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Abstract
The essence of present work is composed of two main topics, namely: (i) to jointly model
longitudinal and survival data; and (ii) to use Bernstein Polynomials (BP) to approximate
important and unknown functions in this framework. Considering the joint models, we
have, essentially, two main variables: survival times and a variable that is repeatedly
measured over time - this latter being called longitudinal variable. We expect that these
two variables are related. The structure of the joint model is composed of two sub-models
(one for each response variable) that are somehow linked. This type of modeling approach
have been used for presenting more precise estimates, since it uses all data information
altogether. In turn, Bernstein Polynomials are a very flexible approach and they are used
to approximate continuous and smooth functions. Then, our proposal consists of using the
BP to approximate the baseline hazard function / cumulative baseline hazard function, as
well as the time-varying part of the longitudinal variable. In addition to that, we came up
with a solution to the challenge of the choice of the degree. In theory, the larger the degree
the better is the approximation. However, in practice, we should consider other aspects,
such as the estimation procedure and the concept of parsimony. Thus, the optimal value
would be the minimum degree that approximates the main characteristics of the target
function. We derived a probabilistic method that indicates a minimum degree, and we also
proposed two criteria for the choice of the optimal value. In order to show the benefits of
our propositions, we discuss results of two simulation studies. In the first one, we focused
on the degree selection method. Then, in the second one, we verified the good performance
of joint modeling via BP.

Keywords: baseline hazard function, degree selection, MCMC, Stan, time-dependent
variable.



Resumo
O trabalho proposto se baseia em dois pontos principais: (i) modelar conjuntamente dados
longitudinais e de sobrevivência; e (ii) utilizar os Polinômios de Bernstein (BP) para
aproximar funções desconhecidas e de interesse. No contexto de modelagem conjunta,
considera-se essencialmente duas variáveis: tempos de sobrevivência e uma variável que
é medida repetidas vezes ao longo do tempo - esta última sendo chamada de variável
longitudinal. Assim, supõe-se que essas duas informações são relacionadas, e a estrutura
dessa modelagem se dá por dois submodelos (um para cada variável) que são ligados de
alguma forma. A modelagem conjunta de dados longitudinais e de sobrevivência vem sendo
utilizada por apresentar melhorias na estimação, uma vez que explora toda a informação
disponível simultaneamente. Por sua vez, os Polinômios de Bernstein se destacam por
serem bastante flexíveis, podendo ser uma boa aproximação para qualquer função suave.
Nossa proposta é modelar as funções taxa de falha basal / taxa de falha basal acumulada
e o comportamento temporal da variável longitudinal através dessa ferramenta. Ainda
nesse contexto, foram desenvolvidos critérios para contornar um desafio que consiste na
escolha do grau desse polinômio. De forma teórica, quanto maior for o grau, melhor será a
aproximação. No entanto, levando em consideração o conceito de parcimônia e a estimação,
deseja-se obter um grau mínimo que contemple as características principais da função
alvo. Propusemos formas de escolher um grau mínimo a partir de informações a priori do
comportamento da função de interesse, assim como um grau máximo. Para mostrar os
benefícios de utilizar os métodos propostos, foram feitos dois estudos de simulação com
réplicas Monte Carlo. O primeiro foca em mostrar o bom funcionamento dos métodos de
escolha do grau. Por sua vez, o objetivo do segundo estudo foi verificar a performance da
modelagem conjunta via BP.

Palavras-chave: MCMC, seleção do grau, Stan, taxa de falha basal, variável tempo-
dependente.
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1 Introduction

Within Statistics, it is common to come across data in the form of time until the
occurrence of a certain event of interest. In such cases, it is appropriate to make use of
methodologies in the field of Survival Analysis. These data are usually attached to some
specific characteristics such as the presence of asymmetry and incomplete information,
also known as censoring. This incomplete information arises when the event that is being
evaluated is not in fact observed (Klein and Moeschberger, 2003). For example, if the event
of interest is the failure of a device, it is possible that some of them do not present this
failure throughout the entire follow-up period. Such observed times are called “censored
times”; whereas those fully observed, that is, the times of those cases in which the failure
indeed happened, are called “failure times”. Although part of the information collected
during follow-up is incomplete, these partial times that were observed (as well as the
fully observed times) carry valuable information. Therefore, these observed times are still
relevant and they remain on study with the necessity of being treated in a special and
adequate manner.

The present study is focused on the most common type of censoring, known as right
censoring. Here, the observed time is necessarily lower or equal to the failure time. Another
important aspect is the mechanism that causes the failure, which will be considered in
this work as independent of that of the censoring.

Since there is a follow-up time for each of the sample elements, there may also be
information coming from a longitudinal variable. According to Fitzmaurice et al. (2012),
an important reference with regard to longitudinal data and their modeling aspects, these
data are characterized by the presence of repeated measurements through time. More
specifically, a longitudinal variable is repeatedly measured in the course of follow-up; so, for
each sample element, there is one or more observations for it. Then, it is evident that the
values of this variable changes with time. Hence, this variable is time-dependent (Faucett
and Thomas, 1996) and should be treated as such. One advantage of studies based on
longitudinal variables is the possibility to evaluate changes with time of the phenomena
being targeted (Xu and Zeger, 2001). This knowledge may be extremely relevant and
useful.

