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Resumo
Confundimento espacial é o nome dado para o confundimento entre efeitos fixos e aleatórios
espaciais em modelos lineares generalizados mistos (MLGMs). O confundimento espacial
vem sendo amplamente estudado e vem ganhando atenção na literatura nos últimos anos
visto que esta limitação pode gerar resultados inesperados na modelagem. As abordagens
baseadas em projeção, conhecidas por modelos restritos, aparecem como uma boa alter-
nativa para contornar as limitações do confundimento espacial em MLGMs. Entretanto,
quando o suporte dos efeitos fixos difere do suporte do efeito espacial ou então quando
diversos efeitos espaciais estão presentes na análise, os modelos baseados em projeção não
são diretamente aplicáveis. Neste trabalho são introduzidas soluções para amenizar o con-
fundimento espacial em duas famílias de modelos estatísticos. Em modelos de componente
compartilhado, diversas variáveis resposta de contagem são observadas em cada região
em estudo e muitas vezes apresentam padrões espaciais similares. Desta forma, os efeitos
espaciais podem ser compartilhados entre as respostas além da possível presença de efeitos
espaciais específicos. Neste contexto, nossa proposta se baseia no uso de estruturas espaciais
modificadas para cada um dos componentes compartilhados e também dos efeitos espaciais
específicos. Já modelos de fragilidade espacial permitem incorporar efeitos espacialmente
estruturados através de um termo de fragilidade. Além disso, é comum observar-se mais
de um indivíduo por região o que implica que o número de observações é maior que o
número de regiões em estudo. Neste contexto propomos um modelo de projeção reduzindo
a dimensionalidade dos dados. Como um produto deste trabalho, foi criado um pacote em
R chamado RASCO: An R package to Alleviate Spatial Confounding que fornece à
comunidade uma ferramenta para alivar o confundimento espacial em MLGMs, modelos
de componente compartilhado e modelos de fragilidade espacial. Para uma inferência
Bayesiana à um custo computacional baixo, a metodologia INLA foi utilizada. Casos
de cancêr de pulmão e brônquios na California foram estudados em ambos os modelos
mostrando a eficiência dos métodos propostos.

Key-words: análise de sobrevivência. mapa de doenças. efeitos latentes. multicolinearidade.
SPOCK. projeção.



Abstract
Spatial confounding is the name given to the confounding between fixed and spatial random
effects in generalized linear mixed models (GLMMs). It has been widely studied and it
gained attention in the past years in the spatial statistics literature, as it may generate
unexpected results in modeling. The projection-based approach, also known as restricted
models, appears like a good way to overcome the spatial confounding in this kind of models.
However, when the support of fixed effects is different from the spatial effect one or when
multiple spatial effects are present in the modeling, this approach can no longer be applied
directly. In this work, we introduce solutions to alleviate the spatial confounding for two
families of statistical models. In shared component models, multiple count responses are
recorded at each spatial location, which may exhibit similar spatial patterns. Therefore,
the spatial effect terms may be shared between the outcomes in addition to specific spatial
patterns. In this case, our proposal relies on the use of modified spatial structures for each
shared component and specific effects. Spatial frailty models can incorporate spatially
structured effects and it is common to observe more than one sample unit per area which
means that the support of fixed and spatial effects differ. In this case, we introduce a
projection-based approach reducing the dimensionality of the data. As a product of this
work an R package named RASCO: An R package to Alleviate Spatial Confounding
is provided and it allows the community to alleviate the spatial confounding in GLMMs,
shared component models and spatial frailty models. To provide a fast inference for the
parameters, we used the INLA methodology. Lung and bronchus cancer in the California
state is investigated under both methodologies and the results prove the efficiency of the
proposed models.

Key-words: survival analysis. disease mapping. latent effects. multicollinearity. SPOCK.
projection.
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Introduction

Spatial models are widely studied in the literature and are important in practice
to model spatially correlated data. In addition to the development of robust models, many
works focus on identifying and solving the limitations of those models. One of the spatial
model’s limitation is called spatial confounding (CLAYTON; BERNARDINELLI; MON-
TOMOLI, 1993; REICH; HODGES; ZADNIK, 2006; HUGHES; HARAN, 2013; HANKS
et al., 2015; HEFLEY et al., 2017; THADEN; KNEIB, 2018; PRATES; ASSUNÇÃO;
RODRIGUES, 2019). This problem resembles the multicollinearity in linear models which
can distort the results and even lead to wrong conclusions. Spatial confounding occurs
when the spatial effect contains similar information to the one coming from the fixed effects.
Thus, point estimates of the regression coefficients become biased and their variance gets
inflated (REICH; HODGES; ZADNIK, 2006).

For traditional spatial models, the most common approach to alleviate spatial
confounding is the restricted spatial regression model (REICH; HODGES; ZADNIK, 2006).
It is based on the projection of spatial effects onto the orthogonal space of the covariates.
This approach is well accepted and some alternatives to the original idea have been
reported (HUGHES; HARAN, 2013; HANKS et al., 2015; GUAN; HARAN, 2018).

Alternatively to these projection-based approaches, Prates, Assunção and Rodrigues
(2019) provided a tool, named spatial orthogonal centroid “k”orrection (SPOCK). Its main
idea is to alleviate the spatial confounding misplacing the regions centroids, creating a
new neighborhood structure that leads to a model where the spatial confounding is less
intense. The main advantage of this approach is that the correction is made before fitting
the model, which allows the user to choose its preferred software.

Another set of alternatives to overcome the spatial confounding is available in the
literature using various statistical tools such as the lasso regression (HEFLEY et al., 2017),
structural equation models (THADEN; KNEIB, 2018) and, causal inference (PAPADO-
GEORGOU; CHOIRAT; ZIGLER, 2018; DAVIS et al., 2019; OSAMA; ZACHARIAH;
SCHÖN, 2019).

Advances in technology, data storage and the good quality of data allow fitting
increasingly complex models that more realistically represent the phenomenon of interest,
providing better fit and interpretation. These models are in use by non-statisticians and
might suffer from spatial confounding. Thus, it is important to investigate the existence of
this limitation in more general settings.

In epidemiology, it is often observed that disease incidences and counts exhibit
spatial clustering, i.e., counts observed in geographically proximal areas (such as counties
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in a state) have similar patterns and may differ from those observed in distant areas.
Disease mapping is a widely used tool to model and evaluate risk factors of diseases from
spatially structured counts of deaths, or new cases of a disease. Inference derived from
disease mapping studies may offer the researcher a new look into the reasons for such
spatial clustering, which may pave way for new policy decisions to contain the disease
spread.

For areal (count) responses recorded on a single disease at spatial locations, the
common approach is to use a (univariate) Poisson model, and covariates regressed via
appropriate link function on the Poisson intensity. However, in practice, multiple count
responses pertaining of multiple diseases, may be recorded at the same spatial locations,
thereby experiencing similar spatial patterns. Modeling multiple disease counts can be
readily accomplished via a shared component model (KNORR-HELD; BEST, 2001), where
spatial effects may be shared between multiple diseases for modeling the association, with
additional spatial terms accounting for disease-specific effects.

Frailty models are a useful and flexible class of survival models. It allows the
inclusion of latent effects related to a subject or a group to accommodate possible non-
observed covariates. The simplest way to employ a frailty term is through an unstructured
effect, ensuring that the hazard is positive for each sample unit. However, this approach
does not handle structured effects as the case of spatial effects. Papers as Henderson,
Shimakura and Gorst (2002), Li and Ryan (2002), Banerjee, Wall and Carlin (2003),
Bastos and Gamerman (2006) propose the use of frailty models to incorporate spatial
structure into the latent effects. Banerjee, Wall and Carlin (2003) show how to include
consolidated spatial models such as the conditional autoregressive (CAR) model (BESAG,
1974) for areal data and the Gaussian model for georeferenced data (CRESSIE, 1992).

The usual projection-based approaches for areal data cannot be directly applied
to these families of models. For the shared component model, multiple spatial effects are
present. Also, each disease may have specific covariates which makes the projection a
non-trivial task. On the other hand, for frailty models, there is a difference in the support
of the spatial structure (areal level) and the fixed effects (sample unit level) imposing a
limitation on applying a projection-based approach.

Several solutions are available to alleviate the spatial confounding for generalized
linear mixed models (GLMM). However, there is no software available which unifies the
solutions for GLMM and, to the best of our knowledge, there are no investigation studies
of spatial confounding in models beyond the GLMM family.

In this work, we provide a tool to alleviate the impact of spatial confounding in
spatial frailty models as well as in shared component models. For the shared component
model, we propose multiple applications of SPOCK for specific and shared spatial effects
considering the specific and all covariates, respectively. For spatial frailty models, we
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propose an alternative way to apply the projection-based approach reducing the dimension
of the covariate matrix using a reduction operator. It also reduces the computational cost,
being an interesting tool for spatial frailty models in big data.

As a product of this work, we have an R package called “RASCO: An R package
to Alleviate Spatial Confounding”. It includes functions to alleviate the spatial con-
founding in shared component models, spatial frailty models and also generalized linear
mixed models. Some projection-based approaches are provided in the package as the cases
of Prates, Assunção and Rodrigues (2019) and Reich, Hodges and Zadnik (2006) proposals.
The package can be found at https://github.com/douglasmesquita/RASCO.

We applied the methodology to respiratory cases (lung and bronchus) in the
California state. The dataset was provided by Surveillance, Epidemiology, and End Results
Program (SEER, 2019). For the shared component analysis, counts of new cases of lung
and bronchus cancers are modeled for men and women. For the spatial frailty model, the
time until death by lung and bronchus cancer is investigated.

This Ph.D. thesis is organized as follows. In Part 1 a review is presented with
a discussion about spatial confounding, shared component models and spatial survival
models. Part 2 shows the data sources for the applications and some summary statistics.
Part 3 describes our proposal to alleviate the spatial confounding in shared component
models. Part 4 presents our proposal to alleviate the spatial confounding in spatial frailty
models. Part 5 introduces the RASCO package and its basic usage. Finally, we present the
main conclusions and final remarks.



Part 1

Methods review
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1.1 Generalized linear mixed models

Linear regression is a simple and widely applied method in Statistics (NETER et
al., 1996). It connects the unknown mean µ of a random vector Y = (Y1, . . . , Yn)T with
a set of q covariates aiming to explain the behavior of Y through the behavior of X, in
which X is a n× q matrix of covariates. To simplify calculations, it is usual to assume
that Yi|µi, σ2 ∼ Normal(µi, σ2). In this case, we have that

Y |µ, σ2 ∼ Normaln(Y ;µ, σ2In)

µ = Xβ,

where β is a column vector of q coefficients and In is a n× n identity matrix. This tool
is useful because it is simple to interpret each βj in terms of variations in µ. However,
this technique has some assumptions like the independence and the distribution of Y .
Frequently, the outcomes are not in the Gaussian family and in other cases the assumption
of independence is not achieved. This way, more flexible methods are needed.

The generalized linear model (GLM) (NELDER; WEDDERBURN, 1972) is a
natural extension of linear regression to distributions belonging to the exponential family.
Nelder and Wedderburn (1972) cite three main characteristics of this model family in their
work: 1) A dependent variable Y whose distribution belongs to the exponential family; 2)
A matrix of independent covariates represented by X that linearly predict a function of µ
by Xβ; 3) A link function g(.) that connects µ with the linear predictor Xβ. Then the
definition becomes

Y |µ,θ ∼ f(Y ;µ,θ)

g(µ) = Xβ,

where f(Y ;µ,θ) is the density or probability function of the Y in the exponential family
and θ is a vector of any other parameters of f(.).

Under this framework, it is possible to fit, for example, binomial, Poisson and
gamma regressions (NELDER; WEDDERBURN, 1972). Currently, due to computational
improvement, the exponential family requirement is no longer necessary.

This set of distributions allows us to employ this methodology in a huge number of
real situations. However, the assumption of independence is strong and not realistic in
some cases. It is common to observe clustered data as the case of data collected in time or
space. It is realistic to assume that data collected in closed periods of time or regions may
have some similarities.

The generalized linear mixed model (GLMM) (BRESLOW; CLAYTON, 1993)
extends the GLM family in which beside fixed effects one can also include latent effects of
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unobserved covariates. The general formulation is given by:

Y |µ,θ ∼ f(Y ;µ,θ)

g(µ) = Xβ +Zε,

where the vector ε contains possible random effects and Z is a design matrix linked to the
latent effects.

Some useful models are encompassed on the GLMM formulation. For example, for
the previous linear regression, Y is a Gaussian outcome, g(µ) = µ is the identity link
function, X and β are the covariate matrix and coefficients, respectively, and there are no
latent effects.

Disease mapping is widely used in the epidemiology literature. In the simpler case,
Yi is a Poisson outcome, g(µi) is generally the logarithm function, X and β are the
covariate matrix and coefficients respectively, Z is a n× n diagonal matrix with entries 1
and ε is a vector of spatial effects.

Another example is the longitudinal analysis where the same subject is observed
multiple times in a period of time. It is realistic to imagine that a specific subject may
evolve on time according to its historical observations. In this case, the observations of this
subject are not independent. Thus, under the GLMM it is possible to consider a temporal
structure to its observations (DIGGLE et al., 2002).

Similarly, in data collected on the space, observations may be influenced by its
location. For example, in an epidemic, it is realistic to think that it is going to spread
following some spatial patterns. Therefore, it is important to include spatial dependence
into the model. Under the GLMM it is also possible to consider a spatial structure of the
observations through a latent effect (BANERJEE; CARLIN; GELFAND, 2014).

Because of the importance of this class of models, several methodological impro-
vements are made to develop this family making it even more general and robust to
possible limitations. One can cite the choice of the link function and the implications of
misspecification (CZADO; SANTNER, 1992) or recently, the spatial confounding (REICH;
HODGES; ZADNIK, 2006; HODGES; REICH, 2010; HUGHES; HARAN, 2013; HEFLEY
et al., 2017; GUAN; HARAN, 2018; THADEN; KNEIB, 2018; PAPADOGEORGOU;
CHOIRAT; ZIGLER, 2018; PRATES; ASSUNÇÃO; RODRIGUES, 2019; DAVIS et al.,
2019; OSAMA; ZACHARIAH; SCHÖN, 2019) that is the limitation under investigation in
this work.
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1.2 Spatial models

Modeling the sources of variation is important for countless fields and can help
researchers identifying spatial patterns and make decisions. In many cases, the data is
spatially structured which makes the models capable of identifying the influence of these
structures indispensable.

In Statistics the most common types of spatial data are those in which observations
are collected in a continuous space (geostatistical data) or when they represent a region
in space (areal data). In the areal data context, it is desired to add the neighborhood
structure information into the modeling. This is done to accommodate the spatial behavior
of a possible unobserved or latent covariate.

There are several approaches for modeling spatially structured data in the areal
context as the cases of conditional autoregressive (CAR) (BESAG, 1974; BANERJEE;
CARLIN; GELFAND, 2014), simultaneous autoregressive (SAR) (WHITTLE, 1954; ORD,
1975), Leroux (LEROUX; LEI; BRESLOW, 1999), mixture neighborhood structure (RO-
DRIGUES; ASSUNÇÃO, 2012) and, directed acyclic graph autoregressive (DAGAR)
(DATTA et al., 2019).

In applied sciences, the most common approach for areal data is the CAR model
due to the model simplicity. Although any of the mentioned methodologies are valid, in
this work we will focus on the ICAR model.

1.2.1 Intrinsic Conditional autoregressive - ICAR
Let Y = Y1, . . . , Yn be a random vector observed into n regions and let ψ =

(ψ1, . . . , ψn)T denote random effects with zero mean related to each one of the n regions.
The ICAR model is specified by the following conditional distributions

(ψi|ψ−i) ∼ Normal
∑
j∼i

bijψj, σ
2
i

 ,
where ψ−i represents the vector ψ without the i-th element, bij is a weight relating the
regions i and j and, j ∼ i indicates that regions j and i are neighbors. One can show that
the joint distribution of ψ = (ψ1, . . . , ψn)T is given by:

π (ψ) ∝ exp
{
−1

2ψ
TD−1 (In −B)ψ

}
, (1.2.1)

where D is a diagonal matrix with entries σ2
i , i = 1, . . . , n and B is a n × n matrix of

weights with entries bij.
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Equation (1.2.1) resembles a multivariate Gaussian distribution with mean vector
0 and covariance matrix given by Σ = (In −B)−1D. However, one needs to show that Σ
is symmetric and positive definite.

The traditional ICAR model defines an adjacency matrix W composed of zeros
and ones where wij 6= 0 if and only if j ∼ i. Thus, W comprises zeros and ones, where 1
indicates that areas i and j are neighbors, and 0 otherwise. Figure 1 shows for a given
graph its respective adjacency matrix.

