃t + z̃t+k)

+ z̃tz̃t+k

∑T
i=1

∑T
j=1 z̃iz̃jγ|i−j|

(
∑T

i=1 z̃
2
i )

2
+ β2z̃tz̃t+k

= γk −
∑T

i=1 γ|t−i|
T

− z̃t+k
∑T

i=1 z̃iγ|t−i|∑T
i=1 z̃

2
i

−
∑T

i=1 γ|t+k−i|
T

− z̃t
∑T

i=1 z̃iγ|t+k−i|∑T
i=1 z̃

2
i

+

∑T
i=1

∑T
j=1 γ|i−j|

T 2
+

∑T
i=1

∑T
j=1 z̃jγ|i−j|

T
∑T

i=1 z̃
2
i

(z̃t + z̃t+k) + z̃tz̃t+k

∑T
i=1

∑T
j=1 z̃iz̃jγ|i−j|

(
∑T

i=1 z̃
2
i )

2
.

At last:

E(γ̂k) = γk −
∑T−k

t=1

∑T
i=1 γ|t−i|

(T − k)T
−
∑T−k

t=1 z̃t+k
∑T

i=1 z̃iγ|t−i|

(T − k)
∑T

i=1 z̃
2
i

−
∑T−k

t=1

∑T
i=1 γ|t+k−i|

(T − k)T

−
∑T−k

t=1 z̃t
∑T

i=1 z̃iγ|t+k−i|

(T − k)
∑T

i=1 z̃
2
i

+
[
∑T−k

t=1 (z̃tz̃t+k)]
∑T

i=1

∑T
j=1 z̃iγ|i−j|

(T − k)T
∑T

i=1 z̃
2
i

+
[z̃tz̃t+k]

∑T
i=1

∑T
j=1 z̃iz̃jγ|i−j|

(T − k)(
∑T

i=1 z̃
2
i )

2
+

∑T
i=1

∑T
j=1 γ|i−j|

T 2
.

As
∑T

i=1 γ|1−i| =
∑T

i=1 γ|T−i|,
∑T

i=1 γ|2−i| =
∑T

i=1 γ|T−1−i|, and so on, thus∑T−k
t=1

∑T
i=1 γ|t−i| =

∑T−k
t=1

∑T
i=1 γ|t+k−i|. Therefore, the equation above be-

comes:

E(γ̂k) = γk −
2
∑T−k

t=1

∑T
i=1 γ|t−i|

(T − k)T
−
∑T−k

t=1

∑T
i=1(z̃t+kz̃iγ|t−i| + z̃tz̃iγ|t+k−i|)

(T − k)
∑T

i=1 z̃
2
i

+
[
∑T−k

t=1 (z̃t + z̃t+k)]
∑T

i=1

∑T
j=1 z̃jγ|i− j|

(T − k)T
∑T

i=1 z̃
2
i

+
[
∑T−k

t=1 z̃tz̃t+k]
∑T

i=1

∑T
j=1 z̃iz̃jγ|i− j|

(T − k)(
∑T

i=1 z̃
2
i )

2
+

∑T
i=1

∑T
j=1 γ|i−j|

T 2
.

�
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Appendix D

Proof of Proposition 4

The following lemma will be used in the proof of Proposition 4:

Lemma 1: Define z̃1, ..., z̃T as z̃i = i− (T + 1)/2, i = 1, ..., T . Then

T−k∑
t=1

z̃tz̃t+k =
(T − k)3 − (T − k)(3k2 + 1)

12
.

Proof:

T−k∑
t=1

z̃tz̃t+k =
T−k∑
t=1

(
t− T + 1

2

)(
t+ k − T + 1

2

)

=
T−k∑
t=1

(
t2 + tk − t(T + 1)− k

(
T + 1

2

)
+

(
T + 1

2

)2
)

=
2(T − k)3 + 3(T − k)2 + T − k

6
+
k(T − k)(T − k + 1)

2

− 2(T + 1)(T − k)(T − k + 1)

4
− k(T − k)(T + 1)

2
+

(T − k)(T + 1)2

4
.

The results in the above equation can be achieved using the fact that
∑T

t=1 t =

T (T + 1)/2 and
∑T

t=1 t
2 = (2T 3 + 3T 2 + T )/6. The above equation can be
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written as
∑T−k

t=1 z̃tz̃t+k = (∗)(T − k)/2 where:

(∗) =
2(T − k)2 + 3(T − k) + 1

3
+ k(T − k + 1)2− (T + 1)(T − k + 1)− k(T + 1)

+
(T + 1)2

2
.