As seen in Fitzmaurice et al. (2012), one of the main aspects of longitudinal data
is that, regarding the sample as a whole, it is assumed independence between subjects,
since it is reasonable to consider that the behavior of one individual does not influence the
behavior of the others. On the other hand, it is expected to exist considerable correlation
between the repeated measurements of the same individual. According to the same authors
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mentioned above, these particularities should not be ignored; thus special treatment is
necessary.

One of the key topics of this thesis is to consider, and to treat in an adequate
manner, cases involving the two types of data. That is, data sets in which there are,
essentially, information as: time-to-event, presence of a right censoring scheme, and at
least one variable composed by repeated measurements over time. The latter possibly
being related to the time to the event.

It is noteworthy that the longitudinal variable is commonly measured with substan-
tial error (Faucett and Thomas, 1996; Wulfsohn and Tsiatis, 1997; Brown and Ibrahim,
2003; Ibrahim et al., 2010). By using these distorted measurements, it is evident that
estimates related to the risk of the occurrence of the event under study are obtained with
bias. In addition, when there is a long follow-up period, the longitudinal variable is also
subject to missing data. And the reason for this missingness may be related to the study
itself.

At first, in order to model data containing longitudinal and survival variables,
one may consider one of these elements (Wu and Bailey, 1988). As an example, survival
analysis could be applied with an adaptation, aiming to include in some way the repeated
measurements of the longitudinal variable (Wu et al., 2012). This path goes against the
extremely reasonable idea that the occurrence of the event of interest implies on changes in
the values of the longitudinal variable and vice versa; that is, it does not take into account
the mutual relationship of dependence between these two variables. One consequence of
using this approach is the presence of biased estimates (Wu et al., 2012).

Joint modeling of longitudinal and survival data comes up with improvements in
the sense of more accurate estimates. Furthermore, as stated on Tsiatis and Davidian (2004)
and Wu et al. (2012), it also provides important information such as how the behavior of
the longitudinal variable evolves with time, the risk of the occurrence of an event, and
the relationship between the longitudinal variable and the survival of patients. Another
advantage of this model is the possibility of contemplating, in a relatively simple way, the
matter involving measurement error. The gain here relies on the perception that using
“true” values, that is, estimates representing the actual true values, are more appropriated
comparing to the biased (and observed) ones (Brown and Ibrahim, 2003).

According to Ibrahim et al. (2010), initial works addressing joint modeling of
longitudinal and survival data were motivated by Human Immunodeficiency Viruses (HIV)
studies. Under this scenario, the event of interest often was the disease progression or
death, and the longitudinal variable was the CD4 cell count. This variable is known to be
a marker for the disease progression.

Faucett and Thomas (1996) used the Bayesian approach to model survival data
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with a continuous longitudinal variable prone to measurement error. A sub-model was
established to describe the process of the longitudinal variable and another one concerning
the survival part. These two sub-models were linked through a parameter on the survival
sub-model, and all parameters were estimated simultaneously. The results discussed by
the authors indicated that better estimates were obtained, especially referring to the
parameters related to the the survival component.

Many other works, such as Wulfsohn and Tsiatis (1997), Xu and Zeger (2001),
Brown and Ibrahim (2003) and Ibrahim et al. (2010) applied this same structure of
joint modeling. Comparing with the work of Faucett and Thomas (1996), there exists
improvements, since there was no restriction on the type of the longitudinal variable. The
first and last studies made use of frequentist inference procedures, while the others were
based on the Bayesian approach. More recently, Brilleman et al. (2017) described how to
implement joint models for longitudinal and survival data in the Stan platform (Carpenter
et al., 2017). This paper discusses both theoretical and computational aspects of this
model.

In what follows, the second main topic of the present work is related to the
techniques employed to the estimation of some of the unknown functions of interest. This
estimation will be done via Bernstein Polynomials (BP) (Bernstein, 1912). The BP were
developed by Sergei Natanovich Bernstein in 1912 when he was proving a demonstration
to a special case of Weiertrass’ Theorem (Bernstein, 1912; Lorentz, 1986). The usage
of polynomials to approximate functions has analytic advantages since they are easily
written in the form of summation. As a result, and highlighted by Osman and Ghosh
(2012), calculations such as derivatives and gradients are easier to obtain through this
structure. The main utility of the BP lies on approximating any smooth curve/function.
An additional reference is Kuller (1964), who replicated the original paper, focusing on
giving details about the demonstration.

In the statistical literature, authors have been using BP in several and diverse
situations: Vitale (1975), Petrone (1999a), Petrone (1999b) and Babu et al. (2002) make
use of BP in the context of density estimation. Kottas (2006) applied the BP for density as
well as intensity estimation function in a Poisson Process model. Brown and Chen (1999)
use the BP as kernel estimator. Moreover, Bernstein Polynomials can be used aiming at
variable selection, as in Curtis and Ghosh (2011), and in shape-restriction problems like in
Chang et al. (2007) and Wang and Ghosh (2012).

Chang et al. (2007) and Wang and Ghosh (2012) used BP to approximate shape
restricted curves. These characteristics are relatively easy to obtain when using the BP, by
simply imposing conditions on a vector that composes this polynomial. They discussed
monotone, convex/concave restrictions, among others. This particularity of BP manages
to guarantee that the estimated curve/function maintains essential characteristics of the
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target function. Chang et al. (2007) also discussed the relationship between a part that
composes the BP and the number of roots in the curve being approximated.