Figure 1 – Undirected graph and its adjacency matrix.

Then, a common approach is to take bij = wij
wi+

, where wi+ is the sum of the elements
of the i-th row of matrix W , in other words, wi+ is the number of neighbors of region i.
Another definition is to take the marginal variance in each region as σ2

i = σ2

wi+
.

In this situation, Q = Σ−1 = 1
σ2 (Dw −W ), where Dw is a diagonal matrix with

values wi+. This set of assumptions only guarantees that Q is symmetric, but, it still
does not guarantee positive definiteness and therefore it does not guarantee a proper
joint distribution. Despite that, this formulation is still useful and is known as intrinsic
conditional autoregressive model (ICAR) (BESAG; YORK; MOLLIÉ, 1991).
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Figure 2 – Five regions and its respective CAR precision matrix.

A proper version of the latter model is obtained by inserting a dependence parameter
ρ in the previous dependence matrix (BESAG, 1974). Thus, the new dependence structure
Q = 1

σ2 (Dw−ρW ) is proper and therefore the joint distribution is proper where ρ ∈ (λ−1
min,
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λ−1
max) and λmin and λmax are the smallest and largest eigenvalues ofD

1
2
wWD

1
2
w, respectively

(BANERJEE; CARLIN; GELFAND, 2014). Figure 2 shows for a given map and a specific
neighborhood structure the respective proper CAR precision matrix.

Both ICAR and CAR models can be accomplished in the GLMM through the
latent effect. In this case, the latent effect is going to accommodate any spatially structured
information not observed. In our work we are focusing on the ICAR model.

1.2.2 Spatial confounding
A current limitation in spatial statistics is the so-called spatial confounding. This

problem resembles what occurs in linear models when two or more covariates bring the same
information about the response variable. In linear models, we call it multicollinearity. One of
the main problems related with multicollinearity is the variance inflation of the regression
coefficient estimators. This inflation, in some cases, changes the model interpretation
leading the researcher, occasionally, to wrong conclusions about a covariate in the model.

A simple way to investigate the multicollinearity is using the variance inflation
factor (VIF). The variance of a given coefficient can be written as

v̂ar(β̂j) = s2(XTX)−1
j,j = s2

(n− 1)v̂ar(Xj)
· 1

1−R2
j

, (1.2.2)

where s2 is the variance of the residuals, R2
j is the coefficient of determination for the

regression of Xj over other covariates but not Y . Thus,

V IF (βj) = 1
1−R2

j

.

If R2
j is near 1, it suggests that a linear combination of the covariates is bringing

similar information to that coming from Xj. In this case, V IF (βj)→∞. On the other
hand, if R2

j is near 0, then, V IF (βj)→ 1 suggesting that there is no multicollinearity in
this model.

The extension of the multicollinearity problem to the spatial context is called spatial
confounding and it occurs when the spatial effect brings similar information to one or a
linear combination of the covariates in the model. Differently from the multicollinearity,
spatial confounding determines an inflation in the variance of the regression estimators
and also a bias in the point estimate, possibly changing conclusions drastically.

Recently several works as Reich, Hodges and Zadnik (2006), Hughes and Haran
(2013), Hanks et al. (2015), Hefley et al. (2017), Guan and Haran (2018), Thaden and
Kneib (2018), Prates, Assunção and Rodrigues (2019) approached the spatial confounding
problem either for generalized linear mixed models areal or geostatistical data. We are
going to describe some of these approaches in the next subsections.
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1.2.2.1 Reich, Hodges and Zadnik (2006)

Reich, Hodges and Zadnik (2006) mathematically formulate the problem of spatial
confounding for spatial linear regression models. In their work, the marginal distributions
of regression coefficients have closed form. The authors employed the structure of the
ICAR model as a spatial component in the following model:

Y |β,ψ, τε ∼ Normal(Xβ +ψ, τεIn), (1.2.3)
ψ|τψ ∼ Normal(0, τψQ),

where ψ is the ICAR spatial effect, Q is the precision matrix presented in Section 1.2.1,
τε and τψ are precision parameters related to the Gaussian observations and the ICAR,
respectively. Therefore, the Gaussian distribution is being represented by its precision
matrix rather than its covariance matrix.

In the case of spatial linear regression, it is possible to analytically calculate the
expected mean and variance integrating out the latent effect as:

E(β|τε, τψ,y) = (XTX)−1XT (y − ψ̂) = βols − (XTX)−1XT ψ̂, (1.2.4)
V ar−1(β|τε, τψ,y) = τε(XTX)−XTV ar(ψ|β, τε, τψ,y)X,

where βols = (XTX)−1XTy and ψ̂ = E(ψ|τε, τψ,y).

One can notice that the expectation of β, integrating out the spatial effect, is the
same as those obtained by the ordinal least squares minus a component that relates the
covariates and the latent effect ψ. Similarly, the precision is the same as in linear models,
see Equation (1.2.2), minus a quantity involving the spatial effect. In other words, under
spatial models, the expected mean and variance are different from those from linear models
by a quantity involving the latent effect.

Carefully investigating Equation (1.2.4) it is possible to conclude that the predicted
y value is given by X(XTX)−1XT (y − ψ̂) = P (y − ψ̂) = Py − Pψ̂, a projection of y
onto the space of X minus a projection of the latent effect ψ̂ onto the space of X. To
make it clear, the projection matrix given by P = X(XTX)−1XT is useful to project any
vector, of appropriate dimension, onto the space of X. For example, in linear regression
we know that ŷ = Xβ̂ and β̂ = (XTX)−1XTy, thus ŷ = X(XTX)−1XTy = Py. In
other words, ŷ is the projection of y onto the space of X.

When the spatial confounding is present it indicates the existence of duplicated
information in the model. One way to alleviate this problem is by using a projection-
based model. That is, by decomposing the spatial effect into a projection onto the space
of the covariates and a projection onto the orthogonal space of the covariates as in
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Equation (1.2.5).

Y |β,ψ, τε ∼ Normal(Xβ + Pψ + P⊥ψ, τεIn), (1.2.5)
ψ|τψ,∼ Normal(0, τψQ),

in which, P⊥ = (I − P ) is the projection matrix onto orthogonal space of X.

Therefore, in the case of Equation (1.2.5), Pψ corresponds to the information of
ψ on the space of X which in other words represents the duplicated information. Thus,
one way to alleviate the spatial confounding is by removing Pψ from the model.

This approach is known as restricted spatial regression (RSR) and is also applicable
for GLMM. However, for GLMMs, it is not possible to analytically evaluate the impacts
of the latent effect on the coefficients estimates as the analytical solution of the involved
integrals are not available.

To take some computational advantage of the restricted model, Reich, Hodges and
Zadnik (2006) notice that P is a rank q matrix while P⊥ is a rank n− q matrix. It implies
that P and P⊥ have q and n− q nonzero eigenvalues respectively.

Because P is a square matrix, one can take K as the p eigenvectors rows related to
the nonzero eigenvalues of P and L as the n− p eigenvectors rows related to the nonzero
eigenvalues of P⊥. Thus we can define θ1 = Kψ and θ2 = Lψ and rewrite the model in
the Equation (1.2.5) as

Y |β,θ, τε ∼ Normal(Xβ +KTθ1 +LTθ2, τεIn), (1.2.6)
θ|τs,∼ Normal(0, τsQ̃),

where θ = [θT1 ,θT2 ]T and Q̃ = (KTLT )TQ(KTLT ).

The quantity KTθ1 is the combinations of the latent effect into the span of X. So
a solution to alleviate spatial confounding is to remove this quantity from the model

Y |β,θ, τε ∼ Normal(Xβ +LTθ2, τεIn), (1.2.7)
θ2|τs,∼ Normal(0, τsLQLT ).

This approach is a better computational solution since it evolves LT a (n− p)× n matrix
instead of P⊥ a n × n matrix. However, because it is common to have the number
of covariates q much smaller than areas n, this simplification does not represent a big
computational advantage. In the rest of this work, we will refer to this approach as the
RHZ model.

1.2.2.2 Hughes and Haran (2013)

Although Reich, Hodges and Zadnik (2006) proposal alleviates the spatial confoun-
ding, this method is computationally inefficient. Hughes and Haran (2013) noticed that



Chapter 1.2. Spatial models 25

LQLT is a (n − q) × (n − q) matrix and (n − q) ≈ n. Thus, Hughes and Haran (2013)
proposed a sparse reparametrization of the RHZ model.

The authors noticed that the decomposition of ψ into Pψ + P⊥ψ and later into
KTθ1 +LTθ2 is mathematically correct but it does not consider the spatial structure in
the model. Based on the Moran I statistic (MORAN, 1950) they proposed an alternative
operator that has two main advantages: 1) it separates attractive (positive) and repulsive
(negative) spatial dependence patterns; 2) it simplifies the problem to a dimension much
smaller than n+ 1.

The Moran operator is defined asM = P⊥WP⊥, whereW is the adjacency matrix
defined in Section 1.2.1. This approach is interesting in the sense that the eigenvectors
related to M present spatial structure. To illustrate the first advantage of the Moran
basis, we followed the Hughes and Haran (2013) experiment simulating a 30× 30 lattice.
Each cell represents a region in this map. We took X = [X1,X2], where Xi = (x1i, x2i)
contains the x- and y-coordinates of the i-th lattice point, therefore it is an artificial
example. Figure 3 shows eigenvectors 3, 8, 16, 20 and 26 related to each cell of the RHZ
model basis and of the Moran basis (HH).

3 8 16 20 26

H
H

R
H

Z

Figure 3 – Eigenvectors 3, 8, 16, 20 and 26 from the RHZ and HH basis disposed in a 30× 30
lattice for a simulated example.

As one can notice, the selected eigenvectors related to the HH approach have positive
spatial patterns and therefore the eigenvectors are taking into account the spatial structure
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of the problem. The RHZ eigenvectors appear random for both cases because they are not
considering the spatial structure.

The second advantage is that we can use only the first m� n Moran eigenvectors.
There are several ways to select which eigenvectors are going to compose the basis of the
HH model. The positive and negative eigenvalues correspond to variations of positive and
negative spatial dependence. One could choose, for example, the eigenvectors related to
the eigenvalues greater than 0 (just attractive dependence) or the m biggest eigenvalues
in absolute value, or even perform a study to select the best configuration using some fit
measure as DIC (SPIEGELHALTER et al., 2002) or WAIC (WATANABE, 2010).

To obtain the HH model we just need to replace L by M in Equation (1.2.7):

Y |β,θ, τε ∼ Normal(Xβ +MTθ2, τεIn), (1.2.8)
θ2|τs,∼ Normal(0, τsMQMT ),

where θ2 = Mψ. The HH model has m+ q + 1 unknown parameters instead of n+ 1 in
the RHZ model, being computationally interesting.

1.2.2.3 Hanks et al. (2015)

Hanks et al. (2015) focused their effort into geostatistical data instead of areal
data as the previous works. Also, the authors reported several simulation studies about
inference under model misspecification.

For geostatistical data, one must assume that the correlation structure may be a
function of the distance between points in the space and some parameters might govern
the spatial relationship between areas. One of the most common covariance structure for
continuous spatial correlation is the Matérn structure (CRESSIE, 1992). In this model
each covariance matrix entry of Σ is defined as

Σij = σ2 1
Γ(ν)2ν−1

(√
2ν dij

φ

)ν
Kν

(√
2ν dij

φ

)

where dij is the Euclidean distance between the i-th and the j-th observations, σ2 is the
partial sill parameter, ν is a smoothness parameter, φ is the range parameter, and Kν is
the modified Bessel function of the second kind.

In the RHZ and HH models, Σ is fixed, then it is possible to calculate LQLT and
MQMT just once. However, in the continuous case, the matrix Σ may vary given the
parameters {σ2, ν, φ}. Thus, an approach similar to those previously mentioned may not
be feasible because each step of MCMC (or the step in a numerical optimization routine)
would require the matrix Q = Σ−1 to evaluate the likelihood.

To obtain an efficient algorithm Hanks et al. (2015) suggest the use of the conditio-
ning by kriging technique (RUE; KNORR-HELD, 2005). The idea is to sample from the
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unrestricted model ψ∗ ∼ Normal(0,Σ) and then to have a sample, under the restriction
Pψ = 0, take ψ = ψ∗ −ΣX(XΣX)−1XTψ∗.

Through simulations, the authors showed that using the conditioning by kriging
technique the inference for fixed effects is more appropriate by comparing the Type-S error
(GELMAN et al., 2000). A Type-S error occurs when the regression parameters are equal
to zero and the 95% posterior credibility interval does not contain the zero value.

Another important contribution of this work is the possibility to get a sample from
both models (restricted and unrestricted) concurrently, along the MCMC. This is possible
because there is an equivalence between the restricted model proposed by Reich, Hodges
and Zadnik (2006) and the unrestricted model:

E(Yi|β) = Xβrsr +ψrsr
= Xβrsr + (I − P )ψsr
= Xβrsr +ψsr − Pψsr
= Xβrsr +ψsr −X(XTX)−1XTψsr

= X(βrsr − (XTX)−1XTψsr) +ψsr
= Xβsr +ψsr,

where βrsr refers to the coefficients of the restricted model proposed by Reich, Hodges
and Zadnik (2006), βsr corresponds to the unrestricted model, ψrsr are the latent effects
of the restricted model and ψsr the latent effects of the unrestricted model.

1.2.2.4 Prates, Assunção and Rodrigues (2019)

A convenient alternative to the restricted models is the SPatial Orthogonal Centroid
“K"orrection model (SPOCK) (PRATES; ASSUNÇÃO; RODRIGUES, 2019). The main
idea of this methodology is to create a new spatial neighborhood misplacing the original
centroids. The new structure does not lead to shared information with the fixed effects,
however, the new structure is still capable of recovering the spatial trends in the model.

LetW be the adjacency matrix of Section 1.2.1 linked to a set of original centroids
ci = [c1i, c2i] ∀i ∈ {1, ..., }. The goal of this method is to calculate W ∗, a new adjacency
matrix, that conducts to a model where the spatial confounding is less intense. Given
the set of original centroids, the idea is to obtain a new set of centroids pairs, let’s say
c∗ in which fixed and latent effects no longer share information in its correspondent
neighborhood structure. Therefore, alleviating the spatial confounding.

To achieve the aim, the first step is to calculate the new set of centroids c∗ by
projecting c onto the orthogonal space of X:

c∗ = P⊥c.
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After calculating the new set of centroids, one can find the k-neighbors of each region
based on c∗ where k is the original number of neighbors of the region i. If for a given
dataset, the model does not suffer from spatial confounding then the new set of centroids
are going to be similar to the original one and as a consequence small modifications on
the neighborhood structure are made as shown in Figure 4.

Figure 4 – Centroids and neighborhood structure. Left: Original centroids and respective neigh-
borhood; Center: SPOCK correction without spatial confounding; Right: SPOCK
correction under spatial confounding

It is particularly useful because with the new neighborhood structure it is possible to use
any desired and developed models or software since the SPOCK method only changes the
neighborhood structure.

1.2.2.5 Measures of spatial confounding

A common confounding measure for spatial models is the spatial VIF as proposed
by Reich, Hodges and Zadnik (2006). This measure is equivalent, for each βj, to the ratio
between the variance of βj for the spatial model and the variance for the model without
spatial component as in Equation (1.2.9). This measure reflects the increment in the
variance after adding the spatial component.

For linear regression models, it is possible to calculate the exact value of these
two quantities (Equation (1.2.4)). Reich, Hodges and Zadnik (2006) also note that this
measure depends only on r = τψ

τε
where τε is the precision of the Gaussian response, being

the scale of the latent effect important in such kind of study (PACIOREK, 2010).
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The SVIF is defined as:

SV IF (βj|r, τe) = V ar(βj)slr
V ar(βj)lr

, (1.2.9)

where V ar(βj)slr is the variance of the coefficient for the spatial linear regression and
V ar(βj)lr is the variance for the linear regression.

Because under a GLMM it is not possible to derive a closed form for V ar(βj), the
solution is to approximate it by the Fisher information. The same occurs for frailty models
and shared component models and in those cases one may use the Fisher information or
the empirical variance obtained in a posterior sample. Thus one can calculate the SVIF as

SV IF (βj) = V ar(βj)sm
V ar(βj)m

, (1.2.10)

where V ar(βj)sm is the sample variance of the coefficient for the spatial model and
V ar(βj)m is the sample variance for the model without the spatial component.