=
2(T 2 − 2Tk + k2) + 3T − 3k + 1

3
+ Tk − k2 + k − (T 2 − Tk + T + T − k + 1)− Tk

− k +
T 2 + 2T + 1

2

=
2T 2 − 4Tk + 2k2 + 3T − 3k + 1

3
− T 2 + Tk − 2T − k2 + k − 1 +

T 2 + 2T + 1

2

=
4T 2 − 8Tk + 6T + 4k2 − 6k + 2− 6T 2 + 6Tk − 12T − 6k2 + 6k − 6 + 3T 2 + 6T + 3

6

=
T 2 − 2Tk − 2k2 − 1

6

=
(T − k)2 − (3k2 + 1)

6
.

Finally,

T−k∑
t=1

z̃tz̃t+k =
(T − k)2 − (3k2 + 1)

6

(T − k)

2

=
((T − k)3 − (T − k)(3k2 + 1))

12
.

�

Proof of Proposition 4: Under the conditions of Proposition 4, it is easy

to show that z̃i = i − (T + 1)/2. In the case of the numerator of the third
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term on the right side of Equation (2.7):

T−k∑
t=1

T∑
i=1

(z̃t+kz̃iγ|t−i| + z̃tz̃iγ|t+k−i|) =
T−k∑
t=1

T∑
i=1

z̃t+kz̃iγ|t−i| +
T−k∑
t=1

T∑
i=1

z̃tz̃iγ|t+k−i|

=
T∑
i=1

T−k∑
t=1

z̃t+kz̃iγ|t−i| +
T∑
i=1

T−k∑
t=1

z̃tz̃iγ|t+k−i|

=
T∑
i=1

T−k∑
t=1

z̃t+kz̃iγ|t−i| +
T∑
i=1

T−k∑
t=1

z̃tz̃T+1−iγ|t+k−(T+1−i)|

=
T∑
i=1

T−k∑
t=1

z̃t+kz̃iγ|t−i| +
T∑
i=1

T−k∑
t=1

z̃T−k+1−tz̃T+1−iγ|T+1−t−(T+1−i)|

=
T∑
i=1

T−k∑
t=1

z̃t+kz̃iγ|t−i| +
T∑
i=1

T−k∑
t=1

z̃T−k+1−tz̃T+1−iγ|t−i|

=
T∑
i=1

T−k∑
t=1

(z̃t+kz̃iγ|t−i| + z̃T−k+1−tz̃T+1−iγ|t−i|)

As z̃t+k = −z̃T−k+1−t and z̃i = −z̃T+1−i, that becomes:

= 2
T∑
i=1

T−k∑
t=1

z̃t+kz̃iγ|t−i|.

Furthermore, note that

T−k∑
t=1

(z̃t + z̃t+k) =
T−k∑
t=1

z̃t +
T−k∑
t=1

z̃t+k

=
T−k∑
t=1

z̃t +
T−k∑
t=1

z̃T+1−t

=
T−k∑
t=1

(z̃ + z̃T+1−t) = 0.

Finally, it is possible to show that:

T∑
i=1

z̃2
i =

T 3 − T
12

,

T−k∑
j=1

z̃j z̃j+k =
(T − k)3 − (T − k)(3k2 + 1)

12
.
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The first equation above is trivial, given the well known variance of an uni-

form distribution. The proof of the second equation can be found on Lemma

1. Applying these results to Equation (2.7) we find:

E(γ̂k) = γk −
2
∑T−k

t=1

∑T
i=1 γ|t−i|

(T − k)T
−
∑T−k

t=1

∑T
i=1(z̃t+kz̃iγ|t−i| + z̃tz̃iγ|t+k−i|)

(T − k)
∑T

i=1 z̃
2
i

+
[
∑T−k

t=1 (z̃t + z̃t+k)]
∑T

i=1

∑T
j=1 z̃jγ|i− j|

(T − k)T
∑T

i=1 z̃
2
i

+
[
∑T−k

t=1 z̃tz̃t+k]
∑T

i=1

∑T
j=1 z̃iz̃jγ|i− j|

(T − k)(
∑T

i=1 z̃
2
i )

2
+

∑T
i=1

∑T
j=1 γ|i−j|

T 2
.

