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Abstract

Even though many time series presents problems such as overdispersion, zero inflation and
change-points, these features, usually, are not incorporated into the most common dynamic
Bayesian models available in the literature. To address these problems, we worked on two
strands in this dissertation. In the first strand, the objective is to introduce new Bayesian dynamic
models for time series of counts that allow for observations in distributions that can more
adequately adjust to some common features related to the modeling of discrete data. We present
a new framework for uniparametric Dynamic Bayesian Models of counts whose particular cases
include Bell, Poisson-Lindley, Yule-Simon and Borel models. Furthermore, a biparametric
Negative binomial model with unknown shape parameter is provided. The inferential procedure
preserves the sequential nature of the Bayesian analysis and is similar to the Dynamic Generalized
Linear Models (DGLM) with a novel of incorporating Monte Carlo integration to the recursive
algorithm in order to deal with the intractability of the updating distributions and an ARMS step
to sample from the posterior distribution of the shape parameter. We also consider a conjugate
Beta Prime of the second kind distribution prior for the mean of the process. The simulation
results show a good performance of the estimators considered for the static parameter, which
can be reasonably estimated. The application results also highlights a better performance of the
proposed uni/biparametric models over the Poisson model. In the second strand of this work
we incorporate the Product Partition Models class into the DGLM. This new formulation, that
we call DGLM-PPM, retains the flexibility and generality of the DGLM class and also provides
a framework for Bayesian multiple change-point detection in time series. To sample from the
partition and the discount factor we use a Gibbs Sampler with an ARMS step appended. A
simulation study is conducted and the results show that the proposed model is able to detect
the points of regime switch in the simulated data. The superiority of our proposal over the
conventional DGLM is further confirmed in two real data applications in which the DGLM-PPM
outperforms the conventional DGLM in-sample and out-of-sample.

Keywords: zero inflated/overdispersed distribution, Negative binomial distribution, Parame-

ter driven model, Dynamic generalized linear model, Bayesian inference, change-point detection,

Product Partition Models.
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Resumo

Embora muitas séries temporais apresentem problemas como superdispersão, inflação zero
e pontos de mudança, essas características, geralmente, não são incorporadas aos modelos
Bayesianos dinâmicos mais comuns disponíveis na literatura. Para resolver esses problemas,
trabalhamos em duas vertentes nesta tese. Na primeira vertente, o objetivo é introduzir novos
modelos dinâmicos Bayesianos para séries temporais de contagem que permitam observações em
distribuições que se ajustam melhor a algumas características comuns relacionadas à modelagem
de dados discretos. Apresentamos uma nova estrutura para modelos dinâmicos Bayesianos
uniparamétricos de contagem cujos casos particulares incluem os modelos Bell, Poisson-Lindley,
Yule-Simon e Borel. Além disso, propomos um modelo binomial negativo biparamétrico com
parâmetro de forma desconhecido. O procedimento de inferência preserva a natureza seqüencial
da análise Bayesiana e é semelhante ao dos Modelos Lineares Generalizados Dinâmicos (DGLM).
Nossa proposta incorpora passos de integração Monte Carlo ao algoritmo recursivo para lidar
com a intratabilidade das distribuições de atualização e um passo de ARMS para amostrar
da distribuição a posteriori do parâmetro de forma. Também consideramos uma distribuição
conjugada Beta Prime do segundo tipo para a média do processo. Os resultados de simulação
mostram um bom desempenho dos estimadores considerados para o parâmetro estático do
modelo mostrando que ele pode ser razoavelmente estimado. Os resultados da aplicação também
destacam um melhor desempenho dos modelos uni / biparamétricos propostos sobre o modelo
Poisson. Na segunda vertente deste trabalho, incorporamos a classe de Modelos de Partição
Produto ao DGLM. Essa nova formulação, aqui chamada de DGLM-PPM, retém a flexibilidade
e a generalidade da classe DGLM e também fornece uma estrutura para detecção de múltiplos
pontos de mudança em séries temporais. Um estudo de simulação é realizado e os resultados
mostram que o modelo proposto é capaz de detectar os pontos de mudança de regime nos dados
simulados. A superioridade de nossa proposta em relação ao DGLM convencional é confirmada
em duas aplicações a dados reais nas quais o DGLM-PPM supera o DGLM convencional em
performance dentro e fora da amostra.

Palavras chave: Distribuições zero-infladas/superdispersas, Distribuição Binomial Negativa,

Modelos Parameter Driven, Dynamic Generalized Linear Model, inferência Bayesian, detecção

de pontos de mudança, Modelos de Partição Produto.
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Chapter 1

Introduction

1.1 Motivation

A time series can be defined as a collection of observations sequentially indexed in time. The
decomposition of time series into non-observable, or hidden, and independent components has
attracted considerable attention in the last few decades (see Commandeur & Koopman (2007)
[1]). An important class of models that allows such decomposition is that of State Space Models
(SSM). These models became widespread in the literature, especially after Harvey (1989) [2]
textbook treatment on the subject. The success of the SSM class is mainly due to its flexibility,
interpretability, and computational efficiency. Within a frequentist framework, State Space
Models are also called Structural Models and are, generally, estimated using the Kalman Filter.
From a Bayesian perspective these models belong to the class of Dynamic Linear Models (DLM),
extensively covered by West & Harrison (1997) [3].

The DLM class is severely limited by the normality hypothesis imposed upon the observations.
There are many data sets that, even under some transformation, still cannot be adequately
modeled by a Normal distribution. A manner to circumvent this restriction was proposed
by West, Harrison, Migon (1985) [4] who extended to time series the regression formalism
developed in Nelder & Wedderburn (1972) [5] to model data belonging to the Uniparametric
Exponential Family. The authors proposed a class of Dynamic Bayesian Models that combines
the sequential nature of the Bayesian inference with conjugate analysis to build closed-form
predictive distributions for the observations. The models within this class are called Dynamic
Generalized Linear Models (DGLM).

The great applicability of the DGLM class to problems in several areas of knowledge has
intensified the research on the subject of Dynamic Bayesian Models. Gamerman & West (1987)
[6] showed applications of non-Gaussian dynamic linear Bayesian models to socio-economic
data sets in a context of survival analysis. Lindsay & Lambert (1995) [7] extended the class
for situations in which observations are available for more than one individual. The authors
work out two examples: the first, for count data, is based on an extension of the Poisson DGLM;
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the other, for duration data, on an extension of the Gamma DGLM. Chiogna & Gaetan (2002)
[8] model the short term relation between exposure to air pollution and general health using a
Poisson DGLM with fixed effects. Other relevant and more recent works with applications of
DGLM include Das (2013) and Martinez-Bello et al. (2017).

Parameter estimation for the DGLM class can be online (dynamic) or offline (when one
assumes the whole sample to be available). The online inference usually follows one of three
popular approaches. The first, introduced by West, Harrison, Migon (1985), assumes a conjugate
prior distribution for the natural parameter of the observations distribution and rely on linear
approximations for the updating steps. The second one, due to Fahrmeir (1992) [9], estimates
the dynamic parameters of the model via posterior modes. This method is more adequate for
dealing with multivariate time series since it does not require the user to perform numerical
integrals of high order. The third approach, treated in Doucet et al. (2000) [10], is based on
particle filter techniques. For a comparative analysis among the three approaches we refer the
reader to Triantafyllopoulos (2009) [11]. The full offline Bayesian inference is, usually, based on
Monte Carlo Markov Chain (MCMC) methods. For more details see, for example, Gammerman
(1998) [12].

A somewhat different approach for the problem of inference in Dynamic Bayesian Models
was presented by da Silva et al. (2011) [13]. The authors introduce a dynamic model for rates
and proportions based on the Beta distribution. A non-conjugate prior is intentionally used
for the mean of the process and the inference is analogous to the procedure outlined by West,
Harrison, Migon (1985). Aiming to preserve the sequential nature of the Bayesian inference,
MCMC methods are avoided in favor of first order approximations whenever necessary. The
intractable integrals are solved numerically with the help of Gauss-Legendre quadratures and
a marginal predictive distribution is built for forecasting. An important feature that makes this
method very appealing is that it allows for a full Bayesian inference including point and interval
estimates for the static shape parameter of the observation equation that, in most applications, is
considered to be a known constant. The Dynamic Bayesian, Beta Model was later generalized
into a Dynamic Bayesian Dirichlet Model by da Silva and Rodrigues (2015) [14].

Some important textbook references for Dynamic Generalized Linear Models other than
West & Harrison (1997) include Fahrmeir and Tutz (2001, chapter 8) [15] and Kedem and
Fokianos (2002, chapter 6) [16]. Overall, the DGLM class is a very flexible and rich one as it
can account for trend, seasonality, cycle and the inclusion of covariates. Research on the field has
been intense in the last thirty years and the rapid increase in computational processing capacity
opened up many possibilities for the application of techniques like Monte Carlo Markov Chain
and Particle Filter in the estimation of the parameters of the DGLM.

Beyond the inference, we are also concerned in this work with the problem of intervention
analysis in the class of Dynamic Bayesian Models. The literature on change-point detection for
these modelss has, at least, three decades. Raftery and Akman (1986) [17] proposed a Poisson
process with heterogeneity to detect single change-points in count data time series . Whittaker
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and Fruhwirth-Schnatter (1994) [18] introduced the change-point as a parameter in a structural
model and obtained its posterior distribution at each time via a multiprocess Kalman Filter. More
recently Silva and da Silva (2017) [19] presented a change-point detection method for count
data time series based on an extension of the Chopin filter. The DLM class also allows for
intervention analysis since the Bayesian inference permits the user to incorporate subjective
information into a model. However, the change-point problem can become a major concern
when the uncertainty about external events is too high. In this situations, the dynamic model can
take a long time to capture a shock that changes the level of the time series leading to very bad
predictions. Textbook treatment on this topic can be found in chapter 11 of West & Harrison
(1997).

Another Bayesian approach of great interest to the change-point problem is the Product
Partition Models (PPM) class from Hartigan (1990) [20] and Barry & Hartigan (1992) [21]. The
basic idea behind those models is to partition the data set into contiguous blocks of observations
that are similar to each other. The probability function of the random partitions has a product
form and, within each block, the observations are conditionally independent given the parameters.
The PPM class allows the user to treat the number of change-points (or blocks) in a time series
as a random variable, which is a major advantage over other popular models in the literature.
Almeida (2016) [22] suggests the development of a new class of models that combine the DGLM
of West, Harrison & Migon (1985) with the PPM. This class permits not only the detection of
multiple change-points in time series, but also online inference.

In this work we aim for two main objectives: i) to further expand the class of Dynamic
Bayesian Models to new distributions that are unprecedented in the literature. We are specially
interested in dynamic models for count data that can account for inflation of zeros and overdispe-
rion. ii) to propose a new method for change-point detection within the DGLM class following
the approach of Almeida (2016) [22]. Specific goals will be elaborate in more details in the next
section.

1.2 Objectives

In this work we focused on the following specific objectives:

1. To present extensions of the class of Dynamic Bayesian Models for distributions outside
of the Exponential Family. We are particularly interested in uniparametric distributions
for count data that can serve as alternatives for the Poisson distribution in the presence of
overdispersion or zero-inflation;

2. To introduce a novel scheme for a Bayesian Dynamic Negative Binomial Model (DBNBM).
The approach proposed in this work is similar to that of da Silva et al. (2011). Since we
wish to preserve the sequential nature of the Bayesian inference, Taylor expansions and
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numerical integration techniques will be used to obtain approximations for the quantities
involved in the updating steps whenever necessary;

3. To Extend the framework developed for the DBNBM to continuous biparametric distribu-
tions with support in R+;

4. To expand the DGLM class to allow for multiple change-points analysis. For this particular
goal we will use the Product Partition Models as proposed by Hartigan (1990) and the
approach suggested by Almeida (2016). A Gibbs Sampler with an appended ARMS step
will be used to generate samples from the partitions and of the discount factor.

1.3 Structure of this Work

This thesis is organized as follows:

• Chapter 2 presents a brief introduction to some important concepts that will be used along this
thesis;

• Chapter 3 is dedicated to the theory of Dynamic Linear Models that will be used as a starting
point for the new models developed in this text;

• In Chapter 4 we propose several new dynamic Bayesian models for count data. The new cases
introduced here include the Bell, Poisson-Lindley, Borel and Yule-Simon distributions. We also
introduce the structure for the DBNBM based on conjugate analysis, linear approximations
and Monte Carlo integration. This scheme can be further extended to other biparametric
distributions that belong to the Exponential Family. The Gamma and Weibull cases are
presented as illustrations in Appendix B;

• Chapter 5 introduces a new model for Bayesian change-point detection. This model, that we
call DGLM-PPM, merges the DGLM of West, Harrisson and Migon (1985) to the Product
Partition Model of Barry & Hartigan (1992) according to the proposal of Almeida (2016).
We show that the discount factor associated with this new class can be estimated using a
Metropolis step appended to the Gibb Sampling algorithm used to sample from the partitions.
This procedure vastly improves the model making it a viable option for detecting multiple
change-points in time series. A simulation study and real life data application with Poisson
and Normal responses are also presented;

• Chapter 6 is dedicated to the final remarks and considerations regarding possible future works.
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Chapter 2

Preliminary Concepts

In this chapter we present a brief overview of several concepts that are important for a better
comprehension of this text.

2.1 Monte Carlo Integration

Monte Carlo methods refer to a set of simulation techniques used to approximate complex results
via random sampling. The interest, usually, lies in solving integrals such as:

Eµ[f(X)] =
∫

Ω
f(x)µ(dx), (2.1)

where Ω is the domain of integration, f : Ω→ R is a measurable function and µ(dx) a probability
measure on Ω. Monte Carlo Integration (MCI) consists in approximating expression (2.1) by
averaging the function f(x) over random and independent samples X1 · · · Xt drawn from a
probability density p(.) that is convenient for the problem. That is:

Eµ[f(X)] ≈ 1

n

n∑
t=1

f(Xt)

p(Xt)
. (2.2)

Call the Monte Carlo estimator Ī . We can prove that E[Ī] = E[f(X)]

Proof.

Eµ[Ī] =
1

n
Eµ
[
n∑
t=1

f(Xt)

p(Xt)

]

=
1

n

∫
Ω

(
n∑
t=1

f(x)

p(x)

)
p(x)µ(dx)

=
1

n

n∑
t=1

∫
Ω

f(x)

p(x)
p(x)µ(dx)

= E(f(x))
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This result holds if f(x) > 0 and f(x)
p(x)

is finite. , Thus, the Monte Carlo estimator is unbiased.
In addition, the Law of Large Numbers ensures that the approximation gets more accurate as the
number of random draws n increases. The convergence is achieved at the rate of O(

√
n) for any

dimension. This is a major advantage of the MCI over quadrature techniques – specially in high
dimensions since the convergence for standard numerical integration becomes exponentially
slower as the number of dimensions grow. Monte Carlo Integration also performs significantly
better than quadratures when the target function presents singularities.

2.2 Metropolis-Hastings and Gibbs Sampler

The Bayesian inference frequently involves the computation of certain quantities, such as means
and quantiles, that can only be attained through indirect sampling methods since posterior dis-
tributions are, in most situations, known only up to a normalization constant. The problem of
random sampling from a distribution f(x) that is analytically intractable has been extensively
covered in the literature and many procedures were suggested – most of them based on simula-
tions from a Markov Chain. These methods, known as Markov Chain Monte Carlo (MCMC),
include the Metropolis-Hastings algorithm and the Gibbs Sampler.

Following Gilks, Richardson and Spiegelhalter (1995, chapter 1) [23], consider a sequence of
random variables X0, X1, X2, · · · . They form a Markov Chain if the probability distribution that
determines the next state, denoted by Xt+1, depends only on the current state Xt of the chain.
Mathematically, this condition can be expressed as:

P (Xt+1 | Xt, Xt−1, Xt−2, · · · , X0) = P (Xt+1 | Xt). (2.3)

Now, assume the chain to be time homogeneous – that is, the transition probability P (. | .)
does not depend on the time t – irreducible and aperiodic. An important property of Markov
Chains with such characteristics is that, if the chain is long enough, it will reach equilibrium and
the transition probabilities will converge to a stationary distribution that we will denote by π(.):

So, as the chain runs, every new sample Xt obtained will look more and more like dependent
observations drawn from the stationary distribution π(x). Thus, in order to draw samples from
an analytically intractable distribution, we just need to build an aperiodic, irreducible Markov
Chain whose stationary distribution is exactly the target function desired. Posterior summaries
can be easily obtained from simple ergodic averages over the values of the chain. Note, however,
that the points sampled before the convergence must be discarded. The iterations needed for the
chain to reach its stationary state are usually called the burn-in period.

Such a Markov Chain can be constructed using the generalization of the Metropolis algorithm
developed by Hastings (1970) [24]. The method requires a proposal or candidate distribution
from which samples are easy to obtain. The procedure here consists in sampling points from
this proposal, that we will denote by g(x | Xt), and accept them with a given probability. An
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important aspect of the algorithm is that the proposal density may depend on the current state of
the chain. When a point is accepted it becomes the new current state of the chain, otherwise the
chain does not move at all. The acceptance probability is given by:

α(Xcur, X
∗) = min

Ç
1,

f(X∗)g(Xcur | X∗)
f(Xcur)g(X∗ | Xcur)

å
, (2.4)

where X∗ denotes a sample drawn from the proposal and Xcur the current state of the chain. The
full Metropolis-Hastings algorithm is described below:

Algorithm 1: Metropolis-Hastings algorithm
1 Initialize Xcur and set t = 0

2 for t← 1 to N do
3 sample X∗ from g(X | Xt)
4 sample U from an Unif ∼ (0, 1)
5 if U ≤ α(Xcur, X

∗) then
6 set Xcur = X∗

7 else
8 Xcur does not change
9 end

10 Increment t
11 end

Under regularity conditions, the stationary state of the chain will be the target distribution
regardless of the proposal distribution chosen. However, the rate of convergence depends heavily
on g(. | .). A poor choice can lead to a highly inefficient sampling process.

So far no restrictions were imposed on the dimensionality of the target distribution. As
the number of dimensions increases convergence of the Metropolis-Hastings algorithm gets
progressively harder. A more computationally efficient approach in this situations is to break the
parameter space into N blocks of lower dimensions and then update each of these components
individually. This method, known as single component Metropolis-Hastings, is a convenient
manner to reduce the dimensionality of the problem. Let X−i represent the set of all the
components of X except for the i-th component, that is:

X−i = {X1, X2, · · · , Xi−1, Xi+1, · · · , XN}.

The idea of the single component Metropolis-Hastings is to sample from the components
separately so that each iteration of the algorithm has N independent updating steps. The proposal
distribution for the i-th component in the iteration t is denoted by g(X∗i | Xt,i, Xt,−i), where
Xt,−i is given by:

Xt,−i = {Xt+1,1; · · · ;Xt+1,i−1;Xt,i+1; · · · .Xt,N}.
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That is, Xt,−i represents the value of X−i after the step i−1 of iteration t+1. Thus, given the
proposal distribution for the i-th block gi(|), a candidate observation X∗i of the target distribution
will be accepted with probability:

α(X−i, Xi, X
∗
i ) = min

Ç
1,
π(X∗i | X−i)g(Xi | X∗i , X−i)
π(Xi | X−i)g(X∗i | Xi, X−i)

å
. (2.5)

where π(Xi | X−i) denotes the full conditional distribution for Xi, that is: the distribution of Xi

conditional on all the other components of X . Thus we can sample from the target distribution
f(X) by taking samples from the blocks Xi as intermediate steps. The Gibbs Sampler is a
particular case of single-component Metropolis-Hastings where the proposal distribution for the
updating of the i-th component are given by:

g(X∗i | Xi, X−i) = π(X∗i | X−i), (2.6)

that is, the proposals are the full conditionals. Observe that, if we substitute equation (2.6) into
(2.5) we will obtain α = 1. Thus, in a Gibbs Sampler the candidates are always accepted.

2.3 Adaptive Rejection Metropolis Sampling

A simple method for sampling from a target distribution consists in generating samples from a
proposal distribution and accept or reject them based on some condition. Suppose, for example,
that samples from an auxiliary distribution g(x) can be readily drawn and that there is a constant
m such thatmg(x) ≥ f(x) for all x ∈ F , where F is the domain of f . Now defineK(x) = f(x)

mg(x)

and generate independent random observationsX and u from g andU ∼ Unif(0, 1), respectively.
The sample X will be accepted if u < K(X) and rejected otherwise; that is: if the condition is
met, we accept X as being drawn from the target distribution f(x). Further repetition of these
steps will produce as many independent samples from f as desired. This method is known as
Rejection sampling.

Note that K(X) represents a probability of acceptance. Ideally one would like to choose a
proposal distribution very similar to the target distribution. In this situations m would take values
close to one and K(X) would also be close to one, meaning that few iterations are necessary for
a random draw from g to be accepted. This rarely happens in practice, though, and the Rejection
Sampling algorithm may need a lot of iterations to accept the desired number of samples from
the target distribution. One way around this problem is to improve the auxiliary function g(X)

each time a sample is rejected. For univariate bounded log-concave densities this can be achieved
by the adaptive Rejection Sampling (ARS) algorithm proposed by Gilks (1992) [25]. Assume
the log-concavity of f(x) can be written as:

log[f(a)]− 2log[f(b)] + log[f(c)] < 0, such that a < b < c ∀ a, b, c ∈ D. (2.7)

The idea behind this method is to construct a piecewise linear function hn(x) that serves as
an envelope for the logarithm of the log-concave target distribution. The proposal distribution is,
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then, given by: gn(x) = 1
mn
ehn(x) where mn is a normalizing constant. The function gn(x) is

piecewise exponential and can be sampled from by usual random number generation methods.
So, for every proposal X rejected, the envelope hn(x) is updated and gn(x) is improved to
resemble more the target function, thereby decreasing the probability of rejections.

The ARS procedure is restricted to log-concave target distributions. For non-log-concave
functions Gilks and Best (1995) [26] suggest a new setting where a Metropolis-Hastings step is
appended to the ARS scheme. They called this method adaptive Rejection Metropolis Sampling
(ARMS). The ARMS envelope function is given by:

hn(x) = max[Li,i+1(x, Sn),min{Li−1i(x, Sn), Li+1,i+2(x, Sn)}], (2.8)

where Sn = {xi, i = 0, · · · , n + 1} represents a set of abscissae in ascending order. Also,
for 1 ≤ i ≤ j ≤ n, let Lij(x;Sn) be a segment of line going through the pair of coordinates
(xi, log[f(xi)]]) and (xj, log[f(xj)]]). Notice that equation (2.8) does not serve as an envelope
for all possible target distributions since the condition that hn(x) ≥ log[f(x)] everywhere on
D will not hold if f is a non-log-concave or multimodal density. The ARMS procedure tackle
this problem by allowing the proposal distribution to remain below the target in some regions
of D. In these regions, the MH step appended to the algorithm will ensure that the accepted
samples are drawn from the desired target distribution. Denote Xcur as the value of x in a given
iteration, XA an accepted draw from the proposal in the ARS step, XM an accepted draw in the
MH step and consider gn(x) = 1

mn
ehn(x) as in ARS; then the ARMS algorithm is given by the

pseudo-code below:

Algorithm 2: adaptive Metropolis Rejection Sampling Algorithm

1 Step 1: Initialize n and Sn independently
2 Step 2: Sample X from g(x)

3 Step 3: Sample U from Unif(0, 1)

4 if U > f(X)

ehn(X) then
5 Reject X , set Sn+1 = Sn ∪X , relabel Sn+1, increment n, go back to step 2;
6 else
7 Accept X , set XA = X;
8 end
9 Step 4 Sample U from Unif(0, 1)

10 if U > min
[
1, f(XA)min{f(Xcur),ehn(Xcur)}

f(Xcur)min{f(XA),ehn(XA)}

]
then

11 Reject XA, set XM = Xcur;
12 else
13 Accept XA, set XM = XA;
14 end
15 Step 5: Return XM
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When the target function is log-concave, hn(x) is an envelope for log[f(x)] and the Metropolis-
Hastings step is not necessary. In this case ARMS is just the regular ARS. Implementation of the
ARMS algorithm is available in the ’dlm’ package from R.

