
Universidade Federal de Minas Gerais - UFMG
Instituto de Ciências Exatas - ICEX

Departamento de Estatística
Programa de Pós-Graduação em Estatística

Métodos e aplicações em Estatística Espacial para
grandes bancos de dados

Zaida Cornejo Quiroz

Belo Horizonte, Brasil, 2018



Métodos e aplicações em Estatística Espacial para grandes bancos de dados
Zaida Cornejo Quiroz

c© Zaida Cornejo Quiroz , 2018.

Tese apresentada ao Programa de Pós-Graduação em Estatística da Universidade
Federal de Minas Gerais como parte dos requisitos para a obtenção do grau de
Doutora em Estatística.

Orientador: Marcos Oliveira Prates

Belo Horizonte, Brasil 2018



Thesis for the degree of Doctor in Statistics

On spatial statistical methods and applications for
large datasets

Zaida Cornejo Quiroz

Department of Statistics
UNIVERSIDADE FEDERAL DE MINAS GERAIS

Belo Horizonte, Brazil, 2018



On spatial statistical methods and applications for large datasets
Zaida Cornejo Quiroz

c© Zaida Cornejo Quiroz , 2018.

Dissertation submitted in partial fulillment of the requirements for the degree of
Doctor in Statistics in the Graduate School of Universidade Federal de Minas Gerais.

Advisor: Marcos Oliveira Prates

Belo Horizonte, Brazil 2018



Thesis for the degree of Doctor in Statistics

On spatial statistical methods and applications for
large datasets

Zaida Cornejo Quiroz

Approved

Marcos Oliveira Prates (advisor) - UFMG - Brazil

Flávio Bambirra Gonçalves - UFMG - Brazil

Vinícius Diniz Mayrin - UFMG - Brazil

Håvard Rue - KAUST - Saudi Arabia

Sudipto Banerjee - UCLA - United States of America

Belo Horizonte, Brazil, 2018





To my family





Resumo
O foco deste trabalho está na aplicação de modelos inovadores para a análise espaço-
temporal da biomassa de anchova em um grande banco de dados e no desenvolvimento
de um novo campo aleatório Gaussiano adequado para a análise de grandes conjuntos
de dados.
O primeiro artigo apresenta uma aplicação avançada da modelagem espaço-temporal
através da Equação Diferencial Parcial Estocástica (SPDE) para estimar e prever a
biomassa de anchova na costa do Peru. Foi introduzido um modelo espaço-temporal
hierárquico Bayesiano completo, levando em consideração as possíveis dependên-
cias espaciais ou espaço-temporais dos dados. Estes modelos, computacionalmente
eficientes e flexíveis, são também capazes de realizar previsões tanto da presença
quanto da abundância de anchovas, em particular, quando o conjunto de locais é
grande (> 500) e diferente ao longo do tempo. Eles são baseados em que os campos
Gaussianos Matérn podem ser vistos como soluções de uma determinada SPDE que,
em combinação com o INLA (Aproximação Integrada Aninhada de Laplace), tem
uma melhora na eficiência computacional.
O segundo trabalho é dedicado a estender o Processo de vizinho mais próximo
Gaussiano (NNGP), recentemente proposto. Uma nova classe de processos de campo
aleatório Gaussiano foi construída e, também, mostrada sua aplicabilidade a dados
com pequenas ou grandes dependências espaciais. A idéia-chave por trás do novo pro-
cesso espacial é subdividir o domínio espacial em vários blocos, que são dependentes
de alguns dos blocos “passados”. A redução na complexidade computacional é obtida
através da dispersão das matrizes de precisão e e na paralelização de extensos cálcu-
los através de blocos de dados. Estes modelos são úteis para grandes conjuntos de
dados espaciais, no qual os métodos tradicionaissão computacionalmente intensivos,
tendo um alto custo para serem utilizados. Finalmente, para realizar a inferência,
oi adotado o enfoque Bayesiano, no qual utilizou-se algoritmos de Monte Carlo via
cadeias de Markov (MCMC). Além de demonstradas as capacidades inferenciais
completas da modelagem, em termos de estimação, previsão e qualidade de ajuste,
quando o novo processo espacial é incluído.
Palavras chave: Geostatística, INLA, GMRF, MCMC, NNGP, SPDE, estatística
espacial, modelamento espaço-temporal.
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Abstract
The focus of this work is on the application of novelty models for the spatio-temporal
analysis of large anchovy biomass dataset, and the development of a new Gaussian
random field suitable for the analysis of large datasets.
The first paper presents an advance application of spatio-temporal modeling through
the Stochastic Partial Differential Equation (SPDE) for estimating and predicting
anchovy biomass off the coast of Peru. We introduce a complete, and computationally
efficient, flexible Bayesian hierarchical spatio-temporal modeling for zero-inflated
positive continuous, accounting for spatial or spatio-temporal dependencies in the
data. The models are capable of performing predictions of anchovy presence and
abundance, in particular,in particular, when the set of observed sites is large (> 500)
and different across the temporal domain. They are based on the fact that Gaussian
Matérn field can be viewed as solutions to a certain SPDE, which combined with
Integrated Nested Laplace Approximations (INLA) improves the computational
efficiency.
The second paper is devoted to extend the newly proposed Nearest Neighbor Gaussian
Process (NNGP). A new class of Gaussian random field process is constructed and, it
is showed its applicability to simulated data with small or large spatial dependences.
The key idea behind this new spatial process (or random field) is to subdivide
the spatial domain into several blocks which are dependent on some of the “past”
blocks. The new spatial process recovers the NNGP and independent blocks approach.
Moreover, The reduction in computational complexity is achieved through the sparsity
of the precision matrices and parallelization of many computations for blocks of
data. It is useful for large spatial data sets where traditional methods are too
computationally intensive to be used efficiently. Finally, to perform inference we
adopt a Bayesian framework, we use Markov chain Monte Carlo (MCMC) algorithms
and demonstrate the full inferential capabilities of the modeling including the new
spatial process, in terms of estimation, prediction and goodness of fit.
Keywords: Geostatistics, INLA, GMRF, MCMC, NNGP, SPDE, spatial statistics,
spatio-temporal modeling.
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Introductory chapters





Chapter 1

Introduction

Spatio-temporal data were always been essential for humans, for instance, Cressie
and Wikle (2011) stated that nomadic tribes of early civilization used them to return
to seasonal hunting grounds, early explorers seeking to map new lands collected
data of locations, weather, plants, animals, among others, and the indigenous people
also did it. In some sense we all collect and analyze spatio-temporal data, in
fact there would be no History without spatio-temporal data. With the recent
computational advances, the availability of spatio-temporal data sets in many areas
is growing, generating considerable interest in statistical models, in particular, for
point-referenced (geostatistical) data. Spatial and spatio-temporal modeling often
involve expensive matrix decompositions whose computational complexity increases
with the number of spatial locations and temporal points, being a challenge for large
spatial and spatio-temporal data sets.
One approach to proceed involves a construction of specific spatial and spatio-
temporal models based on Gaussian Random Markov Fields (GRMF). Lindgren et al.
(2011) suggested a link between Gaussian random fields with Matérn covariance
function and a GRMF through stochastic partial differential equations (SPDE).
In particular, they used the finite element method (FEM) to discretize complex
geometries to get an approximation of the SPDE’s solution using basis functions.
As a consequence, the continuous interpretation of space is not lost, while the
computational algorithms only see discrete structures with Markov properties. A
great variety of applications using the SPDE approach for geostatistical data can be
found in Bolin and Lindgren (2011), Blangiardo et al. (2013) and Cameletti et al.
(2013). Further, it is relatively simple to extend the SPDE approach from spatial to
spatio-temporal models with separable covariance function Cameletti et al. (2013).
In this context, Lindström and Lindgren (2008) used a spatio-temporal model based
on the SPDE approach to interpolate yearly precipitation data over African Sahel,
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inference was performed through the Markov chain Monte Carlo (MCMC) method.
On the other hand, Cameletti et al. (2013) consider a spatio-temporal model based
also on the SPDE approach to estimate particular matter concentration and inference
was performed through the Integrated Nested Laplace Approximation (INLA) method
(Rue et al., 2009). Following this work, Paper 1 presents an application to study the
spatial distribution of peruvian anchovy across years, as well as to predict anchovy
abundance data. We assume that abundance of anchovy follows a mixture of a
discrete probability mass at zero and some established continuous distribution for
nonzero values, like it was proposed by Quiroz et al. (2015). The main contribution
of this paper is to provide estimations and predictions of anchovy presence and
abundance, in particular, when the set of locations is huge and differ across the
temporal domain.
Another approach to proceed involves a kind of “low rank” models proposed by
Datta et al. (2016), which are called Nearest Neighbor Gaussian Process (NNGP)
models. Every spatial (or spatio-temporal) process induces many NNGPs models,
which can project process realizations of the former to a lower dimensional subspace.
They explore the spatial dependence/independence of data through conditional
distributions, in particular using Vecchia (1988) approximation, to build a new valid
stochastic process that works for any valid covariance function. Furthermore, when
the number of neigbors is small, the NNGP process is also a GRMF, reducing the
computational time requirements. Nevertheless, it is difficult to define the number
of neighbors that guarantee goodness of fit. Paper 2 presents a generalization of
NNGP to solve some specific limitations. Instead of using Vecchia’s approximation,
we propose to use the Stein’s likelihood (Stein et al., 2004) approximation which
works with block of data. We compare different scenarios to show the main benefits
of block-NNGP.
This thesis consists of two parts. Part I is a general introduction to the field and
puts the appended papers into context. Part II contains the appended papers.
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Chapter 2

Background and Challenges in
Geostatistics

Fisher (1926) was studying crop growth at Rothamsted Experimental Station when
noted that measurements close to each other were correlated. Then, he developed
experimental design theory to reduce the effects caused by the spatial correlation
(Fisher, 1935). Some years later, Krige (1951) and Matheron (1963) used the
dependence in data to improve interpolations of spatial data, such statistical field
nowdays is known as geostatistics. In this chapter we present the essential elements
of geostatistical models.
Most of the modeling developed for point-referenced data is based on random fields.
And in particular, Gaussian random fields have been widely used in geostatistics.
For this reason, this chapter gives a brief summary of some theoretical background
for Random fields and Gaussian random fields. Since the Gaussian Markov Random
fields have also had an enormous impact on geostatistics, some theory of them is
presented in this chapter.

2.1 Random fields

Definition 1. (Random field) Let a probability space, (Ω, F, P ), and D ⊂ <d a
d-dimensional Euclidean space. A random field is defined by {Y (s, ω) : s ∈ D ⊂
<d, d > 1, ω ∈ Ω}, where Y (s, ω) is a real valued function, which, for every fixed s,
is a measurable function of ω ∈ Ω. And it is specified by its finite-dimensional joint
distributions

F (y(s1), . . . , y(sn)) = P (Y (s1, w) ≤ y(s1), . . . , Y (sn, w) ≤ y(sn)) (2.1)
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8 2.1. Random fields

for every finite n and every collection s1, . . . , sn ∈ D ⊂ <d for d > 1.

This definition means that for any fixed, finite set of spatial locations {s1, . . . , sn} ∈
D ⊂ <d, (Y (s1), . . . , Y (sn))T is a random vector. For a fixed w ∈ Ω, the function
Y (s) is a deterministic function of s, that is, a realization of the random field, which
is denoted by y(s). Then (y(s1), . . . , y(sn))T are realizations of the random field and
the observations of data are considered one realization. For geostatistical data D is
a continuous, fixed set. And, the spatial dimension d is tipically either two or three,
and s represents some location or position. When s is a position in space-time the
random field is called spatio-temporal random field.
A random field must necessarily satisfiy two consistency requirements of the finite-
dimensional distributions: Symmetry and Compatibility conditions.

Definition 2. (Symmetry condition) Consider a permutation π of the index set
{1, . . . , n} as {π1, . . . , πn}, then

F (y(s1), . . . , y(sn)) = F (y(sπ1), . . . , y(sπn)) (2.2)

Definition 3. (Compatibility condition)

F (y(s1), . . . , y(sn−1)) = F (y(sπ1), . . . , y(sn−1),∞)) (2.3)

The first condition means that F is invariant under reordering of the sites, and the
second contidion means that F is consistent under marginalization.

2.1.1 Mathematical construction of random fields

One approach involves defining a collection of random variables to have specific
finite-dimensional distributions, and then using the Kolmogorov’s existence theorem
to prove that the corresponding stochastic process exists.

Theorem 1. (Komogorov’s Existence theorem) If a system of finite-dimensional
distributions, F (y(s1), . . . , y(sn)), for s ∈ D ⊂ <d, d > 1, satisfies the symmetry
condition (Equation (2.2)) and the compatibility condition (Equation (2.3)), then
there exists a random field {Y (s, ω) : s ∈ D ⊂ <d, d > 1, ω ∈ Ω} on some probability
space (Ω, F, P ).

So, this theorem says that if any finite-dimensional distribution satisfy both conditions,
then there exists a random field with those finite-dimensional distributions.
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2.2 Gaussian random field

An important special class of random fields is the class of Gaussian random fields,
usually called Gaussian fields.

Definition 4. (Gaussian Random field) A random field {Y (s), s ∈ D} is a
Gaussian random Field (GF) if for any n ≥1 and for any location s1, s2, . . . , sn ∈
D ⊂ <d, d > 1, (Y (s1), ...Y (sn))T follows a multivariate Gaussian distribuion. The
mean function and covariance function of Y are:

µ(s) = E(Y (s)); s = (s1, s2, . . . , sn)T ,

C(si, sj) = cov(Y (si), Y (sj)) = σ2ρ(si, sj); i, j = 1, . . . , n,

which are assumed to exist for all si and sj.

Multivariate Gaussian distributions are specified by their mean vector and covariance
matrix, thus Gaussian random fields are specified by their mean and covariance
functions since they are especified by their finite-dimensional multivariate Gaussian
distributions. The covariance function must be positive definite, that is for any set
of locations the covariance matrix is positive definite. Moreover, if the covariance
function is positive definite, then the finite dimensional distributions fulfills the
consistency conditions of the Kolmogorov existence theorem.

Definition 5. A random field is weakly stationary if µ(s) = µ for all s ∈ D and if
the covariance function only depends on si − sj.

Definition 6. A random field weakly stationary is called isotropic if the correlation
function (ρ(si, sj)), and thus the covariance function, only depends on the Euclidean
distance h between si and sj, i.e., ρ(si, sj) = ρ(h) with h = ‖ si − sj ‖.

These definitions are also true for Gaussian random fields. Specifying a Gaussian
random field through its covariance function is the most popular method in geo-
statistics, which means to use some specific correlation function. One of the most
used correlation functions, for stationary and isotropic random fields, is the Matérn
correlation function defined as follows

ρ(h) = (sνh)νKν(svh)
Γ(ν)2ν−1 ,

where ν > 0 is a shape parameter and determines the smoothness of the process, Kν

is the modified Bessel function of order and sv is a scale parameter. The effective
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range (r =
√

(8ν)
sν

), is the distance at which the correlation is approximately 0.1. The
correlation function can be re-defined depending on the effective range by:

ρ(h) = 1
Γ(ν)2ν−1 (

√
(8ν)h
r

)
ν

Kν(

√
(8ν)h
r

).

2.2.1 Positive definite matrices

For existence of a Gaussian random field, with specific mean and covariance functions,
it is enough to ensure that the covariance function is positive definite.

Definition 7. The n × n matrix A is positive definite iff xTAx > 0,∀x 6= 0, and
denoted as A > 0.

So, suppose that {Y (s) : s ∈ D} is a weakly stationary random field with covariance
function C. Given any finite set of positions s1, . . . , sn ∈ D, the covariance n × n
matrix Cn of the n-finite dimensional joint distribution (Equation (2.1))

Cn =


C0 Cs1 − s2 · · · Cs1 − sn

Cs2 − s1 C0 · · · Cs2 − sn
... ... . . . ...

Csn−s1 asn−s2 · · · C0


is positive definite, that is xTCnx > 0,∀x 6= 0.
Conversely, given any positive definite function C that generates positive covariance
matrices there exists a Gaussian random field with covariance function C (Gelfand
et al., 2010).
This condition ensures, among other things, that every linear combination of random
variables in the collection will have positive variance. For Gaussian random fields,
the consistency conditions of the Kolmogorov existence theorem are reduced to the
requirement that the covariance function is positive definite.
Another way to prove that a covariance function is postitive definite is through
Bochner’s Theorem.

Theorem 2. (Bochner’s Theorem) A real valued continuous function C is posi-
tive definte if and only if it is the Fourier transformation of a symmetric, nonnegative
measure F on <d, that is, if and only if

C(h) =
∫
<d

exp(ihTx)dF (x) =
∫
<d
cos(hTx)dF (x)
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2.3 Gaussian Markov Random Fields

In this section a briefly introduction of some basic theory about graphs is given, to
then define a Gaussian Markov Random Field (GMRF).

Definition 8. A graph G = (V, E) is defined by a group of V vertices, usually called
nodes, joined between them by a group of lines called edges E. If two nodes i, j ∈ V
are joined by an edge, they are said to be neighbors (i ∼ j).

From this definition it is implicit that i ∼ j ⇔ j ∼ i. This definition of graph is very
general, in fact many “things” can be seen like graphs, for instance in the spatial
context, a regular or irregular lattice can represent a graph (Rue and Held, 2005).
If all edges have no direction this graph is called undirected graph. If all edges have
direction this graph is called directed graph (DAG), where the direction of the edge
is chosen based on the idea that something happening at the edge-head node has
been “caused” by something happening at the edge-tail node. The DAGs are used to
define the NNGP. And if the graphs have a combination of undirected and directed
edges, they are called chain graphs, which are used to define the block-NNGP. All of
these graphs can be used to show conditional independence assumptions.
A Markov Random Field is a random field satisfying conditional independence
assumptions with respect to a graph, hence the term Markov. Markov random fields
that are also Gaussian are called Gaussian Markov Random Fields and have had an
enormous impact on spatial statistical modeling (Rue and Held, 2005).

Definition 9. A random field {Y (s) : s ∈ D} is a Gaussian Markov Random Field
(GMRF) with respect to a graph G=(V,E) with mean µ and precision matrix Q >0
(positive definite), if and only if, for any finite set of locations s1, s2, . . . , sn ∈ D, the
joint distribution of Y = (Y (s1), ...Y (sn))T is given by

fY (y) = (2π)(−n/2)|Q1/2|exp
(
−1

2(y − µ)TQ(y − µ)
)

where
Qij 6= 0⇐⇒ i, j ∈ E,∀i 6= j.

Here the vertex set V corresponds to the nodes {s1, . . . , sn} and the edge set E
specifies the dependencies between the random variables Y (s1), Y (s2), . . . , Y (sn).
Furthermore, if Q is a symmetric and positive definite matrix n×n, then Qij is equal
to zero if and only if, the nodes i and j are not connected by an edge. Then, for i 6=j,

Y (si) ⊥ Y (sj)|Y (s−ij)⇐⇒ Qij = 0,
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Figure 2.1: An example of a GMRF. The red and black points are neighbors
to the blue point. Q will be more sparse if we only consider the red points as
neighbors to the blue point

.

which implies that Y (si) and Y (sj) are conditionally independent and it means that
the conditional distribution of observed variable at some node only depends on its
neighbors (Figure (2.1)). In other words, this definition says that we are able to
know if two nodes are conditionally independent “reading off” the precision matrix
Q, where Q determines the graph G by its non-zero values.