Curtis and Ghosh (2011) made use of BP in the case of variable selection. The
motivation lied on possible non-linear relationships between a response variable and
continuous covariates. In this case, the role of BP was to approximate a curve representing
this relationship. The benefit of this strategy is that there is no need to previously impose
a structure (i. e. linear, quadratic, etc.). It can be considered unknown and BP will be
able to approximate it.

Farouki (2012) provides an extensive reference about Bernstein Polynomials and the
Bernstein basis. This reference brings attention to the personal history of Sergei Bernstein
- the person who came up with the BP -, its mathematical properties, historical aspects,
relationship with the monomial and other bases - such as splines, Bézier and de Casteljau.
Extra discussions in this paper focus on specific details about BP performance, numerical
stability, convergence, advantages and disadvantages.

More specifically to the focus of this thesis, which is longitudinal and survival
analysis, we were not able to find many works. Chang et al. (2005) used Bernstein
Polynomials to approximate the cumulative hazard function considering right censorship
scheme; Osman and Ghosh (2012) used BP for approximating the baseline cumulative and
hazard functions considering non-proportional hazards. An interesting point of the first
work is the contemplation of the meaning of the coefficients of the BP; however, they did
not include the information from covariates in the modeling procedure. Chen et al. (2014)
used the BP to approximate baseline survival functions under the accelerated hazards
model for right-censored subjects. They also considered time-dependent covariates.

Zhou et al. (2017) considered interval-censored bivariate survival data. In this
paper, the BP was applied to approximate the baseline hazard function under a frequentist
approach. Their proposed model includes as special cases, the proportional hazard model
and the proportional odds model. An interesting point in their work is that they claimed
that their method seemed to be robust concerning the degree of the BP; but, perhaps,
this result may be more related to the simplicity and smoothness of the baseline hazard
function than associated to the robustness of the method itself. In a somewhat similar
scenario, Zhou and Hanson (2018) treated interval-censored spatial-referenced survival
data using BP to model the baseline survival function. The proposed approach includes
the proportional hazards model, the proportional odds model and accelerated failure time
model.

Bertrand et al. (2019) emphasizes the importance of considering properly the
information from covariates measured with error. This relevance motivated them to use the
BP to model covariates with this type of peculiarity. They applied the proposed method
in a context of survival analysis in a cross-section simulated data.
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An important discussion is how to choose an optimal degree for the BP. This degree
is strictly related to how close the estimated curve will be from the true one. If the degree
is too small, the approximation may not be flexible enough to include changes in the
curve being approximated, for example. However, if this quantity is too large there may
be computational issues since it implies in an increasing number of parameters. In order
to solve this issue about the degree, some works like Curtis and Ghosh (2011), Osman and
Ghosh (2012), Wang and Ghosh (2012), Zhou et al. (2017), Zhou and Hanson (2018), and
Bertrand et al. (2019) fixed this number and several of these works discussed strategies on
how to choose it properly. Nonetheless, Petrone (1999a), Petrone (1999b), Chang et al.
(2005), Chang et al. (2007) and Chen et al. (2014) consider the degree of the BP as random
quantity to be estimated. In this thesis, we studied the probability of a minimum suitable
degree as well as two criteria that serve as a stopping rule to establish a maximum degree.

To the best of our knowledge, only Guan (2016) proposed an estimator for the
degree of the BP and studied its performance. The mentioned proposal is different from
ours. Our method seems to be more attractive in the sense that it is based on probabilities
and an entire distribution can be studied. Also, Guan’s method is based on the frequentist
approach. On the other hand, the application of our method requires a previous knowledge
of where the target function will change behavior to establish a minimum degree, and a
posterior sample of the vector of coefficients to choose an optimal degree.

The main contributions of this thesis is the joint modeling of longitudinal and
survival data via Bernstein Polynomials. Here, we used the structure of the BP to model
both variables. In addition to that, we propose a solution to the challenge of choosing a
degree for the BP. We also showed via simulation study the good performance of the BP
and of our degree selection method.

This thesis is organized as follows: on Chapter 2 we introduce some basic concepts
about longitudinal and survival data. In the mentioned chapter, we also discuss separate
and joint ways of modeling these variables. Our aim was to improve the understating of
important topics of this thesis. In turn, Chapter 3 consider the one of the main topics of
this study, which is the Bernstein Polynomials. Then, in Chapter 4, we show and debate
results of simulation studies. Chapter 5 contemplates an application of real data illustrating
the results obtained so far. At last, Chapter 6 shows some of the next steps as well as
ideas for future works.
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2 Basic Concepts

One of the main goals of the present work concerns on properly handling longitudinal
and survival data. Then, the focus of this chapter is to introduce basic concepts related to
each of these types of data. In Section 2.1, we describe longitudinal data and discuss some
of its characteristics and properties. We also mention a usual modeling procedure. Next, in
Section 2.2, we explain basic topics of survival data analysis. Some of these topics are the
description of survival functions, the peculiarities and challenges involving these data, and
modeling approaches. The brief discussion we present in these two sections will enhance
a better understanding of the joint model framework, which is defined and described in
Section 2.3.