�

69



Appendix E

Proof of Proposition 5

E(γ̂k) =

∑T−k
t=1 (E(XtXt+k) + E(Xtµ̂t+k) + E(µ̂tXt+k) + E(µ̂tµ̂t+k))

T − k
,

where:

E(XtXt+k) = γk + αs1(t)αs1(t+k),

E(Xtµ̂t+k) =

∑s2(t+k)−1
i=0 E(XtXs1(t+k)+si)

s2(t+ k)
,

=

∑s2(t+k)−1
i=0 γs2(t+k)

s2(t+ k)
+ αs1(t)αs1(t+k)

E(µ̂tXt+k) =

∑s2(t)−1
i=0 γ|t+k−s1(t)−si|

s2(t)
+ αs1(t)αs1(t+k),

E(µ̂tµ̂t+k) =

∑s2(t)−1
i=0

∑s2(t+k)−1
j=0 γ|s1(t)+si−s2(t+k)−sj|

s2(t)s2(t+ k)
.

Therefore:

E(γ̂k) = γk −
T−k∑
t=1

(∑s2(t+k)−1
i=0 γ|t−s1(t+k)−si|

(T − k)s2(t+ k)

)
−

T−k∑
t=1

(∑s2(t)−1
i=0 γ|t+k−s1(t)−si|

(T − k)s2(t)

)

+
T−k∑
t=1

(∑s2(t)−1
i=0

∑s2(t+k)−1
j=0 γ|s1(t)+si−s1(t+k)−sj|

(T − k)s2(t)s2(t+ k)

)
.
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In the third sum of the equation above, for t1, t2 ∈ {1, ..., T} such that

s1(t1) = s1(t2) (both belong to the same season), the corresponding terms of

the sun are equal. Note the terms of the sum are not dependent on t given

s1(t) and s2(t). Therefore, we can rewrite this sum as:

s∑
t=1

((
bT − k − t

S
c+ 1

)∑s2(t)−1
i=0

∑(
j=0 s2(t+ k)− 1)γ|s1(t)+si−s1(t+k)−sj|

s2(t)s2(t+ k)

)
.

This allows for E(γ̂k) to be written in a way that calculations are of order

T 2 instead of T 3:

E(γ̂k) = γk −
T−k∑
t=1

(∑s2(t+k)−1
i=0 γ|t−s1(t+k)−si|

(T − k)s2(t+ k)

)
−

T−k∑
t=1

(∑s2(t)−1
i=0 γ|t+k−s1(t)−si|

(T − k)s2(t)

)

+
s∑
t=1

[(⌊
T − k − t

s

⌋
+ 1

)∑s2(t)−1
i=0

∑s2(t+k)−1
j=0 γ|s1(t)+si−s1(t+k)−sj|

s2(t)s2(t+ k)

]
.

�
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Appendix F

Proof of Proposition 6

To proof this proposition, the following lemma will be needed to reach

this goal.

Lemma 2: Consider the function:

fT =
∞∑
i=0

wT,iai, T ∈ N

where ai and wT,i are sequences of real numbers satisfying the following

conditions:

1. ai → 0 as i→∞.

2. There exists a real number U > 0 such that
∑∞

i=1 |wT,i| ≤ U for a

sufficiently large T .

3. For a fixed i, wT,i → 0 as T →∞.

Then the function of fT goes to zero as T →∞. �

Proof: Let ε > 0. Define i0 such that ai < ε for i > i0. Note that

fT =
∑i0

i=0wT,iai +
∑∞

i=i0+1 wT,iai. The sum
∑i0

i=0wT,iai goes to zero as

T → ∞ due to the fact that wT,i → 0 when T → ∞. The second sum is

bounded by εU . �

Now consider wT,i as the weight of the i-th autocorrelation of Bρ
T,k(λ)

(given in Equation (2.5)). We can determine an upper bound for the sum of
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the weights:
T−1∑
i=0

|wT,i| ≤
T + k

T − k
+

Tk

T (T − k)
,

which converges to one as T → ∞ when k is fixed. We also have that, for

any i:

|wT,i| ≤
(T + k)

(T − k)

2(T − 1)

T 2
+

4k

(T − k)
, (F.1)

which goes to zero as T →∞.