Another important feature about GMRF’s is that due to their preserved Markov
properties, the precision matrix Q is sparse i.e., it will have a few non-null elements.
Therefore, working with a sparse precision matrix instead of a dense covariance
matrix allow us to obtain much quicker inference. Thus, the benefit of using a GMRF
it is purely computational and lies in the sparsity of the precision matrix, because
there are many numerical methods which use this feature for fast computing. For a
thorough approach to GMRFs, see Rue and Held (2005).

2.4 Methods

Point referenced data are usually analyzed through Gaussian random fields. However,
it is well-known that computations can be prohibitive when the number of observations
is large because calculations over a Gaussian field depend on the covariance and
precision matrix, which are usually dense. For instance, inverting the covariance
matrix is not computationally feasible in such case. This drawback is an important
open problem that has led to a large number of new statistical methods, and two of
them are introduced in this section.
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2.4.1 SPDE

Recently, Lindgren et al. (2011) derived a method for producing approximations
to the Matérn covariance family. They used the fact that a Gaussian field x with
stationary Matérn family is the unique solution to the following stochastic partial
differential equation (SPDE),

(k2 −4)α/2x(s) = W (s); s ∈ <n;α = ν + d/2;4 =
d∑
i=1

d2

dx2
i

, (2.4)

where (k2 −4)α/2 is the fractional Laplacian operator and W is a spatial Gaussian
white noise (Whittle, 1954). The weak formulation of Equation (2.4) is

[< φi, (k2 −4)α/2x̃ >Ω] D= [< φi,W >Ω], (2.5)

where a D= b denotes equality in distribution, and φi is any arbitrary well-behaved test
function. The solution of Equation (2.4) should guarantee that the left side and the
right side of Equation (2.4) are equal, in the sense that the left side should have the
“same properties” as the stochastic process W . Since the solution of Equation (2.5)
guarantees the left side of Equation (2.4) has the same mean and covariance functions
of a Gaussian White noise, it is enough to find the solution of this last expression.
Of course, x, the solution of Equation (2.4), now is approximated by x̃, the solution
of Equation (2.5).

A common approach to solve SPDEs like Equation (2.5) involves numerical methods.
Lindgren et al. (2011) used the finite element method (FEM). Their general procedure
involves the following main steps: (i) Generate a Delaunay triangulation over the
domain, (ii) Construct basis functions (ψj) over the triangulation, such that the
approximation of the solution x(s) has the form,

x̃(sk) =
n∑
j=1

ψTj (sk)wj, (2.6)

where wj are Gaussian weights and n is the number of vertices in the triangulation.
The explicit choice for ψj are piecewise linear basis functions, where ψj(sv) is 1 at
vertex v = j and zero at all other vertices. To understand how are obtained the
piecewise linear basis functions on <2, assume that some triangle Tr of the mesh has
vertices sj, sk and sl, in such case, by definition, the basis functions of this specific
triangle Tr are ψTj r(sj) = 1, ψTj r(sk) = 0 and ψTj r(sl) = 0. Thus, the piecewise basis
function of ψTj r(sv) for any location sv = (xv, yv) inside the triangle Tr, which is not
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Figure 2.2: Example of computation of piecewise linear basis functions on <2 .

a vertex of such triangle, is constructed as linear combination, where,

ψTj r(sj) = 1 = αTj0r + αTj1rxj + αTj2ryj

ψTj r(sk) = 0 = αTj0r + αTj1rxk + αTj2ryk

ψTj r(sl) = 0 = αTj0r + αTj1rxl + αTj2ryl.

The values of αT r0, αT r1 and αT r2 are computed using the Cramer’s Rule. Therefore,
ψTj r(sv) = αTj0r + αTj1rxv + αTj2ryv. The basis function for the other vertices of
the triangle can be computed using the same procedure, such that, ψTk r(sv) =
αTk0r + αTk1rxv + αTk2ryv ψ

T
l r(sv) = αTl0r + αTl1rxv + αTl2ryv, (Figure (2.2)).

From Equations (2.5) and (2.6),

[< φi, (k2 −4)α/2
n∑
j=1

ψj(s)wj >Ω] D= [< φi,W >Ω]; i = 1, ..., n,
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[
n∑
j=1

< φi, (k2 −4)α/2ψj(s) >Ω wj] D= [< φi,W >Ω]; i = 1, ..., n.

(iv) The choice of the test function is related to the basis functions. Choosing test
functions equal to the basis functions themselves (φi = ψi) leads to Galerkin solutions.
Lindgren et al. (2011) chose this specific test function, for α = 2. (v) Solve the
system of equations. For α = 2 the weak formulation can be written as

[
n∑
j=1

< ψi, (k2 −4)ψj(s) >Ω wj] D= [< ψi,W >Ω]; i = 1, ..., n.

The finite dimensional weak SPDE solution is reduced to find the distribution for
the weights wj that fulfills the last formulation. The stochastic weights follow a
Gaussian distribution with mean zero and a precision matrix (Qα,κ2)=Kκ2C−1Kκ2

that can be written directly as a function of the parameters. Such precision matrix
is computed with the help of Green’s first identity, which is a multi-dimensional
version of integration-by-parts, and Garlekin solutions (for more details see appendix
B). Matrices C, G e K are defined by:

Ci,j = 〈ψi, ψj〉, Gi,j = 〈∇ψi,∇ψj〉, (Kκ2)i,j = κ2Ci,j +Gi,j (2.7)

These matrices are computed using the geometry of each triangle defined by its
vertices, angles and edges.
For the basis function chosen, C,G and K are sparse matrices. Nevertheless, the
precision matrix C−1 is dense, as consequence, Qα,κ2 is also dense. To solve this
problem, Lindgren et al. (2011) included a Markov approximation replacing the
C-matrix with a diagonal matrix C̃ with diagonal elements Cij =< ψi, 1 >. As a
result, the stochastic weights have a sparse precision matrix, they are approximations
of GMRFs and can be written directly as a function of the parameters.

2.4.2 NNGP

Cressie (1993) stated that it would be of great interest to construct a spatial model
partly from local specifications of the conditional probabilities (Markov random-
field approach) and partly from global specifications of joint probabilities (classic
geostatistical approach). Recently, Datta et al. (2016) have found a way to make
such specifications, so that the new random process satisfying them exists. They
called it the Nearest neighbor Gaussian Process (NNGP).
To built the new process, it is assumed that w is a Gaussian field, w(s) ∼ GP(0, C(θ)),
defined for all s ∈ D ⊂ <2, where C(θ) is any valid covariance function. Let
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S = (s1, . . . , sn)′ be a fixed set of locations in D. Then the joint density of ws =
(w(s1), . . . , w(sn)) for i = 1, . . . , n, can be written as

p(ws) = p(w(s1))
M∏
i=2

p(w(si)|w(s1), w(s2), . . . , w(si−1)). (2.8)

Vecchia (1988) propose to replace the conditioning sets on the right-hand side of Equa-
tion (2.8) with conditioning sets of size at most m, where m<<n. Datta et al. (2016)
propose to use the m nearest neighbors observations from the “past”, then the ap-
proximated joint density of Equation (2.8) is p̃(ws) = p(w(s1))∏n

i=2 p(w(si)|w(sim)),
where w(sim) are the neighbor observations of w(si). Throughout the last statement
and theory of Section (2.1.1), Datta et al. (2016) built a valid spatial process called
NNGP. This process is a particular case of the general process we are proposing in
Paper 2.
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Chapter 3

Bayesian Inference for
geostatistical models

Let Y = (Y (s1), . . . , Y (sn)) be a realization of a random field defined for all si ∈
D ⊂ <2, i = 1, . . . , n. The basic geostatistical Gaussian regression model is of the
form

Y (si) = X ′(si)β + w(si) + ε(si), (3.1)

where β is a coefficient vector (or regression parameter), the covariates X(si) =
(1, xi), the gaussian random field w = (w(s1, . . . , w(sn)))′ ∼ N(0, C(θ)) is a spatial
structured effect, it captures the spatial association, and a common assumption is
that ε(si) for i = 1, . . . , n are independent identically distributed, ε(si) ∼ N(0, τ 2),
which models the measurement error.

In geostatistics, one often must develop models in the presence of complicated
spatial processes, multiple sources of data, uncertainty in parameterizations, among
other challenges. One can approach such complex problems from either a joint or
conditional viewpoint. Spatial associations between observed data might be captured
using models that build dependencies in different stages or hierarchies. In particular,
hierarchical models are especially characterized on the fact that the joint probability
distribution of a collection of random variables can be descomposed into conditional
distributions and a marginal distribution. Although these models can be considered
from either a classical or Bayesian perspective, as the level of complexity increases,
the Bayesian paradigm of statistical inference, which uses posterior distributions of
model parameters, becomes a necessity.

For instance, the simple geostatistical model, we have just described, can be written

19



20 3.1. INLA

hierarchically as follows:

Data model : Y |. ∼ N(Xβ + w,D(θ)),
Gaussian model : w ∼ N(0, C(θ)); β ∼ N(µβ,Σβ)

Parameter model : θ = [φ, σ2, τ 2].

So, the joint posterior pdf is given by

p(θ, β, w|y) ∝ p(φ)×p(σ2)×p(τ 2)×fN(β|µβ,Σβ)×fN(w|0, C(θ))×fN(y|Xβ+w,D(θ)),
(3.2)

where p(.) is some pdf, and fN is a pdf of a multivariate Normal distribution. In
particular, this model fits in the class of Latent Gaussian models. Statistical inference
for this model can be achieved using Markov Chain Monte Carlo (Casella and Robert,
1999) techniques or Integrated Nested Laplaple approximation (Rue et al., 2009),
which are the introduced in the next sections.
Often a marginalized likelihood is used, which is obtained by integrating out the
spatial effects w. This yields

p(θ, β|y) ∝ p(φ)× p(σ2)× p(τ 2)× fN(β|µβ,Σβ)× fN(y|Xβ,C(θ) +D(θ)). (3.3)

This marginal formulation is used to facilitate estimation of parameters (Gelfand
et al., 2010).

3.1 INLA

Eidsvik et al. (2009) proposed fast approximate methods for computing posterior
marginals in spatial generalized linear mixed models, in particular for geostatistical
data with a high dimensional latent spatial variable. Their approximations were
very fast, in contrast to MCMC runs. Rue et al. (2009) extend this fast inference to
complex spatial and spatio-temporal models, in particular for LGMs. Inference for
these models was usually performed through MCMC methods, but such methods
are computationally expensive, specially when dealing with big datasets.

3.1.1 Latent Gaussian models

Latent Models are a subclass of structured additive models, which can also be
seen as a representation of a hierarchical model. First, let us assume that for
I = {i : i = 1, ..., n}, we have n observed variables yi. The linear predictor is defined
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by

ηi = β0 +
ηf∑
j=1

f
(j)
S (ui) +

ηβk∑
k=1

βkzki + εi, (3.4)

where β′ks are coefficients for linear effects on a vector of covariates z, f (j)
S incorporates

dependence between observations, which can be of various kind like spatial, temporal
or spatiotemporal. In geostatistical models, the gaussian random field w(s) is a
component of f (j)

S . And ε represents unstructured random effects. The latent field x
is composed by a vector: x = {{β0}, {βk}, {f (j)

S }}. If the distribution of the latent
field is set as Gaussian such model becomes a Latent Gaussian Model (LGM).
A typical Hierarchical model is defined by: a first stage, where a distributional
assumption is formulated for the observations, which depend on the latent field. Here,
we assume observations conditionally independent given the latent field. A second
stage, is a latent field, which might follow a Multivariate Gaussian distribution with
mean µ and covariance matrix Σ(θ). And a third stage is composed by all the
unknown parameters (called hyperparameters). A prior model is assigned for these
unknown parameters. Thus, a LGM can be defined like a Hierarchical model with
the following structure:

i) a likelihood model for the response variables, which are assumed to be inde-
pendent given the latent parameters x : y|x, θ ∼

∏
i∈I
π(yi|xi, θ),

ii) a latent Gaussian field: x|θ ∼ N(µ,Σ(θ)), and

iii) hyperparameters θ: θ ∼ π(θ).

In many LGM’s and hierarchical models, like geostatistical models, the latent
Gaussian field is also a Gaussian Markov Random Field (GMRF), or it can be
approximated by GMRF’s.
The joint posterior of the LGM can be calculated using the likelihood function, latent
Gaussian distribution and the distribution of hyperparameters as follows:

π(x, θ|y) ∝ π(θ)π(x|θ)
∏
i∈I
π(yi|xi, θ).

Let x|θ ∼ N(0,Σ(θ)) and Q−1 = Σ(θ) be the precision matrix, then

π(x, θ|y) ∝ π(θ)|Q1/2| exp
(
−1

2x
TQx+

∑
i∈I

log{π(yi|xi, θ)}
)
.
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3.1.2 Bayesian Inference with INLA

INLA (Rue et al., 2009) works out with LGM’s that satisfy two properties: (i) The
latent field x is a GMRF, and (ii) The number of hyparameters m is small. These
properties make it possible to obtain fast and accurate Bayesian inference.

More specifically, in geostatistical models, set j=1 and let fS = w in Equation (3.4)
be a Gaussian field with dense covariance structure C(θ). To improve computational
time, INLA approximates fS by f̃S, where f̃S is a GMRF, which allows a sparse
precision (inverse covariance) matrix representation. Rue and Tjelmeland (2002)
showed that for a regular lattice, a Gaussian field with Matérn correlation function
can be well approximated by a GMRF. Therefore, although fS is not exactly the
same as f̃S, it is well approximated by f̃S. Such result, combined with the analytical
results presented in Lindgren et al. (2011), can improve computational performance
dramatically (for more details, see Rue and Tjelmeland (2002); Rue and Held
(2005); Lindgren et al. (2011)). Thus, the latent field x is composed by a vector:
x = {{β0}, {βk}, {f̃S}}. Therefore, the classical geostatistical model is a LGM that
satisfies properties (i) and (ii).

The posterior marginals of the latent variables π(xi|y) and the posterior marginal
of hyperparameters π̃(θj|y) are not easy to calculate, and that is the main aim of
INLA. The general idea of INLA is divided into the next tasks:

• First, it provides an approximation of π̃(θ|y) to the join posterior of hyperpa-
rameters given the data π(θ|y).

• Second, it provides an approximation of π̃(xi|θ,y) to the marginals of the con-
ditional distribution of the latent field given the data and the hyperparameters
π(xi|θ,y).

• And third, it explores π̃(θ|y) on a grid and use it to integrate out θ in π̃(xi|y)
and θ−j in π̃(θj|y).

Approximating π(θ|y)

In the first case, the denominator π(x|θ, y) is not available in closed form but it can
be approximated using a Gaussian approximation, that is:

π(θ|y) = π(x, θ|y)
π(x|θ, y) ∝

π(x, θ, y)
π(x|θ, y)
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which is approximated by:

π̃(θ|y) ∝ π(x, θ, y)
π̃G(x|θ, y) |x=x∗(θ) (3.5)

where π̃G denotes a Gaussian approximation to the full conditional density of x. In
particular, the Gaussian approximation was contructed by matching the mode and
the curvature at the mode to ensure a good approximation of the true marginal
density. Here x∗(θ) is the mode of the full conditional for x for a given θ, and it
is obtained by using some optimization method like Newton-Raphson. In additon,
Equation (3.5) is a Laplace approximation.

Approximating π(xi|θ, y)

In order to approximate π(xi|θ, y), three options are available. The first option, is
to use the marginals of the Gaussian approximation πG(x|θ, y). The extra cost to
obtain πG(xi|θ, y) is to compute the marginal variances from the sparse precision
matrix (matrix with many null elements) of πG(x|θ, y). The second and third options
solve the fact that even if the Gaussian approximation often gives aceptable results,
there still can be errors in the location and/or errors due to the lack of skewness.
Then, the second option is to do again a Laplace approximation, this approximation
is more accurate and it is denoted by π̃LA(xi|θ, y):

π̃LA(xi|θ, y) ∝ π(x, θ, y)
π̃GG(x−i|xi, θ, y) |x−i=x

∗
−i(xi,θ), (3.6)

where π̃GG is the Gaussian approximation to π(x−i|xi, θ, y) and x∗−i(xi, θ) is the mode.
The third option is the simplified Laplace approximation πSLA(xij|θ, y), which is
obtained by doing a Taylor expansion on the numerator and denominator of Equa-
tion (3.6). It corrects the Gaussian approximation for location and skewness with a
moderate extra cost when compared to the Laplace approximation.

Approximating π(θj|y)

It can be calculated from π̃(θ|y), however, this solution has a high computational
cost. Then, an easier approach is to select good evaluation points for the numerical
solution of π̃(θj|y). To find these points, two approaches are proposed: the GRID
and the central composit design (CCD) strategies (Rue et al., 2009).
(i) the GRID strategy is more accurate but also time consuming, it defines a grid
of points covering the area where most of the mass of π̃(θ|y) is located, (ii) on the
other hand, the CCD strategy consists in laying out a small amount of points in a
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m-dimensional space in order to estimate the curvature of π̃(θ|y). For this reason this
last one requires much less computational power compared to the GRID strategy.
Then using approximations π̃(xi|θ, y) and π̃(θj|y) the posterior marginal for latent
variables π̃(xi|y) can be computed via numerical integration:

π̃(xi|y) =
∫
π̃(xi|θ, y)π̃(θ|y)dθ

π̃(xi|y) =
∑
j

π̃(xi|θj, y)π̃(θj|y)4θj.

For more details on Bayesian spatial modelling through the SPDE approach using
INLA see Cameletti et al. (2011); Lindgren and Rue (2015).

3.2 MCMC

Markov Chain Monte Carlo (MCMC) is a class of Monte Carlo methods. It was
popularized by a paper of Gelfand and Smith (1990). The method relies on simulate
dependent samples that are approximately from a posterior probability distribution.
This method has revitalized Bayesian statistics, has also transformed the sciences,
especially fitting spatial and spatio-temporal models. In Bayesian statistics, there
are two popular algorithms that are useful for Markov Chain simulation: the Gibbs
Sampling and the Metropolis-Hastings algorithm.
The Gibbs sampling is another algorithm useful for MCMC. Suppose that we are
interested in sampling from the posterior π(θ|y), where θ is divided into k subvectors,
θ1, θ2, . . . , θk. The steps to a Gibbs Sampling are summarized as follows:

Algorithm (The Gibbs sampling)
1: Pick a vector of starting values θ(0).
2: Draw a value of θ(1)

1 from the full conditional π(θ(1)
1 |θ

(0)
2 , . . . , θ

(0)
k , y).

3: Draw a value of θ(1)
2 from the full conditional π(θ(1)

2 |θ
(1)
1 , θ

(0)
3 , . . . , θ

(0)
k , y).

4: Repeat 3 for j = 3, . . . , k to draw a value of θ(1)
j from the full conditional

π(θ(1)
j |θ

(1)
1 , . . . , θ

(1)
j−1, θ

(0)
j+1, . . . , θ

(0)
k , y).

5: Repeat step 2 to 4 to draw θ(2), using θ(1) and recursively using the most
updated.