2.1 Longitudinal Data
Longitudinal data are fundamentally characterized by repeated measurements of

one or more variables for each specific subject of a sample (Fitzmaurice et al., 2012). For
instance, we can think of a study involving seropositive patients. It is widely reported
in literature that the CD4 cell count is a measure of progression of this disease. For this
reason, this amount is usually accompanied for each patient throughout the study. The
implication of this procedure is that there will be more than one observation (repeated
measurement) of CD4 cell count for each patient. Then, considering this characteristic that
defines longitudinal data, it is clear that this variable changes with time and, therefore, it
is time-dependent.

One of the main aspects of longitudinal data is that, regarding the sample as a
whole, it is reasonable to assume independence between individuals. This feature is a regular
assumption in other studies and methods. However, it is expected to exist significant
correlation inner individual, precisely because longitudinal variables are measured multiple
times for the same subject. As a result, the usual methods of analysis such as linear or
generalized linear models for example, may not be suitable here.

According to Fitzmaurice et al. (2012), the correlation between the repeated
measurements is usually positive. For example, we can think of a study with hypertensive
patients, and the longitudinal variable being the blood pressure. It is expected that, if the
subject’s blood pressure is high, it will continue to be high in the long run even if a treatment
manages to reduce it now. Besides that, the same authors affirm that this correlation
between measurements rarely gets close to 1, even when comparing measurements within
tiny gaps of time.
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Another characteristic that is commonly found in longitudinal studies is missing
data. These missing information occur because, usually, such studies require a long period of
follow-up. Then, it often happens that a patient misses an appointment or, perhaps, she/he
is too ill to have her/his measurement collected. Therefore, these situations “generate”
missing values on the data set. To simply discard or ignore these missing observations may
lead to bias on the analyses (Tsiatis et al., 1995), and this bias can be more troublesome if
the reason that causes the missingness is related to the problem being studied itself.

The presence of longitudinal components on data set enriches the analysis by
allowing specific elucidations and knowledge about subjects under study. It is possible, for
example, to compare individuals with her/his repeated measurements over time. So, there
is homogeneity in comparisons, since we are contrasting the same subject and her/his
respective evolution in time. For this reason, it is conceivable to evaluate the evolution of
the longitudinal variable at individual level or, in other words, how it changes through
time for every single subject (Fitzmaurice et al., 2012), detecting highs, lows and even
trends.

It is worth pointing out the difference between balanced and unbalanced data
sets. As it was affirmed previously, longitudinal measurements are taken at some points
of time. These times can be represented by 𝑡𝑖𝑗, for subjects 𝑖 = 1, 2, . . . , 𝑛 and for time
points 𝑗 = 1, 2, . . . , 𝐽𝑖. Note that the subjects under study may have different number of
measurements 𝐽𝑖, as well as measurements registered at different times. Given this, if all 𝐽𝑖
and 𝑡𝑖𝑗 are equal for all subjects, the data set is said balanced; otherwise it is unbalanced.
In addition, an unbalance data set may be due to the number of measurements and/or to
the times in which the measurements were evaluated.

A final comment about this type of data is that they are usually prone to measure-
ment error (Ibrahim et al., 2001; Klein et al., 2013). It is very intuitive to perceive - and
there are several studies that endorse this idea - that it is better to model this variable
in order to have an approximation of what the true value is, than to just use raw data.
A framework that fits this idea is the Mixed Effects (ME) Model, for example. It will be
briefly described in the next section.

2.1.1 Mixed Effects Models

We can use ME Models as an alternative to handle longitudinal variables (Harville,
1977; Laird and Ware, 1982). The structure of these models includes both fixed and random
effects. Thus, for subject 𝑖 = 1, 2, . . . , 𝑛 and a time point 𝑗 = 1, 2, . . . , 𝐽𝑖, we can write the
linear ME model, in the longitudinal analysis context, as follows:
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𝑌𝑖(𝑡𝑖𝑗) = 𝑊𝑖(𝑡𝑖𝑗) + 𝜖𝑖(𝑡𝑖𝑗)

= x𝑖𝛽 + b⊤
𝑖 f(𝑡𝑖𝑗) + 𝜖𝑖(𝑡𝑖𝑗), (2.1)

where 𝑌𝑖(𝑡𝑖𝑗) is the random variable that represents the observed value of the longitudinal
variable for the 𝑖-th subject at time 𝑡𝑖𝑗 . Assuming that it was measured with error, 𝑊𝑖(𝑡𝑖𝑗)
is the true and unobserved value of this variable. In turn, 𝜖𝑖(𝑡𝑖𝑗) is the measurement error
following a 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎2

𝜖 ) distribution. The vector of regression coefficients is composed
of 𝛽 = (𝛽1, 𝛽2, . . . , 𝛽𝑝)⊤, and the vector of covariates associated with these coefficients is
x𝑖 = (𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑝)⊤. Finally, the vector of random effects at subject level is represented
by b𝑖. This vector is associated with a vector of functions of time f(.), and it does not
depend on 𝜖𝑖. The distribution of b𝑖 is usually 𝑁𝑜𝑟𝑚𝑎𝑙𝑝(𝜇𝑏,Σ𝑏), for 𝑖 = 1, 2, . . . , 𝑛. We
highlight here that a correlation structure may be included via the variance-covariance
matrix Σ𝑏.