To complete the proof it is sufficient to show that the autocorrelation

function of an ARFIMA process under the proposition assumptions converges

uniformly to zero as T →∞. In order to do that we will employ the splitting

method.

For a pure MA(q) model, the autocovariance function is given by:

γ
(ma)
k = σ2

q∑
j=0

θkθk+j, k = 0, ..., q

where θ0 = 1. For k > q, γ
(ma)
k = 0. Clearly, such autocovariance function

converges uniformly to zero as k →∞.

For a pure AR(p) model, the autocovariance function obtained satisfies

the recursive relation γk = φ1γk−1 + ... + φpγk−p for k > 0. For any values

of φ1, ..., φp in the parametric space, the following generic inequality can be

established:

|γ(ar)
k | ≤ Kdk/peγ

(ar)
0 .

We can also determine a bound for the sum of the autocovariance func-

tion, a result that will be important in the remaining of the proof:∣∣∣∣ ∞∑
k=0

γ
(ar)
k

∣∣∣∣ ≤ γ
(ar)
0 + γ

(ar)
0

∞∑
k=1

Kdk/pe ≤ γ
(ar)
0 + γ

(ar)
0 p

∞∑
k=1

Kk ≤ γ
(ar)
0 +

γ
(ar)
0 pK

1−K
.

For an ARFIMA(0,d,0), the autocorrelation function, ρ
(afm)
k , is given

in (3.4). The value of ρ
(afm)
k (d) is positive for d > 0, negative for d < 0

and zero for d = 0. Therefore, for d ≥ 0,

ρ
(afm)
k (d) ≤ ρ

(afm)
k (dmax)
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where dmax stands for the possible values of d in the parametric space. For

any stationary value of d, ρ
(afm)
k (dmax)→ 0 as k →∞. For d < 0, it is easy

to see that |d/(1 − d)| is decreasing while |(k − 1 + d)/(k − d)| for k > 1 is

increasing. Therefore, for d < 0

|ρ(afm)
k (d)| ≤ 1

2

k∏
i=2

i− 1

i
=

1

2k
.

That is, both the lower and upper bounds for ρ
(afm)
k (d) converges to zero as

k →∞.

To show the uniform convergence of ρk in the ARFIMA(p, d, q) model, it

suffices to show the uniform convergence of the numerator in (3.6), as the

denominator is inferiorly bounded by σ2 as a function of the parameters,

regardless their values.

We begin the proof with the ARFIMA(p, d, 0) model. The numerator

in (3.6) can be written as

γk = σ−2γ
(1)
0 γ

(2)
0

[
ρ

(1)
0 ρ

(2)
−k +

∞∑
i=1

ρ
(1)
i

(
ρ

(2)
i−k + ρ

(2)
i+k

)]
, k ≥ 0. (F.2)

Now consider γ
(1)
0 and ρ

(1)
0 to be the autocovariance and autocorrelation func-

tions of an ARFIMA(0, d, 0) process and γ
(2)
0 and ρ

(2)
0 to be the autocovariance

and autocorrelation functions of an AR(p) process. The value of γ
(1)
0 is given

by Γ(−2d+ 1)/Γ(−d+ 1)2. For d ∈ (−1, 1/2), γ
(1)
0 as a function of d is well

defined and continuous. As the parametric space is compact, γ
(1)
0 is clearly

bounded. The value of γ
(2)
0 is given by γ

(2)
0 = σ2/(1 − φ1ρ1 − ... − φpρp).

Therefore, as the absolute values of the autocorrelations are smaller than 1:

γ
(2)
0 ≤

σ2

1− |φ1ρ1 + ...+ φpρp|

≤ σ2

1− (|φ1|+ ...+ |φp|)
≤ σ2

1−K
.

The expression inside the brackets in Equation (F.2) has upper bound∣∣∣∣∣ρ(1)
0 ρ

(2)
−k +

∞∑
i=1

ρ
(1)
i (ρ

(2)
i−k + ρ

(2)
i+k)

∣∣∣∣∣ ≤
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ρ
(1)
0 (dmax)Kdk/pe +

∞∑
i=1

ρ
(1)
i (dmax)

(
Kd|i−k|/pe +Kd|i+k|/pe

)
.

In the above equation, if k → ∞, clearly ρ
(1)
0 (dmax)Kdk/pe → 0. Addition-

ally, ρ
(1)
i (dmax) → 0 as i → ∞ and Kd|i−k|/pe + Kd|i+k|/pe → 0 as k → ∞.