6: Repeat untill you haveM draws with each draw being a vector θ(t), t = 1, . . . ,M .

The Metropolis–Hastings (MH) algorithm was an original contribution of Metropolis
et al. (1953). Some years later it was generalized by Hastings (1970). But it was
rediscovered by Tanner and Wong (1987) and Gelfand and Smith (1990). Suppose
that we are interested in sampling from the posterior π(θ|y). The algorithm requires
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a starting point θ(0) and a proposal distribution q(.|.) which must contain the support
of the posterior distribution. The algorithm is summarized as follows:

Algorithm (The Metropolis-Hastings)
1: Choose starting value θ(0) ), such that π(θ(0)|y) > 0.
2: At iteration t, draw a candidate θ? from a proposal distribution q(θ|θ(t−1)).
3: Compute the Metropolis-Hastings acceptance probability

r = π(θ?|y)q(θ(t−1)|θ?)
π(θ(t−1)|y)q(θ?|θ(t−1)) .

4: Generate U ∼ Uniform(0, 1)
5: if U < min(r, 1) then
6: accept θ(t) = θ?

7: else
8: θ(t) = θ(t−1).

9: end if
10: Repeat steps 2, 3 and 4, until the chain converges and you have M samples.

In the geostatistical context, Diggle et al. (1998) show the power of geostatisti-
cal Hierarchical models in diverse settings, while Banerjee et al. (2004) and Gelfand
et al. (2010) give a modern perspective on these models.
Finley et al. (2015) uses the marginalized Equation (3.3) to estimate the parameters.
Only the full conditional distribution of β is available analytically. So they use Gibbs
sampling to obtain the posterior samples of β and Metropolis-Hastings to sample
from θ. Then we can draw w from its full-conditional distribution, given both θ and
β. The package spBayes (Finley et al., 2015) implements this algorithm.
It is worthwhile to mention that irrespective of whether we use Equation (3.2) or
Equation (3.3), estimation and prediction will require matrix factorizations involving
the dense n × n matrix C(θ) which may become prohibitively expensive for large
number of observations. It is often more efficient in such cases to consider various
dimension reduction or decorrelation approaches for modeling the Gaussian random
fields Gelfand et al. (2010).
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Bayesian spatio-temporal modeling of anchovy
abundance through the SPDE Approach

Z. C. Quiroz and M. O. Prates

Abstract

The Peruvian anchovy is an important species from an ecologi-
cal and economical perspective. Some important features to evaluate
fisheries management are the relationship between the anchovy pres-
ence/abundance and covariates with spatial and temporal dependencies
accounted for, the nature of the behavior of anchovy throughout space and
time, and available spatio-temporal predictions. With these challenges in
mind, we propose to use flexible Bayesian hierarchical spatio-temporal
models for zero-inflated positive continuous data. These models are able
to capture the spatial and temporal distribution of the anchovies, to make
spatial predictions within the temporal range of the data and predictions
about the near future. To make our modeling computationally feasible
we use the stochastic partial differential equations (SPDE) approach
combined with the Integrated Nested Laplace Approximation (INLA)
method. After balancing goodness of fit, interpretations of spatial effects
across years, prediction ability, and computational costs, we suggest to
use a model with a spatio-temporal structure. Our model provides a
novel method to investigate the Peruvian anchovy dynamics across years,
giving solid statistical support to many descriptive ecological studies.

Keywords:Bayesian method, GMRFs, marine ecology, INLA, spatio-temporal model,
SPDEs.

1 Introduction

The Northern Humboldt Current System (NHCS) is a marine ecosystem highly
dominated by the anchovy (Eugralis ringens), species heavily exploited by industrial
and artisanal fisheries (Fréon et al., 2005), and one of the ecosystems most affected
by intense climatic variability (Chavez et al., 2008). Patchiness is a rule for living
marine organisms (Bertrand et al., 2014), thus, nested aggregation structures of
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anchovy explain the inherent spatial dependence among individuals. Moreover,
the anchovy reveals a fast response to environmental variability, in fact, anchovy
populations can vary rapidly in both space and time (Bertrand et al., 2008a). As
a result, the spatial anchovy distribution might be different across years, seasons
(summer, spring and winter) and El Niño/La Niña events. Hence, efficient models
taking into account for spatial and temporal dynamics of anchovy are essential to
understand and interpret its behavior, while it contributes to decisions making, that
guarantee its perpetuation.
Anchovy abundance data are non-negative and continuous, thus following Quiroz
et al. (2015), we propose to model the probability of anchovy presence as well as
the positive anchovy abundance using a mixture of a discrete probability mass at
zero and some established continuous distribution for nonzero values. This kind of
two-stage modeling was also used to analyze precipitation data (Stidd, 1973; Stern
& Coe, 1984; Wilks, 1990; Sloughter et al., 2007; Berrocal et al., 2008). Regarding
the spatio-temporal modeling of zero-inflated data, the main focus was on discrete
data either with areal unit or point-referenced structure (Wikle & Anderson, 2003;
Hoef & Jansen, 2007; Fernandes et al., 2009; Ross et al., 2012; Cosandey-Godin
et al., 2014; Wang et al., 2015). On the other hand, the spatio-temporal modeling
for zero-inflated continuous data with point-referenced structure was less explored,
some references are Sansó & Guenni (2000); Fuentes et al. (2008); Fernandes et al.
(2009) and Sigrist et al. (2012).
There are two major purposes of spatio-temporal modeling. First, to describe the
past behavior of some process through the estimation of the spatial pattern in the
data domain for each time of period (prediction within the range of the data - PWD).
Second, to make assessments of possible different scenarios to prevent future adverse
events through prediction of the spatial pattern into the future (prediction outside
the range of the data - POD). However, from a statistical perspective, there is still a
lack of modeling to provide POD, either due to the complex modeling or unavailable
information to make predictions. In particular, Sigrist et al. (2012) applied a two-
stage spatio-temporal model based on a temporal autoregressive convolution with
spatially colored and temporally white innovations, to get POD of precipitation
at 26 stations across 720 time periods, via transformation of the non-zero values.
Fernandes et al. (2009) discussed a hurdle Gamma model to provide PWD and
POD for non-negative continuous rainfall data at 32 monitoring stations across
75 weeks. They assumed the same spatial process for all weeks and the temporal
pattern was only captured through temporal covariates, instead of a spatio-temporal
process. Paradinas et al. (2015) used a hurdle Gamma spatio-temporal to analyze
non-negative continuous European hake recruits data at 40 specific stations across
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13 years. They included spatial or spatio-temporal processes, nevertheless the
spatio-temporal process was not significant. They projected estimations of the mean
posterior instead of computing PWD. And POD were not computed. In all of
these applications, the data were collected in the same site at each time and have a
relatively small number of observations per time (<80).
In this context, we introduce a complete, yet computationally efficient, spatio-
temporal model that is capable of performing PWD and POD of anchovy presence
and abundance, in particular, when the set of sites is large (> 500) and different
across the temporal domain. Our approach includes several novel features and
interpretations for these big data. We propose a Bayesian hierarchical hurdle model
for positive continuous data with point-referenced structure, incorporating spatial
or spatio-temporal processes, and temporal random processes, to seize the necessity
of any of these structures. It is well-known that the computational efficiency of
these models is highly limited by the covariance function (CF) used to introduce
the spatial or spatio-temporal random processes. Thus, the Gaussian random field
(GRF) is approximated to a Gaussian Random Markov field (GMRF). In particular,
through the SPDE approach proposed by Lindgren et al. (2011), we approximated
the GRF with Matérn CF to GMRFs. We performed statistical inferences through
INLA (Rue et al., 2009), making the proposed modeling available for practitioners.
A variety of applications using INLA and the SPDE approach for spatio-temporal
modeling are found in Ross et al. (2012); Blangiardo et al. (2013); Cameletti et al.
(2013); Musenge et al. (2013); Pennino et al. (2014); Cosandey-Godin et al. (2014);
Paradinas et al. (2015). Finally, PWD and POD were obatined through samples from
the posterior predictive distributions on the triangulation required for the SPDE
approximation, reducing computational time requirements.
The rest of this paper is organised as follows. Section 2 presents some description
of the data. Section 3 describes the models proposed to provide PWD and POD
over the spatial domain. It outlines the Gaussian field approximation to a GMRF
through SPDEs and Bayesian inference using INLA. Section ends with a variety
of model assessment criteria. In Section 4 we applied the proposed modeling on
anchovy abundance data. Final remarks are discussed in Section 6.

2 Description of data

The data used in this paper were collected from acoustic surveys by the Peruvian
Marine Institute (IMARPE) usually on board the research vessels “Humboldt”, “José
Olaya Balandra” and “SNP-1”, during the summer season, from 1999 to 2007. These
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Figure 1: The observed data of anchovy abundance for the years 2001 (left) and
2003 (right). The trajectory of survey tracks is represented by parallel cross-shore
transects (black circles and gray dots). The size of the circles corresponds to the
abundance of anchovy higher than zero. The gray dots correspond to abundance
of anchovy equal to zero. The upper right panels show a zoom of each plot.

surveys consisted on parallel cross-shore transects off the Peruvian coast with length
of approximately 170 km and inter-transect distance varying between 26 and 30 km.
Simmonds & MacLennan (2005) describes general methods to analyze acoustic data.
In particular, the acoustic backscattered energy by surface unit (sA) was recorded
through an echosound in each geo-referenced sample unit (ESDU) of approximately
1.852 km. Data selection and classification of the species were also carried out
by IMARPE. The sA, corresponding to anchovy at each ESDU, is an indicator of
“anchovy abundance”. Figure 1 presents the samples of anchovy abundance equal
to zero (the gray dots) and anchovy abundance higher than zero (the black circles)
for specific years. There is evidence of high proportion of anchovy absence, spatial
dependence on anchovy distribution, and a highly different spatial pattern of anchovy
abundance across years.
The potential relevant covariates in this study are the orthodromic distance to the
Peruvian coast (DC in km), the sea surface temperature (SST in ◦C), the latitude
(Lat in ◦C) and the year of each survey. In addition, the depth (in km < 0) was
provided by the General Bathymetric Chart of the Oceans (http://www.gebco.net/,
last accessed on August 16th of 2016). These variables are particularly related
to the anchovy behavior. Bertrand et al. (2011) stated that the relative anchovy
biomass decreased when the distance to the coast is increased. Swartzman et al.
(2008) performed an analysis of anchovy presence probability as a function of the
latitude, water column depth and years. Escudero & Rivera (2011) described the
relationship between the SST and site of fishing operations. The structure of SST
fields is one of the main factors to identify El Niño and La Niña events, for this
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reason, we believe that the time-varying environmental covariate SST may represent
the irregular frequency of these events.

3 Models, inference and assessment

Define Ds as a continuous spatial domain in <2 and Dt as a finite discrete temporal
domain in ℵ. Let Y (si, t) be the observational variable and y(si, t) be the observed
response with site si ∈ Ds and time t ∈ Dt, where i = 1, ..., N and t = 1, ..., T .
For each site si and time t, the abundance of anchovy is zero (y(si, t) = 0) or a
positive value (y(si, t) > 0). Let p(si, t) be the probability of anchovy absence
and, using the results presented in Quiroz et al. (2015), the anchovy abundance,
given that anchovies are present, follows a gamma distribution, Y (si, t)|Y (si, t) >
0 ∼ gamma(φ, φ/µ(si, t)), with mean µ(si, t) and precision parameter φ. So, the
distribution for Y (si, t) has the finite mixture density, π(y(si, t)|p(si, t), µ(si, t), φ) =
p(si, t)δ0 + (1− p(si, t))× h(y(si, t)|µ(si, t), φ)I[y(si,t)>0], where δ0 is the Dirac delta
function and h is the probability density function (pdf) of a gamma distribution.

Let y(., t) = (y(s1, t), . . . , y(sN , t))′ and y = (y(., 1), . . . ,y(., T ))′. Assuming condi-
tional independence of Y (si, t)s given p(si, t), µ(si, t) and φ, ∀i ∈ Ds and ∀t ∈ Dt,
then, the likelihood function can be represented as follows

L(y|p,µ, φ) =
T∏
t=1

N∏
i=1

π(y(si, t)|p(si, t), µ(si, t), φ). (4.1)

A logit function links the linear predictor η(si, t)(1) with the probability of anchovy
absence p(si, t), while a logarithmic function links the linear predictor η(si, t)(2) to
the mean µ(si, t),

logit(p(si, t)) = η(si, t)(1) = Z(1)β(1) + f (1)(t) + f (1)
s (si, t), (4.2)

log(µ(si, t)) = η(si, t)(2) = Z(2)β(2) + f (2)(t) + f (2)
s (si, t).

For each linear predictor (k = 1, 2): Z(k) is a covariate matrix, β(k) is a coefficient
vector (or regression parameters), f (k)(t) is a temporal effect and f (k)

s (.) is a spatial
or a spatio-temporal structured effect. The definition of a spatial or spatio-temporal
effect in Equation (4.3) gives rise to S or ST models, respectively.

In S model, the structured spatial effect f (k)
s (si, t) follows a Gaussian distribution
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with mean zero and it is the same across time, thus ∀i 6= j,

Cov(f (k)
s (si, t), f (k)

s (sj, t′)) = Σ(k)(i, j) =

 0 if t 6= t′;
σ

(k)2
f × ρ(k)(.) if t = t′,

(4.3)

where, σ(k)2
f is the marginal variance of f (k)

s (si, t), ∀i, t, and ρ(k)(.) is a spatial
correlation function. Then f (k)

s (., t) = (f (k)
s (s1, t), . . . , f (k)

s (sN , t))′ is a GRF with
mean zero and spatial covariance matrix Σ(k) composed by Σ(k)(i, j). Therefore,
f (k)
s = (f (k)

s (., 1), . . . ,f (k)
s (., T ))′ is a Gaussian field with mean zero and covariance

matrix Σ(k)
f = IT ⊗Σ(k), where IT represents the identity T -diagonal matrix and ⊗

is the Kronecker product of matrices.

In ST models, the structured spatio-temporal effect f (k)
s (si, t) evolves in time with a

first order autoregressive dynamics AR(1),

f (k)
s (si, t) = a(k)f (k)

s (si, t− 1) + w(k)(si, t), (4.4)

where the coefficient |a(k)| < 1, w(k)(si, t) ⊥ f (k)
s (si, 1), and w(k)(si, t) follows a

Gaussian distribution with mean zero and are supposed to be temporally independent,

Cov(w(k)(si, t), w(k)(sj, t′)) = Σ(k)
w (i, j) =

 0 if t 6= t′;
σ(k)2
w × ρ(k)(.) if t = t′,

(4.5)

where σ(k)2
w is the marginal variance of w(k)(si, t), ∀i, t, ρ(k)(.) is a correlation function,

w(k)
s (., t) = (w(k)

s (s1, t), . . . , w(k)
s (sN , t))′ is a GRF with mean zero and spatial covari-

ance matrix Σ(k)
w composed of Σ(k)

w (i, j), and f (k)
s (., 1) = (f (k)

s (s1, 1), . . . , f (k)
s (sN , 1))′

is a GRF with mean zero and covariance matrix Σ(k)
w /(1− a(k)2). Then,

Cov(f(si, t)(k), f(sj, t′)(k)) = Σ(k)
f (i, j) = a(k)|t−t′|

1− a(k)2 × Σ(k)
w (i, j).

Therefore, f (k)
s = (f (k)

s (., 1), . . . ,f (k)
s (., T ))′ is a Gaussian field with mean zero and

covariance matrix Σ(k)
f = Σ(k)

T ⊗Σ(k)
w , where Σ(k)

T is the temporal correlation function
of an AR(1) process.

Further, the S and ST models are subclassified depending on the inclusion (or not) of
temporal effects in the linear predictors, giving rise to the following models: S1 and
ST1 do not include any temporal effect, S2 and ST2 incorporate an autoregressive
dynamic AR(1) temporal effect, S3 and ST3 incorporate a seasonal component, and
S4 and ST4 incorporate a second-order random walk (rw2) temporal effect.
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The structured temporal effect f (k)(t) following an AR(1) is defined as,

f (k)(t) = b(k)f (k)(t− 1) + ε(k)
ar (t),

where |b(k)| < 1, ε(k)
ar (t) ⊥ f (k)(1) and ε(k)

ar (t) ∼ N(0, 1/τ (k)
ar ). Moreover, f (k)(1) ∼

N(0, (τ (k)
ar (1 − b(k)2))−1). Therefore, f (k)

t = (f (k)(1), . . . , f (k)(T ))′ is a GMRF with
mean zero and precision matrix Q(k)

ar .

The seasonal component is included throughout the first Fourier harmonics, cos(2πt/P )
and sin(2πt/P ), where P is a fixed number representing the time periods required
to complete a single cycle. This seasonal trend varies with time and it is identical
for all sites. Both components are included as covariates in each linear predictor.

The temporally structured effect, modeled dynamically by using a random walk of
order 2 (rw2), defined by

f (k)(t) = 2f (k)(t+ 1)− f (k)(t+ 2) + ε
(k)
rw2(t)

where ε(k)
rw2(t) ∼ N(0, 1/τ (k)

rw2), such that, for t = 1, . . . , n− 2, f (k)(t)− 2f (k)(t+ 1) +
f (k)(t+ 2) ∼ N(0, 1/τ (k)

rw2) are second order independent increments. Therefore,
f

(k)
t = (f (k)(1), . . . , f (k)(T ))′ is a GMRF with mean zero and precision matrix Q(k)

rw2.
Hellton (2011) showed that the rw2 is an approximation to a smoothing spline, so it
can be seen as a non-parametric approximation to the temporal trend giving great
flexibility to this model.

In summary, our explicit formulation of spatio-temporal models (ST) requires samples
collected on the same sites across years. Hence, the data need to be aggregated inside
a grid, regular or irregular, which depending on the case. It can be beneficial due
to the large number of sites and to relax the assumption of stationarity (Sherman,
2011), while allowing for finer resolution. Stroud et al. (2001) introduced a spatio-
temporal model imposing minimum constraints on the format of the data, for
instance non-stationarity and sites that move over time, but they only assume a
normal observational variable. If such approach is used assuming another distribution
like the mixture, we are assuming here, the computational time requirements would
be far expensive. On the other hand, models S2 and S4 present an additive form in
purely temporal and purely spatial random structures, while models ST2 and ST4
present temporal evolution at each site plus some purely temporal structure. Gelfand
et al. (2003) and Gelfand et al. (2004) performed a comparison of some of these forms,
called spatially varying coefficients with normal point-referenced spatio-temporal
data, adopting a Bayesian inference framework. In particular, the AR(1) form was
introduced in Gelfand et al. (2004) to capture short-term temporal changes. Gelfand,
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Banerjee & Gamerman (2005) extended the approach of spatially varying coefficients
to accommodate temporal dependence, achieving a class of dynamic models for
normal point-referenced spatio-temporal data. They considered the AR(1) structure
for the purely temporal component plus a spatio-temporal component. We follow
this approach to propose models ST2 and ST4. Following time series analysis studies,
possible seasonal variability in the data is considered through harmonic functions in
models S3 and ST3. To add flexibility, the purely temporal component of models S4
and ST4 are rw2 Markovian structures, commonly used in age-period-cohort and
disease mapping models (Knhorr-Held & Rainer, 2001; Rue & Held, 2005; Riebler &
Held, 2010; Bauer et al., 2016).
To complete the definition of Equations (4.3) and (4.5), we assume the Matérn
correlation function, ρ(k)(d) = 1

Γ(ν)2ν−1 (κ(k)d)νKν(κ(k)d), where d is the Euclidean
distance between two sites, ν is a shape parameter controlling the smoothness of the
process, Kν is the modified Bessel function of order ν, and κ(k) is a scale parameter
associated with the range parameter. The effective range r(k) =

√
8ν/κ(k) is the

distance d at which the correlation is approximately 0.1. Hence, Σ(k) and Σ(k)
w , in

Equations (4.3) and (4.5), are Matérn covariance functions (CF) with marginal
variances σ(k)2

f and σ(k)2
w , respectively.