With the SV IF (βj), one can compare two models and investigate if the variance
is inflated after the latent effect inclusion. However, we are interested in evaluating the
effectiveness of the restricted model. An equivalent way to measure the variance’s impact
is by using the variance retraction factor defined as:

SV RF (βj) = V ar(βj)u − V ar(βj)r
V ar(βj)u

, (1.2.11)

where V ar(βj)u is the variance of the coefficient for the unrestricted model and V ar(βj)r
is the variance for the restricted model.

This measure is zero if V ar(βj)u = V ar(βj)r, greater than zero if V ar(βj)u >
V ar(βj)r and less than zero otherwise. A SV RF (βj) = 0.4 can be interpreted as a 40%
retraction in the coefficient variance under the restricted model in comparison with the
unrestricted one.
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1.3 Shared component model

1.3.1 Disease mapping
Disease mapping is used by professionals to obtain spatial information on the number

or rate of individuals with a certain disease in specific places. Having this information it
is possible to investigate local factors that can influence the highest rates. Also, it can
support new policies to contain the disease growth rate.

The most common way to analyze such kind of data is using the well known Poisson
model. Let Y = [Y1, . . . , Yn]T represent new cases counts of a specific disease in each of
the n counties. Consider that T = [T1, . . . , Tn]T is the population at risk in each county.
The conventional Poisson model is given by:

Yi|θi ∼ Poisson(Eiθi),
log(θi) = β0 +Xiβ + ψi,

ψ ∼ ICAR(W , τψ),

where Ei = Ti × r is the expected number of cases in region i, r =
∑

i
Yi∑
i
Ti

is the overall
rate and θi is called relative risk. The parameter β0 is the intercept, Xi is the vector of
covariates for region i, β is the set of coefficients and ψi is a spatial effect related to region
i. For the vector ψ a common used model is the ICAR described in Section 1.2.1.

Although it is a useful model, in practice, multiple count responses pertaining to
multiple diseases, may be recorded at the same spatial locations and then multivariate
models are necessary. In a multivariate context, the natural extension of the CAR model
is the multivariate conditional autoregressive model (MCAR). Several works try to extend
the CAR model to MCAR setup (GELFAND; VOUNATSOU, 2003; CARLIN; BANER-
JEE, 2003; JIN; CARLIN; BANERJEE, 2005; JIN; BANERJEE; CARLIN, 2007; SAIN;
FURRER; CRESSIE, 2011; RODRIGUES, 2012). However, these models are not intuitive
and, up to now, there is no preferable option.

Also, sometimes a non-observed/latent spatially structured covariate may be im-
portant for several outcomes. A multivariate model that uses shared spatial patterns as the
case of shared component model (KNORR-HELD; BEST, 2001) appears as an alternative
for MCAR models.
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1.3.2 Shared component model
Disease mapping models are commonly used in epidemiology for detecting important

fixed effects as well as spatial rate patterns. In most researches, the outcome is a unique
disease and then univariate models are employed. However, multivariate models are more
realistic and can provide a best and more trustworthy answers for the desired questions.
Knorr-Held and Best (2001) presented the shared component model in which two diseases
are jointly modeled as Poisson distributions. The goal of this method is to understand the
common (shared) spatial pattern as well as the disease-specific patterns.

To motivate the model let Ydi be the observed number of new cases of the disease
d = 1, 2 in region i = 1, . . . , n. Also let Edi be the expected number of cases for disease d
in region i.

Then the model assumes that:

Ydi|θdi ∼ Poisson(Ediθdi),

log(θdi) =

φ1i + δψi, if d = 1

φ2i + 1
δ
ψi, if d = 2

,

where φ1 and φ2 are specific disease spatial effects, ψ is the spatial shared component
effect and δ is a scale parameter to allow different levels of dependence on the shared
component and to guarantee the model identifiability (DABNEY; WAKEFIELD, 2005).

Important covariates can be easily inserted in the model by adding Xdβd on the
linear predictor as in the Equation (1.3.1).

log(θdi) =

β10 +X1iβ1 + δψi + φ1i, if d = 1

β20 +X2iβ2 + 1
δ
ψi + φ2i, if d = 2

, (1.3.1)

where β10 and β20 are the intercepts for each disease and, β1 and β2 are two set of
coefficients related to the covariate matrices X1 and X2.

Knorr-Held and Best (2001) assumed a cluster model (KNORR-HELD; RASSER,
2000) for φ1,φ2 and ψ. However, another option is to use the well known ICAR model to fit
the shared component as well as specific disease spatial effects. This is interesting because
the ICAR model is the most used spatial approach for areal data and it is implemented in
the majority of statistical softwares.

When more than two outcomes are available Knorr-Held et al. (2005) suggests the
following model:

log(θdi) = βd0 +Xdiβd + φdi +
K∑
k=1

δkdψki, d = 1, . . . , D, (1.3.2)
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where K is the number of shared components ψk, D is the number of diseases, δk =
{δkd1 , . . . , δkdnk} is the set of scale parameters related to the nk relevant diseases for ψk,
δkd represents the dependence of the disease d with the shared component ψk.

Again for model identifiability a constraint is necessary. In this case Knorr-Held et
al. (2005) suggests a restriction in log scale

nk∑
l=1

log(δkdl) = 0,

that is the same as before if d = 2.
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1.4 Spatial frailty model

1.4.1 Survival models
Survival models are an important tool in several branches of science mainly in health

data analysis. In general, the researcher is interested in using survival models to answer
questions about phenomena that can be measured in units of time. Since the response is
observed in units of time, it is assumed for it, distributions with support in the positive real
numbers. The most commonly employed models make use of simple probability distributions
such as exponential, gamma, lognormal or Weibull. More complex models rely on less
conventional distributions such as the Birnbaum-Saunders (BIRNBAUM; SAUNDERS,
1969) or semi-parametric approaches as in the case of the piecewise exponential model
(FRIEDMAN, 1982).

A great differential of survival models is that in practice the phenomenon of interest
is not always observed. To deal with this situation without loss of information, it is
necessary to insert some censoring schemes into the modeling. There are several censoring
schemes in the literature being useful for a variety of real problems.

To motivate right, left and interval censoring schemes let’s suppose we are con-
ducting a study on mortality by lung cancer. The participants are interviewed once a
month and individual information is collected in each checkpoint. The status (alive or
dead) represents the response variable under study. The right censoring scheme is useful
when the event of interest will happen above a certain registered time. For example, in
one of the checkpoints some people have already died, but others are still alive. However,
the study does not have more funds and the researcher must end data collection. In
this case, it is not possible to register the time until death for some participants. The
information you have is that the time is greater than the time at the end of the study,
characterizing a right censoring scheme. Left censoring happens when the event of interest
occurs below a certain registered time. For example, in the first checkpoint, some of the
invited participants have already died. Then, the researcher does not know exactly when
it happened. In this case, we just know that the event of interest happened before the first
checkpoint, characterizing a left censoring scheme. Interval censoring happens when the
event of interest occurs between two checkpoints. For example, at the end of the study, all
participants have died but again the researcher does not know exactly when it happened.
However, by having monthly checkpoints, the researcher can inform a time interval in
which the death occurred, characterizing an interval censoring scheme.

Besides that, the censoring may happen according to some mechanism being the
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most famous one the type I and type II censoring mechanisms. The former happens when
the study has a fixed endpoint and then people who have not yet experienced the event are
censured. The latter occurs when a number of events, defined a priori, is achieved. Thus,
all other individuals are censored. For a review of survival models see Hosmer, Lemeshow
and May (2008).

In several cases, as the cited ones (right, left and interval censoring schemes), the
likelihood fits in Equation (1.4.1).

L(θ; t) =
∏
d∈D

fθ(td) (1.4.1)
∏
r∈R

Sθ(tr)
∏
l∈L

(1− Sθ(tl))∏
k∈K

(Sθ(tk1)− Sθ(tk2)) ,

where D is the set of observed failure times, R is the set of right-censored sample units,
L is the set of left-censored sample units and K is the set of interval-censored sample
units. The time until failure or the censoring time is denoted by t for left and right
censoring schemes. For interval censoring, two times are provided and then we denote the
lower bound of this interval as tk1 and the upper bound as tk2 for a sample unit k. The
distribution assumed for the phenomenon of interest is represented by fθ(t) (in parametric
models) and Sθ(t) is the survival function.

As common choices for fθ(t) we can cite exponential, gamma, lognormal and
Weibull distributions. The function choice leads to different forms of the hθ(t) called
hazard function. It measures the instantaneous risk of occurrence of an event. Sθ(t) is
the survival function which indicates the probability of occurrence of the event at a time
T > t. Any other parameters of fθ(t) are represented by the vector θ.

The functions fθ(t), Sθ(t) and hθ(t) are linked through the following identities:

Sθ(t) = Pr(T > t) =
∫ ∞
t

fθ(u) du = 1− Fθ(t),

hθ(t) = lim
dt→0

Pr(t ≤ T < t+ dt)
dt

× 1
Sθ(t)

= fθ(t)
Sθ(t)

= −S
′
θ(t)
Sθ(t)

, (1.4.2)

fθ(t) = hθ(t)× Sθ(t).

The survival function, Sθ(t), has the property that Sθ(0) = 1 and Sθ(∞) = 0 what means
that at the beginning of the study the survival probability is 1 while if it was possible to
observe an individual for an infinite time, at the end of the study the survival probability
would be 0.

However, in some cases, it is possible to observe that some individuals will not
experience the event of interest. In those cases one can use a cure fraction (BOAG, 1949)
model where there is a proportion of the individuals which will never experience the event
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of interest. The simpler way to introduce a cure fraction in the modeling is by a mixture
model. In this case, the survival function is a mixture of a proper survival function and a
point mass at a constant c, called cure fraction as above

Sθ(t) = c+ (1− c)S∗θ(t).

Other approaches can be found in the literature as, for example, Tsodikov, Ibrahim and
Yakovlev (2003), Lambert (2007), Scudilio et al. (2019).

In survival analysis, the interest is to model the hazard function to understand
factors that impact the risk of an event. Therefore, covariates may be included into the
model to measure their impact. Several parametric models are described in the literature
as the cases in Table 1.

Table 1 – Distributions and its respective set of parameters (θ), probability density function
(fθ), survival function (Sθ) and hazard function (hθ). The term Φ(t) represents the
cumulative distribution function of a standard Normal distribution.

Distribution θ fθ(t) Sθ(t) hθ(t)
Exponential {λ} λ exp{−λt} exp{λt} λ

Lognormal {µ, σ} 1
(2π)1/2σt

exp
{
−1

2

(
log(t)−µ

σ2

)2
}

1− Φ
(

log t−µ
σ

)
fθ(t)
Sθ(t)

Gamma {α, λ} λα

Γ(α)t
α−1e−λt 1 - 1

Γ(α)
∫ λt

0 uα−1e−udu fθ(t)
Sθ(t)

Weibull {α, λ} αλtα−1 exp{λtα} exp{−λtα} αλtα−1

A well studied method to include covariates in the modeling is the Cox proportional
hazards model (COX, 1972). Its idea is to insert the covariates on the hazard function
in a multiplicative way ensuring that the hazard is never negative. This model assumes
proportional hazards meaning that the hazard ratio for two individuals is constant over
time. Next equation shows the hazard function under the Cox proportional hazard model:

hθ(ti|Xi) = h∗θ(ti) exp{Xiβ}, (1.4.3)

where h∗θ(ti) is called baseline hazard function.

However, one can use the partial likelihood technique which makes the baseline
hazard specification unnecessary (COX, 1972). Another alternative, is to create a fully
parametric proportional hazard model by replacing h∗θ(.) by a parametric baseline hazard
function as the functions listed on Table 1 (LAWLESS, 2011).

In many cases, the introduction of covariates is not enough for an appropriate fit.
This is explained by the fact that often, important covariates are not observed or they
are impossible to measure. In this case, one can introduce a latent effect giving rise to a
frailty model.
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1.4.2 Frailty models
Similarly to GLM models, one can introduce latent effects to take the non-observed

covariates and/or clusters effects into consideration. This model family is known as frailty
models (WIENKE, 2010). In general, the easiest way to introduce these effects is in a
multiplicative way. Because the hazard is a positive quantity it is necessary to guarantee
that the multiplicative effect will ensure that the hazard is still positive. One way is to
assume that γ, the frailty term, is drawn from a positive probability distribution.

hθ(tij|Xij) = h∗θ(tij)γj exp{Xijβ},

where γj is called frailty (related to cluster j) and a common choice for its distribution
is the gamma distribution, given rise to the gamma frailty model. However, under this
distribution, it is difficult to insert dependence structures between clusters and then they
are, in general, considered independent.

1.4.3 Spatial frailty models
One of the interests in spatial statistics is to insert dependence between geographi-

cally close locations. Using the gamma frailty model as in Section 1.4.2, the insertion of
spatial structure is not trivial. Banerjee, Wall and Carlin (2003) proposed a frailty model
that allows the insertion of already known structures of spatial models. For this, the spatial
variable enters the model in an additive way, but within the exponential term, which gives
rise to the model presented in Equation (1.4.4). Take j = 1, . . . , ni, indices of ni sample
units observed in the location i for i = 1, . . . , n, n locations. The hazard function of the
spatial frailty model is given by:

hθ(tij|Xij) = h∗θ(tij)× γi × eXijβ

= h∗θ(tij)× eXijβ+log(γi) (1.4.4)
= h∗θ(tij)× eXijβ+ψi ,

where ψi is Gaussian and consequently the vector ψ is a multivariate normal distribu-
ted. This setting is convenient since several spatial models use the multivariate normal
distribution. The ICAR described in Section 1.2.1 is one example.
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1.5 Bayesian inference

1.5.1 Introduction
Under the Bayesian paradigm, the lack of knowledge is measured through a proba-

bility distribution. Therefore, the main aim is to obtain the posterior distribution of the
parameters in the model. Thus, data and prior information are combined to obtain the
so-called posterior distribution. The prior information of specialists is described through
some probability distribution and then using Bayes theorem one can obtain the posterior
distribution as in Equation (1.5.1).

π(θ|y) = L(y;θ)π(θ)∫
θ L(y;θ)π(θ)dθ ∝ L(y;θ)π(θ), (1.5.1)

where θ is a set of parameters of interest, π(θ|y) is the θ joint posterior distribution, L(y;θ)
is the likelihood that depends either on θ and the data y, π(θ) is the prior distribution
that describes the information about θ before looking at the data. The posterior predictive
function,

∫
θ L(y;θ)π(θ)dθ, does not depend on θ. Therefore, we say that the posterior

distribution is proportional to L(y;θ)π(θ) and inference about θ is possible using this
quantity.

However, in practice θ is a length p vector. Then, to obtain the marginal posterior
distribution of θj one must calculate

π(θj|y) ∝
∫
θ−j

L(y;θ)π(θ)dθ−j . (1.5.2)

Rarely the analytical solution to these integrals is available. Therefore, one must employ
a computational procedure to obtain the posterior distribution. Several approaches are
available being the most famous the Markov chain Monte Carlo (MCMC) methods, see
(GAMERMAN; LOPES, 2006) for a review. In this method, a sample from the joint
posterior distribution is obtained and inference is made based on a posterior sample.
However, MCMC methods are computationally intensive and, in general, it takes a long
time to achieve convergence. An attractive alternative for MCMC methods is the integrated
nested Laplace approximation (RUE; MARTINO; CHOPIN, 2009).

1.5.2 Integrated nested Laplace approximation - INLA
Integrated nested Laplace approximation (INLA) (RUE; MARTINO; CHOPIN,

2009) is a powerful methodology that allows the user to fit a huge variety of Bayesian
models. A model can be fitted in INLA if for a random variable Y its mean µ can be
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modeled through a link function g(.) in an additive way as:

g(µi) = ηi = β0 +
nξ∑
j=1

ξ(j)(zji) +
nβ∑
k=1

βkXki + εi, (1.5.3)

in which ξ(j)(zji) are unknown functions of the covariates zij , β0 is an intercept, βk is a set
of coefficients related to the fixed effects Xki and εi are unstructured terms. INLA assumes
Gaussian priors to the vector u = {β0, ξ,β, ε} giving raise to a Gaussian Markov random
field (GMRF) (RUE; KNORR-HELD, 2005). If a model can be written as a GMRF, it is
possible to apply the INLA methodology. Most of the common models can be fitted in
this framework as for example the GLMM family described in Section 1.1.

The vector u = {β0, ξ,β, ε} may depend on some hyperparameters θ, for example
variances and correlation parameters that obey, in general, dim(u)� dim(θ). This way,
one must provide the prior distribution for the vector {u,θ}. INLA assign priors π(u,θ) =
π(u|θ)π(θ) where π(u|θ) is a GMRF and π(θ) may be decomposed as ∏nθ

j=1 π(θj). The
marginal posterior distributions for the set of parameters are given by:

π(uj|y) =
∫
π(uj,θ|y)dθ =

∫
π(uj|θ,y)π(θ|y)dθ,

π(θk|y) =
∫
π(θ|y)dθ−k.