The interpretation of the fixed effects concerns the sample as a whole, i. e., at
population level. Then, the vector of coefficients 𝛽 tells the impact of the vector of
covariates in the mean of the longitudinal variable. In addition to that, the vector of overall
means 𝜇𝑏 describes the true characteristics of the behavior of this variable and its variation
along the time. Then, each subject has its own variation over the overall mean. This
variation is expressed through the vector of random effects b𝑖, for 𝑖 = 1, 2, . . . , 𝑛. With
this vector in hand, we can also verify the heterogeneity between subjects, for example.

When we assume a Normal distribution for the measurement error 𝜖𝑖(𝑡𝑖𝑗), it is
immediately implied that the conditional distribution 𝑌𝑖(𝑡𝑖𝑗)|b𝑖 is normally distributed
with parameters E [𝑌𝑖(𝑡𝑖𝑗)|b𝑖] = 𝑊𝑖(𝑡𝑖𝑗) = x𝑖𝛽 + b⊤

𝑖 f(𝑡𝑖𝑗) and V𝑎𝑟 [𝑌𝑖(𝑡𝑖𝑗)|b𝑖] = 𝜎2
𝜖 . This

result has an interesting meaning that, given the vector of random effects b𝑖, the expected
value of the response variable is the “true” value and it varies according to the variance
of the measurement error. On the other hand, the marginal distribution of 𝑌𝑖(𝑡𝑖𝑗) is
also Normal, with mean E [𝑌𝑖(𝑡𝑖𝑗)] = x𝑖𝛽 + f(𝑡𝑖𝑗)𝜇𝑏 and variance equal to V𝑎𝑟 [𝑌𝑖(𝑡𝑖𝑗)] =
𝜎2
𝜖 +[f(𝑡𝑖𝑗)] Σ𝑏 [f(𝑡𝑖𝑗)]⊤. The calculations of the marginal distribution of this random variable

are shown in the Appendix A, page 99.

Considering what was exposed above, the likelihood function is given by

ℒ(Φ;𝐷𝑎𝑡𝑎) =
𝑛∏︁
𝑖=1

𝑝(y𝑖|Φ) =
𝑛∏︁
𝑖=1

∫︁
𝑝(y𝑖,b𝑖|Φ)𝑑b𝑖 =

𝑛∏︁
𝑖=1

∫︁
𝑝(y𝑖|b𝑖,Φ)𝑝(b𝑖|𝜇𝑏,Σ𝑏)𝑑b𝑖

=
𝑛∏︁
𝑖=1

∫︁ ⎧⎨⎩
𝐽𝑖∏︁
𝑗=1

𝑝(𝑦𝑖(𝑡𝑖𝑗)|b𝑖,Φ)𝑝(b𝑖|𝜇𝑏,Σ𝑏)

⎫⎬⎭ 𝑑b𝑖
=

𝑛∏︁
𝑖=1

∫︁ 1
(2𝜋𝜎2

𝜖 )𝐽𝑖/2 exp

⎧⎨⎩−
𝐽𝑖∑︁
𝑗=1

{𝑦𝑖(𝑡𝑖𝑗) −𝑊𝑖(𝑡𝑖𝑗)}2

2𝜎2
𝜖

⎫⎬⎭ 𝑝(b𝑖|𝜇𝑏,Σ𝑏)𝑑b𝑖, (2.2)
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where Φ = {𝛽, 𝜎2
𝜖 ,𝜇𝑏,Σ𝑏} represents the set of unknown parameters. The entire data

set is expressed by 𝐷𝑎𝑡𝑎 = {t𝑖,y𝑖,x𝑖, 𝑖 = 1, 2, . . . , 𝑛}; such that, for the 𝑖-th subject,
t𝑖 = (𝑡𝑖1, 𝑡𝑖2, . . . , 𝑡𝑖𝐽𝑖

) is the vector of measurement times, y𝑖 = (𝑦𝑖(𝑡𝑖1), 𝑦𝑖(𝑡𝑖2), . . . , 𝑦𝑖(𝑡𝑖𝐽𝑖
))

is the vector of observed values of the longitudinal variable, and x𝑖 = (𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑝)
is the vector of covariates. The sample size is represented by 𝑛 and 𝐽𝑖 is the number of
measurements for each subject 𝑖. Therefore, the total number of observations is given by∑︀𝑛
𝑖=1 𝐽𝑖. The vector of random effects at subject level is b𝑖, and we will consider this vector

following a Normal distribution with mean 𝜇𝑏 and variance-covariance matrix Σ𝑏. At last,
W𝑖 = (𝑊𝑖(𝑡𝑖1),𝑊𝑖(𝑡𝑖2), . . . ,𝑊𝑖(𝑡𝑖𝐽𝑖

)) is the vector of the non-observed true values of the
longitudinal variable.

We will use the structure of the ME models described above on the longitudinal
variable for joint modeling longitudinal and survival data.

2.2 Survival Data
This section addresses few basic and important concepts in the field of survival

analysis. The functions described here are essential, since they will be constantly considered
throughout this thesis.