2.4 Fubini’s Theorem

In many situations it may be desirable to interchange the order of integration in a multiple
integral. Fubini’s theorem provides a powerful result that assures this is possible under very
general conditions. Let X and Y be σ-finite measure spaces and f(x, y) a measurable function
in the product space X × Y . Assume, further, that the integral is absolutely convergent:

∫
X×Y
|f(x, y)|d(x, y) <∞,

then, ∫
X

Å∫
Y
f(x, y)dy

ã
dx =

∫
Y

Å∫
X
f(x, y)dx

ã
dy =

∫
X×Y

f(x, y)d(x, y),

that is, the double integral may be computed via iterated integrals. Demonstration of Fubini’s
theorem is not in the scope of this work. The interested reader may refer to Resnick (2014,
chapter 5) [27] .

A generalization of this theorem was proposed by Leonida Tonelli. The statements made by
Tonelli’s theorem are the exact same of Fubini’s, but under less restrictive assumptions. It does
not require f(x, y) to be absolutely convergent, but only that f is a non-negative measurable
function.

2.5 Model Comparison

In the following chapters we illustrate the models presented in this thesis with real data sets. To
compare between different models we are going to use the following metrics: the Bayes Factor
and the Bayesian Information Criterion (BIC) to evaluate in sample performance and the one
step ahead prediction accuracy to evaluate out of sample performance.

In a Bayesian context, the Bayes Factor (henceforth BF) is a very popular method for
comparing and selecting from different models. To compute the BF, let M represent a particular
model. Given the whole data Y , it follows from the Bayes theorem that the posterior probability
of the model M is given by:

p(M | Y ) =
p(Y |M)p(M)

p(Y )
,

where p(M) is the prior distribution for M and p(Y |M) the marginal predictive distribution of
Y. Now suppose we have to choose from two models – M1 and M0, based on the same set of
observations Y . The relative plausibility of the models can be measured through the BF defined
as:
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BF (M0,M1) =
p(Y |M1)

p(Y |M0)
=
p(M1 | Y )p(M0)

p(M0 | Y )p(M1)
,

Notice that if we assign the same prior probability for each model, the Bayes Factor reduces
to the ratio of Posterior Probabilities. Values of BF greater than one suggest evidence in favor of
model M1 over M0. A deeper discussion regarding the interpretation of the Bayes Factor can be
found in Kass and Raftery (1995) [28]. The authors stress that the BF summarizes the evidence
provided by data in favor (or against) a given model and propose the following interpretation
scale.

BF (M1,M0) Evidence againsta M0

1 to 3.2 Not worth more than a bare mention
3.2 to 10 Substantial
10 to 100 Strong

>100 Decisive

Table 2.1: BF interpretation scale

The Bayesian Information Criterion, proposed by Schwarz (1978) [29], is an alternative to
the Akaike Information Criterion (AIC) and is preferred over it for bayesian model selection.
We will work with the following definition of the BIC:

BIC = log(n)k − 2 log(p(Y | θ,M)),

where k is the number of parameters in the model and n the number of observations.
To evaluate the prediction accuracy two measures were used: the Mean Squared Error (MSE)

and the Mean Absolute Error (MAE) given, respectively, by

MSE =
1

T

T∑
t=1

(ŷt − yt)2

MAE =
1

T

T∑
t=1

|ŷt − yt| ,

where T denotes the size of the data set and ŷt represents the one-step-ahead forecast for the
instant t.
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Chapter 3

Dynamic Bayesian Models

Oksendal (1992) [30] formally defines a stochastic process as:

A parametrized collection of random variables {Yt}t∈T defined in a probability space
(Ω,F , P ) that takes values in Rn, where P is a probability measure defined in a
measurable space (Ω,F).

If T is defined as the set, or a subset, of the integer numbers, the stochastic process is called
discrete and if T is defined asR+ the process is called continuous. A time series is a realization
of a stochastic process {Yt} in discrete time where each value yt, t ∈ {0, 1, 2, 3, · · · , T}, is
generated from a probability distribution function FY that defines the process. This chapter
presents an overview of a particular class of Bayesian models designed for modeling and
forecasting time series: the Dynamic Linear Models (DLM) class and its extension, the Dynamic
Generalized Linear Models (DGLM). The DLM class is adequate for modeling time series whose
underlying process FY is Gaussian, whilst the DGLM class assumes that FY belongs to the
Exponential Family.

3.1 Dynamic Linear Models

A DLM is defined, for each time t, by a quadruple {Ft,Gt,Wt,Vt}. Let Yt stand for an
observation at time t. The representation of the model is, usually, given in state space form with
an observation and a system (or evolution) equation as follows:

Yt = F′tθt + εt, εt ∼ N [0, Vt] (Observation equation),

θt = Gtθt−1 + ωt, ωt ∼ Tn[0,Wt] (System equation),

where Tn denotes the t-Student distribution with n degrees of freedom and Ft, Gt θt and ωt, are,
respectively, a known |d× 1| design vector; a |d× d| known matrix describing the parameter
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evolution; the |d× 1| state vector and the evolution errors vector with a |d× d| covariance matrix
Wt, at time t.

The sequences εt and ωt are assumed to be internally independent and independent of each
other. In addition, they are also assumed independent of the initial state (theta0 | D0). More
general structures that allow for cross-dependence between the two sources of errors are possible
but, since a correlated model can always be formulated as an independent one, there is no loss
of generality by assuming that εt and ωt are mutually independent. Another key aspect of a
DLM is the structure of conditional independence. That is, given θt, the current, future and
past observations of the time series are independent of each other. This condition implies that
knowledge about the future of the process is sufficiently described by the probability density
functions of the current state (θt−1 | Dt−1), of the future state (θt | θt−1) and of the observations
(Yt | θt). The conditional independence assumption is illustrated in the diagram below:

θt−2 θt−1 θt θt+1 θt+2

Yt−2 Yt−1 Yt Yt+1 Yt+2

The inference of a DLM is Bayesian and follows a sequential structure of evolution and updating
steps. It is typically assumed that the quadruple defining the model does not depend on the
time t, that is: {Ft,Gt,Wt,Vt} = {F,G,W,V}. Further, the complete specification of the
model requires an initial condition that represents the beliefs of the user about the probability
distribution of the state vector at the beginning of the process and a prior distribution for the
unknown variance V . From an operational point of view, it is preferable to work with the
precision φ = 1

V
since it allows a full Bayesian conjugate analysis if an Inverse Gamma prior is

assigned to the parameter. This initial state can be expressed as:

(θ0 | D0) ∼ Tn0 [m0,C0] (Initial Condition)

(φ|D0) ∼ Ga

ñ
n0

2
,
n0S0

2

ô
(Precision Prior distribution)

where Tn stands for a Student’s t distribution with n degrees of freedom, m0 and C0 are prior
moments and the pair {n0, S0} has to be specified. The specification of the variance matrix
W will be addressed later in this chapter. The inference procedure can be summarized by the
following set of equations divided into three categories: the first for the evolution equations; the
second for the forecasting distributions and the last one for the updating steps:

1. Evolution
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at = Gtmt−1,

Rt = GtCt−1G
′
t + Wt,

Qt = F′tRtFt + St−1,

ft = F′tat

2. Forecasting:

(Yt | Dt−1) ∼ Tn−1[ft, Qt],

(θt|Dt−1) ∼ Tn−1[at,Rt].

3. Updating:

nt = nt−1 + 1,

St = St−1 +
St−1

nt

ñ
(Yt − ft)2

Qt

− 1

ô
,

mt = at + At(Yt − ft),

Ct =
St
St−1

(Rt −AtA
′
tQt) ,

(φ | Dt) ∼ Ga

ñ
nt
2
,
ntSt

2

ô
,

(θt | Dt) ∼ Tnt [mt,Ct];

with At = RtFt
Qt

.

The full inference of a DLM can be obtained by cycling through the steps above until the
whole sample has been used. Naturally, the first iteration of the inference procedure requires the
use of the initial state previously defined. The scheme below illustrates this process.

(θt−1 | Dt−1)
Evolution +3 (θt | Dt−1)

Updating +3

��

(θt | Dt)

(Yt | Dt−1)

The procedure described is usually referred as filtering. When the variance Vt is known the
equations above reduce to those of the Kalman Filter. Most of the results described in this section
are immediate consequences of the normality assumption imposed over the models. Complete
proofs can be found in West & Harrison (1997, chapter 4) [3].
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3.2 Dynamic Generalized Linear Models

In many situations the normality assumption is not realistic for many time series. In this cases,
models that belong to the DLM class may not be an optimal forecasting choice. Thus, a new
framework was developed by West, Harrison, Migon (1985) [4] to deal with this problem.
The authors extended the DLM to allow for observations within the Exponential Family of
distributions. These new models form the class that became known as Dynamic Generalized
Linear Models (DGLM).

Let {yt} be a time series whose observations are drawn from a distribution in the Exponential
Family (EF) defined as follows:

p(yt | ηt, τt) = exp[τt(ytηt − a(ηt))]c(yt, τt), (3.1)

where the quantities ηt and τt are, respectively, the natural and scale parameter of the distribution.
The functions a(.) and c(.) are assumed known with a(ηt) being twice differentiable in η. It can
be shown that

E[yt | ηt, τt] =
da(ηt)

dηt
and VAR[yt | ηt, τt] =

1

φt

d2a(ηt)

dη2
t

. (3.2)

The DGLM class has the same basic structure of the Generalized Linear Models (GLM) of
Nelder and Wedderburn [5]. A GLM applies to conditionally independent observations that
belong to the EF. The main idea behind those models is to relate the mean of the observations
E[yt | ηt, τt] = µt to a linear predictor of covariates using a suitable link function g(.). In a
DGLM, the linear predictor is defined as a SSM in order to incorporate the auto-correlation
structure necessary to model a time series. Specifically, we consider that:

g(µt) = λt = F′θt, (3.3)

θt = Gtθt−1 + ωt, ωt ∼ [0,Wt]. (3.4)

As before, θt represents a |d× 1| state vector, Gt is a |d× d| evolution matrix and Ft is a
|d× 1| design vector. In most situations, Gt and Ft are considered to be static, that is: Gt = G

and Ft = F. The link function g(.) is continuous, monotonic and strictly positive. The vector ωt
denotes a sequence of independent errors with zero mean and covariance Wt. Unlike the DLM
class, full distributional knowledge of ωt is, usually, not required for reasons that will become
clear later. In most situations, the distribution of the errors will be defined only by its first two
moments. The problem of specifying the variance matrix Wt is, usually, handled with the help
of discount factors. We will deal with this problem in a separate section. Equation (3.3) is called
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the link equation and (3.4) is the evolution or state equation. Observe that, if θt = θt−1 in (3.4),
i.e. there is no evolution, the DGLM reduces to the GLM class.

The inference of the DGLM class is similar to that of the DLM as it is also based on evolution
and updating steps. However, since a lot of important results derived from standard Normal
theory are no longer available, the whole procedure depends on several suppositions and relies
heavily on linear approximations. The next section presents a detailed approach of this process.

3.2.1 Inference

The inference procedure of the DGLM class is Bayesian and, as such, it requires a prior
distribution for the natural parameter (or, equivalently, to the mean) of the process. In the
following sections we will assume that τt in equation (3.1) is a known quantity. The conjugate
prior for ηt, conditional on the past information of the process Dt−1, can be written as:

p(ηt | Dt−1) = b(αt, βt) exp[αtηt − βta(ηt)], (3.5)

where αt e βt are hyperparameters. There are no restrictions on the form of the prior distribution,
but the conjugate prior is very convenient since it allows for analytical results for the relevant
quantities involved in the Bayesian analysis. The normalizing constant in (3.5) can be calculated
using properties of the EF and is given by,

b(αt, βt) =
1∫

exp[αtηt − βta(ηt)]dηt
.

It also follows from Bayesian conjugacy that the predictive distribution of Yt given the
information up to t− 1 can be written as:

p(Yt | Dt−1) =
b(αt, βt)c(Yt,

1
τt

)

b(αt + τtYt, βt + τt)
, (3.6)

and the posterior distribution of ηt given the set Dt = Dt−1 ∪ Yt is a direct consequence of the
previous results and the Bayes’s theorem, that is:

p(ηt | Dt) = b(αt + τtYt, βt + τt) exp[(αt + τtyt)ηt − (βt + τt)a(ηt)] (3.7)

The DGLM inference combines evolution and updating operations. In the evolution step the
prior distribution of the state θt is built based on the set Dt−1 that encompasses information up
to the time t− 1. When a new observation arrives at time t, the state vector is updated in order to
incorporate the new information available. This scheme is very similar to that of the DLM. The
main difference being the requirement to also update the linear predictor in the DGLM inference.
The diagram below illustrates the process:
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(θt−1 | Dt−1)
evolution +3 (θt | Dt−1)

��

(θt | Dt) · · ·

(λt | Dt−1)

��

updating +3 (λt | Dt)

KS

(Yt | Dt−1)

The first step of the inference is to find a prior distribution for the state vector at time t
conditional on the past information of the process, that is: p(θt | Dt−1). Knowledge of this
distribution, however, requires full access to the posterior p(θt−1 | Dt−1) and to the distribution
of the error ωt. It is preferable, then, to consider that (θt−1 | Dt−1) and ωt are specified only
in terms of their first two moments without assuming any distribution in particular. With this
hypothesis, distributional information regarding the model is lost but there is a gain in flexibility
and computational efficiency since the inferential cycle can proceed sequentially and without
resorting to lengthy MCMC methods. Thus, a DGLM is completely specified by the pair (3.3),
(3.4) and by:

(θt−1 | Dt−1) ∼ [mt−1.Ct−1]. (3.8)

A direct consequence of this structure is that the prior distribution of the state vector is also
specified in terms of its first moments, that is:

(θt | Dt−1) ∼ [at,Rt], (3.9)

where at = Gtmt−1 and Rt = GtCt−1G
′
t + Wt. All these relations follow directly from the

evolution equation (3.4).
The next step is to determine the prior distribution of the linear predictor. Observe that

λt = F′tθt = g(ηt) is a function of θt. Thus, the linear predictor and the state vector can be
described by a joint prior distribution, also partially specified only in terms of their first and
second order moments, and given by:Ñ

λt

θt

∣∣∣∣∣∣Dt−1

é
∼

Ñ ft

at

é
,

Ñ
qt F′tRt

RtF
′
t Rt

é , (3.10)

where ft = F′tat and qt = F′tRtFt. The hyperparameters αt and βt can be elicited from the
moments of the linear predictor λt using the following equations:

ft = E[λt | Dt−1], qt = VAR[λt | Dt−1], (3.11)

Both αt and βt must satisfy the pair (3.11), thus they are the solution of a non-linear
system of equations. Under the conjugacy assumption, the posterior distribution of the natural
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parameter is given by (3.7) and the posterior moments of the linear predictor can be evaluated
as f ∗t = E[g(ηt) | Dt)] and q∗t = VAR[g(ηt) | Dt)]. The predictive distribution p(Yt | Dt−1), in
this case, can be calculated via equation (3.6). Under quadratic loss, the Bayes estimator for
the quantity Yt | Dt−1 is the expected value, that is: Ŷt = E(Yt | Dt−1), where Ŷt denotes the
desired point prediction.

The posterior distribution for the state vector can be derived from (3.10) using the Bayes’s
theorem following the sequence below:

p(λt,θt | Dt) ∝ p(λt,θt | Dt−1)p(Yt | λt)

∝ [p(θt | λt, Dt−1)p(λt | Dt−1)]p(Yt | λt)

∝ p(θt | λt, Dt−1)p(yt | λt).

Then, marginally we obtain:

p(θt | Dt) =
∫
p(θt | λt, Dt−1)p(yt | λt)dλt. (3.12)

Observe that, by the construction of the model, the first component on the right-hand side
of the equation (3.12) is not completely specified. To complete the cycle of inference, however,
full distributional knowledge of (θt | Dt) is not necessary, only its first two moments. Even so,
these moments cannot be calculated from the joint prior distribution of λt and θt without making
additional hypothesis about the model. West, Harrison & Migon (1984) [4] suggest to deal with
this problem using Linear Bayesian Estimation (LBE). LBE is a procedure that allows for the
estimation of unknown non-linear functions through linear approximations (for more details
we refer to West & Harrison 1997, section 4.9). It follows that the optimal estimators for the
expected value and variance of (θt | λt, Dt−1) are given by:

Ê[θt | λt, Dt−1] = at +
1

qt
RtFt(λt − ft),

ˆVAR[θt | λt, Dt−1] = Rt −
1

qt
RtFtF

′
tRt.

Now, assume that (θt | Dt) ∼ [mt,Ct]. From the Law of Total Expectation we can
approximate the first posterior moments as:

mt = E[θt | Dt] = E[Ê[θt | λt, Dt−1] | Dt]

= E[at +
1

qt
RtFt(µt − ft) | Dt]

= at +
1

qt
RtFt(E[µt | Dt]− ft)

= at +
1

qt
RtFt(ft

∗ − ft), (3.13)
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and from the Law of Total Variance the second posterior moment will be given by,

Ct = VAR[θt | Dt] = VAR[E[θt | µt, Dt−1 | Dt]] + E[VAR[θt | µt, Dt−1 | Dt]]

= VAR
ñ
at +

1

qt
RtFt(µt − ft) | Dt

ô
+ E

ñ
Rt −

1

qt
RtFtF

′
tRt | Dt

ô
=

1

q2
t

RtFtF
′
tRtVAR[µt | Dt] + Rt −

1

qt
RtFtF

′
tRt

= Rt −
1

qt

ñ
RtFtF

′
tRt

Ç
1− q∗t

qt

åô
. (3.14)

Equations (3.13) and (3.14) complete the DGLM sequential inference cycle.

3.2.2 Discount Factors

The specification of the sequence of matrices Wt in the system equation, of great importance
for the proper adjustment of a DGLM, has been left aside so far. As already seen, at the instant
t − 1 the posterior variance of the state vector is given by VAR[θt−1 | Dt−1] = Ct−1. Direct
application of the system equation leads to the prior variance at t, that is – VAR[θt | Dt−1] =

Rt = GtCt−1G
′
t + Wt = Pt + Wt, where Pt = GtCt−1G

′
t. Observe that, if Wt = 0, then

VAR[θt | Dt−1] = Pt – that is: the model conveys no loss of information in the passage from
t−1 to t. On the other hand, if Wt >> Pt, the stochastic error dominates the evolution implying
big loss of information in the state transition. One can interpret the values of the matrix Wt as a
measure of information loss in the passage from one state to the next. West & Harrison (1997)
[3] suggest to think of Wt as fraction of Pt. Under this assumption, Rt can be rewritten as:

Rt =
Pt

δ
,

which means that
Wt =

1− δ
δ

Pt,

where δ ∈ (0, 1] is called the discount factor.

3.2.3 Smoothing

A very important problem in time series analysis is that of estimating the state vector retro-
spectively based on the whole set of information available. This procedure is called smoothing.
Following the notation of West & Harrison (1997) [3] the smoothing equations for the DGLM
class are given by:

(θt−h | Dt) ∼ [at(−h),Rt(−h)], for all t, such that 1 ≤ h ≤ t;

where
at(−h) = mt−h −Bt−h[at−h+1 − at(−h+ 1)],
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Rt(−h) = Ct−h −Bt−h[Rt−h+1 −Rt(−h+ 1)]B′t−h,

Bt = CtG
′
t+1R

−1
t+1,

at(0) = mt and Rt(0) = Ct.

3.2.4 Forecasting

The estimation of the state vector k-steps-ahead can be obtained by applying the evolution
equation repeatedly. As already shown, at the time t the posterior moments of θt are given by:

(θt, Dt) ∼ [mt,Ct].

Successive application of the evolution equation leads to:

θt+k ∼ [at(k),Rt(k)],

where

at(k) = Gt+kat(k − 1) and Rt(k) = Gt+kCt−kG
′
t+k + Wt+k

with at(0) = mt e Rt(0) = Ct.

The equations above also apply to DLM. For the DGLM class there is an additional step:
updating the linear predictor. That is,

(λt+k | Dt) ∼ (ft(k), qt(k)),

where ft(k) = F′t+kat(k) and qt(k) = F′t+kRt(k)Ft+k.

Under the conjugacy assumption and using the results derived from the EF, it is possible
to obtain a predictive probability density p(yt+k|DT ) by applying the one-step- ahead equation
repeatedly. This density will be given by:

p(yt+k | Dt) =
b(αt(k), βt(k))c(yt+k,

1
τt+k

)

b(αt(k) + τt+kYt+k, βt(k) + τt+k)
. (3.15)

Example: Poisson DGLM

Suppose {yt} is a time series of counts whose observations are drawn from a Poisson distribution

with parameter µt > 0, that is:

p(yt | µt) =
exp(−µt)µytt

yt!
, yt = 0, 1, 2, 3, · · · .

The Poisson distribution belongs to the EF (3.1) with τ = 1, a(ηt) = exp(ηt), c(yt, τ) = 1
yt!

and ηt = log(µt). From the pair (3.2) it is easy to see that E[yt|µt] = VAR[yt|µt] = µt.
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According to properties of the Exponential Family, the canonical link function is given by

λt = g(µt) = F ′tθt = log(µt) and the conjugate prior for µt is a Gamma with parameters αt
and βt, that is:

p(µt | Dt−1) =
βαtt

Γ(αt)
µαt−1
t exp(−βtµt). (3.16)

The hyperparameters αt and βt can be elicited in terms of the pair (ft, qt) using the following

relations:

ft = E[log(µt | Dt−1)], qt = VAR[log(µt | Dt−1)].

The expressions for the moments of the log of a Gamma random variable are well known

and given by: ft = ψ(αt) − log(βt) and qt = ψ′(αt). West & Harrison (1997) argue that

the digamma (ψ(x)) and trigamma ( ψ′(x)) functions can be approximated by log(x) and 1
x

respectively. Solving the resulting system of equations it is easy to find that αt = 1
qt

and

βt = exp(−ft)
qt

.

From Bayes Theorem it follows that:

p(µt | Dt) ∝ p(yt | µt, Dt−1)p(µt | Dt−1).

Thus, (µt | Dt) ∼ Ga(αt + yt, βt + 1). The updating equations for the linear predictor are given

by the pair below:

f ∗t = ψ(yt + αt)− log(βt + 1) ≈ log(yt + αt)− log(βt + 1),

q∗t = ψ′(yt + αt) ≈
1

yt + αt
.

The predictive distribution can be obtained directly through equation (3.6) or marginally by

integrating the expression below over µt:

p(yt, µt | Dt−1) = p(yt | µt, Dt−1)p(µt).

The resulting distribution is a Negative Binomial that can be written as:

p(yt | Dt−1) =
Γ(yt + αt)

yt!Γ(αt)

βαtt
(1 + βt)yt+αt

, yt = 0, 1, 2 · · · .

Under quadratic loss, the Bayesian estimator for the one-step-ahead prediction ŷt is the expected

value, that is:
E[yt | Dt−1] = ŷt =

αt
βt
.

The inferential cycle ends with the updating of the state vector using equations (3.13) and

(3.14).

38



Chapter 4

Dynamic Bayesian Linear Models for
Count Data

4.1 Introduction

Modeling count data typically involves a choice between two distributions: Poisson and Negative
Binomial. The Poisson is well suited for equidispersed datasets since its mean equals the
variance. Most datasets, however, are not equidisperse. In this case, the Negative Binomial (NB)
distribution is often a better alternative since it allows the variance of the process to be larger
than its mean. The NB is a biparametric distribution whose extra parameter can be used to adjust
the data variance, hence, making it a naturally overdispersed distribution.

When dealing with cross sectional count data, one can work within the well established
General Linear Models (GLM) framework developed by Nelder and Wedderburn (1972) [5]. For
instance, in most applications concerning non dependent count data the Poisson and Negative
Binomial Regression are, usually, the first approach to the problem. For dependent count data,
on the other hand, there is no consensual method. Since discrete response time series arises
frequently in many fields such as Finance, Hydrology, Economics, Epidemiology and others,
this has become a research topic of great interest over the last years.