Because there is no analytical solution for these integrals, numerical approximations
are necessary to obtain π̃(uj|y) and π̃(θk|y) in which π̃(.) denotes an approximate function
for π(.).

1.5.2.1 Marginal distribution for θk

We can rewrite π(θ|y) = π(u,θ|y)
π(u|θ,y) and, to approximate this quantity, Rue, Martino

and Chopin (2009) suggest a Gaussian approximation for the denominator becoming

π̃(θ|y) ∝ π(u,θ,y)
πG(u|θ,y)

∣∣∣∣∣∣
u=u∗(θ)

,

where πG(.) is the Gaussian approximation of a density, u∗(θ) is the mode o π(u|θ,y) to
a given θ. The better u approximates a Gaussian distribution, the better INLA works.

Now, to obtain the marginal distribution π̃(θk|y) a numerical integration is made.
Thus, a grid of θk values is taken and the marginal is obtained via

π(θk|y) =
H∑
h=1

π̃(θ|y)∆kh.
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1.5.2.2 Marginal distribution for uj
Rue, Martino and Chopin (2009) propose three different approximations for this

quantity: 1) Gaussian approximation; 2) Laplace approximation, and; 3) simplified Laplace
approximation. The Gaussian approximation is the easiest to be obtained but it provides
poorer results. At the cost of being computationally expensive, Laplace approximation
produces better results. The simplified Laplace approximation is a simplification of the
last approach and it gives satisfactory results with a good computational time. Taking
one of them as approximation for π̃(uj|θ, y), one can calculate the posterior marginal
distribution as

π̃(uj|y) ≈
H∑
h=1

π̃(uj|θ∗h,y)π̃(θ∗h|y)∆h.

In this part, we have presented important contributions that will be useful in the
rest of this work. We presented some approaches to alleviate the spatial confounding issue
in GLMM as well as two important models that do not fit in the GLMM framework. The
next part aims to describe and summarise the data sets in use in our work.



Part 2

Data sources
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2.1 Data sources

To motivate our contributions, two applications are presented being one of them
for the shared component model and another one for the spatial frailty model. For the
shared component model, we have an areal level analysis and therefore we may investigate
the effects of some areal level covariates. On the other hand, for survival analysis, we will
use both individual-level and areal-level covariates to characterize individuals and regions.
Therefore, two main data sources are in use and are described below, in addition to the
two applications. In both cases, the data were collected in the 58 counties of the California
state (US).

2.1.1 CHRR dataset
For both analyses, we would like to describe each California’s county by important

covariates that represent each county. Said that, to add county-level information we are
using the County Health Rankings & Roadmaps (CHRR) (RANKINGS; CHRR, 2019)
which provides several important indices collected from different sources in the US. The
CHRR is provided by the University of Wisconsin, Population Health Institute.

We took two areal level information considered important covariates for both
analyses between 2010 and 2016. The areal level covariates are the percentage of adults
that smoke every day or most days and the percentage of the population aged 65 or over.
Additional information about covariates as well as the dataset can be obtained in the
CHRR website https://www.countyhealthrankings.org/.

Figure 5 shows the spatial pattern of these covariates for the California state in
2016, year considered in our shared component model application. It is possible to observe
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% Adult smoking

9.00%
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18.00%

22.50%

27.00%

% aged 65 or over

Figure 5 – Covariates from CHRR in California (US) in 2016.

that these covariates seem to have a spatial pattern which is a factor that can lead to a
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spatial confounding problem. Table 2 presents some summary information about these
covariates. The covariates are presented as proportions varying from 0.09 to 0.17 for the

Table 2 – Summary statistics of CHRR covariates (SD: Standard deviation).

Index Mean Minimum Quantile 0.025 Median Quantile 0.975 Maximum SD
% Adult smoking 0.13 0.09 0.10 0.13 0.16 0.17 0.02
% Ages 65 and above 0.16 0.09 0.10 0.14 0.25 0.27 0.05

percentage of adult smokers and from 0.09 to 0.27 for the percentage of people aged 65
or over. The break-point at 65 years old is supported by the literature that frequently
divides the age into groups, being the most critical the elderly patients aged 65 or older
(BARANOVSKY; MYERS, 1986; YANCIK; KESSLER; YATES, 1988; YANCIK; RIES,
1991).

2.1.2 SEER dataset
The main database in this work is provided by the Surveillance, Epidemiology,

and End Results Program (SEER) (SEER, 2019). The SEER program collects data
on cancer cases from several locations and sources since 1973 in the United States of
America. The data is provided by the National Cancer Institute (NHI) the American
national leader in cancer research. The SEER datasets are not publicly available for free
download, it can be requested following NIH/NCI SEER data access options via the link:
https://seer.cancer.gov/data/options.html.

2.1.2.1 Incidence of bronchus and lung cancer

SEER provides for each subject information about the cancer status and individual
characteristics. Two important characteristics provided are the gender and the county
code of each individual. Using the gender information we can calculate, for each gender,
the number of new cases of bronchus and lung cancer for each county. These quantities
are our outcomes and we would like to understand the characteristics that possibly affect
the incidence of this kind of cancer for men and women. Also, we would like to observe
whether the spatial pattern is shared or not for men and women and whether there is a
specific spatial pattern for each gender or not.

It is well known in the literature that the incidence of bronchus and lung cancer
is bigger in men than in women (WHO, 2004; FU et al., 2005). Following the literature,
the risk factors are in general similar for both being age and tobacco consumption the
most important ones (BOLOKER; WANG; ZHANG, 2018; SIEGEL; MILLER; JEMAL,
2019). Thus, we are using county-level indices that represent an average pattern of these
characteristics for each county. In this case, the variables were the percentage of the
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population aged 65 or over and the percentage of adults that smoke every day or most
days from the CHRR dataset.

For 2016 a total of 5,143 new cases of lung and bronchus cancer were registered for
women while for men we observed 5,640 new cases. Figure 6 shows the spatial pattern of
the relative risk of lung and bronchus cancer for the California state. A common spatial
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Figure 6 – Relative risk of lung and bronchus cancer in California (US). Source: SEER.

pattern is readily observed. However, our task is to adjust the relative risk by important
covariates and observe if the remaining effect is spatially shared between men and women.

2.1.2.2 Time until death by bronchus and lung cancer

This data set provided by SEER has cases of lung and bronchus cancer for 72,612
individuals (after cleaning the data between 2010 and 2016) in the California state. In
this data set, important covariates are present as gender and the disease stage for each
individual. However, important covariates are missing as the case of tobacco consumption.
To work around this problem, we are using the areal level covariate that indicates the
percentage of adults that smoke every day or most days. Because people start in the
program in different years (2010 - 2016), we picked the corresponding statistic in the
CHRR dataset.

Table 3 presents some summary information about the individual covariates used
from the SEER program as well as the areal level covariate. Continuous covariates are
represented by median (quantiles 25% and 75%) and categorical variables are represented
by its observed proportion.

The time collected is measured in months and the median is 10 months. The time
variable was scaled (time/max{time}) in our models to avoid computational instabilities.

For each individual, we assign a status of 1 if the individual died by lung or bronchus
cancer and zero if the individual died by other causes or is still alive. Therefore, it is a right
censoring problem with about 42% censured cases. Given the current dataset structure, it
can be seen as a type I censoring scheme.
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Table 3 – Summary statistics of SEER covariates. For categorical variables the sample size and
the percentage. For continuous variables median and quantiles 25% and 75%.

Variable N = 72612
Time until death 10.0 [4.00; 25.0]
Status

0 31013 (42.7%)
1 41599 (57.3%)

Gender
Female 34625 (47.7%)
Male 37987 (52.3%)

Race
Non-black 66723 (91.9%)
Black 5889 (8.11%)

Cancer stage
In situ 519 (0.71%)
Localized 15870 (21.9%)
Regional 16792 (23.1%)
Distant 39431 (54.3%)

Age at diagnosis 69.0 [62.0; 77.0]
% Smokers 0.14 [0.12; 0.15]

Also, our sample has more cases of lung and bronchus cancer for men than for
women as expected. For simplicity, we considered just black and non-black people.

In situ refers to abnormal cells that are present but have not spread to nearby.
Located corresponds to the stage where the cancer is limited to where it started and has
not spread. In the regional phase, cancer has spread to nearby lymph nodes or organs. The
last and more severe phase is the distant stage. In the distant stage, cancer has spread to
distant parts of the body. Therefore, we expect an increase in the risk of death following
this order. Finally, the median age is 69, which corresponds to an elderly population. The
county-level percentage of smokers is around 14%.

The next part will introduce our first contribution providing a methodology to
alleviate the spatial confounding in shared component models. Therefore, we provide the
method, a simulation study, and one application.



Part 3

Spatial confounding in shared component
models
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3.1 Method

As presented in Section 1.2.2, several approaches are available to alleviate the
spatial confounding in univariate GLMM models. However, few or no alternatives are
available for models that differ from GLMM’s conventional approach.

In Section 1.3.2 we introduced the shared component model (SCM) as a good
alternative for spatial multivariate models where two or more outcomes share the same
spatial structure. Calling Equation (1.3.2), the linear predictor is given by

log(θdi) = βd0 +Xdβd + φ1i +
K∑
k=1

δkdψki, d = 1, . . . , D,

with the constraint
nk∑
l=1

log(δkdl) = 0,

where K is the number of shared components ψk, D is the number of diseases, δk =
{δkd1 , . . . , δkdnk} is the set of scale parameters related to the nk relevant diseases for ψk
and δkd represents the dependence of the disease d with the shared component ψk. In this
case, there are D sets of covariates, one for each disease. There are also K + D latent
effects that make it difficult to restrict spatial effects to be orthogonal to fixed effects as
proposed by Reich, Hodges and Zadnik (2006) or Hughes and Haran (2013).

Therefore, our proposal is to create K + D different adjacency matrices using
SPOCK. Each adjacency matrix is going to be responsible to alleviate the spatial con-
founding of a latent effect φi or ψk. The K adjacency matrices Wψk , k = 1, . . . , K are
going to be created for each shared component based on the covariates that can affect
this quantity (the union of Xd related to the nk relevant diseases). For the specific spatial
components φd, d = 1, . . . , D, D adjacency matrices Wφd are going to be created based
on the specific covariates Xd of each disease. We named this approach as restricted shared
component model (RSCM). To illustrate let’s assume D = 2. In this case, we have two
covariate matrices X1,X2, and three spatial effects φ1,φ2 and ψ. Let W and c be the
original adjacency matrix and centroids, respectively. Let’s suppose that X1 and X2 have
two columns, being the first column shared but not the second. In this case, X11 and
X21 are the same variable, then the adjacency matrix Wψ for the shared component ψ is
created assuming that

Xψ =
[
1T ,X11,X12,X22

]
Pψ = Xψ(XT

ψXψ)−1XT
ψ

cψ = P⊥ψ c.

Based on cψ we can create Wψ using the k-nearest neighbors algorithm.
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Also, matrices X1,X2, specific for each disease, are going to be used to createWφ1

and Wφ2 based on cφ1 and cφ2 respectively as

Pφd = Xφd(XT
φd
Xφd)−1XT

φd

cφd = P⊥φdc.

Thus, the model becomes

Ydi|θdi ∼ Poisson(Ediθdi),

log(θdi) =

β10 +X1β1 + δψi + φ1i, if d = 1

β20 +X2β2 + 1
δ
ψi + φ2i, if d = 2

, (3.1.1)

ψ ∼ ICAR(Wψ, τψ); φ1 ∼ ICAR(Wφ1 , τφ1); φ2 ∼ ICAR(Wφ2 , τφ2).

At this point, one can use its preferred software to fit the RSCM model which makes
the use of our approach advantageous (inherited from SPOCK). For fast computation, we
are going to employ the INLA methodology to get posterior estimates of the parameters.
This way, we are using the R package here named R-INLA (LINDGREN; RUE et al., 2015)
to a make difference to the INLA methodology.

Although INLA is a fast alternative for Bayesian models, it is not possible to fit
the shared component model directly using the R-INLA package. The reason is that, for
each disease, we have unknown weights δ and 1

δ
that allow different levels of dependence

from the shared effect. To overcome this problem, Gómez-Rubio and Palmí-Perales (2019)
suggest the use of INLA within the Metropolis-Hastings algorithm in which the dependence
parameter δ can be obtained iteratively using an appropriated MCMC technique while
other parameters are obtained via INLA methodology. Nevertheless, using the copy feature
in the R-INLA package, it is possible to write a latent model as linear combination of
another as in Equation (3.1.2):

log(θ1i) =

β10 +X1β1 + γψ∗i + φ1i, if d = 1

β20 +X2β2 + ψ∗i + φ2i, if d = 2
, (3.1.2)

in which γ works as a coefficient for the latent effect ψ.

Equation (3.1.2) is not as (3.1.1). However, Vargas (2013) showed that they are
equivalent. Following Equation (3.1.1), δψ ∼ ICAR

(
Wψ,

τψ
δ2

)
and 1

δ
ψ ∼ ICAR (Wψ, τψδ

2).

Also, by Equation (3.1.2), we have γψ∗ ∼ ICAR
(
Wψ,

τ∗
ψ

γ2

)
and ψ∗ ∼ ICAR

(
Wψ, τ

∗
ψ

)
.

We would like to have an equality of distributions, then we need to make τψ
δ2 = τ∗

ψ

γ2 and
τψδ

2 = τ ∗ψ. These equations imply, for a positive γ, that δ = √γ and also τψ = τ∗
ψ

γ
. This

way, it is possible to recover the δ parameter of Equation (3.1.1) using the R-INLA package
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in the case of two diseases. To get estimates of δ it is possible to access the marginal
transformation, δ = √γ, easily using a marginal transformation (inla.tmarginal function
in R-INLA package for example).
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3.2 Simulation

To evaluate the model ability to recover parameters we performed a simulation
study. Data were generated from the shared component model:

Ydi|θdi ∼ Poisson(Ediθdi), (3.2.1)

log(θdi) =

β10 +X1β1 + δψi + φ1i, if d = 1

β20 +X2β2 + 1
δ
ψi + φ2i, if d = 2

,

ψ ∼ ICAR(Wψ, τψ), φi ∼ ICAR(Wφi , τφi) for i ∈ {1, 2},

where β10 = 0.5, β20 = 0.1, β1 = [−0.5,−0.2], β2 = [−0.8,−0.4], τψ = 1, τφ1 = 10, τφ2 = 10.
For the δ parameter we considered the following grid δ = {1.00, 1.50, 1.75}.

We generated 1000 datasets considering 4 scenarios. For all cases, X1 and X2

are composed by two covariates being the first column (X11 and X21) the same (shared)
covariate generated without any spatial structure (drawn from a Gaussian distribution). In
the first scenario, X12 and X22 are independent random variables (drawn from a Gaussian
distribution). In the second case, X12i is the first coordinate of i-th area centroid and
X22 is a random covariate (drawn from a Gaussian distribution). In the third scenario,
X22i is the first coordinate of i-th area centroid and X12 is a random covariate (drawn
from a Gaussian distribution). Finally, in the fourth scenario, X12i and X22i are the first
coordinate of the i-th area centroid.

The set of areal coordinates is spatially structured and therefore we expect to
suffer from spatial confounding when using it. The first scenario should not present any
spatial confounding behavior as it does not have any spatially structured covariate. It
is going to be our baseline model called here as S1. The second scenario (S2) presents a
spatially correlated covariate only for the first disease and then we may suffer from spatial
confounding for this disease. Similarly, in the third scenario (S3) we may suffer from spatial
confounding for the second disease. In the fourth scenario (S4) the confounded covariate is
also shared and then we should suffer from spatial confounding for both diseases.

In our simulations we are using the California spatial structure and the set of
weakly informative priors was taken as follow:

βdj ∼ Normal(0, 0.001), d = 1, 2; j = 0, 1, 2,

log(γ) ∼ Normal(0, 0.1) (δ = √γ)

τψ ∼ Γ(0.5, 0.05); τφ1 ∼ Γ(0.5, 0.05) τφ2 ∼ Γ(0.5, 0.05)

Table 4 presents the mean of the estimated values (Mean), the mean of the standard
deviations (SD), the coverage rate for a nominal rate of 95% (Cov) and the mean squared
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error (MSE) for the first and the fourth scenarios. The entire simulation results can be
seen in Appendix A. It is possible to observe that without spatial confounding, SCM and

Table 4 – Simulation results for scenarios 1 and 4 for the shared component model experiment.
The results are shown by mean, standard deviation (SD), coverage rate for a nominal
rate of 95 % (Cov) and mean square error (MSE).