Survival analysis is the area of statistics that contemplates response variables in
the form of “time until the occurrence of an event of interest”. The commonly used way
to express the occurrence of this event is “failure”, regardless of what is this event being
studied. Some examples are the time until smoke cessation, death, recurrence of a disease,
failure of a machine, customers delinquency, among others. Some implications related
to this type of data is the presence of asymmetry and partially observed times, i. e.,
incomplete information. These incomplete information arises when the event under study
is not indeed observed. In this case, the observed time is called a “censored time”; whereas
“failure times” are those in which the time until failure actually was accounted.

There are three types of censoring: left, interval and right censoring (Klein and
Moeschberger, 2003). In the present study we will consider the situation of a right censoring
scheme. This case is the one that happens the most in practice. Under this scenario, if a
subject is censored, the true time to failure is unknown, but it is known that it is greater
than the observed time. Some examples of situations that imply on right censoring are:
study dropout, loss of follow-up and death by other causes than the one being studied.
We define an indicator variable 𝛿𝑖 to represent whether the 𝑖-th subject has experienced
the event under study, or if it was right censored. Then, for subjects 𝑖 = 1, 2, . . . , 𝑛 we
have that:
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𝛿𝑖 =

⎧⎨⎩ 1, if subject 𝑖 has failed;
0, if subject 𝑖 is (right) censored.

In addition, consider 𝑇𝑖 a continuous random variable representing the time to
failure and 𝐶𝑖 the time until censoring, both for subject 𝑖 = 1, 2, . . . , 𝑛. The observed time
𝑢𝑖 is either a failure (𝛿𝑖 = 1) or a censoring (𝛿𝑖 = 0), whichever happened first; that is,
𝑈𝑖 = min(𝑇𝑖, 𝐶𝑖). Thus, for every subject under follow-up, the observed data are of the
form (𝑢𝑖, 𝛿𝑖).

Some important functions are the basis for much of the inferential processes in
survival analysis. They are: the survival function, the hazard function and the cumulative
hazard function. The survival function 𝑆(.) is defined as the probability that the time to
event is greater than a value 𝑢 > 0. That is,

𝑆(𝑢) = P(𝑇 > 𝑢) = 1 − P(𝑇 ≤ 𝑢) = 1 − 𝐹 (𝑢),

where 𝐹 (.) is a cumulative distribution function. The survival function has three important
properties, they are

1. 𝑆(0) = 1;

2. lim
𝑢→∞

𝑆(𝑢) = 0;

3. 𝑆(𝑢) is a non-increasing function of time 𝑢.

The first property means that at the beginning of follow-up all subjects are “alive”, that is,
they did not suffered the event of interest yet. The second one implies that if the follow-up
time is long enough (𝑢 → ∞), all subjects will suffer the event under study. It also means
that there is no cure fraction; see more about this topic in Ibrahim et al. (2001), Rodrigues
et al. (2008) and Klein et al. (2013). At last, the third property is inherited directly from
the relationship with the cumulative distribution function 𝐹 (.).

The hazard function, denoted by ℎ(.), is the instantaneous failure rate. It can be
understood as the risk of occurrence of the event under study. Its expression is given by

ℎ(𝑢) = lim
𝑑𝑢→0

P(𝑢 ≤ 𝑇 < 𝑢+ 𝑑𝑢|𝑇 ≥ 𝑢)
𝑑𝑢

.

Finally, the cumulative hazard function refers to the risk of failure until time 𝑢:

𝐻(𝑢) =
∫︁ 𝑢

0
ℎ(𝑡)𝑑𝑡.
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It is important to mention that these three functions are related to one another.
The implication of this relationship is that, by specifying a single one of them, all the
others are automatically defined. The main relationships are:

𝑆(𝑢) = exp(−𝐻(𝑢)) and ℎ(𝑢) = 𝑓(𝑢)
𝑆(𝑢) .

Based on the expressions defined above, we can write the likelihood function. In the present
study, as stated previously, we will consider a right censoring scheme and a non-informative
censoring mechanism. This non-informative mechanism means that the time to failure
and time to censorship are considered independent. Therefore, the individual contribution
to the likelihood function will be the density function in case of failure, and the survival
function for the right censored cases (Lawless, 2003). That is,

ℒ(Φ;𝐷𝑎𝑡𝑎) ∝
𝑛∏︁
𝑖=1

𝑓(𝑢𝑖|Φ)𝛿𝑖(𝑆(𝑢𝑖|Φ))1−𝛿𝑖

∝
𝑛∏︁
𝑖=1

ℎ(𝑢𝑖|Φ)𝛿𝑖 exp {−𝐻(𝑢𝑖|Φ)} , (2.3)

where Φ is the vector of all parameters to be estimated, and 𝐷𝑎𝑡𝑎 represents all data
available. In this case, 𝐷𝑎𝑡𝑎 = {𝑢𝑖, 𝛿𝑖, for 𝑖 = 1, 2, . . . , 𝑛}, in which 𝑢𝑖 is the observed
survival time, 𝛿𝑖 is the failure/censoring indicator for subject 𝑖 and 𝑛 is the sample size.

Generally speaking, one of the goals when analyzing survival data is to obtain good
approximations for the survival and/or hazard function. Thus, it is desired to make use of
flexible structures to model these functions. In order to do so, there are non-parametric,
and parametric methods available. In addition, in the case of the presence of covariates,
we can also consider semi-parametric methods.