Furthermore, note that

∞∑
i=1

Kd|i+k|/pe ≤
∞∑
i=0

Kdi/pe = 1 +
pK

1−K
≤ 2 +

2pK

1−K
.

And,

∞∑
i=1

Kd|i−k|/pe ≤
∞∑
i=1

Kd|i|/pe +
∞∑
i=0

Kdi/pe = 2
∞∑
i=0

Kdi/pe = 2 +
2pK

1−K
.

Therefore, if we set ρ
(1)
i = ai and Kd|i−k|/pe + Kd|i+k|/pe = wk,i, the criterias

of Lemma 2 are satisfied, proving the uniform convergence to zero of the

autocovariance function of the ARFIMA(p, d, 0) model.

The generalization of this conclusion to a general ARFIMA(p, d, q) model

is easy using the splitting method combining the autocovariance of the ARFIMA(p, q, 0)

model and the MA(q) model, both of which are now known to converge uni-

formly to zero. Because only a finite number of lags in the autocovariance

function of a MA(q) model is nonzero, the sum in (3.6) becomes:

ρk =

∑q
i=−q γ

(1)
i γ

(2)
i−k∑q

i=−q γ
(1)
i γ

(2)
i

.

Because γ
(1)
i and γ

(2)
i−k are uniformly convergent when k →∞, so are γ

(1)
i γ

(2)
i−k

and
∑q

i=−q γ
(1)
i γ

(2)
i−k. Therefore, the numerator of the above equation con-

verges uniformly to zero, proving the uniform convergence of the autocorre-

lation function of the general ARFIMA(p, d, q) model.

Using Lemma 2, with the weights given in (F.1), in conjunction with the

uniform convergence of ρk results in Bρ
T,k converging uniformly to zero as

T →∞ for a fixed k. Thus, ρT,k converges uniformly to ρk as T →∞. �
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Appendix G

Proof of Theorem 1

The BCMDE searches for the λ that minimizes S(λ), given in Equation (3.9).

We will define the function f : R2K → R+, f(a, b) = (a− b)′W (a− b), where

W is any positive definite matrix. Note that S(λ) = f(%̂, %T (λ)).

Part 1: For any three vectors with same dimension, a, b, c, f(a, b)/2 ≤
f(a, c) + f(b, c).

Using the definition of f it is easily seen that f(a, c) = f(a − c, 0) and

f(a, b) = f(a−c, b−c). Therefore we just have to prove that f(a−c, b−c)/2 ≤
f(a− c, 0) + f(b− c, 0). Define the vectors x = a− c and y = b− c. As W

is positive definite,:

(x+ y)′W (x+ y) ≥ 0,

x′Wx+ y′Wy + x′Wy + y′Wx ≥ 0,

(−x′Wx− y′Wy − x′Wy − y′Wx)/2 ≤ 0,

(x′Wx+ y′Wy − x′Wy − y′Wx)/2 ≤ x′Wx+ y′Wy,

(x− y)′W (x− y)/2 ≤ x′Wx+ y′Wy,

f(x, y)/2 ≤ f(x, 0) + f(y, 0),

Part 2: Let λ0 be the true parameter value, then f(%̂, %T (λ0))
P−→ 0 as

T →∞.
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Define the vector BT (λ) = %T (λ) − %(λ). From Proposition 2, %T (λ)

converges uniformly to %(λ), so BT (λ) converges uniformly to zero. Thus,

f(%̂, %T (λ0)) = (%̂− %(λ0)−BT (λ0))′W (%̂− %(λ0)−BT (λ0))

= (%̂− %(λ0))′W (%̂− %(λ0))− (%̂− %(λ0))′WBT (λ0)

−BT (λ0)W (%̂− %(λ0)) +BT (λ0)′WBT (λ0).

Due to the fact that %̂ − %(λ0) → 0 in probability as T → ∞, so does

(%̂ − %(λ0))′W (%̂ − %(λ0)), (%̂ − %(λ0))′WBT (λ0) and BT (λ0)W (%̂ − %(λ0)).

Which implies that BT (λ0)′WBT (λ0) also converges to zero.

Part 3: For λ 6= λ0, f(%̂, %T (λ))
P−→ c, c > 0, as T →∞.