Parameter Real
Without spatial confounding With spatial confounding
SCM RSCM SCM RSCM
Mean (SD) Cov MSE Mean (SD) Cov MSE Mean (SD) Cov MSE Mean (SD) Cov MSE

δ = 1.00 β10 0.50 0.49 (0.03) 95.90% 0.0010 0.49 (0.03) 95.70% 0.0010 0.50 (0.03) 93.70% 0.0011 0.50 (0.03) 91.70% 0.0016
β20 0.10 0.10 (0.04) 94.20% 0.0018 0.10 (0.04) 94.30% 0.0019 0.10 (0.04) 95.30% 0.0018 0.10 (0.04) 90.60% 0.0024
β11 -0.50 -0.50 (0.07) 95.30% 0.0048 -0.50 (0.08) 97.00% 0.0045 -0.50 (0.07) 94.30% 0.0052 -0.50 (0.09) 97.30% 0.0170
β21 -0.80 -0.80 (0.07) 93.30% 0.0056 -0.80 (0.08) 96.10% 0.0058 -0.80 (0.08) 94.50% 0.0057 -0.80 (0.09) 96.00% 0.0139
β12 -0.20 -0.20 (0.05) 94.50% 0.0031 -0.20 (0.06) 78.30% 0.0088 -0.19 (0.35) 93.80% 0.1234 -0.21 (0.10) 86.00% 0.0917
β22 -0.40 -0.40 (0.06) 95.40% 0.0033 -0.40 (0.06) 78.60% 0.0087 -0.40 (0.34) 93.20% 0.1243 -0.41 (0.10) 88.00% 0.0532
δ 1.00 1.02 (0.06) 92.20% 0.0044 1.03 (0.06) 88.60% 0.0060 1.02 (0.05) 91.20% 0.0041 1.03 (0.05) 76.60% 0.0070

δ = 1.50 β10 0.50 0.49 (0.04) 95.20% 0.0015 0.49 (0.04) 95.40% 0.0014 0.49 (0.04) 94.70% 0.0016 0.49 (0.04) 96.10% 0.0017
β20 0.10 0.09 (0.04) 93.80% 0.0016 0.10 (0.04) 93.80% 0.0016 0.09 (0.04) 93.80% 0.0015 0.09 (0.04) 94.10% 0.0016
β11 -0.50 -0.50 (0.11) 94.30% 0.0119 -0.50 (0.10) 99.60% 0.0040 -0.50 (0.09) 95.20% 0.0084 -0.50 (0.13) 99.70% 0.0067
β21 -0.80 -0.80 (0.07) 95.80% 0.0040 -0.80 (0.06) 99.10% 0.0019 -0.80 (0.06) 94.10% 0.0034 -0.80 (0.07) 98.10% 0.0031
β12 -0.20 -0.20 (0.06) 93.10% 0.0042 -0.20 (0.07) 83.80% 0.0083 -0.19 (0.50) 93.10% 0.2604 -0.19 (0.13) 99.70% 0.0084
β22 -0.40 -0.40 (0.05) 94.40% 0.0023 -0.40 (0.05) 82.20% 0.0051 -0.40 (0.25) 93.60% 0.0632 -0.40 (0.07) 99.10% 0.0026
δ 1.50 1.52 (0.10) 93.50% 0.0129 1.53 (0.10) 89.30% 0.0149 1.52 (0.11) 92.00% 0.0136 1.54 (0.10) 83.40% 0.0238

δ = 1.75 β10 0.50 0.50 (0.05) 94.50% 0.0024 0.50 (0.05) 94.60% 0.0026 0.49 (0.05) 94.10% 0.0022 0.49 (0.05) 96.50% 0.0023
β20 0.10 0.10 (0.04) 94.20% 0.0015 0.10 (0.04) 94.50% 0.0014 0.10 (0.04) 94.30% 0.0017 0.10 (0.04) 94.10% 0.0018
β11 -0.50 -0.50 (0.12) 94.30% 0.0139 -0.50 (0.13) 99.50% 0.0095 -0.50 (0.13) 94.70% 0.0170 -0.50 (0.16) 100.00% 0.0083
β21 -0.80 -0.80 (0.06) 94.90% 0.0037 -0.80 (0.06) 98.20% 0.0028 -0.80 (0.06) 94.60% 0.0034 -0.80 (0.07) 98.80% 0.0022
β12 -0.20 -0.20 (0.09) 94.40% 0.0083 -0.20 (0.10) 84.80% 0.0180 -0.19 (0.58) 93.90% 0.3437 -0.19 (0.14) 99.80% 0.0046
β22 -0.40 -0.40 (0.05) 95.60% 0.0018 -0.40 (0.05) 80.90% 0.0046 -0.40 (0.22) 94.70% 0.0477 -0.40 (0.05) 99.70% 0.0011
δ 1.75 1.79 (0.14) 94.10% 0.0234 1.78 (0.13) 87.90% 0.0295 1.78 (0.13) 91.80% 0.0208 1.79 (0.12) 82.60% 0.0341

RSCM results are similar in terms of mean, standard deviation and mean squared error.
These results are expected because without confounding the adjacency matrices under
RSCM are almost the same as the original ones. Then, the fitted models should be almost
the same.

Under spatial confounding, it is possible to observe that the point estimates (mean)
are accurate for all parameters and both models. However, the standard deviations of β21

and β22 are, on average, greater for the SCM model than for the RSCM model. Also, it is
possible to observe greater MSEs for SCM than RSCM approaches. The result shows how
the spatial confounding can affect the model fit by increasing variance and bias.

Because the SPOCK method estimates β∗ = β + P⊥ψ (PRATES; ASSUNÇÃO;
RODRIGUES, 2019), RSCM also does. In this case, we reported all results in the Figure 7
for (θ−θ∗) where θ = {β10, β20, β11, β12, β21, β22}. We expect all the values to be around 0,
which means that the estimate is unbiased. We can see, for β10, β20, β11 and β21, that the
estimates are similar for both SCM and RSCM models in all scenarios. However, for β12

and β22, the behavior changes according to each scenario. For S1, as expected, it behaves
similarly to the other parameters. For S2, S3 and S4, scenarios we expect to suffer from
spatial confounding. Then, we can observe that the difference (θ− θ∗) tends to be around
0 for SCM as well as for the RSCM model. Although they are centered at 0, the dispersion
of SCM is bigger than the dispersion of the RSCM model, which in indicates that there is
variance inflation in the estimates (β12 for S2 and S4 and β22 for S3 and S4).
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Figure 7 – Boxplot of (θ − θ∗) for θ = {β10, β20, β11, β12, β21, β22} in the shared component
model. Dashed line represents the value 0.

The RSCM approach appears as a good alternative to deal with the spatial
confounding problem, since the model estimates are similar when the spatial confounding
is not present (S1) and the standard deviation and MSE are smaller for the confounded
covariates in scenarios S2, S3, and S4. Besides that, using the RSCM approach, the user is
free to choose its preferred software due to the fact that RSCM changes the neighborhood
structures before fitting the model.

Also, the δ parameter was well recovered, which means that we are able to estimate
the shared component model, for two diseases, using the R-INLA package. For more than
two diseases other approaches may be considered. One can employ a pure MCMC approach
that may take a long time due to the complexity of the model or the approach provided
by Gómez-Rubio and Palmí-Perales (2019) in which they use INLA within MCMC, for
example.

Figure 8 shows the coefficients’ standard deviation. As one can notice, the standard
deviations are similar when comparing the SCM and the RSCM for all parameters except
those which we have spatial confounding (β12 for S2 and S4 and β22 for S3 and S4).
Combining Figures 7 and 8 we can observe that we have, for β12 (S2 and S4) and β22 (S3
and S4), bias and variance inflation, the effects of spatial confounding.

For a simulated data set, we can also compare the estimated spatial effects of the
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Figure 8 – Boxplot of σθ for θ = {β10, β20, β11, β12, β21, β22} in the shared component model
where σθ represents the standard deviation of θ.

SCM and RSCM models. Figure 9 presents these spatial patterns for the set of relative
risks {exp{ψ}, exp{φ1}, exp{φ2}}. As it can be seen, even changing the neighborhood
structure, the spatial pattern remains very similar for both approaches. It is another
motivation for using the RSCM correction since it is still capable to recover the spatial
pattern without inflating the variances of the coefficients.

eψ − SCM

eψ − RSCM

0.51

1.02

1.54

2.05

2.56

Relative risk

eφ1 − SCM

eφ1 − RSCM

0.99

1.00

1.01

1.02

1.03
Relative risk

eφ2 − SCM

eφ2 − RSCM

0.97

0.98

0.99

1.00

1.01

Relative risk

Figure 9 – Estimated spatial patterns of a simulated dataset without spatial confounding for
the shared component model.
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3.3 Male vs female lung and bronchus cancer
incidence in California

In our application, we are interested in finding the relevance of some fixed effects
as well as checking whether the two outcomes (new cases of lung and bronchus cancer
for men and women) share the same spatial pattern or not. As we are also interested in
investigating the occurrence of spatial confounding in this application, we are going to fit
spatial and non-spatial models as well as univariate and multivariate models. We suggest
to fit the following models:

M1 - Univariate non-spatial model:

Ydi|θdi ∼ P (Ediθdi),
log(θdi) = βd0 +Xdiβ,

Y1 |= Y2.

M2 - Univariate spatial models:

Ydi|θdi ∼ P (Ediθdi),
log(θdi) = βd0 +Xdiβ + ψdi,

ψ1 ∼ ICAR(W , τψ1); ψ2 ∼ ICAR(W , τψ2),
Y1 |= Y2.

M3 - Shared Component model without specific spatial term:

Ydi|θdi ∼ P (Ediθdi),

log(θ1i) = β10 +X1iβ + δψi; log(θ2i) = β20 +X2iβ + 1
δ
ψi,

ψ ∼ ICAR(W , τψ).

M4 - Shared Component model with specific spatial term:

Yid|θdi ∼ P (Eidθid),

log(θi1) = β10 +Xi1β + δψi + φ1i; log(θi2) = β20 +Xi2β + 1
δ
ψi + φ2i,

ψ ∼ ICAR(W , τψ); φ1 ∼ ICAR(W , τφ1); φ2 ∼ ICAR(W , τφ2).

In each case,W is assigned as the original adjacency matrix or the matrices created
with the RSCM approach. The set of priors is the same as in the simulation study in
Chapter 3.2.
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Table 5 – Analysis of the incidence of lung and bronchus cancer for men and women in California
(US). Results are presented as mean, standard deviation (SD) and the 95% credibility
interval (ICr).

Model Parameter
SCM RSCM
Women Men Women Men
Mean SD ICr Mean SD ICr Mean SD ICr Mean SD ICr

M1 β0 -1.15 0.14 [-1.44; -0.87] -1.15 0.14 [-1.42; -0.88]
% Smokers 2.23 0.86 [0.55; 3.91] 2.91 0.81 [1.31; 4.50]
% 65 or over 6.73 0.60 [5.55; 7.90] 6.07 0.58 [4.92; 7.19]
WAIC 452.34 452.03

M2 β0 -0.57 0.26 [-1.06; -0.05] -0.90 0.27 [-1.43; -0.37] -1.04 0.20 [-1.44; -0.63] -1.28 0.22 [-1.73; -0.85]
% Smokers 1.57 1.35 [-1.11; 4.20] 3.55 1.43 [0.75; 6.42] 3.05 1.23 [0.65; 5.50] 4.81 1.37 [2.20; 7.59]
% 65 or over 3.64 0.94 [1.73; 5.44] 3.92 0.93 [2.06; 5.73] 5.36 0.77 [3.82; 6.84] 5.26 0.79 [3.70; 6.79]
WAIC 366.57 390.44 377.30 392.10

M3 β0 -0.60 0.26 [-1.09; -0.08] -0.81 0.20 [-1.18; -0.42] -1.14 0.21 [-1.56; -0.72] -1.15 0.17 [-1.49; -0.81]
% Smokers 2.03 1.36 [-0.65; 4.71] 2.84 1.05 [0.78; 4.91] 3.84 1.29 [1.33; 6.42] 4.00 1.05 [1.98; 6.11]
% 65 or over 3.40 0.93 [1.53; 5.18] 4.01 0.78 [2.43; 5.49] 5.30 0.79 [3.73; 6.82] 5.16 0.68 [3.81; 6.47]
δ 1.26 0.12 [1.05; 1.51] 1.24 0.12 [1.03; 1.49]
WAIC 776.94 783.72

M4 β0 -0.57 0.26 [-1.07; -0.06] -0.87 0.26 [-1.39; -0.36] -1.07 0.21 [-1.48; -0.66] -1.26 0.22 [-1.70; -0.85]
% Smokers 1.70 1.36 [-1.00; 4.36] 3.44 1.38 [0.77; 6.25] 3.30 1.27 [0.84; 5.84] 4.76 1.32 [2.25; 7.47]
% 65 or over 3.56 0.94 [1.66; 5.37] 3.84 0.91 [2.02; 5.60] 5.33 0.78 [3.77; 6.83] 5.20 0.77 [3.67; 6.70]
δ 1.67 0.26 [1.21; 2.22] 1.62 0.26 [1.17; 2.18]
WAIC 758.00 768.44

In our application, the main aim is to model new cases of bronchus and lung
cancer in California in 2016 (most recent year available in January 2020). SEER provides
information for each subject being two of them the gender and the county code. Using this
individual information, we are able to calculate, for each gender, the number of new cases
of bronchus and lung cancer by county. These two quantities are our response variables
and we would like to understand the characteristics that possibly affect the number of new
cases of such disease and also whether the spatial pattern is shared for men and women or
not. The covariates in this application are the percentage of adults that smoke every day
or most days (% Smokers) and the percentage of the population aged 65 or over (% 65
or over). To compare the results we are using the WAIC criterion (WATANABE, 2010).
Table 5 shows the estimates of each parameter for this set of models. Note thatM1 is
agreeing with the literature, since smoking and age are well-known factors that increase
the risk of lung and bronchus cancer for both genders. This way the areal information
should also show the augmented incidence of this cancer. All coefficients are positive and
the credibility interval does not contain the value zero, which is a clue of the importance
of these covariates.

The difference betweenM1 andM2 is thatM2 also contains a spatial effect. We
can observe, comparingM1 andM2, that the coefficients’ standard deviation increased
and also the point estimates changed for the SCM model. RSCM correction also changed
the point estimate, however, the standard deviations are smaller than in the SCM case.
Comparing the credibility intervals, we can notice that the covariate “% Smokers” became
not important for females under the SCM model which is contradictory with the literature.
RSCM remains pointing that this covariate is important to the model.
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At this point, we can see that by adding the spatial effect to the univariate model
causes a variance inflation on coefficients estimates,which is an indication of spatial
confounding. Thus, when employing the RSCM approach, the model is less affected by
the spatial confounding.

ModelsM3 andM4 are both multivariate with a shared component. It is possible
to see that the δ estimation is greater than 1 which means that men and women share a
spatial pattern with different dependence levels. Also, we can observe that, because of the
variance inflation, the credibility interval of “% Smokers” is including the value 0 for the
SCM model and this behavior is not observed under the RSCM approach. This means
that the conclusion of the importance of this covariate is changing by adding the spatial
effects, as observed in modelM2.

Comparing the WAIC ofM3 andM4 we conclude that the model with specific
disease components has a better fit when compared to that model without specific
components. Also, in all cases, the SCM model has a better fit to the data than the RSCM
model. However, because of the interpretability, we would prefer to select the RSCM model
which is the one that does not change drastically the model’s conclusions.

Figure 10 shows the shared spatial effect and also the specific gender spatial effect
for modelM4. As expected we can see that the patterns are similar when we compare
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Figure 10 – Shared and specific spatial patterns estimates for the incidence of lung and bronchus
cancer in California (US).

SCM and RSCM approaches. The specific spatial patterns are similar for men and women.
However, one can see that the risk scale differs for men and women. We can observe,
relatively, stronger risk in the south for women when compared with the spatial effect for
men. Both effects are higher in the north being more homogeneous for women.

Figure 11 show the aggregated spatial effects for women (exp{δψ + φ1}) and for
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men (exp{1
δ
ψ + φ2}). The combined effects are similar for men and women while the

specific spatial patterns differ. This motivates the use of both shared and specific spatial
components.
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Figure 11 – Aggregated spatial pattern estimates for the incidence of lung and bronchus cancer
in California (US).