Cox (1981) [31] made a distinction between two kinds of models with time varying pa-
rameters classified as Parameter Driven (PD) or Observation Driven (OD). Let Yt represent an
observation from a time series in time t. An OD model can be written as:

Yt = f(Dt−1, εt),

where Dt−1 denotes the history of the process up to the time t− 1 and εt is a white noise. In OD
models the parameters are dynamic but their evolution is deterministic and invariant over time
given past information. Parameter-Driven models have the following structure:

Yt = f(θt, νt)
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θt = g(θt−1, ηt),

again νt and ηt are white noise processes and θ represents a state vector that evolves as a
Markovian process independently of past observations. In a PD model, the parameter evolution
has an idiosyncratic error component making it non predictable even with full information of the
underlying process. A modeler having to choose between an observation driven and a parameter
driven model will often face a trade-off: the OD model is, usually, easy to estimate and difficult
to interpret whereas the PD models have a direct interpretation but are hard to estimate because
the likelihood function may be analytically intractable.

Examples of OD models include the family of volatility models derived from the Generalized
Autoregressive Conditional Heterokedastic (GARCH) models of Bollerslev (1986) [32]. As for
the PD models, they encompass all models that can be expressed in a state space representation
where the dynamic parameter is the unobserved state variable.

Within the class of OD models, several approaches for modeling discrete valued time series
came up. Many of these methods rely on the GLM theory to extend the ARMA models to this
kind of data. Some important works in this line of research are Kedem and Fokianos (2002) [33],
Davis, Dunsmuir and Streett (2003 [34]) and Heinen (2003) [35]. For a more extensive review
on the subject the reader may refer to Fokianos (2011) [36]. Computer implementations of these
methods has recently become available for the open source software R (Liboschik, Fokianos and
Fried, 2017) [37].

Another important class of OD models are those based on the binomial thinning operator
such as the integer-valued autoregressive (INAR) process introduced independently by McKenzie
(1985) [38] and Al-Osh and Alzaid (1987) [39] that try to mimic the autocorrelation structure
of an ARMA model for count data. The INAR class has been extended since then to include
covariates (Brannas, 95) [40], geometric innovations (Jazi et al, 2012) [41], conditional
heterocedasticity (Ferland et al, 2006) [42] and inflation of zeros (Souza, 2015) [43].

The PD models for count data belong to the wider class of state space models (SSM) (Durbin
and Koopman, 2012) [44] under the Classical and Bayesian perspectives. The auto-correlation
and overdispersion are, generally, introduced into the model through a hidden process. Zeger
(1988) [45] proposes a log linear model for counts in which a multiplicative stationary latent
process εt captures the heterogeneity of the process. Conditionally on εt the sequence of
observations Yt have the same mean and variance but, marginally, the model is overdispersed.
Zeger Method does not require full distributional knowledge of the observations since the
estimation is done via a quasi-likelihood scheme; only the first two moments are necessary
for consistent estimation of the parameters. The idea of using a latent process to introduce
overdispersion and autocorrelation into a model has been further developed in several works like
Brännäs and Johansson (1994) [46], Campbell (1994) [47], Chan and Ledolter (1995) [48] and
Davis, Dunsmuir and Wang (2000) [49].

From the classical perspective Durbin and Koopman, (1997) [50] extend the SSM class to
non-Gaussian distributions. The likelihood of the model is approximated using Importance
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Sampling techniques and the hyperparameters are obtained through numerical optimization.
Gamerman, Santos and Franco (2013) [51] proposed yet another family of Non-Gaussian State
Space Models (NGSSM) with exact marginal likelihood in which the previous dynamic Poisson
model can be derived as a particular case.

From a Bayesian point of view Harvey and Fernandes (1989) [52] introduce a model that
assumes the counts to be drawn from a Poisson distribution whose mean µt has prior distribution
Gamma. The hyperparameters of the Gamma prior evolve according to a stochastic process
aimed to inflate the prior variance over time. The likelihood of the model is constructed through
a recursive algorithm. Aktekin, Soyer and Xu (2013) [53] present a Bayesian dynamic Poisson
model to assess mortgage default risk in the NGSSM family. After that, Aktekin, Polson, and
Soyer (2018) [54] provide a Bayesian Poisson dynamic model for modeling multivariate count
data, and its sequential procedure. For further information, see Gamerman, Santos and Franco
(2013) [51] and, in the count data context, a good review about these models may be found in
Soyer (2018) [55].

West, Harrison and Migon(1985) [4] use an approximated Bayesian approach to propose a
much more general class of non-Gaussian and non-linear models. This wider class, named as
Dynamic Generalized Linear Models (DGLM), extends the GLM formalism to time series in a
Bayesian framework. The analytical tractability of theses models, however, is easily lost. For a
more complete overview of these methods the reader may refer to West and Harrison (1997) [3]
(chapter 13). Recent developments on the subject can be found in the works of da Silva, Migon
and Correia (2011) [13] and da Silva and Rodrigues (2015) [14].

Triantafyllopoulos (2009) [11] proposes a unified treatment for the DGLM class from which
Poisson and Negative Binomial models are derived as particular cases. In this formulation,
however, the precision parameter of the NB distribution is taken as known and has to be specified
using prior knowledge of the process which is not a realistic assumption in most cases. Souza,
Migon and Pereira (2018) [56] extend the DGLM class to include observation from distributions
in the biparametric Exponential Family. In this framework both the mean and precision of the
distributions are dynamic and different link-functions are introduced to model each parameter.
This class includes discrete distributions such as the Binomial and Poisson.

The main goal of this chapter is to introduce new models for discrete response time series
under a Bayesian perspective. The methods presented here are related to the DGLM family of
West, Harrison and Migon, but are not restricted to the EF. In what follows, two lines of work
are presented. In the first, we introduce a new general framework for uniparametric Bayesian
dynamic count models. The proposed estimation procedure for these models includes the evolu-
tion and updating steps of the DGLM class but, since the use of conjugate priors is not possible
most of the times, the analytic tractability of the results is lost. For this reason we incorporate
Monte Carlo integration to the recursive inference algorithm in order to deal with the updating
steps when no closed-form expressions are available for them. Under this new framework we are
particularly interested in the following overdispersed/zero-inflated distributions: Bell, Poisson
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Lindley, Yule Simon and Borel – each of them has unique features that can make them more
appealing than the Poisson in some particular situations.

In the second line of work we introduce a biparametric Dynamic Bayesian Negative Binomial
Model (DBNBM) for modeling overdispersed time series. Two formulations of the model
are presented: in the first, the static shape parameter of the NB is taken as known within the
model and, in the other, as unknown with prior distribution Gamma. We consider that the main
contributions of our proposal to the literature are: i) The observation equation of the DBNBM
is parametrized in terms of the mean of the process (denoted by µt), in the same way as in the
Negative Binomial GLM, thus improving the interpretability of the model; ii) a conjugate Beta
Prime of the Second Kind prior distribution for µt is used, which allows the model to retain
analytic tractability throughout the inference cycle; iii) an efficient scheme for estimating the
static shape parameter of the model using ARMS is introduced. As far as the authors are aware,
this method was not used in a similar context before.

This chapter has the following structure: in Section 2 we introduce a general method for
Bayesian Dynamic Models of uniparametric distributions. Several count data distribution are
presented as particular cases. In Section 3 the new Dynamic Negative Binomial is introduced.
Two different approaches for the model are presented along with their respective proposed
inference procedures. The uniparametric models and the DNBM are applied to two real count
data time series presenting overdipersion and inflation of zeros in Section 4. Finally, Section 5 is
left for the final remarks.

4.2 Dynamic Bayesian Models for Uniparametric

distributions

In many real life situations one may have to deal with data sets that are highly overdispersed,
with an abnormal count of zeros or posses any other unique feature that the Poisson distribution
may not adequately capture. In this section we present several alternatives to the Poisson DGLM.
The structure of the models presented here follows closely that of the DGLM class presented in
chapter 3. We focus on four distributions: Bell, Borel, Poisson-Lindley and Yule-Simon; but the
method described here can be easily extended to other count uniparametric distributions such as
the logarithm or Zeta distributions. The Geometric distribution was purposely omitted since it is
a special case of the Negative Binomial distribution that will be addressed in the next section.

4.2.1 Some Uniparametric Distributions for Count Data

Bell distribution

Castellares et al. (2018) [57] introduce the Bell distribution and an associated regression model.
The Bell probability function for θ > 0 is given by
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p(yt | θt) =
Byt

yt!
θytt exp(− exp(θt) + 1), yt = 0, 1, 2, · · · , T. (4.1)

where Byt are the Bell number defined as Bn = 1
e

∑∞
k=0

kn

k!
and T denotes the last observation.

The distribution given by expression (4.1) belongs to the EF with ηt = log(θt), τt = 1, c(yt) =
Byt
yt!

and a(ηt) = exp(exp(ηt)) = exp(θt). Using properties of the EF it is easy to prove that:

E[Yt | θt] = θte
θt ,

VAR[Yt | θt] = (1 + θt)θte
θt .

Since θt is strictly positive, then VAR[Yt | θt] > E[Yt | θt], that is, Bell is an uniparametric
naturally overdispersed distribution. The conjugate prior of the Bell can be found according to
the properties of the EF but the normalizing constant of the resulting distribution does not have a
closed-form making it hard to work with.

On the context of regression models, usually the interest lies on the mean µt of the process.
So, letting µt = θte

θt it is possible to rewrite (4.1) as:

p(yt | µt) =
Byt

yt!
exp(1− eW0(µt))W0(µt)

yt , yt = 0, 1, 2, · · · . (4.2)

where W0(.) represents the Lambert function 1. In this new parametrization we have that
E[yt | µt] = µt and VAR[yt | µt] = µt(1 +W0(µt)).

Borel Shifted distribution

The Borel uniparametric distribution for a discrete random variable was proposed by Borel(1942) [58]
in the context of branching process and queuing theory. A discrete random variable Ut follows a
Borel distribution if its probability function is given by:

p(ut | λt) =
exp(−λtut)(λtut)ut−1

ut!
, ut = 1, 2, 3, · · · , T. (4.3)

where λt ∈ [0, 1]. The expected value and variance of (4.3) are, respectively:

E | ut | λt] =
1

1− λt
,

VAR[ut | θt] =
λt

(1− λt)3
.

We are interested, however, in stochastic processes that can take zero values. So, defining
Yt = Ut − 1 and λt = µt

(1+µt)
, it is easy to prove that the distribution for Yt has the form:

1The Lambert function is the transcendental function that solves the equation θ exp(θ) = µ for θ. That is,
θ =W0(µ) .
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P (yt | µt) =
exp

(
µt
µt+1

(yt + 1)
) (

µt
1+µt

(yt + 1)
)yt

(yt + 1)!
, yt = 0, 1, 2, 3, ... (4.4)

where µt > 0 represents the mean and µt
(1+µt)2

the variance. Since VAR[Yt|µt]
E[Yt|µt] = (1 + µt)

2 > 1, the
Borel distribution is also overdispersed. Equation (4.4) is similar to the Modified Borel Tanner
distribution proposed by Gómez-Déniz et al. (2017) [59].

It is also possible to show that the Borel distribution is zero inflated, that is: the proportion of
zeros drawn from a Borel is larger than the same proportion drawn from a Poisson distribution.
To demonstrate that, one can use the zero-inflated index (ZII) (zi = 1 + log(p0)

µt
, where p0 is the

probability of getting a zero value) proposed by Puig and Valero (2006) [60]. Direct application
of the Index formula to the Borel distributions yields

zi = 1 +
1

1 + µt
> 2.

Any zi > 0 indicates a distribution that produces more zeros than the Poisson. The Borel
distribution has a ZII at least greater than two which is a distinctive feature among count data
distributions and makes it a candidate for modeling datasets with high frequency of zeros.

Poisson-Lindley distribution

Another way to introduce overdispersion into a model is by using mixture Poisson distributions
as the observation equation. These distributions arise when we allow the rate parameter µt of the
Poisson to be a random variable following some distribution F (µt | θ). If F (µt | θ) is a Lindley
distribution, the resulting mixture is the Poisson-Lindley (PLD) first presented by Sankaran
(1970) [61]. Its corresponding probability function for θt > 0 is given by:

p(yt | θt) =
θ2
t (θt + yt + 2)

(θt + 1)yt+3
, yt = 0, 1, 2, · · · ; θt > 0, (4.5)

with mean and variance, given respectively by,

E[Yt | θt] =
θt + 2

θt(θt + 1)
= µt, (4.6)

VAR[Yt | θt] =
θ3
t + 4θ2

t + 6θt + 2

θ2
t (θt + 1)

. (4.7)

To verify that (4.5) is overdispersed notice that:

VAR[Yt | θt]
E[Yt | θt]

=
θ3
t + 4θ2

t + 6θt + 2

θt(θt + 2)
. (4.8)
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It is easy to see that, since θt is positive, the numerator in (4.8) is always greater than the
denominator, thus making the Poisson Lindley distribution overdispersed. In fact, it is a simple
calculus exercise to show that the Equation (4.8) has a global minimum of, approximately, 4.33.

To parametrize the PLD in terms of the mean we solve (4.6) for θt to obtain θt =

√
µ2t+6µt+1−µt+1

2µt
.

Then:

p(yt|µt) =

Ç√
µ2t+6µt+1−µt+1

2µt

å2 ÇÇ√
µ2t+6µt+1−µt+1

2µt

å
+ yt + 2

åÇÇ√
µ2t+6µt+1−µt+1

2µt

å
+ 1

åyt+3 , yt = 0, 1, 2, · · · ; µt > 0,

with E[Yt | µt] = µt.

Yule-Simon Shifted

Yule-Simon distribution (YSD) belongs to the broader class of Power Law distributions (see
[62]). It is also, like the Poisson-Lindley, a mixture distribution. Suppose υ is a random
variable following an exponential distribution of rate ρt, then a random variable Ut following a
Geometric(eυ) is Yule-Simon distributed with probability function

p(Ut | ρt) = ρtB(Ut, ρt + 1), Xt = 1, 2, 3, · · · , ρt > 0, (4.9)

where B(.) represents the Beta function. Now, defining Yt = Ut − 1 we can shift (4.9) to obtain
a modified YSD with support in the positive integers including zero, that is:

p(yt | ρt) = ρtB(yt + 1, ρt + 1), yt = 0, 1, 2, 3, · · ·T, ρt > 0. (4.10)

The first two central moments of (4.10) are given by:

E[Yt | ρt] =
1

ρt − 1
, ρt > 1,

VAR[Yt | ρt] =
ρ2
t

(ρt − 1)2(ρt − 2)
, ρt > 2.

The ration between variance and mean can be easily calculated as:

VAR[Yt | ρt]
E[Yt | ρt]

=
ρ2
t

(ρt − 1)(ρt − 2)
, ρt > 2.

Note that, for ρt > 2, the above expression is always positive and decreases monotonically.
Using L’Hopital theorem it is easy to demonstrate that limρt→∞

VAR[Yt|ρt]
E[Yt|ρt] = 1. Therefore, the

Yule-Simon Shifted distribution is overdispersed. Direct application of the ZII also shows
inflation of zeros. Reparametrizing (4.10) in terms of µt = 1

ρt−1
gives us:

p(yt | µt) =
µt + 1

µt
B

Ç
yt + 1,

2µt + 1

µt

å
, yt = 0, 1, 2, · · · . (4.11)

where, naturally, E[Yt | µt] = µt.

45



4.2.2 A General Framework for Dynamic Bayesian Uniparametric
Models

Many uniparametric discrete data distributions are not in the EF. Even for those that belong
to the EF, like the Bell distribution, very often, the conjugate prior distribution is analytically
intractable. Bayesian inference for these distributions are, usually, not exact and, to obtain
samples from the posterior distributions, the user has to rely on MCMC methods. In the context
of the DGLM class it is usually preferred, whenever possible, not to use intensive computational
methods such as the MCMC in order to preserve the sequential nature of the Bayesian inference
and to avoid lengthy computational times (see, for example, [13]). We propose here a general and
simple framework based on the DGLM class for dealing with Dynamic Bayesian models when
the observation equation is an uniparametric distribution. This setting preserves the sequence
of evolution and updating steps of the DGLM inference but does require Bayesian conjugacy
since the intractable integrals involved in the updating steps can be handled via Monte Carlo
Integration (MCI). It is also not necessary that the observation equation belongs to the EF. The
proposed approach has the following basic structure:

• Observation equation:

Any uniparametric count distribution with probability function p(yt | µt) where E[yt | µt] = µt

and µt > 0.

• Prior distribution for µt:

Since the parameter µt is strictly positive any distribution with support in the interval (0,∞)

may be appropriate. The Gamma distribution (3.16) arises as natural choice due to its flexibility
and ease in the elicitation of its moments. Another distribution with those characteristics is
the Beta Prime (BP) distribution with density:

p(µt | αt, βt) =
Γ(αt + βt)

Γ(αt)Γ(βt)

µαt−1
t

(1 + µt)αt+βt
. (4.12)

• Link Function:

There are several possible link functions. For the rest of this section we will assume a
logarithmic one. The log-link is very suitable since it maps the strictly positive mean µt to
the real line. It also provides closed-form expressions for some of the quantities that will be
needed in the updating steps of the model. Thus, we can define:

g(µt) = log(µt) = F′tθt. (4.13)

Where θt represents the state vector containing non-observables components such as level,
trend and seasonality. Other link functions can be viable options, but the evaluation of the
parameters of the prior distribution can become cumbersome depending on the choice.
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• Evolution equation:

θt = Gtθt−1 + ωt, ωt ∼ [0,Wt]. (4.14)

• Initial Information:

(θ0 | D0) ∼ [m0,C0] (4.15)

The inference cycle follows the steps of evolution and updating presented in Chapter 3.
Applying the evolution equation we obtain the priors for the state vector θt and the linear
predictor λt. That is: (θt | Dt−1) ∼ (at,Rt) and (λt | Dt−1) ∼ (ft, qt). Again, we call attention
to the fact that the distributions are only partially specified.

The hyperparameters αt and βt of the prior distribution can be elicited by matching the
moments of the linear predictor with ft and qt as described in the DGLM Poisson example of
Chapter 3. Assuming a Gamma prior distribution and a logarithm link function, we have that
αt = 1

qt
and βt = exp(−ft)

qt
, as already shown. If one chooses the Beta Prime distribution the

results would be:

ft = E[log(µt) | Dt−1] = ψ(αt)− ψ(βt),

qt = VAR[log(µt)|Dt−1] = ψ′(αt) + ψ′(βt).

Proof of the results above is presented in the Appendix A1. Using the first order Taylor
approximations for the digamma and trigamma functions and with some algebra we can show
that αt = exp(−ft)+1

qt
and βt = exp(ft)+1

qt
.

The predictive distribution can be obtained, marginally, from the joint distribution given by
p(yt, µt | Dt−1) = p(yt | µt, Dt−1)p(µt | Dt−1). That is

p(yt | Dt−1) =
∫ ∞

0
p(yt | µt, Dt−1)p(µt | Dt−1)dµt. (4.16)

Now, we can write p(yt | µt, Dt−1) as product of two functions: the first entirely dependent on
the observation yt and the other dependent on yt and µt, therefore:

p(yt | µt, Dt−1) = Z(yt)f(µt, yt)

Then, rewriting (4.16) we have:

p(yt | Dt−1) = Z(yt)
∫ ∞

0
f(µt, yt)p(µt | Dt−1)dµt

= Z(yt)E[f(µt)]. (4.17)
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Since yt is a known quantity we are left with the problem of evaluating the expected value
of a function f(µt). In most cases, there is no closed form solution to E[f(µt)]. A simple
approach to handle the problem is to draw samples from the prior p(µt | Dt−1) and approximate
Expression (4.17) using MCI.

The posterior distribution for the dynamic mean µt can be found by direct application of the
Bayes’ theorem and is given by:

p(µt | Dt) =
p(yt | µt)p(µt | Dt−1)

p(yt | Dt−1)
.

Following the approach described in Chapter 3, the posterior moments of the linear predictor
λt can be calculated from the pair: f ∗t = E[g(µt) | Dt)], q∗t = VAR[g(µt) | Dt)]. So, we are
interested in the following quantities:

E[(g(µt)
n | Dt] =

∫ ∞
0

g(µt)
np(µt | Dt)dµt

=
Z(yt)

p(yt | Dt−1)

∫ ∞
0

g(µt)
nf(µt)p(µt | Dt−1)dµt

=
Z(yt)

p(yt | Dt−1)

∫ ∞
0

h(µt)p(µt | Dt−1)dµt, (4.18)

where n = 1, 2, · · · and h(µt) = [g(µt)]
nf(µt). As before, it is possible to approximate (4.18)

via MCI. Updating of the state vector θt can be achieved through Linear Bayes Estimation
following the procedure described in previous chapters and with the help of results (3.13) and
(3.14) . The box below shows the expressions of Z(yt) and f(µt) for the distributions described
in the Subsection 4.2.1.

Distribution Z(yt) f(µt)

Bell Byt
yt!

exp(1− eW0(µt))W0(µt)
yt

Borel shifted 1
(yt+1)! exp

Ä
µt
µt+1(yt + 1)

ä Ä
µt

1+µt
(yt + 1)

äyt
Poisson-Lindley 1

Å√
µ2
t
+6µt+1−µt+1

2µt

ã2ÅÅ√
µ2
t
+6µt+1−µt+1

2µt

ã
+yt+2

ãÅÅ√
µ2
t
+6µt+1−µt+1

2µt

ã
+1

ãyt+3

Yule-Simon shifted 1 µt+1
µt

B
Ä
yt + 1, 2µt+1

µt

ä
Table 4.1: Corresponding f(·) and Z(·) functions of the predictive distribution for each unipara-
metric distribution.

4.3 A Biparametric Dynamic Bayesian Negative

Binomial Model

In this section we present an approach for a Dynamic Bayesian Negative Binomial Model
(DBNBM). The observation equation of this model is parametrized as in the Negative Binomial
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regression model from GLM and a prior conjugate distribution is assigned for the mean µt of the
process. Let yt, t = 1, 2, · · · , T be a time series of counts, the DBNBM can be defined:

• Observation equation:

p(yt | µt, κ) =
Γ (yt + k−1)

Γ(yt + 1)Γ(κ−1)

(κµt)
yt

(1 + κµt)yt+κ
−1 . (4.19)

The Binomial distribution has two parameters: the dynamic mean µt and a static parameter
κ > 0 associated with the variance of the process. If the parameter κ is known, equation (4.19)

belongs to the Exponential family with φt = 1, ηt = log
(

κ
1+κµt

)
, c(yt, φt) =

Γ(yt+κ−1)
Γ(yt+1)Γ(κ−1)

.
Using the Equation (3.2) we can prove that E[yt | µt] = µt and VAR = µt + κµt. Observe
that the geometric distribution is a particular case of the Negative Binomial when κ = 1.

• Prior distribution for µt:

p(µt | κ, αt, βtDt−1) =
καt

B(αt, βt)

µαt−1
t

(1 + κµt)αt+βt
. (4.20)

where αt > 0 and βt > 0. Equation (4.20) is a particular case of the Generalized Beta of the
second kind distribution. This distribution was chosen because it is the conjugate prior of the
NB in the parametrization defined in (4.19).

• Link Function:

g(µt) = log(µt) = F′tθt. (4.21)

• Evolution equation:

θt = Gtθt−1 + ωt, ωt ∼ [0,Wt]. (4.22)

• Initial Information:

(θ0 | D0) ∼ [m0,C0]. (4.23)

4.3.1 Inference when the shape parameter is known

In this subsection we consider the parameter κ to be static and known. Under those two
assumptions, Equation (4.19) belongs to the EF and the inference cycle for the DBNBM may
follow the DGLM scheme shown in the previous chapter. The prior distributions for the state
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vector θt and the linear predictor λt can be obtained by direct application of the system equation
as described in section 3.2. To equate the hyperparameters αt and βt notice that:

ft = E[log(µt) | κ, αt, βtDt−1] = ψ(αt)− ψ(βt)− log(κ), (4.24)

qt = VAR[log(µt) | αt, βt, κ,Dt−1] = ψ′(αt) + ψ′(βt). (4.25)

The proof of the two expression above can be found in appendix B. Again, using first order
approximations for the Digamma and Trigamma functions we can solve (4.24) and (4.25) for αt
and βt to obtain:

αt ≈
1 + κ exp(ft)

qt
,

βt ≈
exp(−ft) + κ

qtκ
.