3.1 SPDE for spatial models

Whittle (1954) asserted that a Gaussian field X with stationary Matérn Covariance
is the unique solution to the next SPDE equation,

(κ2 −4)α/2(τX(s)) = G(s), s ∈ Rn, (4.6)

where 4 is the Laplacian, (κ2 − 4)α/2 is the fractional Laplacian operator, G is
a Gaussian white noise, α = ν + 1 for two-dimensional domains, it controls the
smoothness, while τ and κ jointly controls the marginal variance of X given by
σ2 = Γ(ν)

Γ(α)(4π)d/2κ2ντ2 . The weak formulation of Equation (4.6) is

[< φi, (k2 −4)α/2X̃ >Ω] D= [< φi, G >Ω], (4.7)

where a D= b denotes equality in distribution, and φi is any arbitrary well-behaved test
function. Thus X can be approximated by X̃, the solution of Equation (4.7), which
guarantees that the left side of Equation (4.6) has the same mean and covariance
function of G.
Lindgren et al. (2011) proposed to solve Equation (4.7) throughout the finite element
method (FEM). The general procedure for two-dimensional domains involves:
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(i) generate a Delaunay triangulation over the spatial domain, composed of nv
nodes.

(ii) Construct piecewise linear basis functions (ψj) over the triangulation. Each
ψj(.) defined on a triangle Tr is uniquely determined by its values at the three
vertices. Thus, if j and s are vertices, then ψj(s) = 1 if j = s and ψj(s) = 0 if
j 6= s. For each site s inside the triangle Tr, ψj(s) is determined by a linear
interpolation, then 0 < ψj(s) < 1. While for each site s outside Tr, ψj(s) = 0.
Then, the approximated solution of x(s) is a linear combination of these basis
functions, X̃(s) = ∑nv

j=1 ψj(s)gj, where gjs are Gaussian weights with mean
zero.

(iii) Choose the test function. In particular, for α = 2 they assumed test functions
equal to the basis functions themselves (φi = ψi) which leads to Galerkin
solutions.

(iv) Solve the system of equations. The solution of Equation (4.7) is reduced to
find the precision of the Gaussian weights gj. Let g = (g1, . . . , gnv)′, then
g is a GRF with mean zero and precision matrix Qg which is computed
with the help of Green’s first identity and Galerkin solutions (for α = 2),
hence, Qg = τ 2(Kκ2C−1Kκ2). The matrices C and Kκ2 depend on the
geometry of each triangle. For the basis function chosen, C,G, and K are
sparse matrices, nevertheless C−1 is dense, then Qg is also dense. To keep
computational convenience, C is replaced with a diagonal matrix C̃ where
C̃ii =< ψi, 1 >. As result, g is a GMRF with zero mean and the sparse
precision matrix Qg=τ 2(Kκ2C̃

−1
Kκ2). For further details see Lindgren et al.

(2011) and Lindgren & Rue (2015).

3.2 SPDE for our models

This section describes the approximation of GRFs f (k)
s to GMRFs for S and ST models,

that is, when f(si, t)(k) is a spatial or a spatio-temporal effect. The approximation
is performed for all the subclassified models, depending on f(si, t)(k). Assuming a
two-dimensional spatial domain, let fix ν = 1, which implies α = 2.
For S models, f (k)

s (., t) is a GRF with Matérn CF, Σ(k), with marginal variance
σ

(k)2
f = σ(k)2. Then using the SPDE approach, σ(k)2 = 1

(4π)κ(k)2τ (k)2 and let f (k)
s (si, t)

be approximated by
f̃ (k)
s (si, t) =

nv∑
j=1

ψj(si)g(k)
j , (4.8)
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where g(k) = (g(k)
1 , . . . , g(k)

nv )′ is a GMRF with mean zero and sparse precision matrix
Q̃

(k)
g = τ 2(k)(Kκ(k)2 [C̃(k)]−1Kκ(k)2). So, f̃ (k)

s (., t) = (f̃ (k)
s (s1, t), . . . , f̃ (k)

s (sN , t))′ is a
GMRF with mean zero and precision matrix Q̃(k)

s , ∀t, which depends on Q̃(k)
g (θ).

Thus, f̃ (k)
s = (f̃ (k)

s (., 1), . . . , f̃ (k)
s (., T ))′ is a GMRF with mean zero and precision

Q̃
(k) = IT ⊗ Q̃

(k)
s .

For ST models, w(k)
s (., t) is a GRF with Matérn CF, Σ(k)

w , with marginal variance
σ(k)2
w = σ(k)2. Using the SPDE approach, σ(k)2 = 1

(4π)κ(k)2τ (k)2 and w(k)(si, t) is
approximated by

w̃(k)(si, t) =
nv∑
j=1

ψj(si)g(k)
j , (4.9)

where g(k) = (g(k)
1 , . . . , g(k)

nv )′ is a GMRF with mean zero and sparse precision matrix,
Q̃

(k)
g = τ 2(k)(Kκ(k)2 [C̃(k)]−1Kκ(k)2). So, w̃s(t)(k) = (w̃(k)(s1, t), . . . , w̃(k)(sN , t))′ is

a GMRF with mean zero and precision Q̃(k)
s , ∀t, which depends on Q̃(k)

g . From
Equation (4.4),

f̃ (k)
s (si, t) = ã(k)f̃ (k)

s (si, t− 1) +
nv∑
j=1

ψj(si)g(k)
j , (4.10)

where |ã(k)| < 1, w̃(k)(si, t) ⊥ f̃ (k)
s (si, 1). Thus, f̃ (k)

s (t) = (f̃ (k)
s (s1, t), . . . , f̃ (k)

s (sN , t))′,
such that f̃ (k)

s (1) is a GMRF with mean zero and precision [Q̃s

(k)]−1/(1 − a(k)2)).
Then, f̃ (k)

s = (f̃ (k)
s (1), . . . , f̃ (k)

s (T ))′, is a GMRF with mean zero and precision matrix
Q̃

(k) = Q
(k)
T ⊗ Q̃

(k)
s , where Q(k)

T is the inverse of Σ(k)
T .

3.3 Bayesian Inference and prediction

From Equations (4.8) and (4.10), the linear predictors of Equation (4.3) can be
rewritten as

logit(p(si, t)) = η(si, t)(1) = Z(1)β(1) + f (1)(t) + f̃ (1)
s (si, t),

log(µ(si, t)) = η(si, t)(2) = Z(2)β(2) + f (2)(t) + f̃ (2)
s (si, t).

(4.11)

From the previous section, for f (k)
t is assigned a Gaussian prior with zero mean

and sparse precision matrix Q(k)
ar or Q(k)

rw2, and for f̃ (k)
s is assigned a Gaussian prior

with zero mean and sparse precision matrix Q̃(k) depending on the spatial or spatio-
temporal effect. For each fixed effect β(k) is assigned independent vague Gaussian
prior. Then, the latent field x can be composed of x = ((β(1))′, (f (1)

t )′, (f̃ (1)
s )′, (β(2))′,

(f (2)
t )′, (f̃ (2)

s )′)′. To complete the specification of the Bayesian hierarchical models we
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assigned prior distributions to the hyperparameters

θ = (φ, b(1), τ (1)
ar , τ

(1), κ(1), ã(1), τ
(1)
rw2, b

(2), τ (2)
ar , τ

(2), κ(2), ã(2), τ
(2)
rw2)′.

Hence, assuming that τ (k)
0 and κ(k)

0 depend on σ(k)
0 and r(k)

0 which are the base-line
deviation and range values, then, log(τ (k)) = log(τ (k)

0 )− θ(k)
1 + νθ

(k)
2 and log(κ(k)) =

log(κ(k)
0 )− θ(k)

2 . Let θb1 = log
(

1+b(1)

1−b(1)

)
, θb2 = log

(
1+b(2)

1−b(2)

)
, θa1 = log

(
1+a(1)

1−a(1)

)
and θa2 =

log
(

1+a(2)

1−a(2)

)
. For log(φ), log(τ (k)

ar (1 − b(k))) and log(τ (k)
rw2) are assigned independent

log-gamma prior distributions. For θak and θbk are assigned independent normal
prior distributions. While for (θ(k)

1 , θ
(k)
2 ) is assigned a joint normal prior distribution

suggested by Lindgren et al. (2011).
Therefore, π(y(si, t)|p(si, t), µ(si, t), φ) = π(y(si, t)|x,θ), Y (si, t)’s are conditionally
independent given x and θ, ∀i ∈ Ds,∀t ∈ Dt, and from Equation (4.1),

L(y|x,θ) = exp
[
T∑
t=1

N∑
i=1

log {π(y(si, t)|x,θ)}
]
.

The latent field x given the hyperparameters θ is a GMRF with block diagonal
sparse precision matrix Q(θ). Therefore, all models fit into the latent Gaussian
model framework and the joint posterior distribution can be computed as follows,

π(x,θ|y) ∝ π(θ)exp
[
−1

2x
′Q(θ)x+

T∑
t=1

N∑
i=1

log{π(y(si, t)|x,θ)}
]
.

The marginals of x and θ can be obtained throughout the joint posterior distribution,
however, due to their high dimension, either integration or sampling approaches as
MCMC would be computationally expensive. INLA (Rue et al., 2009) overcomes
this issue by using a variety of deterministic approximations, primarily, the Laplace
approximation. It is restricted to Latent Gaussian models where the latent field x
is a GMRF. Thus, given that our models fulfill such requirements, INLA computes
numerical approximations of the marginals densities as follows,

π̃(xj|y) =
∫
π̃(xj|θ,y)π̃(θ|y)dθ and π̃(θr|y) =

∫
π̃(θ|y)dθ−r, (4.12)

where j = 1, . . . , dim(x), r = 1, . . . , dim(θ), π̃(xj|θ,y) is an approximation for the
marginal of the latent field and π̃(θ,y) is an approximation for the marginal joint
posterior of hyperparameters. In summary, first INLA computes a Gaussian approxi-
mation of the full conditional of the latent field, πG(x|θ,y), and the mode of this
full conditional throughout an iterative method. Using the Laplace approximation it
computes π̃(θ|y) and its mode to find a regular set of hyperparameters θ? with the
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higher mass of probability. Second, it computes π̃(xj|θ,y) using another approxima-
tion, depending on the desired accuracy. Finally, it constructs an interpolation of
θ?s to integrate out θ and θ−r in Equation (4.12).
The predictions of anchovy biomass at new site sp inside or outside the range
of data are defined as the mean of the posterior predictive, that is, E[yp|y]. In
particular, (i) E[yp|y] = E[y(sp, t)|y] is a PWD (sp ∈ Ds; t ∈ {1, . . . , T}) and (ii)
E[yp|y] = E[y(sp, T + 1)|y] is a POD (sp ∈ Ds). To compute E[yp|y], we need to
compute the predictive density π(yp|y) =

∫ ∫
π(yp|xp, θ)π(xp,θ|y)dxpdθ, where xp is

composed of x at sites s1, . . . sN and sp, in times t ∈ {1, . . . , T} and T + 1 depending
on the case (i) or (ii), respectively. INLA is capable of providing i.i.d. samples
from the joint posterior distribution π(xp,θp|y). Therefore, instead of getting the
exact analytic solution of π(yp|y), we simulate its values according to the next
steps: (i) draw M i.i.d. samples (x(m)

p ,θ(m)) from π(xp,θ|y), for m = 1, . . . ,M . (ii)
simulate y(m)

p from π(yp|x(m)
p ,θ(m)), where y(m)

p are actually draws from π(yp|y). First,
generate y?(m)

p ∼ Bernoulli(p(m)(sp, t)), if y?(m)
p = 1 then y(m)

p = 0, otherwise generate
y(m)
p ∼ gamma(φ(m)

p , φ(m)/µ(m)(sp, t)). (iii) Finally, use the samples y(1)
p , . . . , y(M)

p for
computing E[yp|y] = 1

M

∑M
m y(m)

p . We also use these samples to calculate the standard

deviation of the posterior predictive, sd[yp|y] =
√

1
M−1

∑M
m (y(m)

p − E[yp|y])2. It is
worth mentioning that, in step (i), we can calculate any fs(sp, t) of xp, using the
m-th sample fs(sv, t) from π(xv,θ|y), where sv are the nv nodes of the mesh. Then
fs(sp, t) can be calculated from Equation (4.6) or Equations (4.9 and 4.10) depending
on the model S or ST, respectively. Therefore, the triangulation required for the
SPDE approximation efficiently reduces computational time requirements to make
predictions at high resolution, when nv � np, where np is the number of observations
to be predicted.

3.4 Model Assessment

The estimate accuracy rate (EAR), the logarithm of the pseudo marginal likelihood
(LPML), the Watanabe-Akaike (or “widely applicable”) information criterion (WAIC),
and the root of mean squared estimation error (RMSEE) are considered to measure
the performance of each model and to compare their fits.
The EAR is the percentage of observations estimated as presence of anchovy when
the acnchovies are actually present and observations estimated as absence of anchovy
when the anchovies are actually absent.
The WAIC was introduced by Watanabe (2010), it is based on the posterior predictive
density, which from a Bayesian perspective is its main advantage over other similar
measures. Gelman, Hwang & Vehtari (2014) stated that the WAIC is particularly
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helpful for models with hierarchical and mixture structures and, proposed a slightly
change of the Watanabe’s WAIC original version,

WAIC=−2×
∑T

t=1

∑N

i=1[log{ 1
M

∑M

m=1 π(y(si,t)|x(m),θ(m))}−VMm=1 log{π(y(si,t)|x(m),θ(m))}],

where (x(m),θ(m)) are samples from π(x(si, t),θ|y) and V M
m=1(.) is the sample variance.

The lower the value of WAIC, the better the model.
The LPML summarizes the goodness of fit of each observation in site si and time t
throug the conditional predictive ordinate (CPOit) introduced by Geisser & Eddy
(1979). Dey, Chen & Chang (1997) use a Monte Carlo simulation to approximate
the CPOit and the LPML as follows:

ĈPOit = 1
M

M∑
m

[
1

π(y(si, t)|x(m),θ(m))

]−1

and LPML =
T∑
t=1

N∑
i=1

log(ĈPOit),

such that higher values of LPML indicate better model fit.
The RMSEE evaluates the closeness between the estimation of anchovy abundance
by the model and the observed anchovy abundance. This quantity is defined by:

RMSEE =

√√√√ 1
N × T

T∑
t=1

N∑
i=1

(y(si, t)− E[y(si, t)|x,θ])2.

In order to evaluate the predictive performance of the models we have used a training
data. For POD we use all samples from year T + 1. This set is defined as yval, then
we evaluated the predictive accuracy and the root of mean squared prediction error
(RMSPE). The root of the mean of the squared difference between the observed
value yp = y(sp, T + 1) ∈ yval and the POD, is computed as follows,

RMSPE =
√√√√ 1
np

∑
yp∈yval

(yp − E[yp|y])2.

4 Application

The study was carried out with the available data of anchovy abundance from
years 1999 to 2007. Even though the survey design is similar across years, the
trajectory is not exactly the same, the set of sites differs for each year (Figure 1).
Our explicit formulation of the spatio-temporal models requires samples collected
on the same sites across years. Hence, the coast of Peru was subdivided using a
Delaunay triangulation (mesh). To provide adequate estimation in our modeling,
the maximum side length of each triangle must be smaller than the effective range of
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Figure 2: Triangulation off the coast of Peru composed by 1,147 nodes. The dots
indicate the centroid of the N = 785 triangles with at least one sample of absence
(gray) or presence (black) of anchovy for the years 2001 (left panel) and 2003
(right panel). The region of main interest is inside the inner boundary (dashed
line). The upper panels show a zoom of each plot.

the data. So using the results presented by Quiroz et al. (2015) on the same data set
in 2005, we set the maximum side length of each triangle as 0.2 degrees. This result
also agrees with other studies about the range for these data from different years
and seasons. Of course we could use a smaller side length, but a higher resolution
increases the computational cost.

The mesh has nv = 1,147 nodes (vertices of triangles) and nt = 2,168 triangles
(Figure 2). The location of each triangle is determined by its centroid. Only N = 785
triangles were selected, those with at least one sample of presence or absence of
anchovy for all years. The dots in Figure 2 are the centroids of the N triangles for
specific years with information about anchovy absence (gray), when all the samples
inside the triangle are zero, or presence (black), when at least one sample inside the
triangle is higher than zero. For each year, if a triangle exhibits absence of anchovy,
the abundance of anchovy for the specific triangle and year will be considered zero.
Otherwise, if a triangle exhibits presence of anchovy, it is computed the mean
of anchovy abundance of all samples inside the triangle, which is considered the
abundance of anchovy in the centroid of the specific triangle and year. We could
compute the median or sum of anchovy abundance instead of the mean, but we do
not have too many samples inside the triangle to lead with extreme values, and the
sum does not represent the anchovy of abundance in the centroid of the triangle.

The y(si, t) is the observed abundance of anchovy (≥ 0) in the triangle with centroid
site si ∈ Ds and time t ∈ Dt, where i = 1, ..., 785 and t = 1, ..., 8. The general model
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Table 1: Summary of models according to the definition of the temporal structure
f (k)(t) and spatial or spatio-temporal structures f̃ (k)

s (.)

Model S1 S2 S3 S4 ST1 ST2 ST3 ST4

f (k)(t) none AR(1) none rw2 none AR(1) none rw2
(seasonal) (seasonal)

f̃
(k)
s (.) spatial spatial spatial spatial spatio- spatio- spatio- spatio-

temporal temporal temporal temporal

is,

π(y(si, t)|x,θ) = p(si, t) δ0 + (1− p(si, t)) h(y(si, t)|µ(si, t), φ) I[y(si,t)>0],

logit(p(si, t)) = η(si, t)(1) = Z(1)β(1) + f (1)(t) + f̃ (1)
s (si, t),

log(µ(si, t)) = η(si, t)(2) = Z(2)β(2) + f (2)(t) + f̃ (2)
s (si, t).

To evaluate the predictive performance of the models, we fit the models from
T = 1toT = 7, and use all the data from the last year ( T = 8) to perform
predictive assessment. Table 1 summarizes the temporal structure and spatial or
spatio-temporal structure of the specific models fitted. To complete the definition of
these models, the covariate matrix Z(2) comprises the DC, depth and SST, while the
covariate matrix Z(1) includes these covariates, together with the latitude and the
squared of latitude. In order to identify possible important periods or seasons we used
a periodogram for the mean of anchovy abundance (on the observed original data)
from 1999 to 2006 (Figure S1 in Supplementary Material). The peak corresponds to
a period of 3 years, hence S3 and ST3 models set P = 3 and their covariate matrices
Z(1) and Z(2) also comprise sin(2πt/3) and cos(2πt/3) as covariates.