We have already seen that, if T → ∞, then BT (λ) → 0 and %̂ − %(λ)

converges in probability to a non-zero vector (if the injectivity assumption

of % is satisfied). Therefore, %̂ − %(λ) − BT (λ) converges in probability to

a non-zero vector and f(%̂, %T (λ)) = (%̂ − %T (λ))′W (%̂ − %T (λ)) → c, c > 0,

using the assumption that W is positive definite.

Part 4: For any neighborhood V (λ0) around λ0, there exists a L2 > 0

such that f(%T (λ0), %T (λ)) ≥ L2 if λ /∈ V (λ0), for T large enough.

f(%T (λ), %T (λ0)) can be written as

f(%T (λ0), %T (λ)) = (%(λ0)− %(λ))′W (%(λ0)− %(λ))

+ (%(λ0)− %(λ))′W (BT (λ0)−BT (λ))

+ (BT (λ0)−BT (λ))′W (%(λ0)− %(λ))

+ (BT (λ0)−BT (λ))′W (BT (λ0)−BT (λ)).

As %(λ) is a continuos injective function and Λ is a compact set, than there

exists a L > 0 such that, for λ /∈ V (λ0), (%(λ0)− %(λ))′W (%(λ0)− %(λ)) > L.

Furthermore, becauseBT (λ) and converges uniformly to zero as T →∞, then

(%(λ0)−%(λ))′W (BT (λ0)−BT (λ))→ 0, (BT (λ0)−BT (λ))′W (%(λ0)−%(λ))→
0 and (BT (λ0)−BT (λ))′W (BT (λ0)−BT (λ))→ 0, both uniformly. Therefore,

for T large enough, f(%T (λ0), %T (λ)) ≥ L2, for L2 satisfying 0 < L2 < L.
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Part 5: For any neighborhood of λ0, V (λ0), P (d̂ ∈ V (λ0))→ 1, where λ̂

is the BCMDE of λ.

In Part 2 it was shown that f(%̂, %T (λ0))
P−→ 0. Therefore for any L2 > 0,

P (f(%̂, %T (d0)) < L2/4)→ 1. It was also shown, in Part 1, that for any three

vectors a, b, c, f(a, b)/2 ≤ f(a, c) + f(b, c). Therefore:

f(%̂, %T (λ)) ≥ f(%T (λ), %T (λ0))/2− f(%̂, %T (λ0)).

For T large enough and λ /∈ V (λ0), the first term in the right hand side of

the above equation is greater or equal to L2/2, while the probability that the

second term is less than L2/4 goes to 1. When both conditions are satisfied,

f(%̂, %T (λ)) ≥ L2/4. In other words, the probability that the minimum of f

can be found at V (λ0), instead of outside V (λ0), goes to 1. The proof of the

convergence in probability is completed. �
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Appendix H

Proof of Theorem 2

To evaluate the asymptotic distribution of the BCMDE, we should first

guarantee that the conditions of Theorem 3.2 of Newey and McFadden (1994)

are satisfied. Define ĝT (λ) = %̂− %T (λ) and let λ0 be an interior point of Λ.

We need to fulfill the following conditions:

1. ĝT (λ) is continuously differentiable in a neighborhood V (λ0) of λ0;

2.
√
T ĝT (λ0)

D−→ N(0,Ω), Ω being a covariance matrix;

3. There exists a G(λ) that is continuos at λ0 and supλ∈N ||∇λĝT (λ) −
G(λ)|| → 0;

4. For G = G(λ0), G′WG is non-singular.

If all these requirements are satisfied, then
√
T (λ̂− λ)→ N(0,Ω).

1. In this case the vector %T (d) is given by %T (d) = (ρT,k1 , ..., ρT,km) where

ρT,k =
ρk+BρT,k
1+BρT,0

. That is, ρT,k is the ratio between two linear combinations of

autocorrelations. It is already known that the theoretical autocorrelations

of a ARFIMA(0, d, 0) model are continuously differentiable. Therefore, both

the numerator and the denominator of ρT,k are continuously differentiable.

Moreover the denominator does not vanish because it is the expectation of a
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non-negative random variable. Thus, as the derivative of ρ̂ is equal to zero,

ĝT (d) is continuously differentiable in a neighborhood V (d0) of d.