Since κ is considered to be known we can compute the predictive distribution marginally
from the joint distribution p(yt, µt | Dt−1) = p(yt | µt, κ,Dt−1)p(µt | Dt−1) in the following
way:

p(yt | Dt−1, κ) =
∫ ∞

0

Γ (yt + k−1)

Γ(yt + 1)Γ(κ−1)

(κµt)
yt

(1 + κµt)yt+κ
−1

καt

B(αt, βt)

µαt−1
t

(1 + κµt)αt+βt
dµt

=
Γ (yt + k−1)

Γ(yt + 1)Γ(κ−1)

κytκαt

B(αt, βt)

∫ ∞
0

µyt+αt−1
t

(1 + κµt)αt+βt
dµt

=
Γ (yt + k−1)

Γ(yt + 1)Γ(κ−1)
κyt+αt

B(αt + yt, βt + κ−1)

B(αt, βt)καt+βt

=
Γ (yt + k−1)

Γ(yt + 1)Γ(κ−1)

B(αt + yt, βt + κ−1)

B(αt, βt)
. (4.26)

Now, observe that, even though, the closed-form of (4.26) is exact, it may not be convenient
from a computational point of view. This is because in most software there is an upper limit
for the Gamma function. In R, for instance, this limit is 171 so that any observation with value
equal or larger than this threshold would cause a numerical error in the estimation algorithm. To
overcome this problem we chose to work with the Beta function instead of the Gamma function.
The Beta function is defined in the following manner: B(a, b) = Γ(a)Γ(b)

Γ(a+b)
for a, b ∈ R+. Thus, it

is easy to see that:
Γ (yt + k−1)

Γ(yt + 1)Γ(κ−1)
=

1

ytB(yt, κ−1)

Notice that this expression still presents some complications since it is not well defined when
yt = 0. The solution is to use the recurrence relation B(yt, κ

−1) = B(yt + 1, κ−1)yt+κ
−1

yt
and

plug this result into (4.26). That yields:
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p(yt | Dt−1, κ) =
1

B(αt, βt)

1

yt + κ−1

B(αt + yt, βt + κ−1)

B(yt + 1, κ−1)
. (4.27)

A point prediction ŷt = E[yt | Dt−1, κ] can be obtained by direct application of the law of total
expectations. That is:

E[yt | Dt−1] = E[E[yt | µt] | Dt−1] =
αt

κ(βt − 1)
.

The variance of the one-step- ahead forecast distribution can also be calculated from proper-
ties of conditional expectations through the expression below:

VAR[yt | Dt−1] = E[VAR[yt | µt] | Dt−1] + VAR[E[yt−1 | Dt−1]]

=
αt

κ(βt − 1)
+

αt
(βt − 1)

since VAR[E[yt−1 | Dt−1]] = VAR
[

αt
κ(βt−1)

]
= 0.

Given a new observation yt, we can update the dynamic parameter µt using the Bayes’s
Theorem, as usual. The distribution (4.20) is the conjugate prior for the mean of the Negative
Binomial distribution with the parametrization used in this work. Then, it follows that:

p(µt | κ,Dt) ∝
µytt

(1 + κµt)yt+κ
−1

µαt−1
t

(1 + κµt)αt+βt

∝ µyt+αt−1
t

(1 + κµt)αt+βt + yt + κ−1
.

Thus, the posterior distribution for µt is a Beta of the second kind with parameters α∗ =

αt + yt and β∗ = βt + κ−1. Updating of the linear predictor λt, now, can be easily achieved
through Expressions (4.24) and (4.25), which gives

f ∗t = E[log(µt) | Dt, κ] = ψ(αt + βt)− ψ(βt + κ−1)− log(κ),

q∗t = VAR[log(µt) | Dt, κ] = ψ′(αt + yt) + ψ′(βt + κ−1).

Finally, updating of the partially specified state vector θt can be done using the equations
already developed in Section 3.2

mt = at +
1

qt
RtFt(f

∗
t − ft),

Ct = Rt −
1

qt

ñ
RtFtF

′
tRt

Ç
1− q∗t

qt

åô
.

In most real life situations, however, the static parameters κ and W will not be known. An
elegant solution for specifying W is to use a discount factor, as already shown in Chapter 3.
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The parameter κ can be set via Maximum a Posteriori Estimation (MAP) as follows. Let Θ be a
vector of static parameters, and define the likelihood function as the product of the predictives,
then the observed log-likelihood function is given by:

p(y1, · · · , yT ; Θ) = log

(
T∏
t=1

p(yt | Θ, Dt−1)

)
=

T∑
t=1

log [p(yt | Θ, Dt−1)] ,

where T represents the last observation. The MAP estimator can be written as

Θ̂MAP = arg max
θ

(
T∑
t=1

p(yt, | Θ, Dt−1)

)
p(Θ). (4.28)

See that, if p(Θ) is a non-informative uniform prior, (4.28) reduces to:

Θ̂MAP = arg max
θ

(
T∑
t=1

p(yt, | Θ, Dt−1)

)
, (4.29)

which is the usual Maximum Likelihood Estimator (MLE). The procedure outlined above may
be seen as an Empirical Bayes method and has been mentioned in the literature by Lindsey &
Lambert (1995)[7] and da Silva & Rodrigues (2015)[14] Since there is no exact closed-form
solution to equation (4.29) for the DBNBM, the optimization must be done numerically. The
R software [63] offers several options for this task. In this work we used the Nelder-Mead
algorithm [64].

4.3.2 Inference when the shape parameter is unknown

The DBNBM when κ is unknown has its basic structure determined by Equations (4.19)-(4.23).
Since κ is a strictly positive continuous quantity, we can assign a Gamma prior to the static
parameter of the observation equation. Then, the model is fully specified with:

p(κ) =
sr

Γ(r)
κr−1 exp(−sκ), (4.30)

where r, s > 0. The Gamma distribution is very flexible and this is the main reason why it was
chosen as a prior for κ. The specification of the hyperparameters r and s, however, is tricky
since, in most times, we will not have much information about the shape parameter. A common
approach is to assign very small values to both parameters in order to make the distribution as
vague as possible. We opted, instead, to give more weight to smaller values of κ. The reasoning
for this choice is that κ accounts for the dispersion of the model and very high values might not
be realistic since it would imply an extremely overdispersed data set. Thus, from hereon, we are
going to set r = s = 1 in all the following analysis.

The prior distributions for the state vector and the linear predictor are the same as when κ is
known and results (4.24) and (4.25) also hold. Observe, however, that αt and βt are functions
of the quantity κ that is now considered unknown. The predictive distribution can be obtained
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marginally, as before, from the joint distribution p(yt, µt, κ | Dt−1) = p(yt | µt, κ,Dt−1)p(µ |
κ,Dt−1)p(κ | Dt−1) according to the following steps:

p(yt | Dt−1) =
∫ ∞

0

∫ ∞
0

p(yt | µt, κ,Dt−1)p(µt | κ,Dt−1)p(κ)dµtdκ

=
∫ ∞

0

∫ ∞
0

Γ (yt + k−1)

Γ(yt + 1)Γ(κ−1)

sr(κµt)
ytµαt−1

t καtκr−1 exp(−sκ)

Γ(r)B(αt, βt)(1 + κµt)yt+κ
−1(1 + κµt)αt+βt

dµtdκ

=
∫ ∞

0

∫ ∞
0

sr

Γ(r)B(αt, βt)

[
Γ (yt + k−1)

Γ(yt + 1)Γ(κ−1)

καt+ytµyt+αt−1
t

(1 + κµt)yt+αt+βt+κ
−1 dµt

]
× κr−1 exp(−sκ)dκ

=
∫ ∞

0

1

B(αt, βt)

Γ (yt + k−1)

Γ(yt + 1)Γ(κ−1)
B(αt + yt, βt + κ−1)

sr

Γ(r)
κr−1exp(−sκ)dκ

=
∫ ∞

0

1

B(αt, βt)

1

yt + κ−1

B(αt + yt, βt + κ−1)

B(yt + 1, κ−1)

sr

Γ(r)
κr−1 exp(−sκ)dκ. (4.31)

Integral (4.31) does not have an analytic solution. Da Silva, Migon & Correia (2011) [13]
use numerical integration to handle a similar problem when working on a Dynamic Bayesian
Beta Model. We found, however, that this approach is very prone to numerical errors when
we are dealing with count data. Since it is very easy to sample from a Gamma distribution
with parameters r and s, we chose, instead, to approximate equation (4.31) using Monte Carlo
integration, like in Section 4.2. MCI, in this situation, can work as an efficient tool at a lower
computational cost in relation to MCMC methods. To obtain point predictions, again, we use
iterated expectations following the sequence below:

E[yt | Dt−1] = E[E[E[yt | µt, κ]] | Dt−1]

= E[E[µt | κ] | Dt−1]

= E
ñ

αt(κ)

κ(βt(κ)− 1)
| Dt−1

ô
. (4.32)

Since the hyperparameters αt and βt are both functions of κ, there is no exact solution to
Equation (4.32), although we can approximate the expression by means of the usual Monte Carlo
methods.

The posterior distribution for µt can be obtained from:

p(µt, κ | Dt) =
p(yt | µt, κ,Dt−1)p(µt | κ,Dt−1)p(κ)

p(yt | Dt−1)
,

then, integrating over κ we have:

p(µt | Dt) =

∫∞
0 p(yt | µt, κ,Dt−1)p(µt | κ,Dt−1)p(κ)dκ

p(yt | Dt−1)

=
1

p(yt | Dt−1)B(αt, βt)

∫ ∞
0

(yt + κ−1)−1

B(yt + 1, κ−1)

καt+ytµαt+yt−1
t

(1 + κµt)yt+κ
−1+αt+βt

srκr−1 exp(−sκ)

Γ(r)
dκ.

(4.33)
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Based on Equation (4.33) the n-th moment of the linear predictor can be found from

E[log(µnt | Dt)] =
∫ ∞

0
logn(µt)p(µt | Dt)dµt. (4.34)

Then, for n = 1 and n = 2 we have, respectively

E[log(µt) | Dt) =
1

p(yt | Dt−1)

∫ ∞
0

1

yt + κ−1

1

B(yt + 1, κ−1)

B(αt + yt, βt + κ−1)

B(αt, βt)

×
î
ψ(αt + yt)− ψ(βt + κ−1)− log(κ)

ó sr

Γ(r)
κr−1 exp(−sκ)dκ, (4.35)

E[log2(µt) | Dt] =
1

p(yt | Dt−1)

∫ ∞
0

1

yt + κ−1

1

B(yt + 1, κ−1)

B(αt + yt, βt + κ−1)

B(αt, βt)

×
î
(ψ(αt + yt)− ψ(βt + κ−1)− log(κ))2 + ψ′(αt + yt) + ψ

′
(βt + κ−1)

ó
× sr

Γ(r)
κr−1exp(−sκ)dκ. (4.36)

Demonstration of Expressions (4.35) and (4.36) is left for Appendix A3. Notice that both
equations can be decomposed into a function of κ times the kernel of a Gamma distribution. Thus,
it is easy to approximate the integrals via Monte Carlo integration techniques. Therefore, using
the results above, f ∗t = E(λt | Dt) = E[log(µt) | Dt) and q∗t = VAR(λt | Dt) = E[log2(µt) |
Dt]− f ∗

2

t . As usual, we can employ Equations (3.13) and (3.14) to update the state vector via
Linear Bayes Estimation. Finally, the posterior distribution for the static parameter κ considering
the whole information set DT is given by:

p(κ | DT ) =

î∏T
t=1 p(yt | Dt−1, κ)

ó
p(κ | Dt−1)∫∞

0

î∏T
t=1 p(yt | Dt−1, κ)

ó
p(κ | Dt−1)dκ

, (4.37)

where p(yt | Dt−1, κ) =
∫∞

0 p(yt | µt, Dt−1)p(µt | Dt−1)dµt = 1
B(αt,βt)

1
yt+κ−1

B(αt+yt,βt+κ−1)
B(yt+1,κ−1)

.
Under quadratic loss the optimal predictor for κ is the posterior expected value, that is,

κ̂ = E[κ | DT ] =
∫∞

0 κp(κ | DT )dκ. Direct integration is not possible, though, because there
is no closed-form for (4.37). In this work, we chose to sample from the posterior distribution
using the adaptive Rejection Metropolis Sampling (ARMS) technique proposed by Gilks and
Best (1995) [26]. The ARMS algorithm is a powerful and computationally efficient method to
sample from uniparametric distributions. The samples obtained can be used straightforwardly
for the computation of point estimates and credible intervals for the parameter κ.

4.3.3 Simulation experiment

To evaluate both the MLE and Bayesian estimators for κwe carried out a Monte Carlo experiment.
Four scenarios were designed with true parameter values κ = 0.3, κ = 0.5, κ = 0.8 and κ = 1.
For each of these scenarios L = 1000 Monte Carlo with samples with of n = 50, n = 100,
n = 200 and n = 300 were generated from a Negative Binomial Local Level Model (LLM) 2

2A basic random walk plus noise model.
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with static variance W = 0.02. Due to machine limitations imposed by R, we filtered samples
containing values equal or larger than 200.

The ARMS algorithm was implemented using the function of the same name contained in
the ’dlm’ package from R [65]. The application of the algorithm requires a bounded convex set
for the target density. This is not the case here since equation (4.37) has support on R+. In these
situations, the authors of the package suggest to restrict the support to a bounded set of probability
close to one. In all scenarios studied in this work the true value of the parameter κ does not
exceed one, so we chose to restrict the support for the target density in the interval [0, 5]. For the
Bayesian inference chains of size 2000 were generated from which the first 1000 samples were
discarded. Preliminary tests using diagnostic tools available on the ’coda’ package [66] from R
showed that a burn in of 1000 is enough to obtain stationary chains. We also could not detect any
signs of auto-correlation in the chains, thus there was no need to use a lag. The prior distribution
for κ was assumed to be a Gamma(1, 1) for reasons already discussed. Two Bayesian Estimators
were considered: the posterior median (BE-Median) and the posterior mean (BE-mean). We
observed superior performance for the latter estimator and for this reason only Be-mean will be
reported along with a 95% credible interval and an empirical coverage probability. To compute
the Maximum Likelihood (or MAP) estimator the Nelder-Mead algorithm was used with initial
value for the parameter of interest arbitrarily set at κ0 = 0.8. No asymptotic theory is available
for this estimator in the context of Bayesian Dynamic Linear Models, so we will report in this
text only a point estimate.

The Bayesian and Maximum Likelihood estimators were evaluated according to their relative
bias (RB) and Root of the Mean Squared Error (RMSE). A summary of the Monte Carlo study is
presented on table (4.2). The BE-mean column reports the sample average over the 1000 estimates
obtained for κ along with the mean RB defined, in percentage, as: RB =

∑L
i=1

100(κ̂i−κ)
|κ| , where

κ̂i denotes the estimate for κ obtained in the i-th Monte Carlo sample. The CI column indicates
the 95% credibility interval (calculated as the mean lower and upper limits across the 1000
Monte Carlo samples generated) associated with the point estimate and also the corresponding

coverage probability (CP). In the last column the RMSE, defined as RMSE =

…∑L
i=1(κ̂i−κ)2

L
is

presented.

Notice that the results point to a better performance of the MLE over the BE since the RB
and RMSE reported are significantly smaller for the first estimator in all scenarios. The Bayesian
estimator seems to be heavily influenced by the prior distribution chosen for the parameter. As
expected, larger biases are observed for small values of true κ since the probability mass of the
prior is concentrated around one. It is noteworthy, however, that as the sample size increases,
the biases get progressive smaller, suggesting good behaviour of the Bayesian estimator for
large data sets even when the prior distribution for the static parameter is distant from the target.
When we have true κ = 0.8 or κ = 1.0, the biases are smaller than 5% regardless of samples
size indicating that, if the choice of the prior distribution is close enough to the real value of the
parameter, the Bayesian Estimator is well behaved even for small samples. As expected, the
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True Size MLE
(Bias%)

MLE
RMSE

BE Mean
(Bias%)

CI
(CP)

BE Mean
RMSE

κ = 0.3

50
0.295

(-1.695) 0.178
0.373

(24.196)
[0.074, 1.112]

(0.968) 0.288

100
0.300

(-0.024) 0.123
0.346

(15.185)
[0.102, 0.890

(0.952) 0.245

200
0.297

(-1.085) 0.083
0.326

(8.709)
[0.128, 0.732]

(0.928) 0.206

300
0.297

(-0.859) 0.068
0.310

(3.377)
[0.134, 0.657]

(0.928) 0.191

κ = 0.5

50
0.496

(-0.791) 0.229
0.555

(10.912)
[0.16, 1.432]

(0.957) 0.228

100
0.500

(-0.048) 0.152
0.521

(4.178)
[0.218, 1.117]

(0.949) 0.235

200
0.497

(-0.638) 0.111
0.523

(4.530)
[0.258, 0.989]

(0.946) 0.220

300
0.501

(0.218) 0.088
0.519

(3.828)
[0.278, 0.945]

(0.959) 0.212

κ = 0.8

50
0.770

(-3.717) 0.288
0.828

(3.527)
[0.311, 1.868]

(0.96) 0.337

100
0.798

(-0.212) 0.213
0.821

(2.652)
[0.393, 1.585]

(0.958) 0.292

200
0.798

(-0.208) 0.150
0.822

(2.698)
[0.458, 1.434]

(0.941) 0.257

300
0.801

(0.105) 0.109
0.833

(4.146)
[0.493, 1.386]

(0.945) 0.245

κ = 1.0

50
0.973

(-2.708) 0.333
0.994

(-0.646)
[0.409, 2.112]

(0.969) 0.379

100
0.982

(-1.784) 0.237
1.017

(1.696)
[0.525, 1.870]

(0.954) 0.337

200
0.999

(-0.103) 0.157
1.022

(2.162)
[0.612, 1.666]

(0.943) 0.281

300
0.996

(-0.422) 0.130
1.013

(1.267)
[0.639, 1.598]

(0.937) 0.266

Table 4.2: Summary of the Monte Carlo study
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variance decreases for larger samples, as can be observed by the credible intervals. The coverage
probabilities are all very close to the fixed nominal level of 95%, further confirming the good
performance of the Bayesian estimator.

4.4 Real Data Application

In this Section, we present two applications of the models developed in this work to real count
time series. The data sets were chosen because of their idiosyncratic features: they both display
overdispersion and inflation of zeros. The objective here is to show scenarios where the traditional
Poisson DGLM may not be the most appropriate modeling choice. To compare between different
models we are going to use the following metrics: the Bayes Factor and the Bayesian Information
Criterion (BIC) to evaluate in sample performance and the one-step-ahead prediction accuracy to
evaluate out of sample performance. In both applications, the MCI steps were carried out with
samples of size 5000. Specifically for the DBNBM, the estimation of the static shape parameter
was performed via ARMS as already shown in the previous section. A Gamma(1,1) prior was
chosen for κ and single chains of sizes 5000 with a burn-in of 1.000 were generated from the
posterior distribution (4.37). Point and interval estimates were calculated straightforwardly from
these chains.

4.4.1 Skin Lesions Data

The Skin Lesions time series consists of the total number of skin lesions on bovines reported
monthly to animal health laboratories in New Zealand from January 2003 until December 2009.
This data set was first analyzed by Jazi et al (2011) [67] in the context of zero-inflated count
data models. Figures (4.1a) and (4.1b), below, shows the behaviour of the time series and its
corresponding barplot.

The plot shows no discernible trend or seasonality components, therefore, a LLM would fit
the observations well. There is also no sign of non stationarity in the time series as the KPSS
(Kwiatkowski–Phillips–Schmidt–Shin) test reports a p-value greater than 0.1 The sample mean
and variance of the data are, respectively, 1.4286 and 3.3563. Since the variance is more than
twice as big as the mean, there is evidence that the skin lesion time series is overdispersed.

We fitted the uniparametric models of section 4.2.1 and both versions of the DBNBM to
the skin lesions data set. According to the dynamic models literature, values for the discount
factor δ, typically, range from 0.8 to 1 ( West $ Harrison (1997) [3]) since, in structural models,
the information loss is expected to increase smoothly from one state to the next. Notice that
a very small value for δ would cause the stochastic term to dominate the system equation
meaning that there is almost no flow of information between states. For this reason we used
δ = {0.80, 0.85, 0.90, 0.95, 0.99} in all the following analysis. The values of m0 and C0 were
set so that the first predicted values coincides with the real value of the time series. Table 4.3

57



0.0

2.5

5.0

7.5

0 20 40 60 80

Observation

N
um

be
r 

of
 S

ki
n 

Le
si

on
s

(a) Skin lesions time series

0

10

20

30

0.0 2.5 5.0 7.5

Skin Lesions

C
ou

nt
s

(b) Barplot of the skin lesions time series

Figure 4.1: Skin Lesions data set.

presents a comparison of in-sample and out-of-sample performance for the uniparametric and
Negative Binomial dynamic models. The second column indicates the values of δ, the third
column shows the estimates for the shape parameter (only available for the Negative Binomial
Models) and the others display the values of the goodness of fit criteria used for comparison.

Values in bold indicate the model with best performance according to each of the metrics
evaluated. First our focus is on the uniparametric models. Looking at the table we notice that the
Poisson DGLM is superior to its competitors in forecast accuracy when we consider the MSE.
The good performance of the Poisson DGLM is not all unexpected, though. Remember that, as
shown in chapter 3, conditionally on the mean of the process, we assume the observations to be
drawn from a Poisson distribution but, marginally, they follow a Poisson-Gamma mixture – that
is: the predictive distribution of the model is overdispersed. As for the in sample performance,
the BIC values suggest that, in this exercise, the Bell Dynamic Model specified with high
discount factors is superior to the other uniparametric models. The Bayes factor also shows
strong evidence in favor of the Bell and Poisson Lindley models against the traditional Poisson
DGLM for δ = 0.99 and δ = 0.95. Compared to the other models, the Yule Simon and Borel
Dynamic Models have poor in sample performance according to the Bayesian Information
Criterion, but similar out of sample performance when we look to the MAE statistic. Overall,
the new uniparametric count models presented in this text and the Poisson DGLM had similar
performances for the skin lesions data set.

Table 4.3 also summarizes the results for the DBNBM. We provide both the MLE (or MAP)
and Bayesian Estimator for κ. The BE reported is the posterior mean. For this example a chain
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Model δ
Estimated

κ
MSE MAE BIC BF

Poisson

0.99 - 3.763 1.333 343.580 1
0.95 - 3.750 1.345 340.591 1
0.90 - 3.715 1.346 337.693 1
0.85 - 3.697 1.341 342.266 1
0.80 - 3.822 1.359 412.868 1

Borel

0.99 - 4.333 1.379 351.533 0.0187
0.95 - 4.306 1.378 354.963 8.00e-04
0.90 - 4.287 1.372 368.220 2.35e-07
0.85 - 4.306 1.364 413.794 2.94e-16
0.80 - 4.479 1.373 620.345 8.85e-46

Bell

0.99 - 3.977 1.349 326.679 4.68e+03
0.95 - 3.969 1.354 329.002 3.29e+02
0.90 - 3.916 1.345 333.868 6.771e+00
0.85 - 3.919 1.340 359.881 1.00e-04
0.80 - 3.989 1.332 462.387 1.77e-11

Poisson-Lindley

0.99 - 4.054 1.353 328.018 2.39e+03
0.95 - 4.033 1.353 330.469 1.58e+02
0.90 - 3.979 1.347 334.233 5.64e+00
0.85 - 3.961 1.335 361.075 8.24e-05
0.80 - 4.096 1.331 501.690 5.16e-20

Yule-Simon

0.99 - 4.048 1.332 334.845 78.825
0.95 - 4.183 1.349 345.285 0.096
0.90 - 4.264 1.356 357.057 6.24e-05
0.85 - 4.300 1.354 366.244 6.21e-06
0.80 - 4.286 1.341 373.307 3.896e+08

Negative Binomial
MLE

0.99 0.9573 3.509 1.41 289.7 7.655e+11
0.95 0.8933 3.506 1.407 289.7 1.034e+12
0.90 0.7992 3.561 1.432 290.4 1.736e+11
0.85 0.6942 3.63 1.465 291.0 1.225e+12
0.80 0.5836 3.699 1.493 291.5 2.051e+27

Negative Binomial
BE

0.99
0.9701

(0.455, 1.694) 3.488 1.394 290 7.655e+11

0.95
0.9119

(0.3975, 1.6313) 3.502 1.407 290.3 4.015e+12

0.90
0.8277

(0.3066, 1.5685) 3.544 1.43 290.9 1.302e+11

0.85
0.7211

(0.2006, 1.4601) 3.633 1.474 291.5 9.467e+11

0.80
0.5821

(0.08824, 1.3326) 3.777 1.53 292.4 1.291e+27

Table 4.3: Performance summary of the proposed models applied to the skin Lesions data.
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of size 5000 with a burn in of 1000 was generated us from the posterior distribution of κ using
the ARMS algorithm and the 95% credible interval was calculated straightforwardly from the
2.5% and 97.5% quantiles of the distribution. To calculate the MLE, the Nelder-Mead algorithm
was used with initial value set at 0.8. For this estimator only the point estimate is provided
since, as already discussed, there is no asymptotic theory for the MLE in the context of Bayesian
Dynamic Models.