4.1 Results and Analysis

Table 2 reports posterior parameter estimates of the covariates for each model. The
positive or negative contribution of the covariates is not strongly affected by the
model specification. In fact, each covariate contributes to explain the global mean
trend of the probability of anchovy absence and presence. And with regard to the
contribution of each covariate on the positive abundance of anchovy, the depth is
significant in all models, while the SST and the DC are significant in some specific
models. Moreover, there is evidence of a seasonality pattern, the absence/presence
and abundance of anchovy is similar every 3 years.
The estimation performance and posterior parameter estimates of the hyperparam-
eters for each model are reported in Tables 3 and 4, respectively. Models S2 and
S4 have better estimation performance than model S1 (higher EAR, lower LPML



48 4. Application

Table 2: Summary statistics: mean posterior, (95% credible interval [CI]) for the
hyperparameters for each model. (?) : 95% CI includes the zero value.

Model S1 S2 S3 S4 ST1 ST2 ST3 ST4
Probability of
anchovy absence
Intercept (?)1.54 3.82 (?)1.95 4.52 (?)8.95 (?)8.51 25.32 37.91

(−2.36, 5.61) (0.49, 7.16) (−2.21, 6.35) (−0.07, 9.26) (−31.16, 49.09) (−14.24, 32.56) (3.15, 47.62) (4.33, 71.75)
DC 0.04 0.05 0.04 0.05 0.17 0.20 0.27 0.51

(0.03, 0.05) (0.04, 0.06) (0.03, 0.05) (0.04, 0.06) (0.13, 0.21) (0.15, 0.25) (0.22, 0.32) (0.45, 0.58)
Lat 2.18 2.18 1.88 2.26 10.94 9.93 9.35 27.78

(1.62, 2.7367) 1.62, 2.74) (1.10, 2.71) (1.41, 3.14) (3.03, 18.85) (5.83, 14.66) (4.79, 13.94) (22.55, 33.12)
Lat2 0.10 0.10 0.09 0.10 0.50 0.4464 0.4295 1.23

(0.07, 0.12) (0.07, 0.12) (0.05, 0.12) (0.06, 0.14) (0.14, 0.87) (0.26, 0.66) (0.22, 0.64) (0.99, 1.47)
Depth −0.47 −0.55 −0.35 −0.50 −2.26 −2.5673 −1.46 −7.27

(−0.66,−0.29) (−0.80,−0.29) (−0.53,−0.17) (−0.71,−0.29) (−3.1458,−1.39) (−3.61,−1.67) (−2.57,−0.35) (−8.77,−5.81)
SST 0.07 0.07 0.12 (?)0.07 1.21 0.89 −0.24 2.04

(0.00, 0.14) (0.00, 0.14) (0.07, 0.18) (−0.01, 0.14) (0.68, 1.75) (0.02, 0.12) (−0.33,−0.14) (1.09, 2.99)
sin(2πt/3) 0.16 −3.58

(0.05, 0.28) (−3.67,−2.71)
cos(2πt/3) 0.16 −2.89

(0.05, 0.26) (−3.67,−2.12)
Positive anchovy
abundance
Intercept 5.78 6.32 6.29 6.26 4.18 4.86 5.71 4.33

(5.06, 6.49) (5.49, 7.15) (5.55, 7.03) (5.48, 7.04) (3.38, 4.98) (3.80, 5.93) (4.54, 6.88) (3.4941, 5.17)
DC (?)0.00 (?)0.00 (?)0.00 (?)0.00 (?)0.00 (?)0.00 (?)0.00 0.00

(0.00, 0.01) (−0.00, 0.01) (−0.00, 0.01) (0.00, 0.01) (0.00, 0.00) (0.00, 0.00) (0.00, 0.01) (0.00, 0.00)
Depth 0.26 0.22 0.26 0.24 0.42 0.3724 0.39 0.43

(0.15, 0.37) (0.11, 0.32) (0.14, 0.37) (0.13, 0.35) (0.36, 0.49) (0.30, 0.45) (0.31, 0.48) (0.36, 0.49)
SST 0.05 (?)0.02 (?)0.02 (?)0.02 0.11 0.07 (?)0.03 0.10

(0.02, 0.08) (−0.02, 0.05) (−0.01, 0.05) (−0.01, 0.05) (0.07, 0.15) (0.02, 0.12) (−0.03, 0.08) (0.06, 0.15)
sin(2πt/3) −0.20 (?)− 0.23

(−0.25,−0.14) (−0.38, 0.89)
cos(2πt/3) 0.12 (?)0.25

(0.07, 0.18) (−0.08, 0.03)

and RMSEE), being evidence of short-term-temporal variability. This result is
confirmed by the 95% credible intervals of f (k)(t) not including zero for specific years
(Figure S2). Further, as expected, (1/τ (k)

ar ) is lower in model ST2 than model S2,
because a great temporal variability was captured by the spatio-temporal process
in model ST2. This last result is also true for (1/τ (k)

rw2) in models S4 and ST4. We
conclude that ST models have better goodness of fit than S models. In fact, the
marginal variance σ(k)2 is higher for ST models, being able to capture more spatial
variability of the distribution (absence/presence) and abundance of anchovy. The
mean posterior estimation of φ provides a method for monitoring the model fit.
Hence, the remaining variability of the positive anchovy abundance (µ2/φ), is lower
for ST models. For instance, these variabilities are approximately proportional to
1.24µ2 and 0.18µ2 for S1 and ST1 models, respectively. In addition, the EAR, WAIC,
LPML and RMSEE values confirm that ST1 and ST4 models are the best ones to
estimate the abundance of anchovy.

To evaluate the performance of POD of each model, we set M = 1000 samples. The
predictive measure results are also reported in Table 3, the RMSPE favors model
S2 from models S and ST1 from ST models. We compute the posterior predictive
densities of S2 and ST1 for some randomly selected sites in 2007 (Figure S2 in
Supplementary Material). Both models overestimate the anchovy abundance, being
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(a) (b)

(c) (d)

Figure 3: Posterior mean (solid line), upper and lower credible intervals (dashed
lines) of the purely temporal structures f (k)(t) corresponding to Model S2 (a, b)
and model S4 (c, d). (a) and (c): f (1)(t) related to the Probability of anchovy
absence/presence, (b) and (d): f (2)(t) related to the Positive anchovy abundance.

Table 3: The selection criteria for the models proposed. The WAIC, LPML
and RMSPE were computed using M = 1000 samples. The time is measured in
minutes (min), hours (h) and days (d).

Model S1 S2 S3 S4 ST1 ST2 ST3 ST4

EAR 85.3 88.1 85.0 88.1 99.6 99.6 99.8 99.7
WAIC 134541.8 144472.8 132382 157928.1 57851.78 1300572 1223885 59135.91
LPML −223454.6 −201825.6 −224057.3 −183475.9 −33240 −573887.6 −560865.3 −33999.51
RMSEE 1387.8 1379.3 1329.3 1325.9 429.0 459.3 600.2 450.0
RMSPE 1071.8 1060.8 1098.7 1068.8 1090.5 2356.3 3962.3 1188.7
Time 49 min 3 h 50 min 2 h 3 d 4 d 21 h 3 d 3 h 4 d 13 h
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Table 4: Summary statistics: mean posterior, (95% credible interval [CI]) for the
hyperparameters for each model.

Model S1 S2 S3 S4 ST1 ST2 ST3 ST4

Probability of
anchovy absence
σ2(1) 1.16 1.31 1.22 1.88 343.85 112.05 502.23 4.38

(0.70, 1.98) (1.00, 1.85) (0.68, 2.10) (1.20, 2.98) (341.59, 348.06) (102.80, 119.73) (490.97, 511.04) (2.14, 8.20)
r(1) 1.19 0.77 1.23 1.05 2.24 1.17372 0.92 1.83

(0.76, 1.89) (0.62, 1.04) (0.73, 1.98) (0.70, 1.64) (2.23, 2.25) (1.16, 1.19) (0.91, 0.93) (1.32, 2.46)
ã(1) 0.78 0.51 0.24 0.30

(0.78, 0.78) (0.50, 0.52) (0.24, 0.24) (0.29, 0.31)
b(1) 0.13 0.14

(−0.36, 0.63) (0.12, 0.17)
τ (1)
ar 0.75 13788.87

(0.20, 1.63) (12422.72, 16165.80)
τ

(1)
rw2 0.20 13.46

(0.06, 0.45) (13.34, 13.56)
Positive anchovy
abundance
φ 0.81 0.79 0.80 0.86 5.47 5.85 2.87 5.16

(0.77, 0.82) (0.77, 0.81) (0.77, 0.82) (0.83, 0.90) (5.45, 5.52) (5.67, 6.01) (2.84, 2.90) (5.03, 5.28)
σ2(2) 0.56 0.64 0.82 0.52 10.68 9.20 1.62’ 0.92

(0.34, 0.91) (0.39, 1.08) (0.41, 1.48) (0.34, 0.82) (9.37, 11.13) (8.48, 10.00) (1.62, 1.63) (0.46, 1.71)
r(2) 1.32 1.59 1.57 1.24 0.20 1.09 5.19 2.04

(0.86, 2.02) (1.10, 2.26) (0.91, 2.53) (0.83, 1.90) (0.20, 0.21) (1.05, 1.13) (1.01, 5.29) (1.47, 2.74)
ã(2) 0.10 −0.28 −0.31 −0.09

(0.10, 0.12) (−0.33,−0.21) (−0.31,−0.31) (−0.10,−0.09)
b(2) 0.08 0.07

(−0.51, 0.69) (0.03, 0.09)
τ (2)
ar 6.21 18692.77

(1.90, 14.91) (15926.47, 23610.96)
τ

(2)
rw2 1.00 461.15

(0.29, 2.31) (458.44, 463.99)

slightly less uncertain for ST1. Further, both models systematically underestimate
the anchovy abundance at sites where the anchovy abundance is higher, but it is
slightly more underestimated in S2 than in ST1 (Figure 5 in Supplementary Material).

The analysis of the posterior mean of the spatio-temporal fields, f̃ (k)
s (., t), representing

the true spatial distribution and abundance of anchovy (>0) per year. The first
and second rows of Figure 6, shows the latent field f̃ (k)

s (., t) that represents clusters
of anchovy aggregations, as well as their size. The third and fourth rows of the
same figure, f̃ (k)

s (., t) represents their density (high or low abundance). In fact, a
large patch does not necessarily mean a high anchovy abundance, and conversely, a
small patch does not mean low anchovy abundance (Bertrand et al., 2008b). For
instance, the pattern of anchovy presence is broadly similar in 1999, 2003 and 2006,
nevertheless, the anchovy abundance is quite different. In 1999 there are dense
small patches and medium patches with very low anchovy abundance, in 2003 the
medium patches of anchovy abundance are not too dense, while in 2006 there are
dense medium patches and small patches with low anchovy abundance. Indeed, if
we assume the same spatial process for all years, the distribution (absence/presence)
and positive abundance of anchovy are smooth patterns for overall years (Figure 7).

In summary, for interpretability, fitting and predicting performance, we should choose
model S2 or ST1. If interpretations are really important, the usual case in ecology
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Figure 4: Projection of the posterior mean of the spatio-temporal fields f (k)
s (., t)(k)

for each year, corresponding to Model ST1, f (k)
s (., t)(1) (in logarithmic scale)

of probability of anchovy absence (first and second rows) and f (k)
s (., t)(2) (in

exponential scale) of positive anchovy abundance (third and fourth rows).
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Figure 5: Projection of the posterior mean of the spatial fields f (k)
s (., t)(1) (in

logarithmic scale, left panel) and f (k)
s (., t)(2) (in exponential scale, right panel)

corresponding to Model S1.

studies, despite total computing time, we should choose model ST1. However, if the
objective is only to bring predictions for the next year at low computational cost,
model S2 can be used. Model ST1 provides better fitting and a richer interpretation.

The mean posterior fixed effects and hyperparameters, for model ST1, are reported
in Table 2 and Table 4. These results point out that for the DC (0.17), the further
is the distance, the higher the probability of anchovy absence. The linear and
quadratic latitude terms (10.94 and 0.50, respectively) indicate that there is a higher
probability of anchovy absence at the extremes. The statistical significance of the
depth, on the probability of anchovy absence and positive abundance of anchovy
(-2.26, 0.42), suggests that for deeper ocean regions, there is higher probability of
anchovy absence, and lower positive anchovy abundance. The result for the SST
on the probability of anchovy absence (1.21) states that the higher SST, the higher
probability of anchovy absence. During El Niño, the surface waters of the central
and eastern equatorial Pacific are warmer, and the anchovy apparently disappears in
this region. In fact, anchovies live mainly in cool, coastal waters (Escudero & Rivera,
2011). In the positive abundance of anchovy, the SST coefficient (0.11) indicates
that the higher SST, the higher anchovy abundance, considering that here the SST
is in the tolerable range for anchovy. The mean posterior effective range r(1) of the
probability of anchovy absence is 2.24 degrees (≈ 246 km), whilst the mean posterior
effective range r(2) of the positive anchovy abundance is 0.20 degrees (≈ 22 km).
The AR(1) coefficients ã(1) and ã(2) suggest that the probability of absence/presence
and abundance of anchovy for each site depends positively on the previous year,
being less dependent in the second case. Figure S4 (in Supplementary Material)
provides evidence that the few years condidered in our study are enough to capture



Chapter 4. Spatio-temporal modeling of anchovy abundance 53

temporal dependence, we show that the posterior and prior distributions for ã(k)

are very different, proving that the data actually contribute to update the temporal
dependence in this complex model.
One of our main interest lies in reconstructing reliable maps of anchovy abundance,
as well as their corresponding uncertainty measures. The logarithm of PWD and
POD of anchovy abundance, and standard deviation (sd), for each year are computed
as described in Section 3.3. Figure 6 shows the POD and their sd, corresponding
to model ST1. Finally, Figure 7 shows the POD for year 2007, using the model
ST1, fitted with the data from 1999 to 2006 (left), and the PWD of year 2007 also
using the model ST1, but fitted with observations from 1999 to 2007 (right). Both
patterns agree closely, thus we could know where the anchovy would be present the
next year, and where the higher abundance of anchovy is expected.

5 Discussion

In this study we presented an application of spatio-temporal modeling using the SPDE
approach for a large data set of point-referenced abundance of anchovy, characterized
by a large number of zero values. We compared a variety of spatio-temporal models
taking into account the goodness of fit, the spatial predictive capability and the
computational cost. Some models were recently proposed to deal with these kind of
data (e.g., Fernandes et al., 2009; Paradinas et al., 2015). In particular, Fernandes
et al. (2009) proposed the model S1 but using an exponential correlation function
and MCMC. They fit a model defining f(s, t)(1) like in model S1 and f(s, t)(2) like
in model ST1. However, the convergence was not achieved. They argued that the
problem was that whenever there were observations for a particular time equal to
zero, they were zero for all gauged sites. We did not have this problem because
we can have observations equal to zero and different from zero, at the same site,
across years, (see Figure 2). Moreover, we assumed that the zero values are missing
data in η(si, t)(2) and they should not influence in our modeling. On the other hand,
Paradinas et al. (2015) proposed the same models S1 and ST1 for a data set spatially
small (40 sites), where model S1 was the best. They only evaluated the estimation
performance of models to get projections of the posterior mean. We also explored
other combinations of spatio-temporal models for the linear predictors, for instance,
defining f(s, t)(1) like in model ST1 and f(s, t)(2) like in model S1, but any of these
ones gave significant improvement to predictive measures. Thus, we omitted these
results from the paper.
One of our main purpose was to provide an efficient model which brings PWD, POD
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Figure 6: Model ST1; Logarithm of PWD of anchovy abundance (first and third
rows) and standard deviation (second and fourth rows) for each year
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Figure 7: The logarithm of POD from Model ST1, fitted with data from 1999 to
2006 (left panel) and fitted with data from 1999 to 2007 (right panel).

and quantification of their uncertainty, to indicate where is the highest probability
of anchovy presence and where we would expect it will be more anchovy abundance.
To bring POD of anchovy abundance was challenging, since predicting future values
is typically less accurate and riskier than predictions at sites for which we have data
at the time of study (Gelman et al., 2014). Although the variability of anchovy
abundance is very high, making POD very difficult, the chosen model seems to have
potential to identify anchovy presence, as well as regions of high anchovy abundance.
The complexity of the spatio-temporal models proposed, in particular of the winner
model, is clearly justified also to bring interpretable summaries of the spatio-temporal
anchovy distribution, in particular to understand how it is the true distribution of
anchovy when lefting out the effect of the environmental covariates. The detection
of spatial/temporal patterns and significance of covariates is also directly related
to the spatial and temporal scale at which ecological data are measured (Fortin &
Dale, 2005), then all results presented here should be interpreted carefully for this
sub-mesoscale. For other scales the results would change dramatically. Finally, we
had a large number of spatial sites with relatively few temporal observations, for
this reason, less general conclusions should be made concerning to global temporal
relationships.
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A: Precision matrices in section 3

Q
(k)
ar = τ

(k)
ar


1 −b(k) 0 . . . 0 0
−b(k) (1 + b(k)2) −b(k) . . . 0 0
. . . . . . . .

. . . . . . . .

0 0 . . . −b(k) (1 + b(k)2) −b(k)

0 0 . . . 0 −b(k) 1



Q
(k)
rw2 = τ

(k)
rw2



1 −2 1 0 0 0 0 0 0
−2 5 −4 1 0 0 0 0 0
1 −4 6 −4 1 0 0 0 0
0 1 −4 6 −4 1 0 0 0
. . . . . . . . .

. . . . . . . . .

0 0 0 1 −4 6 −4 1 0
0 0 0 0 1 −4 6 −4 1
0 0 0 0 0 1 −4 5 −2
0 0 0 0 0 0 1 −2 1



ΣT =
1

1− a(k)2
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
Given f̃ (k)

s (t) = a(k)f̃ (k)
s (t− 1)+w̃(k)

s (t); w̃(k)
s (t) ∼ N(0, [Q(k)]−1

s ), and, Cov(f̃s(i), f̃s(j)) =
a|i−j|

1−a2 Q̃
−1
s .

Let f̃ (k)
s ∼ (0, Σ̃(k) = [Q̃(k)]−1), where
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Q̃(k) = [Σ̃(k)]−1 = ([Q(k)
T ]−1⊗ [Q̃(k)

s ]−1)−1 = ([Q(k)
T ]−1)−1⊗ ([Q̃(k)

s ]−1)−1 = Q
(k)
T ⊗ Q̃(k)

s .