The most popular non-parametric estimator is the Kaplan-Meier (KM) (Kaplan
and Meier, 1958). This option provides an approximation for the survival function based
on distinct observed failure times. It can also be used to analyze data descriptively.

Taking into consideration parametric methods, we assume a probability distribution
for the time to failure 𝑇𝑖, and then we obtain the survival functions. After that, once the
likelihood function in Equation (2.3) is completely specified, we make use of inferential
methods to obtain parameter estimates. A potential drawback in such approach is that
it can be restrictive, in the sense that the possible shapes of the hazard function are
already pre-specified. Nonetheless, there are very flexible distributions, like the Piecewise
Exponential (PE) (Arjas and Gasbarra, 1994) and the Birnbaum-Saunders (Birnbaum
and Saunders, 1969), for example.
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Finally, as an example of a popular semi-parametric method we can cite the
proportional hazards model (Cox, 1972). A more detailed description of this alternative is
given in the next section.

2.2.1 Proportional Hazard Model

A widely used model, in the context of survival analysis, is the proportional hazards
model (Cox, 1972). This is a regression model and it is defined via the hazard function.
The structure is given as follows:

ℎ(𝑢|z) = ℎ0(𝑢) exp
{︁
z⊤𝜓

}︁
, for 𝑢 > 0, (2.4)

where ℎ0(𝑢) is the baseline hazard function at time 𝑢 and 𝜓 is a vector of coefficients
associated with the vector of covariates z. The interpretation of the baseline hazard
function can be related to that of an intercept. That is, how the hazard function behaves
when all the covariates are equal to zero, for continuous covariates; or belong to the
reference group, in the case of categorical ones.

One of the most important assumptions related to this model is that the ratio of the
hazards between two subjects is proportional in time. In order to show this mathematically,
we consider z1 as the vector of covariates for one subject, and z2 for another subject. Then,
the hazard ratio is given by

ℎ(𝑢|z1)
ℎ(𝑢|z2)

=
ℎ0(𝑢) exp

{︁
z⊤

1 𝜓
}︁

ℎ0(𝑢) exp
{︁
z⊤

2 𝜓
}︁ =

exp
{︁
z⊤

1 𝜓
}︁

exp
{︁
z⊤

2 𝜓
}︁ = exp

{︁
(z1 − z2)⊤𝜓

}︁
. (2.5)

Note, in Equation (2.5), that the result does not depend on the time 𝑢.

In the original characterization of the proportional hazards model in Equation
(2.4), the baseline hazard function ℎ0(.) is left unspecified (Cox, 1972). It is also possible
to model this function by assuming a distribution for the failure times. This alternative
leads to the so called parametric Cox model.

Several extensions were proposed to the proportional hazards model. One of them
will be quite explored in this work: the proportional hazards model for time-dependent
covariates. Time-dependent covariates are those with values not necessarily constant over
time. Some examples are: blood pressure, size of tumor, treatment (since it can change
due to the efficacy of a treatment or according to the state of the health of the patient),
CD4 cell count and many others. The mentioned model is given by:

ℎ(𝑢|z(𝑢)) = ℎ0(𝑢) exp
{︁
z(𝑢)⊤𝜓

}︁
, 𝑢 > 0, (2.6)
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here, z(𝑢) is the vector of time-varying covariates.

A restrictive and, in many cases, unrealistic assumption related to the proportional
hazards model for time-dependent variables, is the requirement of knowing the values of z(.)
for all time 𝑡 that the subject is under observation, i. e. 0 < 𝑡 < 𝑢, with 𝑢 representing the
observed survival time (Klein and Moeschberger, 2003). In the vast majority of practical
cases that we are aware of, only a few values are indeed measured. In this model, the
proportional hazards property is no longer true due to the presence of a time-dependent
variable (Colosimo and Giolo, 2006). In this case, the hazard ratio is

ℎ(𝑢|z1(𝑢))
ℎ(𝑢|z2(𝑢)) =

ℎ0(𝑢) exp
{︁
z1(𝑢)⊤𝜓

}︁
ℎ0(𝑢) exp {z2(𝑢)⊤𝜓}

=
exp

{︁
z1(𝑢)⊤𝜓

}︁
exp {z2(𝑢)⊤𝜓}

= exp
{︁
(z1(𝑢) − z2(𝑢))⊤𝜓

}︁
,

which clearly depends on the time 𝑢.

The next section describes how to jointly model longitudinal and survival data.
Concepts regarding both of these variables will be resumed there.

2.3 Joint Models for Longitudinal and Survival Data
This section concerns the introduction, explanation and discussion of joint models

for longitudinal and survival data. This topic is one of the two main themes that build the
essence of this thesis. Some important concepts that have already been introduced will be
considered again and contextualized according to the specific purposes of this matter.

In many studies, it is common to record data including a time to event variable
as well as longitudinal and, consequently, time-dependent covariates. In cancer studies,
for example, there may be survival information such as time until death or time until
recurrence. In this case, the time-dependent/longitudinal variables, can be the size of
tumor or a variable representing the quality of life (Ibrahim et al., 2010). Another study in
which this type of data is very common is with seropositive patients (Ibrahim et al., 2010).
Here, the event of interest may be death, or disease progression, and the longitudinal
variable that is usually evaluated is the CD4 cell count. The motivation to collect data in
this structure is that it is already established in literature that CD4 cell count is a disease
progression marker. We will recapitulate this example of seropositive patients ahead in
this thesis aiming at a better understanding of the concepts we discuss.