The results show that both estimators behave similarly for the skin lesions data set. In a GLM
context it is a well known fact that the presence of a dispersion parameter adds flexibility to the
Negative Binomial Regression Model in relation to its Poisson counterpart. The same effect
can be observed here: the DBNBM has better in sample performance in relation to the Poisson
DGLM according to the BIC and BF measures and better out of sample performance according
to the MSE. The comparison against the other uniparametric dynamic models also favors the
DBNBM according to all criteria evaluated except for the MAE.

Figure 4.2 displays the one-step-ahead prediction for the skin lesions data set using the
DBNBM with the Maximum Likelihood Estimator. The shaded area represents the 95% approx-
imate credible interval limits. To compute the CI we generated 2000 random values from the
predictive distribution and took the 2,5% and 97,5% quantiles. The first 10 observations can be
considered a sort of learning period for the model and were excluded from the plot. For this
illustration we used δ = 0.95.
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Figure 4.2: One step ahead prediction for the skin lesions data set. Solid line: predictions from
the DBNBM using δ = 0.95; Shaded Area: approximate 95% credible interval
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4.4.2 Syphilis Data

The Syphilis Data data set consists of the weekly number of Syphilis cases reported in Porto Rico
from 2007 until 2010, totalling 209 observations. This data is available from the ZIM package in
R and its primary source is the Center of Disease Control of the United States (CDC). Figures
(4.3a) and (4.3b), below, display the plot and histogram of the data, respectively.
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(b) Histogram of the Syphilis time series

Figure 4.3: Syphilis in Porto Rico time series.

Likewise the skin lesions data set, there is no visual indication of trend or seasonality. The
sample mean and variance are 2.632 and 9.772, respectively. The KPSS test also shows evidence
in favor of the stationarity null hypothesis (p-value> 0.1). An inspection of the histogram
reveals a very high frequency of zeros suggesting that zero-inflated models, such as the Borel or
Yule-Simon, could be adequate to model the data. As before, we fitted the uniparametric dynamic
models and the DBNBM to the Syphilis time series using discount factors ranging from 0.80 to
0.99. In all cases a LLM specification was used. To make the first predicted value coincide with
the observed value we would have to set m0 = log(y1), which is impossible because y1 = 0. So,
the initial conditions for mt and Ct were set as m0 = C0 = 1. A summary of the results obtained
for the uniparametric models can be seen on Table (4.4). Again, values in bold emphasize the
model with the best performance in that particular metric.

Similarly to the skin lesions data set, the Poisson DGLM exhibits good performance in
forecasting accuracy according to the MSE criterion. Considering the remaining criteria, however,
the Poisson DGLM is outperformed by all other models fitted to the data. In particular, the
Bayes Factor shows strong evidence in favor of the alternative uniparametric dynamic models
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Model δ Estimated κ MSE MAE BIC BF

Poisson

0.99 - 10.31 2.467 1235.195 1
0.95 - 10.42 2.499 1222.145 1
0.90 - 10.69 2.532 1214.512 1
0.85 - 11.00 2.567 1208.582 1
0.80 - 11.34 2.607 1204.152 1

Borel

0.99 - 12.85 2.455 1024.745 4.995e+45
0.95 - 12.80 2.457 1027.090 2.269e+42
0.90 - 12.83 2.466 1036.586 4.328e+38
0.85 - 12.86 2.476 1048.949 4.612e+34
0.80 - 12.95 2.485 1071.177 7.504e+28

Bell

0.99 - 10.87 2.439 1016.298 3.411e+47
0.95 - 10.89 2.460 1009.269 1.681e+46
0.90 - 11.10 2.482 1011.627 1.137e+44
0.85 - 11.36 2.511 1017.533 3.061e+41
0.80 - 11.64 2.535 1027.079 2.824e+38

Poisson-Lindley

0.99 - 11.25 2.436 988.090 4.552e+53
0.95 - 11.25 2.448 984.8453 3.38e+51
0.90 - 11.38 2.470 987.3465 2.13e+49
0.85 - 11.58 2.485 997.654 6.346e+45
0.80 - 11.85 2.506 1013.0343 3.168e+41

Yule-Simon

0.99 - 12.02 2.449 1035.641 2.151e+43
0.95 - 13.05 2.472 1075.841 5.883e+31
0.90 - 13.35 2.490 1101.480 3.503e+24
0.85 - 13.49 2.498 1121.530 8.004e+18
0.80 - 13.62 2.506 1144.144 1.073e+13

Negative Binomial
MLE

0.99
1.561

(1.179, 2.000) 9.947 2.539 904.4 9.751e+72

0.95
1.524

(1.126, 1.980) 10.26 2.622 933.5 1.348e+69

0.90
1.467

( 1.107, 1.945 ) 10.97 2.764 916.5 7.437e+65

0.85
1.401

( 1.060, 1.842 ) 12.19 2.947 924.7 6.381e+62

0.80
1.325

( 0.967, 1.719 ) 14.74 3.266 933.5 9.002e+59

Negative Binomial
Bayesian

0.99
1.58

(1.165, 2.082) 10.03 2.574 927.2 1.045e+68

0.95
1.603

(1.175, 2.118) 10.40 2.653 930.3 3.478e+64

0.90
1.63

(1.181, 2.165) 10.93 2.742 935.2 6.746e+61

0.85
1.651

(1.185, 2.222) 11.66 2.855 940.3 2.511e+59

0.80
1.661

(1.177, 2.256) 12.77 3.007 945.9 1.700e+57

Table 4.4: Performance summary of the proposed models applied to the Syphilis data.
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and the DBNBM. By the MAE and BIC criteria, the Poisson-Lindley Model with δ = 0.99 is the
uniparametric model that best fits the Syphilis time series.

Looking specifically to the results concerning the Negative Binomial Models we observe that,
unlike what was verified for the skin lesions data set, now the point estimates for the Bayesian
and Maximum Likelihood estimators only coincide for very high values of discount factors. As δ
decreases the in sample and out of sample performance of the DBNBM gets considerably worse
regardless of the estimator used for κ. If δ = 0.99, however, the DBNBM, in both specifications,
still outperforms the uniparametric models both in sample and out of sample. Figure 4.4 shows
the one step ahead prediction along with 95% confidence intervals for the DBNBM-MLE fitted
to the syphilis time series with δ = 0.99.

0

5

10

15

20

0 50 100 150 200

Observation

Nu
mb

er 
of 

Sy
ph

ilis
 ca

se
s

Figure 4.4: One step ahead prediction for the syphilis data set. Solid line: predictions from the
DBNBM using δ = 0.99; Shaded Area: approximate 95% credible interval.

4.5 Final Remarks

Time series of count data can often exhibit characteristics such as overdispersion or inflation
of zeros. In these situations, dynamic models based on the Poisson distribution may not be
appropriate because they require the mean and the variance of the data to be equal. In this chapter
we presented several alternatives to the Poisson DGLM for dealing with single time series of
counts based on distributions that can more adequately capture these aspects in a data set. The
main contributions of this work are the development of: 1) a general method of inference for
Bayesian Dynamic Models that is suited for uniparametric distributions; 2) the introduction of
a framework for a Dynamic Bayesian Negative Binomial Model. The inference procedures of
the models presented here follows a Bayesian structure that resembles the DGLM framework,
but is not restricted to distributions within the EF. To keep the sequential nature of the Bayesian
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inference, some approximations, such as Linear Bayes Estimation, first order Taylor expansions
and Monte Carlo Integration, were used whenever the exact results were not available.

An important aspect concerning the DBNBM is the estimation of the static shape parameter
κ. In the context of DGLM, it is well known that the estimation of the shape parameter when
the observation equation is biparametric usually presents complications. Here, we propose
two methods for estimating κ: first we consider the parameter to be known in the structure
of the model and estimate it via Maximum Likekihood; in the other approach κ is considered
an unknown quantity following a Gamma prior distribution – the estimation is carried out via
adaptive Rejection Metropolis Sampling. An extensive simulation study was conducted and
showed a good performance for both estimators. The models proposed were also applied to
two real data sets and compared to the Poisson DGLM in both in-sample and out-of-sample
performance. Results showed superiority of the DBNBM over the Poisson Model in both cases.
The uniparametric models, on the other hand, displayed good in-sample performance but were
outperformed by the Poisson DGLM in out-of-sample performance according to the Mean
Squared Error of prediction.

Overall, the class of Bayesian Dynamic Models is very flexible since its structure allow for
trend and seasonality components and intervention analysis. Covariates can also be included in
the model by means of the Ft design matrix in the observation equation. The methods presented
here are very general and can be extended, with a few modifications, to positive asymmetric data.
A procedure similar to the one described for the DBNBM could be easily applied to the Gamma
and Weibull distributions for example. We work out this cases in Appendix B. Another aspect
of these dynamic models that could be further explored is the maximum likelihood estimation.
The simulations showed good performance of the MLE, but an asymptotic theory assuring the
existence and well behaviour of the estimator is still an open problem in the literature according
to the best of author’s knowledge.
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Chapter 5

Dynamic Generalized Linear Models
via Product Partition Models

5.1 Introduction

In the modeling of time series, it is very common the occurrence of change points or, in the
context of econometrics, the so-called structural breaks. This type of phenomenon is the result of
some external intervention that changes the structure of the analyzed process. These interventions
may manifest themselves as the lack of stability either in the mean or in the variance of the
parameters driving the time series. Also, in many cases, the change-points appear multiple times
making it very important to correctly model the underlying process generating these breaks. For
these reasons, the analysis of change-points plays a key role in fields such as economics, finance,
engineering, climatology, hydrology among others. Failing to model structural breaks correctly
can lead to large forecasting errors.

The intervention analysis literature is vast and covers both Bayesian and classical approaches.
Within the classical framework, most of the single change-point detection models are variations
of the well known Cumulative Sum (CUSUM) process. These models are, usually, formulated
in terms of hypothesis tests in which the null hypothesis is the stability of the parameters. An
extensive overview of this methods can be found in Csorgo & Horváth (1997) [68], Perron
(2006) [69] and Aue (2013) [70]. Tests that allow for the detection of multiple unknown
change-points are, in most cases, least squares type tests. Important works on this setting include
Bai & Perron (1998) [71], Bai (1999) [72], Qu & Perron (2007), Kurozumi & Tuvaandorj [73]
and Preuss, Puchstein and Dette (2015) [74]. For an application of these methods to finance
problems, we refer the reader to Andreou & Ghysels (2002).

In this chapter we are concerned with identifying and modeling multiple change-points in a
Bayesian framework. The Bayesian modeling of breaks in time series generally considers that the
underlying process is governed by a latent discrete state vector following a Markovian evolution.
This state variable is, usually, taken as piecewise constant and undergoes changes at the points of
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regime switch. In this kind of setting, the posterior means for the state vector can be estimated
via computational methods such as MCMC. Relevant papers following this kind of approach
include Chib (1998) [75], Lai (2005) [76], Lai & Xing (2011) [77] and Martínez & Mena
(2014) [78]. Of particular interest to the work we present here is the Product Partition Model
(PPM) proposed by Hartigan (1990) [20] and expanded by Barry & Hartigan (1992, 1993)
[21] [79]. PPM induces a block structure that divides the data set into blocks of observations
governed by different regimes. Within each of these blocks, it is assumed that the observations
are conditionally independent. Posterior probabilities for the number of change-points can be
obtained exactly but, usually, at a high computational cost. For these reason, in most situations,
the inference for the PPM class is done via Gibbs Sampling. Many works related to the Barry
& Hartigan proposal can be found in the literature. Loschi & Cruz (2002) [80], for example,
study the influence that different prior specifications for the cohesion have in the PPM product
estimates; Fearnhead (2006) [81] and Loschi & Cruz (2005) [82] provide a method for sampling
direct from the posterior distribution of the number of change-points; Loschi, Pontel & Cruz
(2010) [83] extend the PPM to detect multiple change-points in linear regressions.

In this work we address the change-point problem by incorporating the PPM into the DGLM
class of West, Harrison & Migon (1985) [4]. This approach was first presented by Almeida
(2016) [22]. The inference of this class of models that, from here on, we shall call DGLM-PPM,
follows the sequential nature of Bayesian statistics with evolution and updating steps. The
conditional independence assumption of the PPM is preserved in DGLM-PPM and, between
blocks, the parameters are dependent. The partitions are estimated from the data available
using the Gibbs Sampler algorithm proposed by Barry & Hartigan (1993) [79]. In this work we
propose to append an ARMS step within the Gibbs Sampling scheme to estimate the optimal
discount factor associated with the block structure. Under this framework, posterior estimates
for the change-point probabilities are readily available. This new formulation permits not only
retrospective analysis, as in most structural breaks models, but also online inference. We also
provide a simulation study and two examples with real life data.

This chapter is organized as follows: in Section 2 we present the PPM as described by Barry
& Hartigan (1992) [21] along with the Gibbs sampling scheme used in this work to obtain
inference about the partition. This formalism is extended in Section 3 where we introduce the
DGLM-PPM class. To have a better understanding of the DGLM-PPM we conduct a simulation
experiment that is presented in Section 4. Finally, in Section 5 we apply the conventional DGLM
and the DGLM-PPM to two well known real-life time series and compare their performances.

5.2 Product Partition Models

Product Partition Models, as proposed by Hartigan (1990) [20], associate to each random
partition induced in the data by the change-points a prior product distribution. It is also assumed
that, given the partition, observations in different components are independent of each other.
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Barry & Hartigan (1992) define partitions as blocks contiguous to each other. They further assume
that, for each block, the set of observations obeys a different probability model. More formally,
the authors define a block as follows: let Y = {Y1, · · · , Yn} be a sequence of consecutive
observations, I = {0, 1, 2, · · · , n} a set of indexes, ρ = {i0, i1, · · · , ib} a random partition of
the set I and B a random variable that denotes the number of blocks (or components) in a given
partition. It must also be true that 0 = i0 < i1 < · · · < ib = n. In the case where B = b, the
partition can be written as

[Y1, · · · , Yi1 ],[Yi1+1, · · · , Yi2 ], · · · ,[Yib−1+1, · · · , Yib ].

In the expression above each block is denoted by Y[ij−1ij ] = (Yij−1+1 · · · , Yij)ᵀ with j =

1, 2, · · · , b. Identify the j-th block as the set of observations i + 1, · · · , j, where i, j ∈ ρ and
i < j. Barry & Hartigan (1992) define c(j)

ρ as the prior cohesion associated with the block j.
Cohesion, in this context, must be understood as the degree of similarity between observations
belonging to the same block. Details on how to calculate it will be presented later. The endpoints
of each block (i0, i1, · · · , ib ) in the partition can also be seem as part of a Markov Chain that
satisfies the following conditions:

0 ≤ ir < ir+1 ≤ n for ir < n,

ir = ir+1 = n for ir = n.

One can think, then, on the cohesion as a transition probability of the Markov Chain defined
as above. According to Loschi & Cruz (2002) [80] the random set (Y1, · · · , Yn; ρ) follows a
PPM if the two conditions below are verified:

1. The prior distribution that describes the probability that a partition ρ have endpoints
{i0, i1, · · · , ib} has a product form given by:

P (ρ = {i0, i1, · · · , ib}) =
1

K

b∏
j=1

c(j)
ρ , (5.1)

where K =
∑
C
∏b
j=1 c

(j)
ρ is a normalizing factor with C representing all possible partitions

of the set I into b contiguous blocks with endpoints satisfying 0 = i0 < i1 < · · · < ib = n,
∀ b ∈ I .

2. Conditionally on ρ = {i0, i1, · · · , ib} the observations Y1, · · · , Yn have the following joint
distribution:

p(Y1, · · · , Yn | ρ = {i0, i1, · · · , ib}) =
b∏

j=1

pj(Y
(j)
ρ ), (5.2)

where pj(Y (j)
ρ ) is the density of the random vector Y (j)

ρ .
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Under those two assumptions, according to Barry & Hartigan (1992), the posterior distribution
for the partition ρ will follow the same product form of the Equation (5.1) with the posterior
cohesion for the j-th block defined as

c∗(j)ρ = c(j)
ρ pj(Y

(j)
ρ ). (5.3)

Observe that the whole construction presented here, so far, does not assume any parametric
form for the PPM. In the parametric approach one considers that each observation Yk, k ∈
{1, 2, · · · , n} can be described by a marginal density conditioned on an unknown parameter
θk that we will denote by pk(Yk | θk). Given θ1, · · · , θn, the Y1, · · · , Yn are conditionally
independent with joint density

∏b
j=1 pj(Y

(j)
ρ | θ(j)

ρ ). It is also assumed that, within each block
j, the corresponding observations are identically distributed. That is, given the partition ρ =

{i0, i1, · · · , ib}, b ∈ I and a block [ir−1ir] we have θk = θir = θ[ir−1ir], ∀ k such that ir−1 + 1 <

k < ir and r ∈ I; that is, within, say, the j-th block, it must hold that: θ(j)
ρ = θi+1 = θi+2 =

· · · = θj−1 = θj . To every θ(j)
ρ we assign a block prior density pj(θ(j)

ρ ) with respect to some
measure Θ(j)

ρ . Thus, the block predictive function (or data factor) pj(Y (j)
ρ ) can be calculated as

pj(Y
(j)
ρ ) =

∫
Θ

(j)
ρ

pj(Y
(j)
ρ | θ(j)

ρ )pj(θ
(j)
ρ )dθ(j)

ρ , (5.4)

and the block posterior density is given by,

pj(θ
(j)
ρ | Y (j)

ρ ) =
pj(θ

(j)
ρ )

∏ij
ij−1+1 pj(Yk | θ(j)

ρ )

pj(Y
(j)
ρ )

.for j = 1, · · · , b.

An important aspect concerning the PPM class is that the parameters (θ(1)
ρ · · · θ(b)

ρ ) with
b ∈ I are allowed to be time varying as long as the product form of the joint distribution for the
observations and partitions is preserved. Thus the PPM can be used to model change-points in
time series.

To obtain inference about the parameters, Barry & Hartigan (1992) use the posterior relevance
defined as

r∗(j)ρ = P ([ij−1ij] ∈ ρ | Y1, · · · , Yn). (5.5)

This quantity denotes the probability that the j-th block belongs to the partition ρ given the data
Y . The posterior distribution of θk conditional on the observations can be written as

p(θk | Y1, · · · , Yn) =
∑

ij−1<k≤ij
r∗(j)ρ pj(θk | Y (j)

ρ ), (5.6)

The posterior expected value of θk, or product estimates, can be computed from
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E(θk | Y1, · · · , Yn) =
∑

ij−1<k≤ij
r∗(j)ρ E(θk | Y ∗(j)ρ ), (5.7)

where r∗(j)ρ =
λi0ij−1

c
∗(j)
ρ λi0ij−1

λij ib
with λij−1ij =

∑∏b
k=1 c

∗(j)
ρ , the summation being over all sets

i = i0 < i1 < · · · < ib−1 < ib = j.

Thus, the PPM provides a framework in which inference about clustered parameters can be
obtained for each block j using standard Bayesian tools and the observations within the blocks.
The posterior distributions for every θk, k = 1, · · · , n are computed, according to Equation
(5.7), as weighted averages over the densities associated with the blocks containing θk where the
weights are taken as the posterior relevances r∗(j)ρ defined in Equation (5.5).

An exact calculation of the posterior relevance in Equation (5.7) is feasible but, since the
possible number of partitions grows exponentially as the number of observations increases, it
can be too expensive from a computational point of view. For this reason, the product estimates
are, frequently, obtained using MCMC techniques. In this work we used the Gibbs Sampling
setting similar to the one described in Loschi & Cruz (2002) [80].

5.3 DGLM-PPM

5.3.1 The Model

The DGLM class, presented in Chapter 3, can be extended to allow random partitions on the
observations using the PPM of Barry & Hartigan. As previously shown, a PPM is sufficiently
defined by the two following conditions:

1. Given θ1, · · · , θn, the observations (Y1, · · · , Yn) must be conditionally independent.

2. The joint distribution of the observations and partitions must have a product form.

Almeida (2016) [22] introduces a new class of dynamic models that incorporates the
PPM into the DGLM of West, Harrison & Migon (1985). In this new class, that we shall
call DGLM-PPM, the two conditions that define a PPM are preserved and the parameters
θ(1)
ρ , · · · , θ(j)

ρ , · · · , θbρ associated to each block j in the partition ρ are now allowed to be de-
pendent. This new formulation is very rich since it retains the flexibility of the DGLM while
allowing for the detection of multiple change-points using the block structure of the PPM. For
a different approach that allows for across cluster correlation we refer the reader to Ferreira,
Loschi & Costa (2014) [84].

The construction of the DGLM-PPM class will be done analogously to the traditional DGLM
as described in Chapter 3, but in a block structure. Let Y = (y1, · · · , yn) be a time series
with observations drawn from a distribution in the uniparametric EF. Using the definitions of
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the previous section, I = {0, 1, 2, · · · , n} is a set of indexes; ρ = {i0, i1, · · · , ib} is a random
partition of the set I and B is a random variable that denotes the number of components in
the partition. If B = b, the partition is comprised by b blocks, each of them represented by:
Y (j)
ρ = (yij−1+1 · · · , yij)ᵀ ≡ (yj1, · · · , yjnj)ᵀ, j = 1, 2, · · · , b, where nj represents the number

of elements of the j-th block and yjk is the k-th element in the block. For the purposes of this
work, the uniparametric EF is defined as

p(yjk | ηjk, τt) = exp[τjk(yjkηt − a(ηjk))]c(yjk, τjk). (5.8)

Equation (5.8) represents the observation equation in a DGLM-PPM. Under the condition
that 0 = i0 < i1 < · · · < ib = n, the probability that a partition ρ has blocks with endpoints in
i0, i1, · · · , ib is given by equation (5.1). The prior distribution for the number B = b of blocks
comprising the partition can be obtained from:

p(B = b) ∝
∑
C1

b∏
j=1

c(j)
ρ , (5.9)

where C1 also denotes a set of all possible partitions of I into exactly b contiguous blocks.
Suppose now, that there is a known vector Fjk of explanatory variables where j = 1, 2, · · · , b,

k = 1, 2, · · · , nj with nj denoting the last observation of the j-th block. We can relate the
observation yjk to the vector Fjk through a non linear and monotonic link function g(.) that maps
the natural parameter ηjk of the observation distribution to the real line. That is:

λjk = g(ηjk) = F
′

jkθ
(j)
ρ . (5.10)

From properties of the EF, the conjugate prior distribution for the natural parameter ηjk of
the observation equation will be given by:

p(ηjk) = b(αjk, βjk) exp[αjkηjk − βjka(ηjk)], (5.11)

where αjk e βjk are hyperparameters that can be estimated from the moments of the linear
predictor. The normalizing constant of (5.11) is given by the integral,

b(αjk, βjk) =
1∫

exp[αjkηjk − βjka(ηjk)]dηjk
. (5.12)

To compute the predictive distribution of the observations Y given the partition observe that,
conditionally on ρ = {i0, i1, · · · , ib}, the joint density of the observations can be written as a
product of block predictives, that is:

p(Y | ρ) =
b∏

j=1

p(Y (j)
ρ ), (5.13)
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where, by the properties of the EF, the predictive distribution p(Y (j)
ρ ) associated to the observa-

tions in the j-th block can be calculated from:

p(Y (j)
ρ ) =

nj∏
k=1

∫
p(yjk | ηjk)p(ηjk)dηjk

=
nj∏
k=1

b(αjk, βjk)c(yjk,
1
φjk

)

b(αjk + φjkYjk, βjk + φjk)
. (5.14)

According to Barry & Hartigan (1992), the posterior distribution of the partition ρ =

{i0, i1, · · · , in} can be obtained from the expression:

P (ρ = {i0, i1, · · · , ib}) =

∏b
j=1 c

∗(j)
ρ∑

C
∏b
j=1 c

∗(j)
ρ

, (5.15)

where c∗(j)ρ = c(j)
ρ pj(Y

j
ρ ) represents the posterior cohesion of the block [ij−1ij].