B: Supplementary Figures
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Figure S1: Periodogram of the yearly mean of anchovy abundance. The red line
represents the period P = 3.
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Figure S2: Posterior predictive histograms at random selected locations corre-
sponding to Model ST1 and densities (blue line) corresponding to Model S2. POD
corresponding to Model ST1 (black dot) and Model S2 (blue cross). The red
vertical line is the observed anchovy abundance.
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Figure S4: Posterior and prior distributions of the parameters: a(1) (left) and a(2)

(right) corresponding to Model ST1 .
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Abstract

This work develops a valid spatial block-Nearest Neighbor Gaussian
process (block-NNGP) for estimation and prediction of location-referenced
large spatial datasets. The key idea behind our approach is to subdivide
the spatial domain into several blocks which are dependent under some
constraints. As consequence, the cross-blocks should mainly capture
the large-scale spatial variation, while each block should capture the
small-scale dependence. Of course, the optimal blocking depends on the
sampled spatial locations, and the number of blocks represents a trade-off
between computational and statistical efficiency. The block-NNGP is
included as prior in the hierarchical modeling framework and efficient
Markov chain Monte Carlo (MCMC) algorithms exploit the sparsity of
the block precision matrix, which can be computed by distributing the
operations using parallel computing. The performance of the block-NNGP
is illustrated using simulation studies and applications with massive data.

Keywords: Bayesian hierarchical models, block-NNGP, large datasets, MCMC,
parallel computing.

1 Introduction

New technologies such as GPS and remote sensing enable the collection of massive
amounts of high-resolution geographically referenced observations over large spatial
regions. These data are analyzed through spatial random fields, usually based
on Gaussian processes (GP). However, it is well-known that computations can be
prohibitive for a spatial random field where the number of locations is large because
calculations over a GP depend on the covariance and precision matrix, which are
usually dense.
One approach to model large spatial datasets proceeds inducing sparsity in the
precision matrix through Gaussian Markov random fields (GMRF), assuming that
the spatial correlation between pairs of distantly located observations is nearly zero
(Rue and Tjelmeland, 2002). In particular, this sparsity can be achieved either

69



70 1. Introduction

through stochastic partial differential equations (SPDE - Lindgren et al. 2011)
when the covariance function is Matérn, or the Nearest Neighbor Gaussian process
(NNGP- Datta et al. 2016) which is less restrictive, working for any valid covariance
function. In the SPDE approach, the Gaussian field with Matérn covariance function
is approximated to a GMRF, through the solution of a SPDE using finite element
methods. On the other hand, the NNGP is a well-defined spatial GMRF, built from
lower-dimensional conditional distributions which depends on the nearest neighbor
observations, providing a unified fully process-based framework for estimation and
prediction.
Another approach to deal with computationally intractable large matrices of spatial
random fields is the spatial blocking, that is, the partition of the spatial domain
into blocks. This approach was often restricted to covariance matrices, ignoring
the dependence between different blocks. For instance, see Stein (2013) or Bolin
and Wallin (2016), where they showed that this simple approach is better than
covariance tapering and spatially adaptive covariance tapering, methods that set
“distant” observations of the covariance matrix into zero to get its sparsity. Kim et al.
(2005) presented a similar approach but their method automatically decomposes
the spatial domain into disjoint blocks. Otherwise, Stein et al. (2004) and Caragea
and Smith (2007) proposed composite-likelihood methods to achieve computational
feasibility by treating blocks of observations as independent and/or conditionally
independent, but it is not clear how to obtain proper joint predictive distributions for
locations in different blocks. To allow for some dependence between blocks Eidsvik
et al. (2014) used block composite-likelihood methods to propose a unified framework
for both parameter estimation and prediction, however, it is restricted to fit Gaussian
response variables through classic inference.
One drawback of the NNGP approach is that we need to predetermine a collection of
the “past” neighbors to construct the model, but in spatial settings, the locations are
not naturally ordered. In addition, the information of “non-past” nearest neighbors is
not considered, and thereby some small-scale spatial dependence may be lost. While
Eidsvik et al. (2014) assumed negligible dependence between distant blocks, they
only used this feature to approximate the likelihood, affecting directly the covariance
matrix instead of the precision matrix. Here, we merge both approaches, first, we
assume that pairs of blocks are conditionally independent given some of the “past”
blocks, and then we extend the NNGP theory to get a new valid GMRF called
block-NNGP.
The main goal of block-NNGP is to capture much of the spatial dependence, because
the cross-blocks should mainly capture the large-scale spatial variation while each
block captures the small-scale dependence. This new process enables a consistent
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way to combine parameter estimation and spatial prediction. Of course, the optimal
blocking depends on the sampled spatial locations, and the number of blocks repre-
sents a trade-off between computational and statistical efficiency. The higher the
number of blocks, more sparse will be the precision matrix, but we have to be careful
to avoid loosing important spatial dependences. Finally, to perform inference we
adopt a Bayesian framework to demonstrate the full inferential capabilities in terms
of estimation, prediction and goodness of fit, of the block-NNGP hierarchical models
and parameters therein. In particular, the parameters were estimated through the
collapsed MCMC method (Finley et al., 2017) to improve convergence and run time.
This algorithm enjoys the frugality of a low-dimensional MCMC chain but allows for
full recovery of the latent random effects.
The paper is organized as follows. Section 2 gives the details of the proposed block-
NNGP process. In Section 4, simulations are assessed for the predictive performance
of the proposed process. The example of mining and precipitation data are used in
Section 5 to illustrate the use of the proposed process when the data size is large.
Some discussions are given in Section 6.

2 Block NNGP process

Assume that w(s) ∼ GP(0, C(θ)) defined for all s ∈ D ⊂ <2, where C(θ) is any valid
covariance function. Let S = {s1, . . . , sn} be a fixed set of locations in D. Then the
joint density of wS = (w(s1), . . . , w(sn))′ can be written as

p(wS) = p(w(s1))
n∏
i=2

p(w(si)|w(s1), . . . , w(si−1)). (5.1)

Vecchia (1988) proposed to replace the conditioning sets on the right-hand side
of Equation (5.1) with conditioning sets of size at most m, where m � n. In
particular, Datta et al. (2016) propose to use some fixed number of nearest neighbors
observations from the “past”, then Equation (5.1) is approximated by p̃(wS) =
p(w(s1))∏n

i=2 p(w(si)|w(sim)), where w(sim) are the neighbor observations of w(si).
This approach seems very reasonable, since correlations between pairs of distant
locations are nearly zero, and little information might be lost when taking them to
be conditionally independent given intermediate locations. They also proved that
p̃(wS) is a valid joint distribution for wS, which is used to built up a valid spatial
process called NNGP, thus the traditional GP is replaced by the NNGP.
Stein et al. (2004) proposed a generalization of the Vecchia approximation, a restricted
version of the conditional probability approximation, where the joint density of



72 2. Block NNGP process

Equation (5.1) is approximated by assuming a partition of wS in vectors of not
uniform lengths and some conditioning vector sets of each vector. Here we extend
the NNGP introducing another valid spatial process through such approximation
built on blocks of data. In particular, we consider a partition of the region D into M
blocks b1, . . . , bM , with UM

k=1bk = D, bk ∩ bl = φ, for all pairs of blocks bk and bl. The
vector wbk = {w(si); si ∈ bk} where dim(wbk) = nk such that ∑M

k=1 nk = n. Then,
we assume that the wbl and wbj , for l 6= j, are conditionally independent given some
“past” blocks, and the joint density of wS is approximated by

p̃(wS) = p(wb1)
M∏
k=2

p(wbk |wN(bk)), (5.2)

where N(bk) ⊂ S \ [si ∈ bk] is the set of nb neighbor blocks of bk.

Proposition 1. Let G = {S, ξ} be a chain graph, where S = {s1, . . . , sn} is the set
of nodes, and ξ is comprised by: (i) the set of directed edges from every node in the
set sbk = {si ∈ bk,∀i = 1, . . . , n}, to all nodes in N(bk), ∀k = 1, . . . ,M , and (ii) the
set of undirected edges between every pair of nodes in bk. Let Gb be a subgraph of G
composed by M nodes, such that each node is one node of the set sbk . If Gb is acyclic
and p(wS) is a valid multivariate joint density, then p̃(wS) in Equation (5.2) is also
a valid multivariate joint density.

The proof of this proposition and subsequent proofs are found in Appendix A1. A
chain graph G, also called partially directed acyclic graphs, is defined by a set of
nodes disjointly partitioned into several chain components, edges between nodes in
chain are undirected and edge between nodes in different chains are directed. If we
take one node per chain they form a directed graph which we call Gb. Proposition
1 states that Equation (5.2) is a proper multivariate joint density when p(wS) is a
valid multivariate joint density and G is a chain graph which has a directed acyclic
graph (DAG) Gb. In particular, if N(bk) is any subset of {N(b1), . . . , N(bk−1)} then
Gb is acyclic (Figure (1)). This choice of neighbor sets do not unvalidate the acyclic
property between blocks and also produce valid densities. With this choice, we are
assuming that ∀w(si); si ∈ bk, they are dependent between them, but also that each
one depends on w(sj) ∈ wN(bk), that is, depends on the neighbor blocks of bk. Hence,
w(si) is explained by all of its nearest neighbors in the block bk and some nearest
neighbor blocks from the past, which avoids loss of information at small scale while
preserving information at large scale, respectively. In fact, sometimes when the
spatial dependence is strong relative to the spatial domain of observation, it can be
advantageous to include some observations in N(bk) that were rather distant from
sbk = {si ∈ bk, ∀i = 1, . . . , n} (Stein et al., 2004). This situation was not presented
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Figure 1: Illustration of a chain graph with n = 7 nodes and M = 4 blocks:
b1 = {1}, b2 = {5}, b3 = {2, 6, 7}, b4 = {3, 4}.

in any of Datta et al. (2016) examples. Each w(si) depends on nbk = nk − 1 +Nbk

neighbors, where Nbk is the number of locations in the neighbor blocks of bk. And G
is sufficiently sparse if nk and Nbk are sufficiently small. Note that for the NNGP
process, each w(si) only depends on at most m nearest neighbors from the past such
that m� n. In particular, the NNGP will be a special case of our proposed spatial
process (see corollary 3).
Let wS be a realization of a GP over S with covariance function C(θ), therefore
p(wS) is the probability density (pdf) of a n-variate normal distribution with mean
zero and covariance matrix CS. From the proposition 1 holds the next corollary.

Corollary 1. p(wS) is the pdf of a n-variate normal distribution with mean zero
and covariance matrix CS. If G is a chain graph and Gb is a DAG, as we specified
in proposition 1, then p̃(wS) is a proper density.

From basic properties of normal distributions, wbk |wN(bk) ∼ Nn(BbkwN(bk), Fbk),
Bbk = Cbk,N(bk)C

−1
N(bk) and Fbk = Cbk − Cbk,N(bk)C

−1
bk
CN(bk),bk , where Ci,j and Ci are

elements of Cs. Thens if f is the pdf of a normal distribution, Equation (5.2) is
defined by

p̃(wS) =
M∏
k=1

f(wbk |BbkwN(bk), Fbk). (5.3)

Proposition 2. If p(wS) is a proper pdf of a n-variate normal distribution with
mean zero and covariance matrix CS, G is a chain graph and Gb is a DAG, as we
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specified in proposition 1, then

(i) p̃(wS) is also the pdf of a n-variate normal distribution with mean zero and
covariance matrix C̃S = (BT

SF
−1
S BS)−1,

(ii) BS is a block matrix and a lower triangular matrix,

(iii) FS is block diagonal,

(iv) C̃S is positive definite, and

(v) If nbk � n;∀k = 1, . . . ,M then C̃−1
S is sparse.

The multivariate normal distribution is completely specified by its expectation which
is assumed to be zero, and its covariance function which is valid since it is positive
definite from Proposition 2 (iv). In addition, Proposition 2 also states that BS is a
block matrix and FS is block diagonal, due to these features we are able to implement
our algorithm using parallel processing. The sparsity of the precision matrix in fact
represents that distant pair of observations, as well as, distant block of observations
are independent. Note that if we assume more blocks, the precision matrix will be
more sparse. The reduction in computational complexity is achieved through such
sparsity of the precision matrices and we also can parallelize many computations
for blocks of data. Then, p̃(wS) is a proper multivariate joint density with a sparse
precision matrix which enjoys great features, as a result, it is easier to work with
p̃(wS) than with p(wS). We remark that p̃(wS) is a valid pdf, and we could perform
inference directly from a likelihood function not a composite or pseudo-likelihood. For
instance, Eidsvik et al. (2014) achieved inference through block-composite likelihood,
but their approach ignores information about components of the covariance structure,
as a consequence, there is loss of statistical efficiency.
To build a general valid spatial process, we need to provide a pdf consistent with some
well-defined random field. Hence, following the NNGP approach, we use p̃(wS) to
provide such pdf. We also assume that S is a set of fixed and observed locations. And,
we define U = {u1, . . . , ul} as any finite set of locations such that S ∩U = ∅ and V =
S ′∪U , S ′ ⊂ S. Using the conditional distribution properties and corollary 1, we have
that the approximated conditional pdf of p(wU |wS)p(wS) defined by p̃(wU |wS)p̃(wS)
is also a proper density if p̃(wU |wS) is proper. Notice that p(wU |wS) is proper since
{wU , wS} is a realization of the GP (0, C(θ)). For simplicity, if we assume that wui is
independent of wuj given wS, then we define p̃(wU |wS) = ∏l

i=1 p(wui |wS). Further, if
we also assume that wui only depends on some observations of wS, N(ui), which is
the set of neighbors of u in S, then p̃(wU |wS) = ∏l

i=1 p(wui |wN(ui)) which is proper.
Now, we assume that wU |wS follows a multivariate normal distribution with the
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following pdf, p̃(wU |wS) = ∏l
i=1 f(wui |BuiwN(ui), Fui), where Bui = Cui,N(ui)C

−1
N(ui)

and Fui = Cui − Cui,N(ui)C
−1
ui
CN(ui),ui , Ci,j and Ci are elements of Cs.

Then we can define an approximation of the pdf p(wV ) as follows,

p̃(wV ) =
∫
p̃(wU |wS)p̃(wS)

∏
si∈(S′)c

d(w(si)), (5.4)

where (S ′)c is the complement of S ′ and p̃(wV ) is a proper density for any choice of
N(ui). Katzfuss and Guinness (2017) proposed a general Vecchia approximation,
which is very similar in form to the pdf p̃(wV ), if we assume S = S ′, they proved
that such approximation yields a joint multivariate distribution. Their most similar
case assumes a similar p̃(wS), using vectors of observations, but we define p̃(wU |wS)
different from their approach to build a valid spatial process. We prove that the
joint distribution of wV is consistent with some well-defined stochastic process, in
the sense that the Kolmogorov’s consistency conditions are verified, that is, if the
symmetry and compatibility conditions hold for the process defined through the
finite-dimensional distributions in Equation (5.4). For this reason we need to be
careful when defining p̃(wU |wS) to ensure that it will be the same under reordering
of the sites.

Lemma 1. Let p̃(wV ) in Equation (5.4) be a pdf, where S is fixed, wui given wN(ui)

is independent of wuj given wN(uj), for N(ui) = {sbj ∈ S, ui ∈ bj} ∀i = 1, . . . , l and
proper normal densities p̃(wui |wN(ui)). Then the finite-dimensional distributions with
pdf p̃(wV ) support a valid random field wV for all V ⊂ <2, that is, they satisfy the
Kolmogorov’s conditions of symmetry and consistency.

Following the NNGP we could have chosen N(ui) to be the m nearest neighbors of ui
in S. Nevertheless, henceforth N(ui) comprises the observed locations in the block
where ui belongs in the spatial domain D, therefore, N(ui) depends on the same
observations in S for any order of U . Hence, lemma 1 defines a new valid spatial
process and the next theorem proves that such spatial process derived from a GP is
also a GP.

Theorem 1. For any finite set V ∈ D, p̃(wV ) in Equation (5.4) is the finite
dimensional density of a Gaussian process, called block-NNGP, with cross covariance
funcion

C̃vi,vj =


C̃si,sj if (v1 = si, v2 = sj) ∈ S
Bv1C̃N(v1),sj if v1 /∈ S and v2 = sj ∈ S

δ(v1=v2)Fv1 +Bv1C̃N(v1),N(v2)B
T
v2 if (v1, v2) /∈ S,
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where C̃m,n is the covariance matrix of C̃S.
The block-NNGP contains existing processes as special cases. If we consider one
observation per block and nb is the number of “past” nearest neighbor observations,
the NNGP with S being the set of all observed locations is a particular case of
block-NNGP. Also when N(bk) = ∅,∀k each block wN(bk) is independent from the
other blocks, that is, wN(bk)⊥wN(bj), ∀k 6= j , and we say that the spatial process is
composed by independent blocks (Stein, 2013).

Corollary 2. The block-NNGP with M = n and nb = m recovers the NNGP when
S is the set of all observed locations.

Corollary 3. The block-NNGP with M blocks and nb = 0 recovers the independent
blocks approach.

Following previous blocking strategies (Kim et al., 2005; Eidsvik et al., 2014), the
spatial domain can be partitioned into several regions, either using a regular block
design (Figure (2)a) or an irregular block design (Figure (2)b). If the observed
locations are approximately uniformly distributed over the domain D, the parti-
tions can simply be obtained by splitting the spatial domain into M subregions of
approximately equal area. If the observation locations are far from uniform, more
complicated partitioning schemes might be necessary to achieve fast inference. In our
approach, for the regular block design we fixed the number of blocks, and each block
can have different number of observations. While for the irregular block design, we
have fixed the number of observations per block. Of course, different block designs
can also be implemented, for instance Voronoi/Delaunay designs (Eidsvik et al.,
2014).