Briefly, the spatial confounding effect changed conclusions about one important
covariate (% Smokers) in the model. The spatial models M2, M3 and M4 introduced
bias and variance inflation in such coefficient. Also, the conclusion under such models was
not supported by the literature. Because of these characteristics, we decided to correct for
possible spatial confounding.

Currently, the models capable to alleviate the spatial confounding in the literature
do not cover the shared component model. Therefore, we proposed a method to alleviate the
spatial confounding in this model family by creating several different spatial structures one
for each spatial effect aiming to alleviate the spatial confounding effects. The methodology
proved to be interesting and effective, alleviating the spatial confounding drawbacks and
bringing practical sense to the modelsM2,M3 andM4.

The next part will introduce our second contribution providing a methodology
to alleviate the spatial confounding in spatial frailty models. Therefore, we provide the
method, a simulation study, and one application.



Part 4

Spatial confounding in spatial frailty models
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4.1 Method

The likelihood of the spatial frailty model depends on the hazard function which is
related to the baseline hazard function, covariates, and latent effects. As a consequence,
this likelihood can be written according to Equation (4.1.1). Let h0

θ and H0
θ be the

baseline hazard function and the cumulative baseline hazard function, respectively. Let
ψ = [ψ1, . . . , ψn]T be a vector of latent effects related to each location. Define ε as a vector
with entries εij i = 1, . . . , n; j = 1, . . . , ni where εij is an unstructured latent effect related
to the sample unit j at location i. The likelihood is

L(t,θ,β,ψ, ε) =
n∏
i=1

ni∏
j=1

[
[hθ(tij)Sθ(tij)]∆D Sθ(tij)∆R (1− Sθ(tij))∆L (Sθ(tij1)− Sθ(tij2))∆K

]
,

hθ(tij) = h0
θ(tij) exp {Xijβ + ψi + εij} , (4.1.1)

Sθ(tij) = exp
{
−H0

θ (tij) exp {Xijβ + ψi + εij}
}
,

and ∆ = {∆D,∆R,∆L,∆K} are indicator functions of events, right-censored, left-censored
and interval-censored sample units, respectively, and represent, for each individual, which
term will contribute in the likelihood.

In this model there is more sample units than locations which implies in different
supports for XN×p and ψn×1, where N = ∑n

i=1 ni. As mentioned by Hanks et al. (2015),
the projection-based approach is intuitive when the support of the observations is identical
to spatial support, but we might be careful when this is not true as in the case of spatial
frailty models. That said, in the conventional projection-based approach, the projection
matrix is given by P(N×N) = X(XTX)−1XT and, therefore, it is not possible to make
the projection of ψn×1 onto the orthogonal space of XN×p directly. The simpler solution is
to create a new vector of the same length as X by repeating the spatial effects according
to the areas where X were collected. Define Ψ = [ψ1 × 1n1 , . . . , ψn × 1nn ]T where 1m is a
length m row vector of ones. Thus, Ψ is represented in Equation (4.1.2)

ψn×1 =


ψ1

ψ2
...
ψn

 ; ΨN×1 =



ψ1
...
ψ1
...
ψn
...
ψn



n1 times

nn times

. (4.1.2)

Then we can rewrite the hazard function in terms of the new vector.

hθ(t) = h0
θ(t) exp {Xβ + Ψ + ε} . (4.1.3)
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Given the vector Ψ, we can apply a projection-based approach and decompose the vector
into PΨ and P⊥Ψ where P⊥ = (I − P )

hθ(t) = h0
θ(t) exp

{
Xβ + PΨ + P⊥Ψ + ε

}
. (4.1.4)

The duplicated information in Equation (4.1.4) is the vector PΨ and may promote
the bias and variance inflation. To alleviate it, a convenient solution is to remove this
quantity giving rise to the following model

hθ(t) = h0
θ(t) exp

{
Xβrsf + P⊥Ψ + ε

}
, (4.1.5)

as P = X(XTX)−1XT , the expected value for the coefficients are given by βrsf =
β + (XTX)−1XTΨ where “rsf” means “restricted spatial frailty”. However, this solution
implies in a new limitation to the model. The spatial effect (P⊥Ψ), free of spatial
confounding, is a N × 1 vector which does not have a meaning as we just have n locations.
Therefore, we propose a solution that summarises the information creating two vectors.
The first vector contains the mean by locations of the orthogonal quantity P⊥Ψ and the
second one contains the deviations from these means.

Define ψrsf = [ψrsf1 , . . . , ψrsfn ]T the vector containing the n means of P⊥Ψ,
one for each region i = 1, . . . , n, and ψ̃ =

[
ψ̃11, . . . , ψ̃nnn

]T
, where ψ̃ij represents the

individual distance of each element of P⊥Ψ to its respective mean ψrsfi . In this case,
Ψrsf = [ψrsf1 × 1n1 , . . . , ψrsfn × 1nn ]T is a vector of remaining mean effects of each location
and ψ̃ represents, for each sample unit, an individual distance from the mean as in
Equation (4.1.6). In this case, both Ψrsf and ψ̃ are N × 1 vectors

Ψrsf =



ψrsf1
...

ψrsf1
...

ψrsfn
...

ψrsfn



n1 times

nn times

; ψ̃ =



ψ̃11
...
ψ̃11
...

ψ̃nnn


, (4.1.6)

and then we can rewrite the model as in Equation (4.1.7)

hθ(t) = h0
θ(t) exp

{
Xβrsf + Ψrsf + ψ̃ + ε

}
. (4.1.7)

Once ψ̃ is a vector of the same length of ε, it is not possible to estimate both of them
but just the sum. Let’s call ψ̃ + ε as εrsf and finally our final model is given by Equation
(4.1.8).

hθ(t) = h0
θ(t) exp {Xβrsf + Ψrsf + εrsf} . (4.1.8)
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Our main objective is to fit the restricted spatial model. However, we would like to have
estimates of the unrestricted model as well as the restricted model estimates. Therefore,
we need to find equivalences between the restricted quantities and the unrestricted ones.
With this equivalence, it is possible to have samples from both models. Equation (4.1.9)
presents this equivalence.

hθ(t) = h0
θ(t) exp {Xβrsf + Ψrsf + εrsf} (4.1.9)

= h0
θ(t) exp

{
Xβrsf + Ψrsf + ψ̃ + εsf

}
= h0

θ(t) exp
{
Xβrsf + P⊥Ψsf + εsf

}
= h0

θ(t) exp
{
X(βrsf − (XTX)−1XTΨsf ) + Ψsf + εsf

}
= h0

θ(t) exp {Xβsf + Ψsf + εsf} ,

where “sf” means “spatial frailty” and represent the estimates of the conventional spatial
method and “rsf” means “restricted spatial frailty” and represents the model referred in
Equation (4.1.8).

Given the unrestricted model, we can calculate the restricted quantities since
βrsf = βsf + (XTX)−1XTΨsf , P⊥Ψsf = Ψrsf + ψ̃ and εrsf = εsf + ψ̃. With these
equivalences it is possible to have estimates of all parameters of the restricted model.
The general formulation in Equation (4.1.9) shows how to obtain the restricted models
estimates for the proportional hazard family including the Cox model (when h0

θ(t) is
not defined). In other words, we just need a sample from the unrestricted model to get
estimates from both unrestricted and restricted models. These results are applied for the
entire family of proportional hazards models. It is important to notice that even if we fit a
model without the ε (independent) term, under the restricted model, the component εrsf
will appear.

4.1.1 Reduction operator
Although enlarging the spatial effect vector is a straightforward solution in Equa-

tion (4.1.4), the projection approach requires, for each element of a posterior sample, the
calculations:

• βrsf = βsf + (XTX)−1XTΨsf ,

• P⊥Ψsf = (I −X(XTX)−1XT )Ψsf = Ψrsf + ψ̃,

which requires products of matrices with lengths equal to the sample size (N).

It is not unusual to work with data sets in which, for each area, several individuals
are observed. As this number increases, the total sample size N also increases, but not the
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number of areas, n, that remains fixed. Said that, the computation of the restricted model
increases as N increases. However, because Ψsf is constant by area, it is possible to get
the same desired results but computing it with a reduced version of P and P⊥ matrices
in which the new matrices are (n× n)-dimensional instead of (N ×N)-dimensional.

Let’s define an operator that will help us to achieve the computational improvement.
Let XN×p be a matrix with entries Xijk for an index i, an element j and column k, and
GN×1 is a vector of indices indicating, for each row of XN×p, an index i in a set of indices
starting from 1 until n (n� N). Then the reduction operator r is defined by:

XN×p r G = xn×p, (4.1.10)

in which xik =
ni∑
j=1

Xijk, and ni is the number of elements related with index i. This

operator has several properties that allow us to simplify the computational procedure.
Let c be a constant, rn×1 is a column vector, R = [rG1 , . . . , rGN ]T is a N × 1 vector with
repeated entries for each index of G (constant by indices), Pp×p is a squared matrix and,
Qm×p is a matrix. Therefore, the following properties are true:

1. (X1 +X2) r G = (X1 r G) + (X2 r G),

2. (cX) r G = c(X r G),

3. XTR = (X r G)Tr,

4. (QXT ) r GT = Q(X r G)T ,

5. (XPXT ) r G = (X r G)PXT ,

6. ((XPXT ) r G) r GT = (X r G)P (X r G)T ,

7. (XPXTR) r G = (X r G)P (X r G)Tr.

The proofs of these properties are in Appendix B. Using the reduction operator it
is possible to compute βrsf efficiently (by property 4):

βrsf = βsf + (XTX)−1XTΨsf (4.1.11)
= βsf + (XTX)−1(X r G)Tψsf ,

that is a product on a smaller dimension because (XTX)−1(X r G)T is a p× n matrix.

Also, to compute ψrsf , using properties 1, 3 and 4, and definingNN×N as a diagonal
matrix with Nii = nGi being the number of elements in each area, and nn×n being a
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diagonal matrix with njj = nGj it is the same as

ψrsf = N−1(IN −X(XTX)−1XT )Ψsf r G (4.1.12)
= (N−1Ψsf −N−1X(XTX)−1XTΨsf ) r G
= (N−1Ψsf ) r G−N−1(X(XTX)−1XTΨsf ) r G
= (N−1 r G)Tψsf r G−N−1X(XTX)−1(X r G)Tψsf r G
= ψsf − (N−1X r G)(XTX)−1(X r G)Tψsf
= (In − n−1(X r G)(XTX)−1(XT r G))ψsf .

Note that (N−1P⊥Ψsf) r G = ψrsf . Then, for both βrsf and ψrsf it is possible to
calculate their values using small length matrices which is computationally attractive.

4.1.1.1 HH model

A similar approach can be applied for the before-mentioned HH model (HUGHES;
HARAN, 2013). To apply their ideas we can first create the Moran operator replacing
P⊥ in the Equation (1.2.8) by ((N−1P⊥ r GT ) r G))W ((N−1P⊥ r GT ) r G) in the
original formulation. After that, one can perform the spectral decomposition and take
the relevant eigenvalues to create a low-rank model as mentioned in Section 1.2.2.2. It
is important to notice that, in this case, it is not possible to find equivalence between
restricted and unrestricted models and then it is necessary to fit the restricted model
directly.

4.1.1.2 SPOCK model

Similarly, to apply the SPOCK method in models where the support of observations
is not identical to spatial support, caution is needed. In this case, one solution is to get the
new set of centroids by projecting the original set onto the orthogonal space of covariates,
after the application of the reduction operator.

Let’s call by W the adjacency matrix of Section 1.2.1 linked to the set of original
centroids ci = {c1i, c2i} ∀i ∈ [1, ..., n]. The new set of centroids c∗ by projecting c onto
the orthogonal space of X is given by

c∗ = ((N−1P⊥ r GT ) r G)c.

Then, as showed in Section 1.2.2.4, one can choose its preferable software to implement
the solution.
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4.2 Simulation

This study is divided into two sections. First, the computational improvement will
be presented by a simulation study that shows the reduction operator efficiency. Next, the
capacity to recover the model parameters and the efficiency of the proposed correction will
be shown. The methodology presented here does not depend on the method used to get
samples from the unrestricted model. This way, for computational benefits we are using
the INLA method to fit the unrestricted model. Also, we are using R-INLA to generate
posterior samples of the parameters involved. The inla.posterior.sample allows us to
have a sample from the approximated posterior distribution. The hyperparameters are
sampled from the grid used in the numerical integration and the latent field is sampled from
the Gaussian approximation conditioned on the hyperparameters. Based on a posterior
sample of the unrestricted model and using Equation (4.1.9) we obtained the posterior
samples from the restricted model. Also, the method does not depend on the parametric
model chosen for the baseline hazard. In this case, we choose the widely applied Weibull
proportional hazard model.

4.2.1 Computational improvement
To show the computational improvement using the reduction operator, we performed

a simulation study. The time spent to get samples from the restricted model using the
methodology described in Section 4.1 and the time spent applying the reduction operator
were recorded.

The data were generated from the Weibull proportional hazard model for a spatial
structure (polygons) containing 92 areas. We vary the number of individuals in each
area in the following grid: 2, 4, 8, 16, 32, 64 and 128. Therefore, the total sample size N is
92× 2 = 184 in the first scenario and 92× 128 = 11, 776 in the last one. For each case, a
posterior sample of size 5000 was taken and the correction was made based on it. This is a
two-step technique, where first, we get samples from the unrestricted model and then, a
posteriori, we get samples from the restricted model. Thus, we are able to record the time
to fit the model and also the time to perform the correction. It is interesting to notice
that, in both cases, the time spent to fit the unrestricted model is the same and therefore
we are not reporting it. Also, using the reduction operator, the correction step is always
involving the same length matrix while the matrix using the methodology without the
reduction becomes larger at each step.

Figure 12 shows the computational cost for applying these two approaches, varying
according to the number of subjects in each area. As one can see, the computational cost
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Figure 12 – Time spent to fit the Weibull proportional hazard model with and without the
reduction operator. Right: Original scale in seconds; Left: Logarithmic scale.

is increasing as N increases for the model without the reduction step. The increment
in time for the pure model increases drastically because for each posterior sample we
must calculate P⊥Ψsf . This is a product of a N × N matrix by a N × 1 vector (this
product is repeated 5,000 times). Instead, the model with the reduction operator calculates
((P⊥ r G) r G)ψsf which is a product of a n× n matrix by a n× 1 vector.

The time spent to calculate (P⊥ r G) r G also increases as N increases, but the
calculation occurs just once. Also, it is a straightforward calculation that is not strongly
affected by the sample size. Thus, since the computational cost to calculate the reduced
model is preferable and the results are strictly the same, we will use the reduction operator
for the rest of the work.

4.2.2 Confounding alleviation
To evaluate the model ability to estimate the parameters, we conducted a simulation

study. Data were generated from the Weibull proportional hazard model

h(ti) = αtα−1
i exp {β0 + β1Xi1 + β2Xi2 + ψi} , (4.2.1)

ψ ∼ ICAR(W , τψ),

where α = 1.2, β0 = 0, β1 = −0.3, β2 = 0.3 and τψ = 0.75. To evaluate the performance in
terms of recovering the parameters in this model, we have 4 censoring levels: 0%, 25%,
50% and 75%.

We generated 1,000 datasets under each setup and 2 scenarios: 1) X1 and X2 are
random variables and therefore no spatial confounding is expected; 2) X1 is a random
variable but X2 is the set of centroids’ latitudes of each county. The set of weakly
informative priors was taken as follow
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α ∼ Γ(0.001, 0.001),

βj ∼ Normal(0, 0.001), j = 0, 1, 2,

τψ ∼ Γ(0.5, 0.0005).

Table 6 presents the mean of the estimated values (Mean), the mean of the
standard deviations (SD), the coverage rate for a nominal rate of 95% (Cov) and the
mean squared error (MSE) for each scenario. It is possible to observe that, without spatial

Table 6 – Simulation results the spatial frailty model experiment. The results are shown by
mean, standard deviation (SD), coverage rate for a nominal rate of 95 % (Cov) and
mean square error (MSE).