The posterior distribution for the random variable B can also be computed as the product of
posterior cohesions over all possible partitions, that is:

p(B = b) ∝
∑
C1

b∏
j=1

c∗(j)ρ . (5.16)

Barry & Hartigan (1992) consider that the joint density of parameters, observations and
partitions define a parametric PPM if the following two criteria are met: i) the probability of a
partition ρ can be written as a product of non-negative cohesions; ii) given the θk, the observations
are conditionally independent. The conditional independence is an assumption of the DGLM
class and the product form for the distribution of ρ is given by (5.15). Thus, DGLM-PPM
satisfies both requirements.

The evolution and updating steps of the DGLM-PPM class are very reminiscent of this same
process as described by West, Harrison & Migon (1985) for the DGLM class, so we will follow
the same structure used in Chapter 3 here. The state parameters of each block evolve according
to the following relation:

θ(j)
ρ = Gjθ

(j−1)
ρ + ωt, ω ∼ [0,Wj], (5.17)

where Gj represents an evolution matrix, and ωj is a random evolution error following a non-
specified distribution of zero mean and covariance matrix denoted byWj . Denote by D(j)

ρ the
information set up to the j-th block. The inference of the DGLM-PPM requires the following
specification for the posterior distribution of the state vector θ(j−1)

ρ :

(θ(j−1)
ρ | D(j−1)

ρ ) ∼ [mj−1,Cj−1]. (5.18)
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Observe that the inference of the DGLM-PPM follows the same structure of the conventional
DGLM including the partial specification of the distributions only in terms of their first two
moments. The block state prior (θ(j)

ρ | D(j−1)
ρ ) can be obtained directly from the evolution

equation (5.17) and is given by:

(θ(j)
ρ | D(j−1)

ρ ) ∼ [a(j)
ρ ,R(j)

ρ ], (5.19)

where a(j)
ρ = Gjm

(j)
ρ and R(j)

ρ = GjC
(j−1)
ρ Gj

′ + Wj.
Let D(j−1,k−1)

ρ be the information set available up to the block j − 1 and the observation
k − 1 of the j-th block that is being processed. The linear predictor λjk and the state vector θ(j)

ρ

are assumed to have the following joint distribution:Ñ
λjk

θ(j)
ρ

∣∣∣∣∣∣D(j−1,k−1)

é
∼

Ñ fjk

ajk

é
,

Ñ
qjk F′jkRjk

RjkF
′
j Rjk

é (5.20)

with fjk = F′jRjk and qjk = F′kRjkFj . The one-step-ahead distribution can be derived from the
properties of the EF and were already shown in Chapter 3. Then, using equation (3.6), we get:

p(Yjk | D(j−1,k−1)
ρ ) =

b(αjk, βjk)c(yjk,
1
φjk

)

b(αjk + φjkYjk, βjk + φjk)
(5.21)

From Equation (3.7) the posterior distribution for the natural parameter ηjk can be computed
as

p(ηjk | D(j−1,k−1)
ρ ) = b(αjk + φjkYjk, βjk + φjk)exp[(αjk + φjkyjk)ηjk − (βjk + φjk)a(ηjk)]

(5.22)

Updating of the linear predictor can proceed in the same way as in the conventional DGLM
through the equations below:

E[g(ηjk) | D(j−1,k−1)
ρ ] = f ∗jk, and VAR[g(ηjk) | D(j−1,k−1)

ρ ] = q∗jk.

Finally, the block state vector can be updated in terms of its first two moments using the LBE
procedure shown in Chapter 3. That is,

(θ(j)
ρ | D(j−1,k)

ρ ) ∼ [mjk,Cjk], (5.23)

where the vector mjk and the matrix Cjk can be thought of as direct extensions of Equations
(3.13) and (3.14):

mjk = ajk +
1

qjk
RjkFjk(f

∗
jk − fjk), (5.24)
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Figure 5.1: Schematic representation of the DGLM via PPM

Cjk = Rjk −
1

qjk

ñ
RjkFjkF

′
jkRjk

Ç
1−

q∗jk
qjk

åô
. (5.25)

Figure (5.1) presents a visual representation of the DGLM-PPM. Within each block there
is no parametric evolution. The information set available at the beginning of the block [ij−1ij]

is denoted by D(j−1,0)
ρ and the updating procedure is started by taking aj1 = m(j−1,nj−1) and

Rj1 = C(j−1,nj−1). After each observation is processed, the values of ajk and Rjk are updated
to ajk = m(j,k−1) and Rjk = C(j,k−1). Once every observation in the j-th block is handled, the
evolution equation is applied to the process and the inference proceeds to the next block. This
cycle goes on until all the observations of every block are processed. Naturally, the complete
specification of a DGLM-PPM requires an initial state denoted here by:

(θ0 | D0) ∼ [m0,C0]. (5.26)

5.3.2 Gibbs Sampler

Due to the high computational effort required in the calculation of the posterior relevances, an
alternative approach becomes necessary. In this section we present the Gibbs sampling algorithm
proposed by Barry & Hartigan (1993) [79] and used by Loschi & Cruz (2002) [80] to obtain
inference about the partitions and parameters of a PPM.

Let U be an auxiliary random vector of length n− 1 whose i-th component is defined as:

Ui =

1, if θi = θi+1

0, if θi 6= θi+1
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Each element Ui ∈ U for i = 1, 2, · · · , n− 1 is an indicator variable that takes on zero or
one whether or not the process goes through a change-point at the i-th observation. Observe
that any partition ρ = {i0, i1, · · · , ib} gets completely defined with knowledge of the vector
U = (U1, · · · , Un−1)ᵀ.

The Gibbs Sampler is initiated with the vector U0 = (U0
1 , · · · , U0

n−1). In the step s > 1 a
new vector is generated with the form U s = (U s

1 , · · · , U s
n−1), where the r-th element, U s

r , is
generated from the following conditional distribution:

f(Ur | U s
1 , · · · , U s

r−1, U
s−1
r+1 , · · · , U s−1

n−1;Y1, · · · , Yn),

with r = 1, · · · , n− 1.
To generate new samples from the partition ρ, Loschi & Cruz (2002) propose the use of the

following ratio:

Rr =
P (Ur = 1 | Asr;Y1, · · · , Yn)

P (Ur = 0 | Asr;Y1, · · · , Yn)
, (5.27)

where Asr = {U s
1 = u1, · · · , U s

r−1 = ur−1, U
s−1
r+1 = ur+1, · · · , U s−1

n−1 = un−1} and r =

1, · · · , n− 1. Considering an uniform prior cohesion for the blocks, Equation (5.27) become:

Rr =
P (Y | ρ)

P (Y | ρ∗)
, (5.28)

where ρ = {U1 = u1, · · · , Ur = 0, · · · , Un−1 = un−1} and ρ∗ = {U1 = u1, · · · , Ur =

1, · · · , Un−1 = un−1}. That is, Equation (5.27) becomes a ratio between predictive distributions
given two different partitions: one with a change point at the r-th observation and the other
without. Remember that the predictive distribution has a closed form expression given by
equation (5.13). Thus, a criterion for accepting or rejecting the values obtained for U s

r is

U s
r =

1, if Rr ≥ 1−u
u

0, otherwise

where the values of u are sampled from a (0,1) Uniform distribution.
Denote by M the size of the chain generated in the Gibbs Sampler and suppose, by the sake

of example, that the interest lies on the posterior mean of the state vector of the j-th block of the
partition. Estimates for this parameter may be obtained as follows: for each ρ(s), s = 1, 2, · · · ,M
generated, first compute the block estimate of the parameter, namely:’

m
(s)
jk = mjk (5.29)

with j = 1, · · · , b and k = 1, 2, · · · , nj . The product estimate may be calculate by averaging
this quantity over all the partitions generated, that is:
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’mjk =

∑M
s=1 ’mjk

(s)

M
. (5.30)

This procedure can be extended in an analagous fashion to all the other parameters of the
DGLM-PPM.

5.3.3 Discount Factor

In the DGLM class, the usual strategy to specify the variance matrix of the evolution equation, as
seen in Chapter 3, is via discount factors (denoted by δ). This approach is very appealing since it
handles the uncertainty about the state parameters in an elegant and straightforward fashion. A
decrease in the discount factor is associated with a larger variance Wt in the state evolution and,
consequently, with a larger uncertainty in the parameters. In a DGLM setting, in most cases, it is
reasonable to choose values of discount factors that are close to one since it is expected that a
time series should retain most of its information when transitioning from one state to the next.

In the context of the DGLM-PPM class, however, the specification of the matrix Wj using
discount factors is much more difficult. Almeida (2016) [22] uses a grid of discount factors
ranging from δ = 0.05 to δ = 0.95 and computes the posterior probability for each specification
to determine the optimal discount factor value. The major drawback of this method is that it
is very computationally expensive since it requires the repeated use of the Gibbs algorithm
described in the previous section. If the grid has too many values for δ, the computational time
can make the DGLM-PPM impracticable; if the grid is too short, the estimation will not be
reliable. To circumvent this problem we propose, in this work, to append an ARMS step within
the Gibbs Sampling procedure to compute estimates for the discount factor. This method, that,
as far as we are aware, has never been used in a similar context before, solves the main problems
related to the grid approach since it is much faster and also provides more accurate point and
interval estimates for δ . The variance matrix identified with the block j can be written in terms
of the discount factor δ according to the following expression:

Wj =
(1− δ)GjCj,nj

G′j
δ

=
1

δ
Rj,nj .

Observe that the prior variance of the state vector is a function of δ and this dependency
on the discount factor is carried throughout the whole inference cycle via the hyperparameters
αjk and βjk. Thus, given the complete information set and the partition, and since the block
predictives given by Equation (5.21) are implicit functions of the discount factor, the posterior
distribution for δ will be given by

p(δ | D(b)) ∝

 b∏
j=1

nj∏
k=1

p(Yjk | D(j−1,k−1), ρ)

 p(δ), (5.31)
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where p(δ) represents a prior distribution for the discount factor and D(b) is the complete
information set up to the last block b. Since δ ∈ [0, 1], the Beta distribution arises as natural
candidate to be the prior distribution for the discount factor δ . Samples from Equation (5.31)
can be obtained efficiently using the ARMS [26] algorithm shown in Chapter 2.

The interpretation of the discount factor in the DGLM-PPM is also not as straightforward as
in the classical DGLM. As already shown, the evolution equation is used to pass on information
between blocks. Each block may contain several observations and, within the blocks, there is
only a process of aggregation of the observation through the updating steps, thus leading to a
smaller variance. For this reason, the block structure is likely to induce lower values of discount
factor for the DGLM-PPM in relation to the conventional DGLM since high values for δ would
imply very litle uncertainty about the state vector of the next block.

Penalized discount factor

Another possible approach is to weight the discount factor according to a measure of effective
block size. The reasoning behind this idea is to penalize the larger components of the partition
since they aggregate several θk. Under these assumptions, the discount factor associated to the
j-th block will be given by:

δj = δzj , (5.32)

with zj = sj
s̄

where sj denotes the number of observations within the j-th block and s̄ is the
mean number of observations of the b blocks in the partition. Thus, under this specification, the
discount factor associated with the DGLM-PPM is dynamic. If sj = s̄ ∀ j, then zj = 1 and there
is no penalization.

5.3.4 Example: DGLM via PPM Poisson

Consider the time series yjk with j = 1, 2, · · · , b and k = 1, 2, · · · , nj . The DGLM via PPM
Poisson has the following basic structure:

• Observation Equation:

p(yjk) =
µ
yjk
jk exp(−µjk)

yjk!
, with µjk > 0;

• Link Equation:
log(λjk) = F′θjk;

• Prior for µjk

p(µjk) =
β
αjk
jk

Γ(αjk)
µ
αjk−1
jk exp(−βjkµjk);

76



• Prior for δ
p(δ) =

1

Beta(r, s)
(1− δ)r−1δs−1;

• Initial Conditions:
(θ0 | D0) ∼ [m0,C0].

The gamma prior for the mean of the process µjk is the conjugate prior for the Poisson
distribution. The hyperparameters αjk and βjk can be elicited in terms of fjk and qjk using the
first two moments of the linear predictor and the first order approximations for the digamma and
trigamma functions. That yields:

αjk =
1

qjk
and βjk =

exp(−fjk)
qjk

The posterior distribution for µjk can be easily obtained from the conjugacy assumption:

p(µjk | Djk) ∼ Gamma(αjk + yjk, βjk + 1).

Thus, the posterior moments of the linear predictor are given by the following equations:

f ∗jk ≈ log

Ç
yjk + αjk
βjk + 1

å
,

q∗jk ≈
1

yjk + αjk
.

And now, from equation (5.21) we can write the predictive distribution of the model as:

p(yjk | D(j−1,k−1)) =
Γ(αjk + yjk)

yjk!Γ(αjk)

β
αjk
jk

(1 + βjk)yjk+αjk
, j = 1, · · · , b; k = 1, 2, · · · , nj.

The posterior distribution for the discount factor can be obtained by direct application of
equation (5.31):

p(δ | D(b), ρ) ∝
[
b∏
i=1

nj∏
k=1

Γ(αjk + yjk)

yjk!Γ(αjk)

β
αjk
jk

(1 + βjk)yjk+αjk

]
(1− δ)r−1δs−1.

It is important to remember that, in the equation above, αjk and βjk are implicit functions
of δ. Updating of the state vector can be done through equations (5.24) and (5.25). Finally,
inferences about the partition ρ can be performed using the Gibbs Sampling scheme already
shown. In this work, we assume that there is no prior information available regarding the block
structure. Thus, we can assign a discrete uniform prior cohesion for the partition, that is: c(j)

ρ = 1,
∀ j. This choice implies that the prior distribution for ρ will be given by

p(ρ = {i1, i2, · · · , ib}) =
1

2n − 1
,
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Observe that 2n − 1 represents the total number of possible partitions for a data set containing
n observations. The uniform prior implies that the expected number of clusters in the partition
will be E(B) = n−1

2
+ 1 (see Loschi & Cruz (2005) for details [82]). Considering an uniform

prior cohesion for ρ, samples from the partition can be obtained using the Gibbs Sampler already
described with the ratio Rr of Equation (5.28). So, given the transition matrix Gj , the design
vector Fj , the value of δ, the partition U and the initial values for a and R, the DGLM via PPM
Poisson follows the algorithm described in the pseudo-code (3). This same structure can be
adapted when the observation equation follows any other distribution in the Exponential Family

Algorithm 3: Basic DGLM via PPM algorithm
1 Read y1, · · · , yn
2 Set initial values for a, R, δ and U
3 N ← length(Y )

4 Function DGLMPPM(a0, R0, δ, U):
5 for i← 1 to N do
6 a[i]← a0

7 R[i]← R0

8 f [i]← Fa[i]
9 q[i]← F ′R[i]F

10 α[i]← 1
q[i]

11 β[i]← exp(−f [i])
q[i]

12 pred[i]← Γ(y[i]+alpha[i])
y[i]!Γ(α[i])

β[i]

(1+β[i])y[i]+α[i]

13 f ∗[i]← log(y[i] + α[i])− log(β[i] + 1)
14 q∗[i]← 1

y[i]+α[i]

15 m[i]← a[i] + 1
q[i]
R[i]F (f ∗[i]− f [i])

16 C[i]← R[i]− 1
q[i]

[
R[i]FF ′R[i]

(
1− q∗

q[i]

)]
17 if U [i] == 1 then
18 a0 ← m[i]
19 R0 ← C[i]

20 else
21 a0 ← Gm[i]

22 R0 ← GC[i]G′

δ

23 end
24 end
25 LL← ∑

(log(pred)) // Observed Log-Likelihood
26 return LL, a, R, m, C
27 End Function
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5.4 Simulation Study

Aiming to evaluate the properties of the DGLM via PPM class a simulation study was carried
out. We generated L = 500 samples of size n = 100 observations from a Poisson Local Level
Model (PLLM). With the objective of obtaining more well-behaved samples, we multiplied the
auto-regressive term of the model by a constant φ = 0.99, that is

yt ∼ Poisson(exp(γt))

γt = φγt−1 + ηt, ηt ∼ N [0,Wt],

where γt represents the level of the process at time t. With this specification the PLLM becomes
stationary. In order to create the change-points, jumps were inserted in the level γt at observations
y25, y50 and y75, thereby creating three breaks in the samples. These jumps were designed so that
the expected value of the process shifts by 15 units. For this experiment, we also considered the
variance of the evolution equation W to be constant and set its value at 0.01. All simulations
were run using the version 3.5.2 of the software R Core Team (2017) [63]. Figure (5.2) presents
an example of a time series simulated according to the setting just described.

10

20

30

0 25 50 75 100
Observation

Y

Figure 5.2: Process simulated from a Poisson LLM. The dashed lines indicate the points where
the change-points were introduced.

In this simulation study we chose to work only with the simpler scenario of a non-penalized
discount factor. Because of the lengthy computational time of the Gibbs Sampling scheme
described in previous sections, we opted for generating 4000 samples of the partition U and of
the discount factor δ. Preliminary analysis using the tools available on the R ’coda’ package [66]
showed that a burn-in of 1000 samples should be enough for the chains to achieve convergence.
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To avoid auto-correlation among chains we considered a lag of 3. Thus, we are working here
with a net sample size of M = 1000. Loschi & Cruz (2002) [80] also report fast convergence
and low correlation for the Gibbs algorithm in a similar setting. We assume in this experiment
no prior information about the values of the discount factor. For this reason, we assigned a
Beta(1, 1) prior distribution for δ. Note that, with this parametrization, the Beta distribution is
equivalent to a Uniform (0,1). Estimates of the probability that, at any given point yr of the time
series, there is a change-point can be computed by taking sample averages over the partitions
generated in the MCMC procedure, that is:

Pr(i)(yr is a change point | Y, %) =

∑M
i=1 U

(i)
r

M

where % = {ρ(1), ρ(2), · · · , ρ(i), · · · , ρ(M)} and U (i)
r corresponds to the r-th observation of the

i-th partition (ρi) sampled by the Gibbs algorithm.
For a better visualization, the probabilities of regime switching for each observation from the

500 Monte Carlo replications were organized in box plots. The results are displayed in Figure
(5.3). As expected, the DGLM-PPM attributes larger probabilities of structural change for those
observations in which the jumps in the mean of the process were inserted.
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Figure 5.3: Probability of change associated with each observation according to the DGLM-PPM.

We are also interested in the behaviour of the discount factors of the DGLM and of the
DGLM-PPM. The samples drawn from the posterior distribution (5.31) via ARMS were used to
calculate point and interval estimates for the δ. The Bayes estimator used in this work was the
posterior mean (from here on, denoted by BE-Mean). The credible intervals of 95% Highest
Posterior Density (HPD) were calculated with the help of the tools available in the ’coda’ package
[66]. The superior and inferior limits were computed as sample averages over the 500 Monte
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Carlo replicas. To measure the variability associated to the BE-mean, the Empirical Standard
Error (ESE) was used. Table (5.1) presents the results obtained

δ̂ CI ESE
DGLM-PPM 0.31 [0.40, 0.61] 0.047

DGLM 0.51 [0.19, 0.43] 0.075

Table 5.1: Point and interval estimates for the discount factor of the DGLM-PPM and DGLM

The point estimates show a higher discount factor for the conventional DGLM, an outcome
that was expected and is in conformity with the discussion presented in Section (5.3.3). We
also observe a higher ESE for the estimation of δ in the conventional DGLM in relation to the
DGLM-PPM, implying a smaller variability in the estimates for the later model. To visualize
this difference the posterior distributions of the discount factor associated with the DGLM and
DGLM-PPM are displayed as boxplots in Figure (5.4). It is noteworthy from the plots that the
estimation of δ for the conventional DGLM presents a slightly higher variability in relation to
what is observed for the DGLM-PPM, thus confirming the ESE results.
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Figure 5.4: Comparison of the discount factors estimated via ARMS. In yellow the estimates for
the conventional DGLM, in green the estimates for the DGLM via PPM

The DGLM via PPM also allow us to obtain posterior estimates for the number of blocks in
the partition. Figure (5.5) displays the empirical distribution of the posterior expected number of
blocks considering the 500 Monte Carlo samples generated for this experiment. The boxplot
shows that the mean number of blocks is concentrated around 50. This result is not expected
and is not satisfactory from an inferential point of view since we expected values much smaller
than those observed. We believe that this behavior is an outcome of the uniform prior cohesion
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chosen for the model. As already shown, the prior expected number of blocks for a time series
of size n = 100 under a uniform prior would be E(B) = n−1

2
+ 1 = 50.5. Thus, the results of

this experiment show that the posterior number of blocks is dominated by the prior cohesion and
has litle influence from the data. An alternative to stimulate the formation of blocks with a larger
number of observations would be to assume the prior cohesion defined by Yao (1984) [85].

c(j)
ρ =

p(1− p)
i−j−1, if j < n

(1− p)i−j−1, if j = n,

where 0 ≤ p ≤ 1 represents the probability that a change-point occurs at the instant t. Values
of p closer to zero would induce the formation of partitions with a small value for the prior
expected number of blocks. Another approach, would be to define the prior cohesion as c(j)

ρ = nj ,
∀ j = 1, · · · , b, where nj is the number of observation in the j-th cluster. This way, the model
would assign higher probabilities to partitions with lesser components. The study of these
different prior cohesions is left as a future work.
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Figure 5.5: Empirical distribution of the posterior expected number of blocks in the partition.

To assess the degree of adherence between the parameters estimated by the DGLM-PPM and
the real underlying process we proceeded to compare the estimates obtained for the posterior
mean of the state vector to the real ones generated for this study. Remember that the state vector
is only partially specified in the terms of its first two moments, that is: θjk ∼ [mjk,Cjk]. Our
interest here lies on the posterior mean mjk. Denote the estimates of mjk by m̂jk, the Relative
Bias (RB) associated to this estimator, in percent, will be given by:

RB(%) =
100(m̂jk −mjk)

|mjk|
(5.33)
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We computed the RB in the estimation of mjk for each observation across all Monte Carlo
samples. For comparison purposes, the same procedure was repeated for the conventional
DGLM using the same simulated data. The results obtained were organized in box plots and
are displayed in the Figures (5.6a) and (5.6b) for the DGLM-PPM and the conventional DGLM,
respectively. We call attention to the following facts related to the DGLM-PPM estimates: i) all
observations considered, the mean RB is small (0.34%). Besides, the individual biases rarely
surpass 20% except for the change-points, suggesting good adjustment of the DGLM via PPM;
ii) as indicated by the black horizontal line set at RB = 0, even though the RB are small, they
are systematically positive as the process moves away from the breaks; iii) the biases are much
larger on the first three observations following a change-point.
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Figure 5.6: Box Plots of the Relative Bias associated to the estimation of the mean of the posterior
state vector for the DGLM-PPM (a) and the DGLM (b). The horizontal blue lines indicate the
levels of RB = 20% and RB = −20%. The horizontal black line is set at RB = 0.