3 Bayesian estimation for block-NNGP

Let Y = (Y (s1), . . . , Y (sn)) be a realization of a spatial stochastic process defined
for all si ∈ D ⊂ <2, i = 1, . . . , n. The basic geostatistical Gaussian regression model
is of the form

Y (si) = X ′(si)β + w(si) + ε(si),

where β is a coefficient vector (or regression parameter), X is a a vector of covariates,
w(s) is a spatial structured effect, it captures the spatial association, and ε(si) ∼
N(0, τ 2) models the measurement error. Thus, y|β, w, τ 2 ∼ N(Xβ + w,D(τ 2)),
where D is a diagonal matrix with entries τ 2. Full Bayesian specification is available
if we assing priors to β, w, τ , and hyperparameters. Hence, instead of the Gaussian
process prior for w, we assume that w ∼ block-NNGP(0, C̃(θ)), and also we assume
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β ∼ N(µβ, Vβ) and θ? = (φ, σ2, τ 2) ∼ π(θ?). So, the joint posterior distribution is
given by

p(θ?, β, w|y) ∝ p(θ?)× p(β|µβ,Σβ)× p(w|0, C̃(θ))× p(y|Xβ + w,D(τ 2)). (5.5)

In particular, we assume that S = {s1, . . . , sn} is the set of locations where the
outcomes have been observed and S ′ = S, then for estimation w = wS and C̃(θ) =
C̃S(θ) in Equation (5.5).
The Markov Chain Monte Carlo (MCMC) implementation usually requires updating
the n latent spatial effects w sequentially, in addition to the regression and covariance
parameters (for instance, see Datta et al. (2016)). Finley et al. (2017) studied the
convergence for very large spatial datasets using NNGP to prove that such sequential
updating of the random effects often leads to very poor mixing in the MCMC. To
overcome this issue they proposed the Collapsed MCMC NNGP, which in summary
performs Gibbs Sampling and random walk Metropolis steps to update β and θ,
respectively, and then recover w and predictions y0 using composition sampling.
The Collapsed MCMC for block-NNGP follows the steps: (i) update θ? through
Random walk Metropolis-Hastings (MH). The target log-density is p(θ?|y) ∝ p(θ?)×
N(y|Xβ,Σy|β,θ); where Σy|β,θ = C̃S + D; (ii) Gibb’s sampler update for β, from
the full conditional β|y ∼ N(Bb,B) where B = (Σ−1

β + XTΣy|β,θX)−1 and b =
Σ−1
β µβ + XTΣ−1

y|β,θy; (iii) Recover wS|θ?, β for each post-burn in MCMC sample;
wS|β, θ?, y ∼ N(Ff, F ), where F = (C̃−1

s +D−1)−1 and f = D−1(y −Xβ).
Spatial prediction can be carried out after parameter inference. Conditioning on
a particular estimated value of the parameters (θ, β), spatial prediction amounts
to finding the posterior predictive distribution at a set of prediction locations ui,
that is, p(y(ui)|y). Note that we consider all observed data for estimation, thus S
comprises the observed locations, while the new location points for predictions belong
to the finite set U . Furthermore, since the components of wU |wS are independent, we
can update w(ui) for each i = 1, . . . , l, from p(w(ui)|wS, β, θ?, y ∼ N(m, v), where
m = CT

ui,N(ui)C
−1
N(ui),N(ui)w(N(s0)) and v = σ2 − CT

ui,N(ui)C
−1
N(ui),N(ui)Cui,N(ui). Block

NNGP are especially useful here as posterior sampling for wU is cheap because their
components are independent and each w(ui) is only based on the observations that lie
in the block that it belongs. Now using the posterior samples of w(ui), the posterior
predictive sampling y(ui)|wU , wS, β, θ?, y ∼ N(X(ui)Tβ + w(ui), τ 2).
Our approach does not need to store n × n dense distance matrices, it stores M
“small” dense matrices. It is scalable to massive datasets, we can compute the
precision matrix from the block-NNGP using faster (parallel) computation for the
defined blocks. For shared Memory, good parallel libraries are available, such as the



78 4. Simulation Studies

multi-threaded BLAS/LAPACK libraries included in Microsoft R Open and parallel
Packages in R like the doMC Package (Calaway et al., 2017).

4 Simulation Studies

To assess the performance of the block-NNGP models, we present the next simulation
experiments. We generate a spatial process with n = 2500 observation sites on a
spatial domain (0, 1)× (0, 1). The covariates are X(si) = (1, xi), xi ∼ (N(0, 1)) with
true regression parameters β = (1, 5)T . We use an exponential covariance function
C(h) = σ2 exp(‖si − sj‖) with σ2 = 1. The so-called effective range (r), the distance
at which the correlation decays to 0.1, is studied using simulation scenarios, (i) SIM
I: r = 0.16 (φ = 12) (ii) SIM II: r = 0.33 (φ = 6), and (iii) SIM III: r = 0.67 (φ
= 3), where φ =

√
(8× ν)/range (with ν = 0.5) is called the spatial decay. For all

locations we considered τ 2 = 0.1.
Let S be the set of n = 2000 observed locations and U the set of the remaining
500 observations used to assess predictive performance. We fit the models: (i) full
Gaussian process (full GP), (ii) block-NNGP models with M = n for nb = 10 and
n = 20, which by Corollary 4.1 is equivalent to the NNGP model with 10 and
20 neighbors respectively, (iii) regular (R) block-NNGP models and (iv) irregular
(I) block models. We vary the number of spatial blocks to investigate the way
blocking schemes influences the estimation and prediction capabilities. We use
regular blocks and irregular blocks (Figure (S1)). The regular blocks have the same
of size. The number of blocks M = nm × nm, for instance, 32, 52, 72, and 102. A
similar configuration was also used in Eidsvik et al. (2014). Our irregular blocks
design requires grouping approximately n/M observations per block, so the region
D is subdivided into M irregular regions. In the regular case, we are also able to
know the number of observations per block (nk), but our main concern comes when
the observed locations are not uniformly distributed over the domain D because the
(nk) will be very different for each block k, and for some blocks it will be expensive
to perform matrices operations. On the other hand, with irregular blocks we can
control the approximated number of observations per block and the sparsity of C̃−1

S

(Figure (S2)). In both cases the maximum number of blocks should be constrained
by some prior information about the range of the process. Although there might
not be an explicit number of blocks and neighbor blocks for optimal blocking, we
will determine them by the computational speed as well as statistical efficiency,
maximizing the number of blocks.
The parameters of the models are estimated from a Bayesian point of view, so we run
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the MCMC for a small number of iterations (1000) to determine the “best” number
of blocks in terms of less time. Figure (2) shows that for this configuration and
different values of φ, the time does not significatly decrease for M > 92. We also test
the WAIC and LPML to study the goodness of fit for different number of blocks and
neighbor blocks, but we did not get any pattern. Then full posterior inference for
subsequent analysis was based upon one chain of 25000 iterations (with a burn-in of
5000 iterations). In particular, the collapsed MCMC method (Finley et al., 2017)
was adapted to the block-NNGP. We use flat prior distributions for β, for σ2 we
assigned inverse Gamma IG(2, 1) prior, for τ 2 we assigned IG(2, 0.1) prior, and for
the spatial decay φ we assigned a uniform prior U(2, 30) which is equivalent to a
range between approximately 0.067 and 1 units. We also used a parameterization on
the real line, with log variance, log precision and log range parameters.
Parameter estimates and performance metrics for the models proposed when φ = 12
are provided in Table (1). In all cases, the mean posterior estimates for block-NNGP
are very close to the full-GP mean posterior estimates. The goodness of fit and
predictive performance for all models are very similar. The number of neighbors of
block-NNGP models with irregular blocks (nbk = 40− 1 for M = 100, nb = 1 and
nbk = 30− 1 for M = 200, nb = 2) is higher than the number of neighbors of NNGP
models (10 and 20). Nevertheless these block-NNGP models are faster and they
also show a slightly better performance to fit the data, thus it has more information
about the process without increaing the computational cost. In fact, Figure (3)
shows the similarity of estimations of wS, interpolated over the domain, between
all block-NNGP models and Full GP. We conclude that for this simulated data we
detect no differences between the block-NNGP models, and they fit the data very
well when the range is very small.
To study the statistical efficiency when the effective correlation length increases,
while keeping the domain fixed, we evaluate the performance of the proposed models
when φ = 6. In Table (2), it is observed that estimations of the block-NNGP models
closely approximate to the ones of full GP model. Figure (4) shows the posterior
mean estimates of the spatial random effects interpolated over the domain. As
illustrated in Figure (4), the block-NNGP models can result in considerably better
approximations, specially for M=225 and nb = 2. The LPML and WAIC values
suggest that the block-NNGP models are the best to fit the data. Computing times
requirements for NNGP and block-NNGP models are similar, but as we expected
lower than the full GP model time.
Further comparisons show that the mean posterior estimates of σ2, φ and β0 for
the NNGP model with 20 neighbors and full GP are a little different (Table (2)).
We might think that if we increase the number of neighbors, the estimation of
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Figure 2: MCMC time for block-NNGP models running 1000 iterations, for regular
blocks. (a) SIM I (φ = 12), (b) SIM II (φ = 6) and (c) SIM III (φ = 3).
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Table 1: SIM I (φ = 12) Summary of mean parameter estimates. Parameter
posterior summary (2.5, 97.5) percentiles.

Model Full GP NNGP NNGP (R)M=100 (R)M=64 (I)M=100 (I)M=200
(20) (10) nb=1 nb=1 nb=1 nb=2

σ2 1 0.99 1.07 1.04 1 0.99 0.92 0.94
(0.79, 1.36) (0.91, 1.47) (0.89, 1.32) (0.83, 1.31) (0.81, 1.27) (0.78,1.12) (0.77,1.18)

τ2 0.1 0.1 0.09 0.09 0.1 0.1 0.1 0.1
(0.08, 0.12) (0.07, 0.11) (0.07, 0.11) (0.08, 0.12) (0.08, 0.12) (0.08,0.12) (0.08,0.12)

φ 12 13.74 13.09 13.64 13.52 13.6 14.79 14.22
(9.48, 17.74) (9.08, 14.93) (10.2, 14.91) (9.87, 16.95) (10.15, 17.38) (11.67, 17.98) (10.56, 17.86)

β0 1 1.09 1.18 0.98 1.12 1.12 0.72 0.92
(0.79, 1.49) (0.85, 1.61) (0.67, 1.29) (0.91, 1.37) (0.89, 1.39) (0.52,0.91) (0.69,1.19)

β1 5 5.01 5.01 5.01 5.01 5.01 5.01 5.01
(4.99, 5.03) (4.99, 5.03) (4.99, 5.03) (4.99, 5.04) (4.98, 5.03) (4.99,5.04) (4.99,5.03)

LPML -31084.36 -35783.45 -36204.53 -30747.6 -30260.92 -30245.45 -29973.36
WAIC2 184256.5 228406.8 232569.2 181016 176769.5 176363.1 174723.1
G 66.46808 58.47473 57.72994 65.74294 67.48258 66.19069 69.10049
P 329.3224 304.9878 303.4614 335.6308 338.47 340.2987 337.6664
D 395.7905 363.4625 361.1913 401.3738 405.9526 406.4894 406.7669
RMSPE – 0.562189 0.5506445 0.5674386 0.5875377 0.5636098 0.5569855
Accep 23.73333 34.45 35.74 23.13333 23.63 23.36333 23.69333
time (sec) 31637.95 23915.9 23357.57 23758.02 24683.79 22990.89 22915.74
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Figure 3: SIM I (φ = 12). True spatial random effects and posterior mean
estimates for different models.

parameters using the NNGP model should be better, but this is not guaranteed
as we can see from this simulation. In fact, Figure (4) also shows that the NNGP
model with 20 neighbors did not approximate well the spatial field of the full GP
model. The patterns differ greatly from the original spatial random field and the
one estimated using the full-GP. Otherwise the block-NNGP model with M = 64
and nb = 1 has bigger blocks but the estimation is improved without increasing the
computing time requirements drastically. So, although the NNGP has proven to
be successful in capturing local/small-scale variation of spatial processes, it might
have one disadvantage: inaccuracy in representing global/large scale dependence.
This might happen because the NNGP built the DAG based on observations, where
the locations are ordered by one of the coordinates. Adversely, the block-NNGP
chain graph is based on blocks of observations, which captures both small and large
dependence.
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Table 2: SIM II (φ = 6) Summary of mean parameter estimates. Parameter
posterior summary (2.5, 97.5) percentiles, n = 2000.

Model Full GP NNGP NNGP (R)M=64 (R)M=144 (I)M=100 (I)M=100
(20) (10) nb=1 nb=6 nb=2 nb=1

σ2 1 1.35 1.72 1.01 1.38 1.08 1.06 0.96
(0.83, 2.12) (1.01, 2.31) (0.74, 1.66) (0.95, 2.05) (0.75, 1.93) (0.78,1.12) (0.75,1.31)

τ2 0.1 0.14 0.1 0.1 0.11 0.1 0.11 0.11
(0.09, 0.12) (0.08, 0.12) (0.08, 0.11) (0.09, 0.12) (0.09, 0.12) (0.09,0.12) (0.09,0.12)

φ 6 4.93 3.88 6.91 4.67 6.26 6.2 6.85
(3.14, 8.17) (3.03, 6.96) (4.03, 9.87) (3.11, 7.04) (3.35, 9.28) (3.75, 8.75) (4.76,9.07)

β0 1 1.5 1.97 0.87 1.43 1.11 1.03 0.61
(0.77, 2.67) (1.05, 3.23) (0.36, 1.42) (0.93, 2.16) (0.55, 1.91) (0.57,1.7) (0.31,0.94)

β1 5 5.01 5.01 5.01 5.01 5.01 5.01 5.01
(4.99, 5.03) (4.99, 5.03) (4.99, 5.03) (4.99, 5.03) (4.99, 5.03) (4.99, 5.03) (4.99,5.03)

LPML -26101.92 -27891.44 -29292.24 -24944.26 -26345.72 -25364.79 -25435.02
WAIC2 146979.3 161696.3 173963.3 137423.1 148797.4 140935.4 140785.8
G 98.60967 94.5057 89.47476 101.9886 97.27277 100.5962 98.87815
P 313.3962 303.9089 298.1956 324.1011 312.4023 319.8328 324.3391
D 412.0059 398.4146 387.6703 426.0897 409.6751 420.429 423.2173
RMSPE – 0.7678724 0.4926092 0.5830725 0.5996594 0.5310345 0.4934768
Accep 28.69 32.61333 28.59 29.14 26.50333 26.19 25.17333
time (sec) 31677.58 23896.63 23423.89 23840.58 24166.43 23867.53 22746.49
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Figure 4: SIM II (φ = 6). True spatial random effects and posterior mean
estimates for different models.

Table (3) provides parameter estimates and performance metrics for all models when
φ = 3. It is observed that estimations of the block-NNGP models closely approximate
to the ones of full GP model, except the block-NNGP model with M = 100 and
nb = 1. Figure (5) shows the posterior mean estimates of the spatial random effects
interpolated over the domain. We can see that the block-NNGP models result in
considerably better approximations, specially for M = 225 and nb = 2. The LPML
and WAIC values support also this statement. Computing times requirements for
NNGP and block-NNGP models are similar.
Further comparisons show that mean posterior estimates of β0 for NNGP and full
GP are a little different (Table (3)). Figure (5) shows that the spatial random effects
with 20 neighbors is too smooth. Also we can see that the map for the NNGP-model
and the block-NNGP model with M = 100 and nb = 1 are very similar to the true
process, but different of the full GP model. In NNGP and the block-NNGP models
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the number of neighbors is small, so we might think that if we increase the number
of neighbors, the estimation of parameters using the NNGP model should be better,
but this is not guaranteed as we can saw from simulation with φ = 6. And if we use
more neighbors than the “necessary” the model oversmooth the spatial process. In
general, if the block-NNGP models has more neighbors per obervation, that is more
neighbor blocks, the block-NNGP process is more similar to the GP Full process
without increasing the computing time requirements drastically.

Table 3: SIM III (φ = 3): Summary of mean parameter estimates. Parameter
posterior summary (2.5, 97.5) percentiles, n = 2000.

Model Full GP NNGP NNGP (R)M=225 (R)M=324 (I)M=100 (I)M=200
(20) (10) nb=2 nb=2 nb=1 nb=2

σ2 1 1.37 2.65 1.12 2.03 2.37 0.97 1.98
(0.86, 1.79) (1.36, 3.55) (0.66,2.68) (0.97, 3.07) (1.38, 3.21) (0.69, 1.65) (0.96, 1.04)

τ2 0.1 0.1 0.1 0.1 0.11 0.11 0.11 0.11
(0.09, 0.12) (0.09, 0.12) (0.09,0.12) (0.1, 0.12) (0.1, 0.12) (0.1, 0.12) (0.1, 0.12)

φ 3 2.41 1.25 3.03 1.48 1.26 3.22 1.54
(2.01,3.97) (1.01, 2.48) (1.22,5.46) (1.03, 3.17) (1.01, 2.22) (1.76, 4.7) (1.04, 3.33)

β0 1 1.95 3.09 0.8 1.55 1.81 0.67 1.73
(0.85, 3.27) (1.29, 5.33) (-0.18,1.83) ( 0.35,3.16 ) (0.44, 3.39) (0.2, 1.25) (0.68, 3.29)

β1 5 5.01 5.01 5.01 5.01 5.01 5.01 5.01
(4.99,5.03) (4.99,5.03) (4.99,5.03) (4.99, 5.03) (4.99, 5.03) (4.99, 5.03) (4.99, 5.03)

LPML -21883.68 -22780.12 -23219.55 -20010.68 -20096.75 -20784.85 -21050.7
WAIC2 115927.4 122610.6 126136.8 102370.9 102763.3 107298.9 110547.8
G 127.6543 126.3956 123.6112 138.2599 137.6801 132.412 132.6907
P 291.0201 285.967 285.0954 299.7904 300.6322 303.5624 295.7998
D 418.6744 412.3627 408.7066 438.0503 438.3123 435.9745 428.4904
RMSPE – 1.077448 0.5020536 0.8271246 0.8799603 0.4356712 0.8119286
Accep 32.72667 32.31667 24.49 30.09667 32.02 23.82 29.16667
time (sec) 32814.86 23061.93 23760.52 23284.51 24529.85 23973.31 23912.96
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Figure 5: SIM III (φ = 3). True spatial random effects and posterior mean
estimates for different models.

5 Application

In this section, we illustrate the application of block-NNGP to large spatial data
from the mining industry. In the process of extracting ore, stability is crucial because
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it is one of the key characteristics that influence the success of underground mining
work. If it is not possible to produce ore above cut-off at stable conditions, the ore is
made inaccessible, which often results in lost production. To assess the stability of
the rock mass it is studied the spatial joint frequency distribution in a mine because
a joint is a planar or semiplanar discontinuity in a rock mass and represents zones of
weakness in the rock mass (Ellefmo and Eidsvik, 2009).
Here we study joint-frequency data in an iron mine in the northern part of Norway
to estimate the most probable joint frequency at unsampled locations. Eidsvik et al.
(2014) aggregated the raw joint data along the boreholes, thus we have the total
number of 11,701 measurements. Then they transformed the data, the logarithm of
the joint-frequency observations are standardized. In Figure (6), we display locations
of the measurements (east, north) of the joint-frequency data. The depth of boreholes
is used as covariate, along with an intercept. More references about these data can
be found in (Ellefmo and Eidsvik, 2009) and Eidsvik et al. (2014).
We first divide the joint-frequency data in two subsets, the set S composed by a
random subset of 11000 observed locations and the remaining 701 observations were
withheld to assess predictive performance, so they belong to the set U . We fit the
block-NNGP models with different number of regular blocks and different neighbor
blocks. We only run the MCMC for 1000 iterations to choose between these models,
thus we choose the model with M = 289 blocks and nb = 1 block (Figure (6)). Then
full Bayesian inference and posterior inference were based upon 10000 iterations. We
use flat prior distributions for β, for σ2 we assigned inverse Gamma IG(2, 1) prior,
for τ 2 we assigned IG(2, 0.1) prior, and for the spatial decay φ we assigned a uniform
prior U(0.001, 2) which is equivalent to a range between approximately 1 and 2000
m.
From the parameter estimates, the mean effective spatial range is approximately
29m (φ = 0.07), the nugget effect equal to 0.1 and the marginal variance equal to
0,16. These results are very similar to the parameter estimates of block composite
likelihood proposed by Eidsvik et al. (2014) using a Matérn covariance function with
ν = 3/2. Figure (7) shows a maps of posterior estimates for the spatial random effect
and interpolated posterior predictive mean of joint-frequency data. Comparing to
Figure (6), it is easy to see that our estimations are rather accurate.

6 Discussion

We have presented the block-NNGP, a new GMRF for approximating Gaussian
processes with any covariance function. The precision matrix of the block-NNGP has
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Figure 6: Left: Joint-frequency data, n = 10701 locations. Right: Regular blocks
for these data.