2. We have that

√
T ĝT (d0) =

√
T (%̂− %T (d0))

=
√
T (%̂− %(d0)−BT (d0))

=
√
T (%̂− %(d0))−

√
TBT (d0). (H.1)

The fist term in Equation (H.1) converges to N(0, C) when d < 0.25 as show

in Hosking (1996), C being the asymptotic covariance matrix of %̂. For the

second term, BT (d0), we will first write each element of vector BT (d0) as

√
TBT (d0)k =

√
Tρk(d0)−

√
T
ρk(d0) +Bρ

T,k

1 +Bρ
T,0

=
ρk(d0)

√
TBρ

T,0 −
√
TBρ

T,k

1 +Bρ
T,0

. (H.2)

We have already seen that the denominator in (H.2) converges to one. Re-

garding the numerator, Bρ
T,0 and Bρ

T,k stand for the bias of the autocovariance

(for γ0 = 1) for lags 0 and k. Hosking (1996) shows that the bias of the sam-

ple autocovariance decays at the rate T 2d−1, (if E(a4
t ) < ∞). Therefore, for

d < 0.25, ρk(d0)
√
TBρ

T,0 −
√
TBρ

T,k → 0.

3. The derivative of ĝT (d) is given by

∇dĝT (d) = ∇d%̂−∇d%T (d)

= 0−∇d%T (d).

The elements of vector %T (d) are approximations of the expectancies of %̂

given in (4.1). And therefore,

∇dρT,k(d) =
[∇dρk(d)−∇dB

ρ
T,k(d)][1−Bρ

T,0(d)]− [ρk(d)−Bρ
T,k(d)][−∇dB

ρ
T,0(d)]

(1−Bρ
T,0(d))2

.

(H.3)
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It has already been shown in the proof of Proposition 2 that Bρ
T,k(d) converges

uniformly to 0. Thus we only need to analyse the behaviour of the derivatives

of BT,k(d). First of all, we investigate the behaviour of∇dρk(d). We can write

∇dρk(d) as

∇dρk(d) = ∇d(log |ρk(d)|)ρk(d)

for any d 6= 0, where ρk(d) is given in (3.6). Thus,

ρ′k(d) =
1

(1− d)2

k∏
i=2

i− 1 + d

i− d
.

At d = 0, ∇dρk(d) = 1/k, which obviously converges to zero as k →∞. For

d 6= 0 note that

log |ρk(d)| = log |d|+
k∑
i=2

log(i− 1 + d)−
k∑
i=1

log(i− d).

Consequently,

(log |ρk(d)|)′ = sgn(d)

|d|
+

k∑
i=2

1

i− 1 + d
+

k∑
i=1

1

i− d
,

where sgn(d) is the sign of d. Therefore,

ρ′k(d) =

(
sgn(d)

|d|
+

k∑
i=2

1

i− 1 + d
+

k∑
i=1

1

i− d

)
k∏
i=1

i− 1 + d

i− d

=
1

1− d

k∏
i=2

i− 1 + d

i− d
+

(
k∑
i=2

1

i− 1 + d
+

k∑
i=1

1

i− d

)
k∏
i=1

i− 1 + d

i− d
.

Let dsup and dinf be respectively the supremum and infimum of Λ, the pa-

rameter space. Then, an upper bound for the absolute value of ρ′k(d) is given

by

UB(ρ′k(d)) =
1

1− dsup

k∏
i=2

i− 1 + dsup
i− dsup

+

(
k∑
i=2

1

i− 1 + dinf
+

k∑
i=1

1

i− dsup

)
k∏
i=1

i− 1 + dsup
i− dsup

.
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Note that:
k∏
i=2

i− 1 + dsup
i− dsup

= O(k2dsup−1),

k∑
i=2

1

i− 1 + dinf
= O(log(k)),

k∑
i=1

1

i− dsup
= O(log(k)),

k∏
i=1

i− 1 + dsup
i− dsup

= O(k2dsup−1),

therefore UB(ρ′k(d)) → 0 as k → ∞. That is, ρ′k(d) converges uniformly to

zero. If ρ′k(d) converges uniformly to zero, so does B′T,k(d), as it is a linear

combination of ρ′1(d), ..., ρ′T−1(d) that satisfies the properties of Lemma 2.

4. As the matrix W is by definition positive definite, it suffices to show that

at least one element of G(d0) = ∇dρk(d0) is nonzero. One way to guarantee

that is to use the first lag, ρ1(d) in vector % as ρ′1(d) > 0 for all values of d

in the invertibility and stationarity regions. �
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