Point (iii) is easy to understand since it is natural that the model takes some time to adapt
to a regime switch. Observe, however that, around the change-points, the variability associated
with the DGLM-PPM estimates is slightly smaller than that of the conventional DGLM. To
further illustrate this fact we present, in Figures (5.7a) and (5.7b), the RMSE 1 related to the
estimates of mjk for the DGLM-PPM and the conventional DGLM. It is possible to spot a small,
but noticeable, difference in the RMSE in favor of the DGLM-PPM at the change-points, thus

1RMSE =

√∑500

i=1
(m̂jk−mjk)2

500
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giving our model an edge over the conventional DGLM specially when the time series under
study has structural breaks.
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Figure 5.7: RMSE calculated for the estimates obtained with the DGLM-PPM and DGLM.

As for point (ii), we believe that the persistent estimation bias can be caused by one, or
both, of the following two reasons: the first is that the updating of the state vector is not
exact and rely on several linear approximations that can cause the observed bias; the second is
that we are working with a relatively small sample of 100 observations and the convergence
to RB levels close to zero in the DGLM class might be slow, perhaps even more so in the
presence of change-points. We proceeded, then, to investigate if, despite the persistent bias,
the estimates obtained with the DGLM-PPM have any advantage over those obtained with the
conventional DGLM. To do that, we examined the mean RB associated to each observation, that
is: RBjk = 1

500

∑500
i=1RBjki – for the two models. Figures (5.8a) and (5.8b) show the results

obtained. Observe that the plots are very similar – in both cases a small (< 2%) positive RB is
evident for the observations that are in-between change-points. We can also see from the figures
that, for both models, there is a kind of learning process in which the large biases induced by the
change-points get progressively smaller as the observations of the time series are processed. This
effect, however, is more noticeable in the DGLM-PPM: not only the model fits the observations
immediately after the jumps better than the conventional DGLM, but it also converges back
to the levels of lower bias faster. This outcome is probably due to the lower discount factor
induced by the block structure that allows the model to better adapt to the regime switches. For
this reason, the DGLM-PPM is likely to outperform the conventional DGLM in the presence of
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change-points. This advantage will become more relevant as the number of jumps in the data
increases.
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Figure 5.8: Mean RB for the estimates of the posterior mean of the state vector with the
DGLM-PPM and the DGLM. The dashed red lines indicate RB = 0.

5.5 Real data application

This section is reserved for the application of the DGLM via PPM to real data sets. Two well
known time series were selected: the coal mining accidents counts and the Nile River flow.
To obtain inference about the partitions we used the Gibbs Sampling scheme described in the
Section 3. Since the applications do not require the repeated use of the Gibbs Sampler algorithm
as in the simulation experiment, we opted to work with longer chains. For each data set analyzed
a single chain of size 45000 was generated and, after a burn-in of 5000 and a lag of 10, 4000
posteriors samples were obtained. The final configuration was determined after some tests
using different settings and with the use of the diagnostic tools for MCMC offered by the ’coda’
package from R [66]. The prior cohesion for the partition is assumed to be uniform, that is,
c(j)
ρ = 1, j = 1, · · · , b. No explanatory variables are available for the two data sets chosen for

these applications; besides that, a visual inspection of the time series plots does not indicate any
signs of trend or seasonality. Thus, in both examples, the models were defined as Local Level
Models. The specification of the variance of the evolution equation is made via discount factor
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as discussed earlier. In the first application both the penalized and non-penalized δ are tested
while in the second one only the non-penalized version is used. The estimation of δ was made
via ARMS [26] according to the method already described in this chapter. The results obtained
with the DGLM-PPM were compared to those of the conventional DGLM using the Posterior
Model Probability as an in-sample measure of model performance and the MAE and MSE as an
out-of-sample measure.

5.5.1 Coal mining data

The coal mining data reports the annual number of coal mining disasters involving more than
ten men in the UK from 1851 to 1962 totaling 112 observations. This time series has been
extensively used in the literature for the study of change-points in discrete data. Some examples
include Raftry and Akman (1986) [17], Carlin, Gelfan and Smith (1992) [86], Santos, Franco
and Gammerman (2010) [87], Lai and Xing (2011) [77] and da Silva and da-Silva (2016) [19].
Figure (5.9) shows the coal mining disasters counts. Observe that the annual number of accidents
decreases at the end of the nineteenth century, indicating a possible change-point around the
period that extends from 1885 to 1895.
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Figure 5.9: Annual number of coal mining disaster involving more than 10 men in the UK from
1851 to 1962.

Since we are dealing with a time series of counts, a natural modeling choice is the Poisson
distribution. Three models are in consideration for this exercise: the conventional Poisson
DGLM and the Poisson DGLM-PPM with non-penalized and penalized discount factor. Table
(5.2) presents the estimated values of δ associated with each of the models tested. We also
display the most probable number of blocks of the partition according to the DGLM-PPM in
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both cases studied. The results are shown along with 95% credible intervals. We observe that the
estimated discount factors for the PPM models are lower than those of the conventional DGLM –
a result that is in accordance with the simulation study and the analysis carried out in the last
section. Also, both specifications of the PPM assign a high number of blocks to the partition. As
already discussed, this unexpected result was detected in the simulation study and is probably a
consequence of the uniform prior cohesion chosen for this exercise.

DGLM DGLM via PPM DGLM via PPM with
penalized discount factor

Estimated δ 0.8248
(0.7368, 0.9012)

0.6944
[0.5521, 0.8316]

0.5933
[0.3169, 0.8728]

Number of blocks -
56.3448
[45, 65]

56.3875
[46, 66]

Table 5.2: Estimated discount factor and posterior most probable number of blocks for the three
models adjusted to the coal mining data set.

Figures (5.10) and (5.11) offer a visualization of the empirical distributions of the posterior
samples obtained for δ and the number of blocks in the partitions, respectively. As usual, the
results are organized in boxplots.
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Figure 5.10: Boxplots of the posterior samples of the discount factor obtained for each of the
models tested
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Figure 5.11: Boxplots of the posterior empirical distribution of the number of blocks for the
DGLM-PPM and the DGLM-PPM with penalized discount factor.

From (5.10), it is noteworthy that the discount factors estimated by the DGLM-PPM with
penalized δ have a much higher variability than its non-penalized counterpart. We believe that
this result is a consequence of the asymmetry in the sizes of the blocks that comprise the partition.
The following two scenarios must be examined separately:

1. Most blocks in the partition have a size (sj) smaller than the mean size (s̄);

2. Most blocks in the partition have a size larger than the mean size;

In the first case, the exponent zj of each block will be smaller than one for most blocks in the
partition. What this means is that the effective discount factor associated with these blocks will
be larger than the value of δ estimated for the whole partition. In this case the penalization will
cause the estimated discount factor to be smaller than the one that would be obtained without the
penalization. In the second situation, the zj will be larger than on and the opposite effect will be
observed. Thus, the variability in the estimation of the discount factors is a direct consequence
of the asymmetry of the partitions sampled by the Gibbs algorithm. A better understanding of
this behavior would require the conduction of a simulation study similar to the one presented in
the last section. As for the most probable number of blocks, Figure (5.11) shows very similar
profiles whether the discount factor is specified with a penalization factor or not; thus suggesting
that weighting the components according to their sizes does not alter the most probable number
of blocks in the partition. Also, it should be pointed out that the estimated number of cluster
is much larger than what is suggested by the data, a problem that was already detected in the
simulation study of Section 5.4.
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To assess in-sample and out-of-sample performance of the models three criteria were used:
the posterior probability to evaluate in-sample adjustment and the MAE and MSE to measure
prediction accuracy. The forecasts were calculated as the mean of the forecasts obtained for each
of the partitions sampled by the Gibbs scheme. In order to compute the Posterior Probability it
was assumed equal prior probabilities for each model. Table (5.3) shows the results obtained.

MSE MAE Posterior Probability
DGLM 1.816738 1.046794 0.2402

DGLM via PPM 1.7972 1.0396 0.4544
DGLM via PPM with

penalized discount factor 1.7997 1.0432 0.3054

Table 5.3: Performance summary of each of the models tested.

The three specifications used performed similarly, even though the DGLM via PPM is the
clear winner among them since it presents the highest forecast accuracy and also the highest
Posterior Probability. The DGLM via PPM specified with penalized discount factor has a worse
performance than the DGLM via PPM but it also slightly outperform the conventional DGLM.
The computational cost of the penalized specification is higher in relation to the non-penalized
DGLM via PPM so, for this time series, we will be better off with the regular specification of δ.
Figure (5.12) displays the one-step-ahead point forecasts made by the DGLM via PPM along
with 95% credible intervals. Observe that the predictions line (in black) follows the data points
smoothly. Also, all the data points are within the boundaries set by the credible intervals (dashed
red lines), indicating a good fit.

One of the main advantages of the DGLM via PPM is that it allows the online inference
provided by the DGLM class together with estimates of the change-point probability for every
observation in the time series under study. Figure (5.13) displays the probability of change
estimated for each point of the coal mining accidents data set (bottom half) along with the
original time series plot (upper half). The vertical lines were inserted to serve as a visual guide
for the observations where a regime change are most likely to occur. At least four peaks of high
probability can be observed: the first around 1887, as expected; the second in 1930 and the third
and fourth peaks by the 1940’s and early 1950’s. A close inspection at the time series reveals
that around these periods there is a sudden rise on the number of accidents. The results obtained
here are in line with those reported in the literature for the same time series. Lai & Xing (2011)
use a Bayesian model for multiple breaks to estimate a posterior probability of change in the
order of 40% for the points around 1950 and of 20% for the observations near 1890; these two
periods being the ones with highest probability of regime switch. Also, in the work of da-Silva
and da Silva (2016) the authors use a model based on the Chopin Filter that detects two possible
change-points around the years of 1890 and 1945. Note, however, that the posterior probabilities
estimated in this work still do not allow us to state with absolute certainty that a change-point

89



0.0

2.5

5.0

7.5

10.0

12.5

1850 1875 1900 1925 1950
year

Nu
mb

er 
of 

co
al 

mi
nin

g a
cc

ide
nts

Figure 5.12: One-step-ahead forecasts for the coal mining accidents data using the DGLM
via PPM. The solid black line represent the predictions; the dashed red lines indicate the 95%
credible intervals.

occurred on the aforementioned years. This is because, as observed on the simulation study,
there are cases of false positives in which probability changes around 60% are reported.

5.5.2 Nile River data

The Nile River data consists of 100 observations relative to the annual flow (in 108m3) of the
Nile River from 1871 to 1970. This data set first appeared in the literature in the work of Cobb
(1978) [88] and, ever since, has been examined by several authors in the context of change-point
analysis 2. As can be seen from the figure (5.14), there is a permanent drop in the level of the
time series from 1899 onwards. The proposed explanation for this phenomenon is that the Nile
River experienced a decline in volume due to the construction of the first Aswan dam in 1898.

To model the Nile time series we used the Normal DGLM-PPM (or simply DLM-PPM)
with the precision of the observation equation (φ) considered unknown. The basic structure
of the Normal DGLM was outlined in section 3 of this work and the extension to a PPM is
straightforward following the methodology described in this chapter. Based on the results
obtained with the Coal mining data and considering the computational cost of the specification
with penalized discount factor, we chose to test only the DGLM-PPM with non-penalized δ.
Table (5.4) displays the estimates for the discount factor, posterior number of blocks and precision
along with 95% credible intervals.

2From a Bayesian standpoint see, for example, the work of Moreno, Casella and Garcia-Ferrer (2005) [89]
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Figure 5.13: Change-point probabilities for the coal mining accidents time series in the bottom
and the original time series plot in the upper half. The red vertical lines were inserted at points
where the model assigned highest probability of a regime switch: 1887, 1930 and 1948.
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Figure 5.14: Annual flow of the Nile River from 1871 to 1970.

As expected, and in accordance with the simulation experiment, the discount factors estimated
for the DGLM-PPM and the conventional DGLM are different; the later one having the highest
value. We also observe that the estimates for the precision parameter are very small in both
models and that the most probable number of blocks is around 50, thus making the average
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DGLM DGLM-PPM

Estimated δ 0.6815749
(0.45487, 0.8766)

0.5282
(0.2642, 0.7834)

Estimated φ 7.250881e-05
(5.3903e-05, 9.3831e-05)

7.2088e-05
(5.3590e-05, 9.3286e-05)

Number of blocks -
50.07925
(40, 59)

Table 5.4: Point and interval estimates for the discount factor, precision and most probable
number of blocks of the DGLM and DGLM-PPM applied to the Nile River time series.
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Figure 5.15: boxplots of the posterior samples of the discount factor obtained by each model for
the Nile River data set.

MAE MSE Posterior Probability
DGLM 113.1046 20596.39 0.1886

DGLM-PPM 110.2723 19605.87 0.8114

Table 5.5: Performance summary of the DGLM and DGLM-PPM applied to the Nile River time
series.

number of observations per block equal to two. Figure (5.15) displays the empirical distributions
of the posterior samples of δ for both the Normal DGLM and the Normal DGLM-PPM.

To compare between the two models the same measures of in-sample and out-of-sample
performance utilized in the coal mining accidents example were used. The results are summarized
in table (5.4). We observe, once again, a consistent advantage for the DGLM-PPM over the
conventional DGLM as can be seen by the larger posterior probability and the smaller forecast
errors.
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Figure 5.16: One-step-ahead forecasts for the Nile River time series using the Normal DGLM-
PPM. The solid black line indicates the point predictions and the dashed lines represent the 95%
credible interval.

Figure (5.16) shows the one-step-ahead forecasts for the Nile River flow time series using the
Normal DGLM-PPM along with 95% credible intervals (CI). The fact that very few observations
fall outside the upper and lower bands determined by the CI levels indicates a good adjustment
of the model. We also display the change-point probabilities for each observation in the data set
(figure 5.17). The vertical red line indicates 1898 – the year with the highest break probability
(∼ 83%). This result suggests that the construction of the Aswan dam in fact caused a permanent
decline in the river flow confirming the conclusions of other works in the literature.

5.6 Conclusions

Intervention analysis in a major concern in time series analysis. To address this problem we
presented in this chapter the DGLM-PPM – a new class of models that incorporates the Product
Partitions Models of Barry & Hartigan (1990) [20] into the theory of Dynamic Generalized
Linear Models. We believe our model presents several improvements over the conventional
DGLM. First, it allows the identification of structural breaks by assigning to each observation in
the time series a posterior probability that it is a change-point. Unlike many models used to detect
change-points, the DGLM-PPM does not require any prior knowledge regarding the observation
wherein the regime switch happens, which can be an important advantage in many situations.
Also, just like any other model in the DGLM class, the DGLM-PPM permits the estimation of
filtered and smoothed states, thus allowing for k-step-ahead forecasts and retrospective analysis.
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Figure 5.17: Change-point probability. The vertical red line indicates the year of construction of
the Aswan dam.

Another important feature of the DGLM-PPM class is the possibility of making inferences
about the optimal block structure for a determined data set. Samples of the partition can be
obtained in an efficient manner using a Gibbs Sampler scheme proposed by Barry & Hartigan
(1993) [79]. Within this Gibbs scheme we included an ARMS [26] step in order to sample from
the posterior distribution for the discount factor.

To evaluate the DGLM via PPM we conducted a simulation experiment. From this study
several conclusions could be drawn: i) the model does assign the highest probabilities of changes
to the points where the jumps were artificially inserted; ii) the discount factor estimated via
ARMS is lower for the DGLM via PPM in comparison to the conventional DGLM; iii) the
estimates for the posterior first moment of the state vector is slightly biased, a fact that was
attributed to the approximations involved in the inference procedure of the DGLM class and to
the slow convergence of the model due to poor choices of initial values. Still, we showed that
this bias is also present in the conventional DGLM and that the DGLM-PPM adapts better to a
change-point; iv) the number of blocks estimated for the partition is larger than we would have
expected. This last point is probably a consequence of the uniform prior cohesion specified for
the models.

The DGLM-PPM was applied to two real life data sets that are well known in the change-
point analysis literature: the UK coal mining accidents time series and the Nile River flow time
series. For the coal mining data, the model was specified with penalized and non-penalized
discount factors. We compared both specifications to the conventional DGLM using measures of
in-sample and out-of-sample adjustment. The DGLM via PPM outperformed the conventional
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DGLM in both specifications. The penalization of the discount factor, however, did not improve
the model in this case. For the Nile river time series, we opted to use only the non-penalized
specification. The results also show that the model we propose here is an improvement over the
conventional DGLM. In both examples, the DGLM-PPM detected possible change-points that
are in accordance with the findings of other works in the literature.

There are several ways in which the methods presented in this text can be expanded and
refined. We consider that the most important problem to be addressed regarding the DGLM-PPM
is the number of clusters induced in the partition by the uniform cohesion prior. As already
discussed in Section 5.4, the specification of different prior cohesions can affect the expected
number of clusters induced in the partition. An evaluation of these cohesions can lead to valuable
insights about the structure of the DGLM-PPM. Another extension of this work would be to allow
a stochastic evolution within blocks. In this case, two processes would run simultaneously: one
intra-block and the other between blocks – each of them with a different discount factor. Other
possibilities include a careful simulation study of the penalized discount factor to determine if it
can improve the adjustment of DGLM-PPM and the inclusion of a seasonality component into
the model. We also verified that the DGLM via PPM is costly from a computational point of
view. Thus the implementation of the model using C++ would greatly improve its usability.
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Chapter 6

Final Considerations

This dissertation presented several extensions of the class of Dynamic Bayesian Models. The
work was organized in two strands: one aimed at expanding the class to distribution that are
outside the Exponential Family or that belong to the EF but were not properly formalized as a
Dynamic Model; the other concerned with incorporating the Product Partition Model class into
the DGLM of West, Harrison & Migon (1985) [4] in order to deal with change-points problems.

Within the first strand, several new Dynamic Bayesian Models for single count data time
series were introduced. A general method of inference for Bayesian models with uniparametric
distributions as observation equations was developed. In this thesis, we worked out the cases
of the Borel, Bell, Poisson-Lindley and Yule-Simon distributions as particular cases, but the
framework developed here can be extended to any uniparametric distribution, including those
with continuous response. We also present a novel Dynamic Negative Binomial Model (DNBM)
in which the NB distribution is parametrized as in the Generalized Linear Models framework
and the prior distribution for the mean of the process is a Beta Prime of the second kind. One
of the main contributions of this work is that two estimators were proposed for the shape fixed
parameter of the model: a classical one and a Bayesian one. A Monte Carlo simulation was
carried out and the results have shown that, in all scenarios tested, the coverage probabilities
were very close to the fixed nominal levels. We also noted that, as the sample sizes increase,
the relative biases associated to the estimators decrease, thus indicating good performance. The
framework in which the DNBM was built is very straightforward and computationally efficient
making it a significant contribution to the literature of count time series. We also showed that
this framework can be extended to other biparametric distributions belonging to the Exponential
Family. In this work we presented the calculations for the Gamma and Weibull distributions.
The conduction of a simulation experiment for these models and applications to real-life data
sets were left as future works.

The second part of this thesis dealt with the problem of inference in the presence of change-
points. Regime switches are a common feature of time series in many fields and that is why
this topic has received a lot of attention in the literature in the last few decades. In this work,
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we proposed a new class of models that combines the flexibility of the DGLM class of West,
Harrisson and Migon (1985) [4] to the Product Partition Models of Barry and Hartigan(1992)
[21]. This new class of models, named as DGLM -PPM, allows forecasting and retrospective
analysis as well as inference about the partition. To evaluate the model we carried out a simulation
experiment and applied it to two real-life data sets. In both applications, it was shown that the
DGLM-PPM outperformed the conventional DGLM. We also observed that the change-point
probabilities estimated for the time series in study were compatible with the estimates of other
papers available in the literature. This work opens up several possibilities for futures works
concerning new developments of the DGLM-PPM class. For instance, we can expand it to
include observations in all of the distributions belonging to the Exponential Family. Besides that,
the model might be improved by exploring new specifications for the prior block cohesion and
discount factors. We also believe that including an intra-block stochastic evolution to the model
can lead to a considerable gain in forecasting accuracy.
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Appendix A

Proof of some results from chapter 4

A.1 Proof of results (4.2.2) and (4.2.2)

Let X be a Beta Random Variable with parameters αt and βt. That is:

p(X) =
1

B(αt, βt)
Xαt−1(1−X)βt−1

Using properties of the Exponential Family da Silva et al (2011) [13] showed that:

E
ñ
log

Ç
X

1−X

åô
= ψ(αt)− ψ(βt).

Now define µt = X
1−X , then X = µt

1+µt
and dX = dµt

(µt+1)2
. Thus:

E
ñ
log

Ç
X

1−X

åô
=

Γ(αt + βt)

Γ(αt)Γ(βt)

∫ 1

0
log

Ç
X

1−X

å
Xαt−1(1−X)βt−1dX

=
Γ(αt + βt)

Γ(αt)Γ(βt)

∫ ∞
0

log(µt)

Ç
µt

1 + µt

åαt−1 Ç
1− µt

1 + µt

åβt−1 dµt
(µt + 1)2

=
Γ(αt + βt)

Γ(αt)Γ(βt)

∫ ∞
0

log(µt)µ
αt−1
t (1 + µt)

−αt−βtdµt

= ψ(αt)− ψ(βt).

This proves relation (4.2.2). To find (4.2.2) it is suffice to repeat the same procedure using the
following result also demonstrated by da Silva (2011):

VAR
ñ
log

Ç
X

1−X

åô
= ψ′(αt) + ψ′(βt)

A.2 Proof of results (4.24) and (4.25)

Result (4.24) :

E[log(µt) | κ,Dt−1] = ψ(αt)− ψ(βt)− log(κ)
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Proof. Let X be a Beta Prime random variable with parameters αt e βt, that is:

p(X | αt, βt) =
1

B(αt, βt)

Xαt−1

(1 +X)αt+βt

Now define µt = X
κ

. By the Jacobian transformation µt has the following distribution:

p(µt | κ, αt, βt) =
1

B(αt, βt)

(κµt)
αt−1

(1 + κµt)αt+βt
κ

=
κµt

B(αt, βt)

µαt−1
t

(1 + κµt)αt+βt

Therefore µt is distributed according to a generalized Beta of the second kind.

E[log(µt | κ, αt, βt)] = E
ñ
log

Ç
X

κ

å
| αt, βt

ô
= E[log(X)]− E[log(κ)]

= ψ(αt)− ψ(βt)− log(κ)

Result (4.25) :

VAR[log(µt) | αt, βt, κ] = ψ′(αt) + ψ′(βt)

Proof.

var[log(µt) | αt, βt, κ] = var[log(Xκ−1) | αt, βt]

= var[log(X) | αt, βt]

= ψ′(αt) + ψ′(βt)

A.3 Proof of Expressions (4.35) and (4.36)

Result (4.35):

E[log(µt) | Dt) =
1

p(yt | Dt−1)

∫ ∞
0

1

yt + κ−1

1

B(yt + 1, κ−1)

B(αt + yt, βt + κ−1)

B(αt, βt)

×
î
ψ(αt + yt)− ψ(βt + κ−1)− log(κ)

ó sr

Γ(r)
κr−1 exp(−sκ)dκ.

Proof. Using the posterior distribution for µt it is possible to write:

E[log(µt | Dt) =
1

p(yt | Dt−1)

∫ ∞
0

log(µt)
∫ ∞

0

(yt + κ−1)−1

B(yt + 1, κ−1)

καt+yt

B(αt, βt)

µαt+yt−1
t

(1 + κµt)yt+κ
−1+αt+βt

sr

Γ(r)
κr−1 exp(−sκ)dκdµt
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Notice that it is possible to invoke Fubini’s Theoerem to invert the order of integration on the
expression above. This procedure will allow the integration over µt to be performed. This yields:

E[log(µt | Dt) =
1

p(yt | Dt−1)

∫ ∞
0

(yt + κ−1)−1

B(yt + 1, κ−1)

καt+yt

B(αt, βt)

srκr−1 exp(−sk)

Γ(r)

[∫ ∞
0

log(µt)
µαt+yt−1
t

(1 + κµt)yt+κ
−1+αt+βt

dµt

]
dκ

E[log(µt | Dt) =
1

p(yt | Dt−1)

∫ ∞
0

(yt + κ−1)−1

B(yt + 1, κ−1)

καt+yt

B(αt, βt)

srκr−1 exp(−sk)

Γ(r)

ñ
B(αt + yt, βt + κ−1)

καt+yt
(ψ(αt + yt)− ψ(βt + κ−1)− log(κ))

ô
dκ

E[log(µt | Dt) =
1

p(yt | Dt−1)

∫ ∞
0

(yt + κ−1)−1

B(yt + 1, κ−1)

B(αt + yt, βt + κ−1)

B(αt, βt)

î
ψ(αt + yt)− ψ(βt + κ−1)− log(κ)

ó srκr−1 exp(−sk)

Γ(r)
dκ

Result (4.36):

E[log2(µt) | Dt] =
1

p(yt | Dt−1)

∫ ∞
0

1

yt + κ−1

1

B(yt + 1, κ−1)

B(αt + yt, βt + κ−1)

B(αt, βt)

×
î
(ψ(αt + yt)− ψ(βt + κ−1)− log(κ))2 + ψ′(αt + yt) + ψ

′
(βt + κ−1)

ó
× sr

Γ(r)
κr−1 exp(−sκ)dκ.