Figure 7: Left: Mean Posterior of wS . Right: Mean posterior of joint-frequency
data.
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a block-sparse structure, which allows scalable inference and distributed computations.
It is one of the methods in the state-of-the-art for large spatial data and can be
viewed as a general case of the NNGP (with M = n) of Datta et al. (2016). The
results for block-NNGP and NNGP are very similar for small ranges of the spatial
random field. In addition, it improves the NNGP when the range is not too small.
Using theoretical results, a toy example, large simulated datasets, and a real-data
application, we have shown that the block-NNGP can provide a better approximation
at the same or lower computational complexity and computation time. It should also
be noted that our inference results forM 6= n provide an algorithm for parallel blocks
and distributed computations for inference. The block-NNGP not only approximates
the data precision matrix to a sparse precision matrix, but it is also a valid Gaussian
process in its own right. Extensions to more complicated scenarios are therefore
possible by assuming different sets S and U , or chain graphs. Finally, we remark that
a more sophisticated implementation would allow more speed-up for the block-NNGP
model, using a parallel for-loop and running matrix decompositions in parallel. This
is future work.
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Appendix

A: Proofs of main results

Proof of Proposition 1. If p(wS) is a valid multivariate joint density, p(wbk |wN(bk)) is
also proper, and we have that

∫
p(wbk |wN(bk))dwbk = 1,∀k = 1, . . . ,M.

From the definitions of G and Gb there exists a set of nodes sπ(b1) in G, such that
“the last node” from a DAG Gb belongs to sπ(b1). Then the nodes in sπ(b1) do not have
any directed edge originating from them. As consequence, any node in block π(b1)
can not belong to the set of nodes of any other block. So the term in Equation (5.2)
where all locations of π(b1) appear is p(wπ(b1)|wN(π(b1))). From Fubini’s theorem, we
can interchange the product and integral, thus

∫
p(p̃(wS))dwS =

∫
. . .
∫ M∏

i=1
p(wπ(bi)|wN(π(bi)))dwπ(i)

=
∫
. . .
∫ M∏

i=2
p(wπ(bi)|wN(π(bi)))dwπ(i).

Then, removing any node of π(b1) from G and Gb, we have the chain graph G′ and
DAG G′b, respectively. There exists another set of nodes sπ(b2) in G′, such that “the
last node” from a DAG G′b belongs to sπ(b2). Then the nodes sπ(b2) do not have any
directed edge originating from them. As consequence, any node in block π(b2) can
not belong to the set of nodes of any other block. So the term in Equation (5.2) where
all locations of π(b2) appear is p(wπ(b2)|wN(π(b2))). Applying the Fubini’s theorem
again,

∫
p(p̃(wS))dwS =

∫
. . .
∫ M∏

i=3
p(wπ(bi)|wN(π(bi)))dwπ(i).

In a similar way, we find sπ(b3), . . . , sπ(M), such that,∫
p(p̃(wS))dwS =

∫ ∏M
i=1 p(wπ(bi)|wN(π(bi)))dwπ(i) = 1.

Matrix Analysis Background
Theorem A1: A matrix B ∈ <m×n is full column rank if and only if BTB is invertible
Theorem A2: The determinant of an n× n matrix B is 0 if and only if the matrix B
is not invertible.
Theorem A3: Let Tn be a triangular matrix (either upper or lower) of order n. Let
det(Tn) be the determinant of Tn. Then det(Tn) is equal to the product of all the
diagonal elements of Tn, that is, det(Tn) = ∏n

k=1(akk).
Proposition A1: If B is positive definite (p.d.), then if S has full column rank, then



STBS is positive definite.
Corollary A1: If B is positive definite, then B−1 is positive definite.

Proof of Proposition 2. Without loss of generality, assume that the data were re-
ordered by blocks. From known properties of Gaussian distributions, wbk |wN(bk) ∼
N(BbkwN(bk), Fbk), whereBbk = Cbk,N(bk)C

−1
N(bk) and Fbk = Cbk−Cbk,N(bk)C

−1
N(bk)CN(bk),bk .

Hence,

p̃(w) =
M∏
k=1

p(wbk |wN(bk))

∝
M∏
k=1

1
|Fbk |1/2

exp
{
−1

2(wbk −BbkwN(bk))TF−1
bk

(wbk −BbkwN(bk))
}

∝ 1∏M
k=1 |Fbk |1/2

exp
{
−1

2

M∑
k=1

(wbk −BbkwN(bk))TF−1
bk

(wbk −BbkwN(bk))
}
.

Let wbk − BbkwN(bk) = B?
bk
wS, and j be the j − th observation of block bk, then

∀k = 1, . . . ,M , i = 1, . . . , n and j = 1, . . . , nbk:

B?
bk

(j, i) =


1 if si ∈ sbk
Bbi [j, l] if si ∈ sbk ; si = sN(bk)[l]; l = 1, . . . , Nbk

0 otherwise,

and

B?
bk

=



B?
bk

(1)
...

B?
bk

(j)
...

B?
bk

(nbk)


nbk×n

.

From these definitions, B?
bk

is a matrix with i-th column full of zeros if si /∈ sbk or
si /∈ N(sbk). Since the data were reordered by blocks and the neighbor blocks are
from the past, B?

bk
has the next form:

B?
bk

= [ Rk Ak 0 . . . 0 ] ,

where Ak is a nbk × nbk matrix and Rk is a nbk ×
∑k−1
r=1 nbr matrix with at least one

column with none null-element if nb 6= 0.



Then,

p̃(w) ∝ 1∏M
k=1 |Fbk |1/2

exp
{
−1

2

M∑
k=1

(B?
bk
wS)TF−1

bk
(B?

bk
wS)

}

∝ 1∏M
k=1 |Fbk |1/2

exp
{
−1

2

M∑
k=1

wTS (B?
bk

)TF−1
bk

(B?
bk
wS)

}

∝ 1∏M
k=1 |Fbk |1/2

exp
{
−1

2

M∑
k=1

wTS ((B?
bk

)TF−1
bk
B?
bk

)wS
}

∝ 1∏M
k=1 |Fbk |1/2

exp
{
−1

2w
T
S (

M∑
k=1

(B?
bk

)TF−1
bk
B?
bk

)wS
}
.

Let ∑M
k=1(B?

bk
)TF−1

bk
B?
bk

= (B?
s )TF−1

s B?
s , where Bs = [ B?

b1 ... ... . . . B?
bM ] and

F−1
s = diag(F−1

bk
). F−1

s is a block diagonal matrix and (iii) is proved. And given that
B?
bk

is a matrix with i-th column full of zeros for i > ∑k
r=1 nbr, then Bs is a block

matrix and lower triangular, and (ii) is proved.
Finally, p̃(w) ∝ 1∏M

k=1 |Fbk |
1/2 exp

{
−1

2w
T
S (BT

s F
−1
s Bs)wS

}
and C̃−1

s = BT
s F
−1
s Bs.

C̃s is positive definite
From properties of the Normal distribution, the covariance of the conditional
distribution of wbk |wN(bk) is also p.d. (by Schur complement conditions), then
Fbi = Cbi − Cbi,N(bi)C

−1
N(bi)CN(bi),bi , is p.d. Moreover, Fs = diag(Fbi) and a block

diagonal matrix is p.d. iff each diagonal block is positive definite, so given that Fbi
is p.d. and Fs is block diagonal with blocks Fbi p.d then Fs is p.d. By Corollary A1,
Fs is p.d. then F−1

s is p.d. By Theorem A1, Bs has full column rank iff Rs = BT
s Bs

is invertible. By Theorem A2, the inverse of Rs exists iff det(Rs) 6= 0. Using
the well-known matrix theorems (Henderson and Searle 1981), we can prove the
following: det(Rs) = det(BT

s Bs) = det(BT
s ) det(Bs) 6= 0 if det(BT

s ) = det(Bs) 6= 0.
Given that Bs is a lower triangular matrix, by Theorem A3, det(Bs) = ∏n

k=1(bkk).
And, bkk = 1,∀k, then det(Bs) 6= 0. So, the Rs is invertible and Bs has full column
rank. By Proposition A1, given that Bs has full column rank, and F−1

s is p.d. then
C̃−1
s = BT

s F
−1
s Bs is p.d. And by corollary A1, C̃−1

s is p.d. then C̃s is p.d. and (iv) is
proved.

Since p̃(wS) ∝ 1∏M

k=1 |Fbk |
1/2 exp

{
−1

2w
T
S (C̃−1

s )wS
}
, C̃−1

s = BT
s F
−1
s Bs, and C̃s is p.d.,

then p̃(wS) is a pdf of a multivariate normal distribution and (i) is proved.

If nbk � n then i >
∑k
r=1 nbr and B?

bk
will be more sparse. Also, if nk is small,

the block diagonal matrix F−1
s will be more sparse. As result, C̃−1

s = BT
s F
−1
s Bs, will



still be sparse.

Proof of Lemma 1. We need to prove that the finite dimensional distributions in
Equation (5.4) are consistent with a stochastic process. The Kolmogorov consistency
conditions are checked as follows:

Symmetry under permutation: Let π1, . . . , πn be any permutation of 1, . . . , n,
note that S is fixed, then it is clear that p̃(w(v1), . . . , w(vn)) = p̃(w(vπ1), . . . , w(vπn))
if and only if the same holds for the distribution of ui|N(ui). Since wU |wS fol-
lows a l-multivariate normal distribution, then the symmetry condition is satis-
fied by p(wU |wS), and it holds that the next condition p̃(w(u1), . . . , w(ul)|wS) =
p̃(w(uπ1), . . . , w(uπl)|wS) is necessary and sufficient to prove the symmetry condition
of p̃(wV ). To prove this we define the next pdfs,

p̃(w(u1), . . . , w(ul)|wS) = |2πFU |−1/2 exp
{
−1

2(wU −BUwS)TF−1
U (wU −BUwS)

}
= |2πFU |−1/2 exp {Q(wU)} ,

and

p̃(w(uπ1), . . . , w(uπl)|wS) = |2πΣ′|−1/2 exp
{
−1

2(wUπ −m′)TΣ′−1(wUπ −m′)
}

= |2πΣ′|−1/2 exp {Q(wUπ)} .

We also define a permutation matrix P such that (π1, . . . , πl)T = P (1, . . . , l)T . Then
PwU = P (w(u1), . . . , w(ul))T = (w(uπ1), . . . , w(uπl))T = wUπ. And the mean and
covariance matrix of wUπ|wS are m′ = PBUwS and Σ′ = PFUP

′. Since P−1 = P T

it follows that |P | = ±1 which implies that |Σ′| = |FU |. Using this we have,
Q(wUπ) = (PwU − m′)TΣ′−1(PwU − m′) = (PwU − PBUwS)T (PFUP ′)−1(PwU −
PBUwS) =
(wU−BUwS)TP T (P TF−1

U P T )P (wU−BUwS) = (wU−BUwS)TP TΣ′−1P (wU−BUwS) =
(wU −BUwS)TF−1

U (wU −BUwS) = Q(wU).
Since both |FU | andQ(wU ) are invariant under permutations, p̃(w(u1), . . . , w(ul)|wS) =
p̃(w(uπ1), . . . , w(uπl)|wS) and hence the symmetry condition is satisfied.

Dimensional consistency: We also assume that S is fixed, so, this proof does
not differ from the one found in (Datta et al., 2016) although p̃(wS) has a different
definition.
Let V1 = V ∪{v0} then V1 = S ′∪{v0}∪U . We need to verify p̃(wV ) =

∫
p̃(wV1)d(w(v0)).

So, we have two cases:



Case 1: If v0 ∈ S. By definition p̃(wV1) =
∫
p̃(wV1|S|wS)p̃(wS)∏si∈S|V1 d(wsi), then∫

p̃(wV1)d(w(v0)) =
∫
p̃(wV1|S|wS)p̃(wS)

∏
si∈S|V1

d(w(si))d(w(v0)).

If v0 ∈ S, and V = S ′ ∪ U then v0 ∈ (S ′)c, and ∏
si∈S|V1 d(w(si)d(w(v0)) =∏

si∈(S′)c d(w(si), and∫
p̃(wV1)d(w(v0)) =

∫
p̃(wV1|S|wS)p̃(wS)

∏
si∈(S′)c

d(wsi).

Also, V1|S = U since v0 ∈ S, then∫
p̃(wV1)d(w(v0)) =

∫
p̃(wU |wS)p̃(wS)

∏
si∈(S′)c

d(wsi) = p̃(wV ).

Case 2: If v0 /∈ S, then V1|S = U ∪ {v0}, p̃(wV1|S|wS) = p̃(wU |S|wS)p̃(w(v0)|wS) and
S|V1 = (S ′)c. Now,

p̃(wV1) =
∫
p̃(wV1|S|wS)p̃(wS)

∏
si∈S|V1

d(wsi)

=
∫

p̃(wU |wS)p̃(w(v0)|wS)p̃(wS)
∏

si∈(S′)c
d(wsi).

Hence,∫
p̃(wV1)d(w(v0)) =

∫
p̃(wU |wS)p̃(w(v0)|wS)p̃(wS)

∏
si∈(S′)c

d(wsi)d(w(v0))

=
∫
p̃(wS)p̃(wU |wS)[p̃(w(v0)|wS)d(w(v0))]

∏
si∈(S′)c

d(wsi),

where
∫
p̃(w(v0)|wS)d(w(v0)) = 1, since w(v0) does not appear in any other term.

Finally, ∫
p̃(wV1)d(w(v0)) =

∫
p̃(wS)p̃(wU |wS)

∏
si∈(S′)c

d(wsi) = p̃(wV ).

Proof of Theorem 1. To verify that p̃(wV ) is the pdf of finite dimensional distribution
of a Gaussian process, only rests to prove that p̃(wV ) is the pdf of a multivariate
normal distribution. Since wU |wS follows a l-multivariate normal distribution and
wS follows a n-multivariate normal distribution, the product of these densities is also



a multivariate normal distribution.
Let C̃m,n is the covariance matrix of C̃S. The cross-covariance is computed for the
next possible cases:
Case 1: If v1 ∈ S and v2 ∈ S, that is, v1 = si and v2 = sj , then cov(w(v1), w(v2)|θ)) =
C̃si,sj .

Case 2: If v1 ∈ U and v2 ∈ S, we may suppose also that v2 ∈ bl. Using the law of
total covariance,

cov(w(v1), w(v2)|θ)) = E(cov(w(v1), w(v2)|wS)|θ)+cov(E(w(v1)|wS),E(w(v2)|wS)|θ).

From our definition w(v1)|wS⊥w(bl)|wS and v2 ∈ bl, then we have that w(v1)|wS⊥w(v2)|wS
and cov(w(v1)|wS, w(v2)|wS) = 0. Further, E(w(v1)|wS) = Bv1wN(v1) and using the
next property, E(g(X)|X) = g(X), E(w(v2)|wS) = w(v2). It follows that,

cov(w(v1), w(v2)|θ)) = E(0|θ)+cov(Bv1wN(v1), w(v2)|θ) = Bv1C̃N(v1),w(v2) = Bv1C̃N(v1),w(sj).

Case 3: If v1 ∈ U and v2 ∈ U . This part of the proof is the same for the NNGP,
found in (Datta et al., 2016). We have E(w(v1)|wS) = Bv1wN(v1) and E(w(v2)|wS) =
Bv2wN(v2). Then,

cov(E(w(v1)|wS),E(w(v2)|wS)|θ) = cov(Bv1wN(v1), Bv2wN(v2))
= Bv1cov(wN(v1), wN(v2))BT

v2 .

Observe that if v1 6= v2, then w(v1)|wS⊥w(v2)|wS and cov(w(v1), w(v2)|wS) = 0.
Conversely, if v1 = v2 now cov(w(v1), w(v2)|wS) = var(w(v1)|wS) = Fv1 . Then,
cov(w(v1), w(v2)|wS) = δ(v1 = v2)Fv1 , and E(δ(v1 = v2)Fv1|θ) = δ(v1 = v2)Fv1 .
Hence,

cov(w(v1), w(v2)|θ)) = δ(v1 = v2)Fv1 +Bv1C̃N(v1),N(v2)B
T
v2 .
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Figure S1: First row: Regular block. Second row: Irregular block. Left: Block
design. Right: DAG of blocks.



Figure S2: Sparse pattern of precision matrices C̃−1
S of block-NNGP, with different

number of blocks (M) and differente number of neighbor blocks (nb). Only the
nonzero terms are shown and those are indicated by a dot.
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Chapter 6

Conclusions

This thesis makes original contributions. The first paper is my extension of modeling
the spatial distribution of anchovy abundance off the coast of Peru, to study its spatio-
temporal distribution. There is a need for efficient and fast methods for estimating
abundance of species data. Here the anchovy distribution is modeled taking into
account the features of anchovy (many locations with non anchovy, patchiness)
as well as the inherent challenges of the data (irregular samples across years, big
dataset). The distribution we used is a mixture of a discrete probability mass at
zero and a Gamma distribution for nonzero values. We study many possible spatial,
temporal and spatio-temporal dependencies, these spatio-temporal models shows
great promise for understanding the spatial dependencies of anchovy distribution
across years. Although biologists knows that there are different kinds of clusters
of anchovy agregations (large, medium, small patches with high or low densities)
depending on seasons, it is new that this features can be obtained through spatio-
temporal fields changing in time, this is a substantial gain compared with previous
visual analysis of anchovy data. By using the SPDE approach and estimating the
model parameters using INLA, we also obtain a substantial gain in computational
cost compared with a full MCMC-based approach. Faster estimates can help to
understand and identify underlying reasons for the detected changes in anchovy
behaviour.
Because of the increasing number of large data sets, there is a need for computationally
efficient statistical models. In the sencond paper, we generalize the NNGP to build
a new valid spatial process called block-NNGP. To be useful for a broad range of
practical applications, this process contains a wide family of covariance functions.
We can use the block-NNGP model for parameter estimation and prediction in large
Gaussian spatial models. We show through a simulation study that the block-NNGP
performs well. Using the divide and conquer strategy inherent in the block-NNGP
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model, the required computation time is reduced relative to GP model calculations.
The block-NNGP model approach requires the selection of blocks. We recommend
testing results with different choices of block sizes and number of neighbor blocks.
Our choice must depend on the spatial correlation (small or high spatial dependence)
and the design of data points. We made use of parallel computing environments
(shared memory) for block-NNGP model, the doMC package in R and C++ for some
part of the code. A topic for future work is to implement all code in C++ and to
extend the code to the distributed memory for maximum reduction of the computing
time.



Chapter 7

Future works

In addition to the papers previously mentioned, there is a general idea of potential
future work involving block-NNGP models that we are already working on and may
be fruitful. Gaussian process models have been widely used in spatial statistics but
still face modeling and computational challenges for large spatial datasets. Most
often, the random field is specified to have a stationary isotropic correlation function,
assuming that the variability of many spatial processes is the same throughout the
domain. In such cases, non-stationary Gaussian random fields are used to model
non-stationary data. Nevertheless, non-stationary Gaussian random fields are not
always necessary to model non-stationary spatial data. In this context, to model
nonstationary spatial data we develop a modeling approach using a valid covariance
function based on selected partitions that allows one to knit together local covariance
parameters. Thus, the local covariance parameters are allowed to be estimated within
each partition to reduce computational time requirements. Finally, to facilitate the
computations in local covariance estimation, we use the block-NNGP approach for
the Bayesian inference of our model.
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