Censure Parameter
Without Spatial Confounding With Spatial Confounding
SFM RSFM SFM RSFM
Mean (SD) COV MSE Mean (SD) COV MSE Mean (SD) COV MSE Mean (SD) COV MSE

00.00% α 1.18 (0.07) 83.20% 0.0071 1.18 (0.07) 83.20% 0.0071 1.17 (0.07) 77.80% 0.0087 1.17 (0.07) 77.80% 0.0087
β1 0.29 (0.08) 93.90% 0.0060 0.29 (0.07) 94.80% 0.0053 0.29 (0.08) 93.60% 0.0061 0.29 (0.07) 94.90% 0.0053
β2 -0.29 (0.08) 93.70% 0.0062 -0.30 (0.07) 93.80% 0.0054 -0.28 (0.20) 83.40% 0.0609 -0.29 (0.07) 93.00% 0.0062

25.00% α 1.20 (0.08) 80.40% 0.0097 1.20 (0.08) 80.40% 0.0097 1.18 (0.08) 69.10% 0.0118 1.18 (0.08) 69.10% 0.0118
β1 0.30 (0.09) 93.70% 0.0082 0.30 (0.08) 94.40% 0.0073 0.29 (0.09) 92.80% 0.0083 0.29 (0.08) 94.40% 0.0072
β2 -0.30 (0.09) 92.80% 0.0083 -0.30 (0.08) 93.60% 0.0074 -0.28 (0.19) 77.10% 0.0723 -0.29 (0.09) 93.60% 0.0085

50.00% α 1.21 (0.09) 80.00% 0.0137 1.21 (0.09) 80.00% 0.0137 1.17 (0.08) 72.80% 0.0131 1.17 (0.08) 72.80% 0.0131
β1 0.30 (0.10) 94.30% 0.0116 0.30 (0.10) 93.60% 0.0106 0.29 (0.10) 93.60% 0.0114 0.29 (0.10) 95.10% 0.0104
β2 -0.30 (0.11) 93.20% 0.0129 -0.30 (0.10) 94.10% 0.0112 -0.28 (0.17) 63.80% 0.0936 -0.28 (0.11) 93.10% 0.0131

75.00% α 1.20 (0.11) 82.30% 0.0185 1.20 (0.11) 82.30% 0.0185 1.18 (0.11) 83.30% 0.0158 1.18 (0.11) 83.30% 0.0158
β1 0.30 (0.14) 92.20% 0.0223 0.30 (0.14) 93.30% 0.0211 0.30 (0.14) 93.20% 0.0210 0.30 (0.14) 94.30% 0.0194
β2 -0.29 (0.14) 93.10% 0.0236 -0.29 (0.14) 93.80% 0.0215 -0.30 (0.17) 56.30% 0.1418 -0.30 (0.15) 92.80% 0.0264

confounding, the SFM (Spatial Frailty Model) and the RSFM (Restricted Spatial Frailty
Model) approaches present similar values for mean, coverage and mean squared error.
Under spatial confounding, it is possible to see that the point estimates (mean) are accurate
for all parameters and both models. However, the standard deviation of β2 is, on average,
greater for the SFM model than for the RSFM model. Also, it is possible to observe
that the MSE of β2 is greater for the SFM than for the RSFM. The coverage rate seems
adequate for both models except for the parameter α. Since this inconsistency happens
also for the model without spatial confounding, it is out of our scope to investigate this
phenomenon.

Another interesting conclusion is that as much the censure level increases the
standard deviations also increase in all cases. It is showing that, in those models with
bigger censoring rates, the estimates are less accurate (as expected).

The projection-based approach aims to estimate β∗ = βsf + P⊥Ψ. In this case,
we reported Figure 13 for (θ − θ∗) where θ = {α, β1, β2}. We expect all the values to
be around 0, which means that the estimate is not biased. We can see, for α and β1,
that the estimates are similar for both SFM and RSFM models. However, for β2 the
behavior changes for the model with and without confounding. The model without spatial
confounding, as expected, behaves in the same way for β1. For the model with spatial
confounding, we can observe that the (θ − θ∗) tends to be around 0 for the SFM and also
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Figure 13 – Boxplot of (θ − θ∗) for θ = {α, β1, β2} in the spatial frailty model. Dashed line
represents the value 0.

for the RSFM. Although they are centered at 0, the dispersion of SFM seems to be bigger
than the dispersion of the RSFM model which, in this case, suggests bias in the estimates.

From the perspective of the level of censorship, we can see a smooth increment in
the coefficients’ variance for all cases. This result is explained by the fact that, with the
increment of the censoring rate, we have less information about the responses.

Figures 14, 15, show for SFM and RSFM, the standard deviations and the SVIF
(defined in Section 1.2.2.5) comparing with the non-spatial model. An SVIF equal to 1
indicates that the variances of both models are the same. However, because the spatial
model is more complex it is expected an increment in the variance. We can observe
in Figure 14 that the standard deviations are similar in all cases except for β2 in the
scenario with spatial confounding. In this case, we can see that the higher the level of
censorship, the more similar is the standard deviation. We can also notice that even for
the model without spatial confounding, the SVIF is bigger for SFM than for the RSFM,
which indicates that the RSFM approach alleviates the variance inflation even in the
cases we are not expecting it. However, comparing with the dashed line, we note that the
variance is almost always increasing for both SFM and RSFM. Also, we can observe a
downward trend in the SVIF for both models when the level of censorship. It means that
the efficiency of the correction decreases with the increment of the censured individuals,
which is in agreement with Figure 13.

The behavior for β1 and β2 in the model without spatial confounding are similar and
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Figure 14 – Boxplot of σθ for θ = {β1, β2} for the SFM and RSFM where σθ represents the
standard deviation of θ.

this is also true for the behavior of β1 under spatial confounding. However, the parameter
β2 under spatial confounding presents huge inflation of variances for the model without
correction. In some cases, we experienced a variance exp{3} ≈ 20 times bigger. In these
cases, the restricted model behaves well and it keeps the variance stable.
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Figure 15 – Boxplot of the SVIF (log scale) between spatial models (SFM and RSFM) and the
baseline model (Weibull proportional hazard model). Dashed line marks the value
0, which in the log scale represent the equality of variances.
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4.3 Time until death by lung and bronchus
cancer in California

To fit the model, we use a right censoring scheme with the Weibull proportional
hazard model. Our baseline model is the Non-spatial (NS) model given by the Weibull
proportional hazard model and five covariates: 1) gender; 2) race; 3) disease stage; 4) age at
diagnosis; 5) the percentage of people who smoke every day or most days (areal level). The
spatial frailty model (SFM) also includes the ICAR spatial term, and the restricted spatial
frailty model (RSFM) alleviates the spatial frailty model for possible spatial confounding.

In Table 7, α is the shape parameter of the Weibull distribution and the estimate
was almost the same in the NS and SFM models (RSFM estimate is the same of the SFM
for hyperparameters). The parameter τw represents the precision for the ICAR model. The
other parameters are related with the covariates in the modeling.

From the epidemiological point of view, the NS model reflects the theory that
patients in a more advanced stage of the disease have a higher risk of death (In situ <
Localized < Regional < Distant). Also, males have a higher risk when compared to females.
Same way, black people have a higher risk when compared with non-black people. Also,
the older the individual the greater is the risk. The coefficient for percentage of smokers in
the county indicates an increment in the risk of death due to lung and bronchus cancer.
This covariate is our best guess about individual tobacco consumption.

When we compare the results from the NS model with those of the SFM, one can

Table 7 – Time until death by lung and bronchus cancer in California (US). Results are presented
as mean, standard deviation (SD) and the 95 %credibility interval (ICr).

Parameter NS SFM RSFM
Mean (SD) ICr Mean (SD) ICr Mean (SD) ICr

α 0.85 (0.0032) (0.85; 0.86) 0.86 (0.0033) (0.85; 0.86) 0.86 (0.0033) (0.85; 0.86)
τψ 22.75 (6.8306) (10.99; 36.49) 22.75 (6.8306) (10.99; 36.49)
β0 -4.07 (0.2048) (-4.44; -3.65) -3.58 (0.2091) (-4.02; -3.20) -4.06 (0.2001) (-4.47; -3.69)
Gender

Female ref. ref. ref.
Male 0.19 (0.0099) (0.17; 0.21) 0.19 (0.0098) (0.18; 0.21) 0.19 (0.0098) (0.18; 0.21)

Race
Non-black ref. ref. ref.
Black 0.16 (0.0177) (0.13; 0.20) 0.17 (0.0176) (0.13; 0.20) 0.17 (0.0175) (0.13; 0.20)

Cancer stage
In situ
Localized 1.51 (0.1985) (1.12; 1.87) 1.51 (0.1940) (1.13; 1.90) 1.51 (0.1940) (1.13; 1.90)
Regional 2.60 (0.1984) (2.20; 2.96) 2.60 (0.1935) (2.25; 3.01) 2.60 (0.1935) (2.25; 3.02)
Distant 3.73 (0.1985) (3.35; 4.11) 3.74 (0.1936) (3.37; 4.14) 3.74 (0.1936) (3.37; 4.14)

Age at diagnosis 0.02 (0.0005) (0.02; 0.02) 0.02 (0.0005) (0.02; 0.02) 0.02 (0.0005) (0.02; 0.02)
% Smokers 2.13 (0.1821) (1.79; 2.49) -0.90 (0.3848) (-1.68; -0.21) 2.13 (0.1819) (1.79; 2.51)
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notice that for gender, race, stage of the disease and age at diagnosis, the results are similar
with small differences in the estimates. However, for the coefficient of the percentage of
smokers, the point estimate changes drastically and there is variance inflation (variance
is about 5 times greater for the SFM). Another important point in the SFM model is
that the credibility interval changes drastically pointing that the percentage of smokers
is a protective factor for cancer death. The restricted spatial frailty model (RSFM) was
applied and we can notice that it returns similar estimates to those from the NS model,
as expected. The credibility interval now is pointing that the higher the percentage of
smokers, higher is the risk for cancer death.

Figure 16 shows the spatial effect exp{ψ} for the SFM and RSFM. We can see
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Figure 16 – Spatial risk effects for death by lung and bronchus cancer in California (US).

that the patterns are smoother for the RSFM case. However, the pattern remains similar
to the SFM model being higher in the north of the state, less intense in the center and
again high in the south. This result might be useful to create new policies or new health
care centers for lung and bronchus cancer in California.

We can conclude that the employment of the proposed restricted model is im-
portant in several ways. The first advantage is that the model conclusions retains the
interpretability of the baseline model, keeping important conclusions about the model’s
covariates. Secondly, the computational improvement provided by the reduction operator
appears as an important feature since it performs better than the pure restricted model
since the reduction operator induces a not time-consuming model. Also, a user can apply
its preferable software to get posterior samples from the restricted model and, a posteri-
ori, correct for possible spatial confounding which gives more freedom. Another point is
that under spatial confounding, the variances of coefficients are not inflated as it is for
the conventional model. Finally, the spatial pattern is similar when compared with the
unrestricted model which shows that the correction does not disorder the spatial patterns.

The next part will introduce our package named RASCO. The RASCO implements
our contributions for shared component models and spatial frailty models as well as some
approaches to alleviate the spatial confounding in GLMM.



Part 5

RASCO: An R package to alleviate spatial
confounding
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5.1 RASCO: An R package to alleviate spatial
confounding

Although several approaches to tackle spatial confounding are available, there
is lack of adequate software for an unified implementation of these methods. The final
contribution of this work is developing the R package RASCO for easy implementation of
the approaches described in this work and also the GLMM alternatives, viz., the RHZ
(REICH; HODGES; ZADNIK, 2006), the HH (HUGHES; HARAN, 2013), and the SPOCK
(PRATES; ASSUNÇÃO; RODRIGUES, 2019).

For the HH, RASCO acts as a wrapper for the ngspatial package that implements
the HH model (HUGHES; CUI, 2018) for GLMM. For this approach, four families are
available: Gaussian, binomial, Poisson and negative binomial. For RSFM in spatial frailty
models, RSCM in shared component models, RHZ for GLMM and SPOCK also for
GLMM, RASCO relies on the R-INLA package for a faster INLA implementation. Therefore,
all distributions and models from R-INLA are inherited.

Next sections show how to install and how to use the RASCO package.

5.1.1 Installation
To install the most recent version of the RASCO package from GitHub, one needs to

type the following commands in a R console:

install.packages("devtools")
devtools::install_github("douglasmesquita/RASCO")

The functions that allow the use of the restricted models are:

• rsglmm: generalized linear mixed model wrapper,

• rscm: shared component model wrapper,

• rsfm: spatial frailty model wrapper,

These functions have three compulsory parameters: data, formula and family. For the
shared component models, family is a vector of size 2 containing the families for each
outcome. Also, RASCO has three functions to generate random data:
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• rglmm: generalized linear mixed model random data,

• rshared: shared component model random data,

• rsurv: spatial frailty model random data,

The standard models are always unrestricted. To fit a restricted model, it is
necessary to specify the column corresponding to the areas by the argument area, the
neighborhood object via a spatial polygon (PEBESMA; BIVAND, 2005), or a simple
feature object (PEBESMA, 2018) and, the spatial model as "besag" or its restricted
version "r_besag", for example. If the user chooses a restricted model (as "r_besag"), one
can specify the projection based approach by the proj argument. The available projections
may vary according to each model as described in the next sections.

For more details and examples access ?rsglmm, ?rscm, ?rsfm.

5.1.2 Generalized Linear Mixed models
The rsglmm function has three compulsory parameters: data, formula and family.

For the family parameter, the user is restricted to the Gaussian, Binomial, Poisson and
negative binomial (with fixed m) families if using the HH model, or any other family
implemented in the R-INLA package for RHZ and SPOCK approaches. Some recommen-
ded families are: "gaussian" (Gaussian distribution), "poisson" (Poisson distribution),
"binomial" (binomial distribution), "gpoisson" (generalized Poisson distribution) and
"nbinomial" (negative binomial distribution). For a full list of available likelihoods use
INLA::inla.list.models().

The available projections for the restricted models are "none", "rhz", "hh", or
"spock". Other possible parameters are:

• nsamp: number of desired samples. Default = 1000.

• priors: a list containing prior_prec a vector of size two containing shape and scale
for the gamma prior distribution applied to τ .

• ...: other parameters used in ?INLA::inla or ?ngspatial::sparse.sglmm

Below a simulated example using the Rio de Janeiro shapefile:

##-- Seed

set.seed(123456)

##-- Spatial structure
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data("neigh_RJ")

##-- Parameters

beta <- c(-0.5, -0.2)
tau <- 1

##-- Data

family <- "poisson"
data <- rglmm(beta = beta, tau = tau, family = family,

confounding = "none", neigh = neigh_RJ,
scale = TRUE)

##-- Models

##-- + Non-spatial Poisson model

sglm_mod <- rsglmm(data = data, formula = Y ~ X1 + X2,
family = family,
proj = "none", nsamp = 1000)

##-- + Spatial Poisson model

sglmm_mod <- rsglmm(data = data, formula = Y ~ X1 + X2,
family = family,
area = "reg", model = "besag",
neigh = neigh_RJ,
proj = "none", nsamp = 1000)

##-- + Restricted Spatial Poisson model - RHZ

rglmm_rhz <- rsglmm(data = data, formula = Y ~ X1 + X2,
family = family,
area = "reg", model = "r_besag",
neigh = neigh_RJ,
proj = "rhz", nsamp = 1000)

To fit the SPOCK or HH models, the unique change is in the proj argument that
must be replaced by "spock" or "hh". If we replace "poisson" by "nbinomial", then a
negative binomial model is fitted.

The outputs are standardized, and display the time elapsed ($time), the model fitted
by R-INLA or ngspatial ($out) and two lists: $unrestricted and $restricted. Both of
them have four entries; $unrestricted$sample corresponds to the sample taken from the
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model, $unrestricted$summary_fixed, and $unrestricted$summary_hyperpar, con-
tains the summaries for fixed effects and hyperparameters, respectively. The random effects
summary is contained in $unrestricted$summary_random.

5.1.3 Shared Component models
The rscm function has four compulsory parameters: data, formula1, formula2

and family. For the family parameter, the user should insert a vector of size 2 con-
taining two families. formula1 and formula1 contains the fixed effects for disease 1
and 2, respectively. Again one can choose among several families as "poisson" (Poisson
distribution), "gpoisson" (generalized Poisson distribution), "nbinomial" (negative bi-
nomial distribution), "zeroinflatedpoisson0" (zero-inflated poisson distribution) and
"zeroinflatednbinomial0" (zero-inflated negative binomial distribution). For a full list
of available likelihoods use INLA::inla.list.models().

The available projections for the restricted models are "none" and "spock". Other
possible parameters are:

• nsamp: number of desired samples. Default = 1000.

• priors: a list containing prior_gamma and prior_prec. prior_gamma is a vector
of size two containing mean and precision for the Gaussian prior distribution applied
to γ parameter. prior_prec is a list containing tau_s, tau_1 and tau_2. For each
entry a vector of size two containing shape and scale for the gamma prior distribution
applied to τψ, τφ1 and τφ2 parameters, respectively.

• random_effects: a list containing three logical entries: shared to fit the shared
component in the model, specific_1 to fit the specific component for disease one
and specific_2 to fit the specific component for disease two.