Proof. Again, using the posterior for µt and Fubini’s theorem we have that:

E[log2(µt) | Dt] =
1

p(yt | Dt−1)

∫ ∞
0

log2(µt)
∫ ∞

0

(yt + κ−1)−1

B(yt + 1, κ−1)

καt+yt

B(αt, βt)

µαt+yt−1
t

(1 + κµt)yt+κ
−1+αt+βt

sr

Γ(r)
κr−1 exp(−sκ)dκdµt

E[log2(µt) | Dt] =
1

p(yt | Dt−1)

∫ ∞
0

(yt + κ−1)−1

B(yt + 1, κ−1)

καt+yt

B(αt, βt)

sr

Γ(r)
κr−1 exp(−sκ)

[∫ ∞
0

log2(µt)
µαt+yt−1
t

(1 + κµt)yt+κ
−1+αt+βt

dµt

]
dκ

E[log2(µt) | Dt] =
1

p(yt | Dt−1)

∫ ∞
0

(yt + κ−1)−1

B(yt + 1, κ−1)

B(αt + yt, βt + κ−1)

B(αt, βt)

î
(ψ(αt + yt)− ψ(βt + κ−1)− log(κ))2 + ψ′(αt + yt) + ψ

′
(βt + κ−1)

ó sr

Γ(r)
κr−1 exp(−sκ)dκ
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Appendix B

Dynamic Bayesian Models for Positive
Asymmetric Data

The framework introduced in Chapter for modeling time series of counts using the NB distribution
is very general and can be extended to other distributions. In this appendix, we will present
extensions of the Dynamic Bayesian Models for observations with positive response. This kind
of data is very common in many fields such as economics, survival analysis, reliability among
others. In the GLM framework, non-correlated positive observations are, usually, modelled by a
Gamma Regression. A natural extension of the Gamma Regression is the Gamma DGLM (see
for example Lindsay & Lambert, 1995). Other distributions, such as the Weibull, Log-Normal
and Inverse Gaussian are also adequate choices for modeling and predicting time series when the
observations are restricted to R+. In the next sections we will work out full dynamic Bayesian
models with Gamma and Weibull responses. The inference procedure for these models can be
replicated with few modifications for any other observation equation within the EF.

B.1 Gamma Bayesian Dynamic Model

B.1.1 Basic Structure of the Model

Let yt, t = 1, · · · , T be a time series in discrete time such that yt ∈ R+. The Dynamic Bayesian
Gamma Model (DBGM) has the following structure:

• Observation equation:

p(yt |, µt, κ) =
1

Γ(κ)

Ç
κyt
µt

åκ
exp

Ç
−κyt
µt

å
1

yt
. (B.1)

• Link Function:

λt = g(µt) = Ft
′θt = log(µt). (B.2)
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• Prior for µt:

p(µt | Dt−1) =
βαtt

Γ(αt)
µαt−1
t exp

Ç
−βt
µt

å
. (B.3)

• Evolution equation:

thetat = Gtθt−1 + ωt, ωt ∼ [0,Wt]. (B.4)

• Initial Information:

(θ0 | D0) ∼ [m0,C0]. (B.5)

• Prior for κ:

p(κ | r, s) =
sr

Γ(r)
kr−1 exp(−sk). (B.6)

As usual, the parametrization of the observation was chosen so that E(yt | µt, κ) = µt. Also,
it is easy to prove that VAR(yt | µt, κ) = µ2

t . The density in (B.1) belongs to the EF with
φt = κ, ηt = − 1

µt
, c(yt, φt) = κ log(κ) + κ log(yt)− log(yt)− log(Γ(κ)) and a(ηt) = log(µt).

The prior distribution (B.3) for the mean µt of the process is an Inverse Gamma distribution that
conjugates with the Gamma observation equation. The prior for the shape parameter is a Gamma
distribution with parameters r and s. This choice was motivated by the flexibility of the Gamma
distribution but any other distribution with support on R+ would be adequate. As already shown,
the classical estimation of the model can be thought of as a particular case of the full Bayesian
specification when the prior for κ is uniform. For this reason, from here on, we will omit the
inference via Maximum Likelihood Estimation (or MAP). Prior distributions for the state vector
θt and the linear predictor λt are given by (3.9) and (3.10) respectively. To solve ft and qt in
terms of αt and βt we must, first, find E[log(µt)] and VAR[log(µt)]. Since the distribution of the
logarithm of an Inverse Gamma Random Variable is identical to the distribution of the negative
of the logarithm of a Gamma random variable all we need are the relations below:

E[−X] = −E[X],

VAR[−X] = VAR[X],

where X follows the Gamma density. Since the moments of the logarithm of a Gamma random
variable are well known we can write:

ft = E(µt) = −[ψ(αt)− log(βt)] = log(βt)− ψ(αt),
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qt = VAR[µt] = ψ
′
(αt),

Now, applying the first order Taylor approximations to the digamma and trigamma functions,
we get:

αt =
1

qt
,

βt =
exp(ft)

qt
,

B.1.2 Predictive

The predictive distribution p(yt | Dt−1) can be obtained marginally from:

p(yt | Dt−1) =
∫ ∞

0

∫ ∞
0

p(yt | Dt−1, κ, µt)p(µt | Dt−1)p(κ | r, s)dµtdκ

=
∫ ∞

0

∫ ∞
0

1

Γ(κ)

Ç
κyt
µt

åκ
exp

Ç
−κyt
µt

å
1

yt

βαtt
Γ(αt)

µαt−1
t exp

Ç
−βt
µt

å
× sr

Γ(r)
kr−1 exp(−sk)

=
sr

Γ(r)

βαtt
Γ(αt)

1

yt

∫ ∞
0

κκκr−1yκt
Γ(κ)

exp(−sκ)

ñ∫ ∞
0

1

µκ+αt+1
t

exp

Ç
−κyt + βt

µt

å
dµt

ô
dκ

=
sr

Γ(r)

βαtt
Γ(αt)

∫ ∞
0

κκκr−1yκ−1
t

Γ(κ)
exp(−sκ)

Γ(αt + κ)

(κyt + βt)(αt+κ)
dκ

= βαt

∫ ∞
0

κκyκ−1
t

B(αt, κ)(κyt + βt)(αt+κ)

sr

Γ(r)
κr−1 exp(−sκ)dκ (B.7)

A point estimator for the one-step-ahead prediction of the process is given by the expectation
of the predictive. Using the Law of Total Probability it is easy to prove that: ŷt | Dt−1 = E[yt |
Dt−1] = βt

αt−1
for αt > 1. In the context of positive continuous data, however, it is preferable,

sometimes, to use the predictive median as point estimator for the predictions.

B.1.3 Updating of µt

Given a new observation yt, the mean of the process can be update using Bayes’s theorem,

p(µt, κ | Dt) =
p(yt | µt, κ,Dt−1)p(µt | Dt−1)p(κ)

p(yt | Dt−1)

=
1

p(yt | Dt−1)

1

Γ(κ)

Ç
κyt
µt

åκ
exp

Ç
−κyt
µt

å
βαtt

ytΓ(αt)
µαt−1
t exp

Ç
−βt
µt

å
× sr

Γ(r)
kr−1 exp(−sk)

=
1

p(yt | Dt−1)

sr

Γ(r)

βαtt
Γ(αt)

yκ−1
t

Γ(κ)

κκκr−1

µκ+αt+1
t

exp

Ç
−κyt + βt

µt

å
exp(−sκ).
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Thus, integrating over κ we obtain the posterior of µt given the information up to the instant
t:

p(µt | Dt) =
1

p(yt | Dt−1)

sr

Γ(r)

βαtt
Γ(αt)

∫ ∞
0

yκ−1
t

Γ(κ)

κκκr−1

µκ+αt+1
t

exp

Ç
−κyt + βt

µt

å
exp(−sκ)dκ.

(B.8)

B.1.4 Updating of λt

By definition, the posterior moments of the linear predictor are given by equation (4.34) where
p(µt | Dt) is represented by expression (B.8), that is:

E[log(µt)
n | Dt] =

srβαtt
p(yt | Dt−1)Γ(r)Γ(αt)

∫ ∞
0

[log(µt)]
n

×
∫ ∞

0

yκ−1
t

Γ(κ)

κκ+r−1

µκ+αt+1
t

exp

Ç
−κyt + βt + sκ

µt

å
dκdµt.

Thus, setting n = 1 and using the Fubini theorem to invert the order of integration, we have:

f ∗t =
1

p(yt | Dt−1)

sr

Γ(r)

βαtt
Γ(αt)

∫ ∞
0

yκ−1
t κκκr−1 exp(−sκ)

Γ(κ)

ñ∫ ∞
0

log(µt)

µκ+αt+1
t

exp

Ç
−(κyt + βt)

µt

å
dµt

ô
dκ

=
1

p(yt | Dt−1)

sr

Γ(r)

βαtt
Γ(αt)

∫ ∞
0

yκ−1
t κκκr−1 exp(−sκ)

Γ(κ)

Γ(κ+ αt)

(κyt + βt)αt+κ
[log(κyt + βt)− ψ(αt + κ)]dκ

=
βαtt

p(yt | Dt−1)

∫ ∞
0

yκ−1
t κκ

(κyt + βt)αt+κB(αt, κ)
[log(κyt + βt)− ψ(αt + κ)]

sr

Γ(r)
κr−1 exp(−sκ)dκ

=
βαtt

p(yt | Dt−1)

∫ ∞
0

g(κ)f(κ)dκ. (B.9)

Proceeding in a similar fashion for n = 2 we get

E[(log(µt))
2] =

1

p(yt | Dt−1)

sr

Γ(r)

βαtt
Γ(αt)

∫ ∞
0

yκt κ
κ+r−1 exp(−sκ)

ytΓ(κ)

×
ñ∫ ∞

0

(log(µt))
2

µκ+αt+1
t

exp

Ç
−(κyt + βt)

µt

å
dµt

ô
dκ

=
1

p(yt | Dt−1)

sr

Γ(r)

βαtt
Γ(αt)

∫ ∞
0

yκt κ
κ+r−1 exp(−sκ)

ytΓ(κ)

Γ(κ+ αt)

(κyt + βt)αt+κ
[ψ
′
(αt) + log2βt

− 2ψ(αt)log(βt) + ψ2(αt)]dκ

=
βαtt

p(yt | Dt−1)

∫ ∞
0

ytκ−1κκ

(κyt + βt)αt+κB(αt, κ)
[ψ
′
(αt) + log2βt − 2ψ(αt)log(βt) + ψ2(αt)]×

sr

Γ(r)
κr−1 exp(−sκ)dκ

=
βαtt

p(yt | Dt−1)

∫ ∞
0

g(κ)f(κ)dκ. (B.10)
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Equations (B.7), (B.9) and (B.10) may be solved by numerical or Monte Carlo integration
techniques. In this work we verified that the later is a more reliable method specially for
non-stationary time series.

B.1.5 Updating of the state vector

The updating of θt can be done using the LBE approximation through the following equations:

mt = at +
1

qt
RtFt(ft

∗ − ft),

Ct = Rt −
1

qt

ñ
RtFtF

′
tRt

Ç
1− q∗t

qt

åô
.

B.1.6 Estimation of κ

The posterior distribution for κ given the whole set of information DT can be calculated from
Bayes’s theorem as:

p(κ | DT ) =

î∏T
t=1 p(yt | Dt−1, κ)

ó
p(κ)∫∞

0

î∏T
t=1 p(yt | Dt−1, κ)

ó
p(κ)dκ

=

ï∏T
t=1

βαt

B(αt,κ)

κκyκ−1
t

(κy+t+βt)αt+κ

ò
sr

Γ(r)
κr−1 exp(−sκ)∫∞

0

ï∏T
t=1

βαt

B(αt,κ)

κκyκ−1
t

(κy+t+βt)αt+κ

ò
sr

Γ(r)
κr−1 exp(−sκ)dκ

. (B.11)

Under quadratic loss, the Bayesian estimator is the posterior mean, that is: E(κ | DT ). Since
the integrals involved in the calculation of the expected value have no closed-form we propose
to generate samples from (B.11) using the ARMS algorithm in the same way we did for the
DBNBM. Another possibility would be to use the posterior mode as the Bayesian Estimator. In
this case, the maximum of the posterior distribution can be determined with the help of some
optimization algorithm such as the Nelder-Mead. The big advantage of the ARMS procedure
over the mode estimator is that interval estimates are readily available from the samples obtained.

B.2 Weibull Bayesian Dynamic Model

B.2.1 Basic Structure of the Model

The Weibull Bayesian Dynamic Model is defined by the following equations:

• Observation Equation

The Weibull distribution is widely used in many fields such as survival analysis, reliability,
engineering meteorology, among others. The probability density function of a Weibull random
variable yt is given by:
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p(yt | κ, λt) =
κ

λt

Ç
yt
λt

åκ−1

exp

ñ
−
Ç
yt
λt

åκô
, yt > 0,

where

E[yt | κ, λt] = λtΓ

Ç
1 +

1

κ

å
and VAR[yt | λt, κ] = λ2

t

[
Γ

Ç
1 +

2

κ

å
−
Ç

Γ

Ç
1 +

1

κ

åå2
]
.

Defining λt = µt
Γ(1+ 1

κ
)

we can rewrite the equation above as:

p(yt | µt, κ) =
κ

yt

(
ytΓ(1 + 1

κ
)

µt

)κ
exp

[
−
(
ytΓ(1 + 1

κ
)

µt

)κ]
, (B.12)

with E[yt | κ, µt] = µt.

• Link Function:

λt = g(µt) = F′tθt = log(µt). (B.13)

• Prior for µt:

p(µt | αt, βt, κ,Dt−1) = κ
βαtt

Γ(αt)
µ−καt−1
t exp

−
Ñ
β

1
κ
t

µt

éκ . (B.14)

Expression (B.14) is a particular case of the Inverse Generalized Gamma as defined in Mead
(2015) [90]. This choice for prior distribution is justified by the fact (B.14) is the natural
conjugate of the observation equation (B.12).

• Evolution equation:

θt = Gtθt−1 + ωt, ωt ∼ [0,Wt]. (B.15)

• Initial Information:

(θ0 | D0) ∼ [m0,C0]. (B.16)

• Prior for κ:

p(κ | r, s) =
sr

Γ(r)
kr−1 exp(−sk). (B.17)
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The reason why we chose a Gamma prior distribution for the shape parameter is the same as
in the DBGM. Again, we call attention to the fact that other distributions with support on the
positive real line would also fit. Priors for the state vector and the linear predictor are defined as
usual. To equate the parameters αt and βt the following relations were used:

ft = E [log(µt | Dt−1)] =
1

κ
[log(βt)− ψ(αt)] , (B.18)

qt = VAR[log(µt | Dt−1)] =
1

κ
[log(βt)− ψ(αt)] , (B.19)

Proof. The Generalized Inverse Gamma distribution as defined in Mead (2015) [90] is given by:

f(x;α, κ, λ, θ, γ) =
γθαγ

Γλ(α, κ)
x−αγ−1

ñÇ
θ

x

åγ
+ κ

ô−λ
exp

ñÇ
−θ
x

åγô
. (B.20)

Taking λ = 0, (B.20) reduces to:

f(x;α, κ, θ, γ) =
γθαγ

Γ(α)
x−αγ−1 exp

ñÇ
−θ
x

åγô
(B.21)

We are interested in the expectation and variance of log(x). From the definition of expected
value we have:

E[log(x)] =
γθαγ

Γ(α)

∫ ∞
0

log(x)x−αγ−1 exp

ñÇ
−θ
x

åγô
dx

=
γθαγ

Γ(α)

ñ
−1

γ

∂

∂α

∫ ∞
0

x−αγ−1 exp

ñÇ
−θ
x

åγô
dx

ô
=

θαγ

Γ(α)

®
− ∂

∂α

ñ
Γ(α)

γθαγ

ô´
=

1

γ
[γlog(θ)− ψ(α)]

E[log2(x)] =
γθαγ

Γ(α)

∫ ∞
0

log2(x)x−αγ−1 exp

ñÇ
−θ
x

åγô
dx

=
γθαγ

Γ(α)

ñ
1

γ2

∂2

(∂α)2

∫ ∞
0

x−αγ−1 exp

ñÇ
−θ
x

åγô
dx

ô
=

θαγ

γΓ(α)

®
∂2

(∂α)2

ñ
Γ(α)

γθαγ

ô´
=

1

γ2
[(γ log(θ)− ψ(α))2 + ψ′(α)].
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Thus:

VAR[log(x)] = E[log2(x)]− E[log(x)]2

=
1

γ2
[(γ log(θ)− ψ(α))2 + ψ′(α)]−

Ç
1

γ
(γ log(θ)− ψ(α))

å2

=
1

γ2
ψ′(α)

Now observe that equation (B.14) has the same form of equation (B.20) with:

x = µt, γ = κ, α = αt, θ = β
1
κ

So, the expected value and variance of log(µt) are given, respectively, by:

ft = E[log(µt | Dt−1)] =
1

κ
[log(βt)− ψ(αt)];

qt =
1

κ2
ψ′(αt).

With the help of the usual approximations for the digamma and trigamma functions we can
solve for αt and βt to obtain:

βt =
exp(κft)

κ2qt
and αt =

1

κ2qt
.

B.2.2 Predictive

The joint distribution of yt and µt is given by:

p(yt, µt, κ | Dt−1) = p(yt | µt, Dt−1, κ)p(µt | Dt−1)p(κ).

Then, the marginal distribution p(yt | Dt−1) can be obtained from:
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p(yt | Dt−1) =
∫ ∞

0

∫ ∞
0

p(yt | µt, Dt−1, κ)p(µt | Dt−1)p(κ)dµtdκ

=
∫ ∞

0

∫ ∞
0

κ

yt

(
ytΓ(1 + 1

κ
)

µt

)κ
exp

[
−
(
ytΓ(1 + 1

κ
)

µt

)κ]
κ
βαtt

Γ(αt)
µ−καt−1
t exp

−
Ñ
β

1
κ
t

µt

éκ
× sr

Γ(r)
kr−1 exp(−sk)

=
∫ ∞

0

βαtt
Γ(αt)

κ2yκ−1
t Γ

Ç
1 +

1

κ

åκ sr

Γ(r)
kr−1 exp(−sk)

×
∫ ∞

0

1

µκαt+κ+1
t

exp

−ytΓ
Ä
1 + 1

κ

äκ
+ βt

µκt

 dµtdκ
=
∫ ∞

0

βαtt
Γ(αt)

κ2yκ−1
t Γ

Ç
1 +

1

κ

åκ sr

Γ(r)
kr−1 exp(−sk)

Γ(αt + 1)

κ[(ytΓ
Ä
1 + 1

κ

ä
)κ + βt]αt+1

dκ

=
∫ ∞

0

αt
yt
βαtt

κ
î
ytΓ(1 + 1

κ
)
óκî

(ytΓ
Ä
1 + 1

κ

ä
)κ + βt

óαt+1

sr

Γ(r)
kr−1 exp(−sk)dκ.

(B.22)

A point estimator for the one-step-ahead prediction is the expected value of the predictive
distribution. By repeated application of the law of total probability, we have:

ŷt | Dt−1 = E[yt | Dt−1]

= E[E[E[yt | µt, κ]] | Dt−1]

= E[E[µt | κ] | Dt−1]

= E

β 1
κ
t Γ(αt − κ−1)

Γ(αt)
| Dt−1

 (B.23)

Remember that, since αt and βt are implicit functions of κ, there is no simple analytic
solution for (B.23). It is easy, though, to obtain samples from this expression because κ has a
known distribution. Another option would be to use the median or the mode as point estimators.

B.2.3 Updating of µt

From Bayes’s theorem:
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p(µt, κ | Dt) =
p(yt | µt, κ,Dt−1)p(µt | Dt−1)p(κ)

p(yt | Dt−1)

=
1

p(yt | Dt−1)

κ

yt

(
ytΓ(1 + 1

κ
)

µt

)κ
exp

[
−
(
ytΓ(1 + 1

κ
)

µt

)κ]

× κ βαtt
Γ(αt)

µ−καt−1
t exp

−
Ñ
β

1
κ
t

µt

éκ sr

Γ(r)
kr−1 exp(−sk)

=
1

p(yt | Dt−1)

βαtt
Γ(αt)

κ2yκ−1
t Γ

Ç
1 +

1

κ

åκ sr

Γ(r)
kr−1 exp(−sk)

× 1

µκαt+κ+1
t

exp

−yκt Γ
Ä
1 + 1

κ

äκ
+ βt

µκt

 .

Then, integrating over κ:

p(µt | Dt) =
1

p(yt | Dt−1)

sr

Γ(r)

∫ ∞
0

βαtt
ytΓ(αt)

Ä
ytΓ
Ä
1 + 1

κ

ääκ
µκαt+κ+1
t

exp

−yκt Γ
Ä
1 + 1

κ

äκ
+ βt

µκt


kr−1 exp(−sk).dκ

B.2.4 Updating of the linear predictor and state vector

As usual, the updating of the linear predictor can be obtained through the following equations:

f ∗t = E[λt | Dt] = E[log(µt) | Dt] and q∗t = VAR[λt | Dt] = VAR[log(µt) | Dt],

where:

E[log(µt) | Dt] =
1

p(yt | Dt−1)

∞∫
0

αtβ
αt
t

yt

Ä
ytΓ
Ä
1 + 1

κ

ääκîÄ
ytΓ
Ä
1 + 1

κ

ääκ
+ βt

óαt+1

×
ñ
log

ÇñÇ
ytΓ

Ç
1 +

1

κ

ååκ
+ βt

ôå
− ψ(αt + 1)

ô
sr

Γ(r)
κr−1 exp(−sk)dκ,

(B.24)

Proof. Since µt and κ belong to R+ it is trivial to see that the integrand in (B.24) is non-negative.
Thus, the conditions of Fubini-Tonelli theorem apply and we can write:
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E[log(µt) | Dt] =
1

p(yt | Dt−1)

sr

Γ(r)
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0

log(µt)
βαtt

ytΓ(αt)

Ä
ytΓ
Ä
1 + 1

κ

ääκ
µκαt+κ+1
t

× exp
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and

E[log2(µt)] =
1

p(yt | Dt−1)
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(B.25)
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Proof.

E[log2(µt)] =
1

p(yt | Dt−1)

sr

Γ(r)

∫ ∞
0
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0
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Naturally, qt can be obtained from VAR[log(µt) | Dt] = E[log2(µt)] − (E[log(µt) | Dt])
2.

Updating of the state vector is done in the usual sense through Equations (3.13) and (3.14). The
integrals in (B.24), (B.25) and (B.22) can be solved via numerical or Monte Carlo integration.

B.2.5 Estimation of κ

Samples of the posterior distribution of κ can be obtained via ARMS from the following target
distribution:

p(κ | DT ) =

î∏T
t=1 p(yt | Dt−1, κ)

ó
p(κ)∫∞

0

î∏T
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, (B.26)
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where

p(yt | κ,Dt−1) =
∫ ∞

0
p(yt | κ, µt, Dt−1)p(µt | Dt−1)dµt
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Ä
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.

Again, we suggest to sample from (B.26) via ARMS. The specification of the variance Wt,
in this case, must be done with the help of discount factors.
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