• ...: other parameters used in ?INLA::inla

Below a simulated example using the Rio de Janeiro shapefile:

library(spdep)

set.seed(123456)

##-- Spatial structure

data("neigh_RJ")

##-- Parameters



Chapter 5.1. RASCO: An R package to alleviate spatial confounding 76

alpha_1 <- 0.5
alpha_2 <- 0.1
beta_1 <- c(-0.5, -0.2)
beta_2 <- c(-0.8, -0.4)
tau_s <- 1
tau_1 <- tau_2 <- 10
delta <- 1.5

##-- Data

data <- rshared(alpha_1 = alpha_1, alpha_2 = alpha_2,
beta_1 = beta_1, beta_2 = beta_2,
delta = delta,
tau_1 = tau_1, tau_2 = tau_2, tau_s = tau_s,
confounding = "linear",
neigh = neigh_RJ)

##-- Models

##-- + Restricted shared component model

scm_inla <- rscm(data = data,
formula1 = Y1 ~ X11 + X12,
formula2 = Y2 ~ X21 + X12,
family = c("nbinomial", "poisson"),
E1 = E1, E2 = E2,
area = "reg", neigh = neigh_RJ,
proj = "none", nsamp = 1000)

##-- + Restricted shared component model

rscm_inla <- rscm(data = data,
formula1 = Y1 ~ X11 + X12,
formula2 = Y2 ~ X21 + X12,
family = c("nbinomial", "poisson"),
E1 = E1, E2 = E2,
area = "reg", neigh = neigh_RJ,
proj = "spock", nsamp = 1000)

The outputs are standardized, and display the time elapsed ($time), the model
fitted by R-INLA ($out), $sample corresponds to the sample taken from the model,
$summary_fixed, and $summary_hyperpar, contains respectively, the summaries for fixed
effects and hyperparameters, and the summary for the random effects is contained in the
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$summary_random entry.

5.1.4 Survival models
The rsfm function has three compulsory parameters: data, formula and family.

For the family parameter, the available families are: "exponential" (exponential propor-
tional hazard model), "weibull" (Weibull proportional hazard model), "weibullcure"
(Weibull proportional hazard model with cure fraction), "loglogistic" (loglogistic pro-
portional hazard model), "gamma" (gamma proportional hazard model), "lognormal"
(lognormal proportional hazard model) and "pwe" (piecewise exponential proportional
hazard model).

The available projections for the restricted models are "none" and "rhz". Other
possible parameters are:

• nsamp: number of desired samples. Default = 1000.

• priors: a list containing prior_prec a vector of size two with shape and scale for
the gamma prior distribution applied to τ parameter.

• ...: other parameters used in ?INLA::inla

Below a simulated example using the Rio de Janeiro shapefile:

set.seed(123456)

##-- Spatial structure

data("neigh_RJ")

##-- Parameters

n_reg <- length(neigh_RJ)
n_id <- sample(x = 3:5, size = n_reg, replace = TRUE)
coefs <- c(0.3, -0.3)
tau <- 0.75 # Scale of spatial effect

##-- Data

data <- rsurv(n_id = n_id,
coefs = coefs, cens = 0.5, scale = FALSE,
cens_type = "right", hazard = "weibull",
hazard_params = list(weibull = list(alpha = 1.2,

variant = 0)),
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spatial = "ICAR",
neigh = neigh_RJ, tau = tau,
confounding = "linear", proj = "none")

##-- Models

##-- Spatial frailty model

sfm_inla <- rsfm(data = data,
formula = surv(time = L, event = status) ~ X1 + X2,
family = "weibull", model = "none",
proj = "rhz", nsamp = 1000, approach = "inla")

##-- Restricted spatial frailty model

rsfm_inla <- rsfm(data = data,
formula = surv(time = L, event = status) ~ X1 + X2,
family = "weibull", area = "reg",
model = "r_besag", neigh = neigh_RJ,
proj = "rhz", nsamp = 1000, approach = "inla")

The outputs are standardized, and display the time elapsed ($time), the model
fitted by R-INLA ($out) and two lists: $unrestricted and $restricted. Both of them
have four entries; $unrestricted$sample corresponds to the sample taken from the mo-
del, $unrestricted$summary_fixed, and $unrestricted$summary_hyperpar, contains
respectively, the summaries for fixed effects and hyperparameters, and the random effects
summary is in $unrestricted$summary_random entry.



79

Final remarks

The spatial confounding is a limitation of spatial models that needs attention since
it can imply in wrong conclusions about important covariates effects. The conventional
solution based on projections cannot be directly applicable for the shared component
models neither for frailty models. For the first one, there are multiple spatial effects making
the orthogonal projection a difficult task. For the second one, the fact that the support of
fixed and random effects does not match makes the direct projection impossible.

This work showed alternatives to alleviate the effects of spatial confounding in
the shared component models using the RSCM. Our approach creates several adjacency
matrices using the SPOCK algorithm, one for each spatial effect in the model. This is
preferable as an alternative to projection-based approaches that are confused in this
scenario. Our approach appears as a good solution for spatial confounding since it is a prior
correction on the original neighborhood structure. This is an important aspect because it
enables the user to choose its preferred software to fit the model after creating the new
adjacency matrices. We conducted a simulation study that showed the adequacy of our
method in alleviating the spatial confounding. Also, we provided an efficient framework
to fit the restricted spatial frailty model based on a posterior sample of the unrestricted
model. To solve the difference in the lengths of fixed and spatial effects, we proposed
a reduction operator that is not only adequate to alleviate the spatial confounding but
also has computational benefits. The method adequacy and efficiency were shown by a
simulation study that proved its relevance and importance.

We have developed two applications with data provided by the Surveillance, Epi-
demiology, and End Results (SEER) (SEER, 2019). Also, we enrich the data set with
some county-level information provided by the County Health Rankings & Roadmaps
(CHRR) (RANKINGS; CHRR, 2019). For the shared component model, we studied the
new cases of bronchus and lung cancer in California in 2016 (last available year in January
2020). We showed that the percentage of people who smoke every day or most days were
confounded with the spatial effect. The method proposed alleviated the effects of the
spatial confounding keeping important conclusions about this covariate.

The spatial frailty model was employed to model the time until death by lung and
bronchus cancer in California between 2010 and 2016. Our method provided an alleviation
of the spatial confounding also keeping the model interpretability.

We developed an R package named RASCO aiming to unify the approaches in the
literature that deal with spatial confounding. Nowadays it has functions to fit generalized
linear mixed models, shared component models (two diseases) and spatial frailty models.
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Also, a projection-based approach for these models is available as well as the SPOCK
approach. The package is available at https://github.com/douglasmesquita/RASCO.

For future work, we may investigate the effects of temporal and spatio-temporal
confounding in statistical models. To the best of our knowledge, up to now, little or no
attention is paid to these models. Also, the reduction operator seems an easy and applied
tool for statistical models. It is directly employed for discrete models in which the math
involves products of a matrix and a variable that is constant by groups. Therefore, it
is also possible to think in a discretization of continuous variables aiming to reduce the
computational effort keeping the desired accuracy.

The SPOCK approach also needs the length equality of fixed and latent effects.
Although we provided a way to proceed in this case, we did not investigate the effects of
this methodology. Therefore, further studies are necessary to evaluate its capability of
alleviating the spatial confounding in spatial frailty models. The same can be made for
the HH approach and other projection-based approaches in the literature.
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Appendix A – RSCM - simulation

Table 8 – Simulation results for the shared component model experiment (Scenarios S2 and
S3). The results are shown by mean, standard deviation (SD), coverage rate for a
nominal rate of 95 % (Cov) and mean square error (MSE).

Parameter Real
S2 S3
SCM RSCM SCM RSCM
Mean (SD) Cov MSE Mean (SD) Cov MSE Mean (SD) Cov MSE Mean (SD) Cov MSE

δ = 1.00 β10 0.50 0.50 (0.03) 94.70% 0.0012 0.49 (0.04) 96.10% 0.0012 0.50 (0.03) 94.90% 0.0011 0.50 (0.03) 93.20% 0.0014
β20 0.10 0.10 (0.04) 95.00% 0.0019 0.10 (0.04) 95.90% 0.0018 0.10 (0.04) 93.60% 0.0019 0.10 (0.04) 93.30% 0.0020
β11 -0.50 -0.51 (0.07) 94.20% 0.0057 -0.51 (0.09) 99.90% 0.0026 -0.50 (0.07) 94.60% 0.0043 -0.50 (0.08) 98.80% 0.0034
β21 -0.80 -0.81 (0.08) 94.70% 0.0060 -0.80 (0.09) 99.90% 0.0031 -0.80 (0.07) 94.30% 0.0051 -0.80 (0.08) 99.60% 0.0027
β12 -0.20 -0.20 (0.17) 95.20% 0.0271 -0.19 (0.08) 95.80% 0.0063 -0.20 (0.06) 94.20% 0.0036 -0.20 (0.07) 74.30% 0.0142
β22 -0.40 -0.40 (0.06) 94.70% 0.0032 -0.40 (0.06) 83.90% 0.0066 -0.40 (0.17) 96.40% 0.0262 -0.40 (0.08) 93.60% 0.0085
δ 1.00 1.02 (0.06) 90.10% 0.0039 1.07 (0.07) 84.20% 0.0116 1.02 (0.06) 89.80% 0.0040 0.95 (0.06) 83.20% 0.0074

δ = 1.50 β10 0.50 0.50 (0.04) 93.50% 0.0016 0.50 (0.04) 95.70% 0.0016 0.49 (0.04) 92.60% 0.0018 0.49 (0.04) 94.80% 0.0018
β20 0.10 0.09 (0.04) 93.20% 0.0016 0.10 (0.04) 93.00% 0.0017 0.10 (0.04) 94.50% 0.0018 0.10 (0.04) 92.80% 0.0019
β11 -0.50 -0.51 (0.11) 95.40% 0.0109 -0.51 (0.14) 99.90% 0.0060 -0.50 (0.10) 94.10% 0.0107 -0.50 (0.11) 99.90% 0.0030
β21 -0.80 -0.81 (0.07) 95.40% 0.0039 -0.80 (0.07) 98.80% 0.0032 -0.80 (0.06) 93.40% 0.0035 -0.80 (0.06) 99.40% 0.0016
β12 -0.20 -0.20 (0.28) 95.40% 0.0710 -0.19 (0.12) 97.80% 0.0111 -0.20 (0.08) 94.60% 0.0059 -0.20 (0.09) 76.50% 0.0209
β22 -0.40 -0.40 (0.04) 94.20% 0.0016 -0.40 (0.04) 86.40% 0.0027 -0.40 (0.14) 95.50% 0.0164 -0.39 (0.06) 97.70% 0.0031
δ 1.50 1.52 (0.11) 94.50% 0.0131 1.58 (0.13) 92.70% 0.0287 1.52 (0.10) 94.40% 0.0107 1.35 (0.10) 65.60% 0.0351

δ = 1.75 β10 0.50 0.49 (0.04) 94.00% 0.0019 0.49 (0.04) 93.80% 0.0019 0.49 (0.04) 94.40% 0.0020 0.50 (0.04) 93.20% 0.0022
β20 0.10 0.10 (0.04) 93.50% 0.0016 0.10 (0.04) 93.40% 0.0016 0.09 (0.04) 95.10% 0.0015 0.10 (0.04) 95.10% 0.0015
β11 -0.50 -0.50 (0.11) 94.20% 0.0130 -0.50 (0.15) 99.90% 0.0070 -0.50 (0.10) 94.40% 0.0105 -0.50 (0.12) 100.00% 0.0044
β21 -0.80 -0.80 (0.05) 93.10% 0.0032 -0.80 (0.06) 98.70% 0.0021 -0.80 (0.05) 94.20% 0.0024 -0.80 (0.06) 99.00% 0.0017
β12 -0.20 -0.20 (0.35) 94.40% 0.1127 -0.19 (0.14) 98.80% 0.0109 -0.20 (0.09) 94.40% 0.0086 -0.20 (0.11) 92.40% 0.0152
β22 -0.40 -0.40 (0.04) 93.80% 0.0016 -0.40 (0.04) 89.30% 0.0025 -0.40 (0.13) 93.80% 0.0165 -0.39 (0.06) 96.40% 0.0030
δ 1.75 1.79 (0.14) 93.90% 0.0239 1.83 (0.15) 90.60% 0.0411 1.78 (0.14) 94.40% 0.0235 1.50 (0.14) 53.90% 0.0870
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Appendix B – Reduction operator proofs

Let XN×p be a matrix with entries Xijk for an index i, an element j and column
k, and GN×1 a vector of indices indicating for each line of XN×p an index i in a set of
indices starting from 1 until n (n� N). Then the reduction operator r is defined by:

XN×p r G = xn×p, (B.1)

in which xik =
ni∑
j=1

Xijk, and ni is the number of elements associated with index i.

Definition B.1.1. For X1 and X2, N × p matrices with entries Xdijk for d = 1, 2, it is
true that (X1 +X2) r G = (X1 r G) + (X2 r G).

Proof. Consider the general term

[(X1 +X2) r G]ik =
ni∑
j=1

(X1ijk +X2ijk)

=
ni∑
j=1

X1ijk +
ni∑
j=1

X2ijk

= [X1 r G]ik + [X2 r G]ik
= [(X1 r G) + (X2 r G)]ik ,

∀i ∈ {1, . . . , n} ,∀k ∈ {1, . . . , p}

=⇒ (X1 +X2) r G = (X1 r G) + (X2 r G).

Definition B.1.2. For XN×p matrix with entries Xijk and a constant c, it is true that
(cX) r G = c(X r G).

Proof. Consider the general term

[(cX) r G]ik =
ni∑
j=1

(cXijk)

=c
ni∑
j=1

Xijk

=c [X r G]ik
= [c (X r G)]ik ,

∀i ∈ {1, . . . , n} ,∀k ∈ {1, . . . , p}

=⇒ (cX) r G = c(X r G).
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Definition B.1.3. For XN×p matrix with entries Xijk, rn×1 a column vector, R =
[rG1 , . . . , rGN ]T a N × 1 vector with repeated entries for each index of G (constant by
indices), it is true that XTR = (X r G)Tr.

Proof. Consider the general term

[
XTR

]
k

=
N∑
l=1

(XlkRl)

=
n∑
i=1

ni∑
j=1

(Xijkri)

=
n∑
i=1

ri

ni∑
j=1

Xijk

=
n∑
i=1

ri [X r G]ik

= [X r G]1k r1 + . . .+ [X r G]nk rn
=
[
(X r G)T

]
.k
r

=
[
(X r G)T r

]
k
,

∀k ∈ {1, . . . , p}

=⇒ XTR = (X r G)Tr.

Definition B.1.4. For XN×p matrix with entries Xijk and QM×p a matrix with entries
Qmk, it is true that (QXT ) r GT = Q(X r G)T .

Proof. Consider the general term
[
QXT

]
ml

= ∑p
k=1QmkXlk, and

[
(QXT ) r GT

]
mi

=
ni∑
j=1

p∑
k=1

QmkXijk

=
p∑

k=1
Qmk

ni∑
j=1

Xijk

=
p∑

k=1
Qmk [(X r G)]ik

=Qm1 [(X r G)]i1 + . . .+Qmp [(X r G)]ip
=Qm.

[
(X r G)T

]
.i

=
[
Q (X r G)T

]
mi
,

∀m ∈ {1, . . . ,M} ,∀k ∈ {1, . . . , p}

=⇒ (QXT ) r GT = Q(X r G)T .
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Definition B.1.5. For XN×p matrix with entries Xijk and Pp×p a squared matrix, it is
true that (XPXT ) r G = (X r G)PXT .

Proof. (
XPXT

)
r G = (XK) r G

=
((
KTXT

)
r GT

)T
1.4=
(
KT (X r G)T

)T
= (X r G)K
= (X r G)PXT .

Definition B.1.6. For XN×p matrix with entries Xijk and Pp×p a squared matrix, it is
true that ((XPXT ) r G) r GT = (X r G)P (X r G)T .

Proof. ((
XPXT

)
r G

)
r GT 1.5=

(
(X r G)PXT

)
r GT

=
(
KXT

)
r GT

1.4=K (X r G)T

= (X r G)P (X r G)T .

Definition B.1.7. For XN×p matrix with entries Xijk, rn×1 a column vector, R =
[rG1 , . . . , rGN ]T aN×1 vector with repeated entries for each index ofG (constant by indices)
and Pp×p a squared matrix, it is true that (XPXTR) r G = (X r G)P (X r G)Tr.

Proof. (
XPXTR

)
r G = (XK) r G

=
((
KTXT

)
r GT

)T
1.4=
(
KT (X r G)T

)T
= (X r G)K
= (X r G)PXTR

1.3= (X r G)P (X r G)T r.
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