In the given examples there are at least two main variables of interest: the lon-
gitudinal and the time to an event. As a result, one possible way to model such data
is to prioritize either the longitudinal or the survival variable. Then, if we focus on the
longitudinal variable, we can apply the ME model for example (see Section 2.1.1 on page
21). However, we can use other options such as a Non-Linear Mixed Effects Model or a
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Generalized Linear Mixed Effects Model. On the other hand, if we are more interested on
the outcomes related to the survival variable, we can make use of the proportional hazards
model for time-dependent covariates (described in Section 2.2.1, page 26); see also Ibrahim
et al. (2010) and Rizopoulos (2012).

In the case of using the proportional hazards model for time-dependent covariates,
there can be an inconvenience. This inconvenience is that this model requires the knowledge
of the values of the longitudinal variable for every unity of the follow-up time. That is,
for all time 𝑡, 0 < 𝑡 < 𝑢, with 𝑢 being the observed survival time (Tsiatis et al., 1992;
Klein and Moeschberger, 2003; Rizopoulos, 2012). Then, if a subject was followed-up for a
certain amount of time unities, there should be this same number of measurements for
the longitudinal variable. Nevertheless, in many cases, as we have already discussed, these
measurements are only collected on specific time points (𝑡𝑖𝑗, for subjects 𝑖 = 1, 2, . . . , 𝑛
and time points 𝑗 = 1, 2, . . . , 𝐽𝑖). Thus, this is not a realistic requirement if we consider
real data.

Time-dependent variables can be classified as internal or external variables. Alter-
native names for these classifications are endogenous and exogenous, respectively. The
first designation refers to the case where the evaluation of this quantity depends on the
subject being examined herself/himself. Some examples of internal variables are the size
of tumor, CD4 cell count, blood pressure, among others. Therefore, the occurrence of the
event of interest may prevent these measurements from being collected. That is, not only
the value of the longitudinal variable, but also the number of repeated measurements over
time may depend on the survival. This situation may have a direct impact on estimation.
In turn, external or exogenous covariates does not depend on the subject. As examples,
we can cite temperature and air pollution (Rizopoulos, 2012).

Wu et al. (2012) mention that a separate analysis of longitudinal and survival data
may lead to biased estimates for even more reasons. It is natural and intuitive to expect
that the occurrence of the event of interest affects the behavior of endogenous longitudinal
variables. Besides that, the length of follow-up time might also interfere on this variable. In
a separate analysis this information is not fully taken into account (Ibrahim et al., 2010).
In addition, since longitudinal variables are generally prone to measurement error and
may have missing data (Ibrahim et al., 2010; Wu et al., 2012), it is important to handle all
these elements. Simply using raw data in proportional hazards model for time-dependent
covariates may produce poor and inconsistent estimates (Wu et al., 2012).

One of the first efforts to address both longitudinal and survival variables in a more
robust procedure, was done by Tsiatis et al. (1995) and Faucett and Thomas (1996). Their
proposal was called two-stage models. This approach considers the two main variables in the
same analysis with a single modeling structure for both of them. However, the estimation
procedure is by means of two steps. Thus, their proposal was an improvement when
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compared to the separate analysis. Fundamentally, the idea is to model the longitudinal
variable on the first stage; and then, in the second stage, we use these treated values to
model the survival response. That is:

1𝑠𝑡 stage, longitudinal sub-model: in this stage we model the longitudinal vari-
able, treating possible measurement errors and missing values when convenient.
These estimations represent the unobserved true measurements;

2𝑛𝑑 stage, survival sub-model: we model survival data conditioned on the esti-
mation results of the first stage.

The two-stage model has advantages and drawbacks. In what it refers to the gains
obtained in using this model, we can cite the simplicity and the ease to implement (Wu
et al., 2012). This convenience is in relation to both mathematical and computational
aspects. On the other hand, the dependence relationship between both longitudinal and
survival components is not taken into account at the first stage. In addition to that, the
information of the occurrence of the event of interest is not considered in this part as
well. The impact of ignoring these information at the first stage is that, in the case of
internal longitudinal variables, the occurrence of the event influences how many times we
will measure the longitudinal variable, and also the values that we will observe (Wu et al.,
2012). Another point to consider as a disadvantage is that, since we use only the point
estimates obtained in the first stage to model the survival variable at the second stage, the
variability of these estimates are ignored. Moreover, through a simulation study, Wu et al.
(2012) verified that this model underestimates parameters that link the two sub-models
and its variability. Another interesting result, according to these same authors, is that the
bias on the first stage is more related to the strength of the relationship between both
processes; while the bias towards the parameters of the survival component depends on
the magnitude of measurement error.

In turn, joint models for longitudinal and survival data emerged aiming at improving
the negative aspects of both separate and two stage models. The initial practical motivation,
according to Ibrahim et al. (2010), was based on HIV studies. Joint modeling provides
more robust estimates as it uses all information altogether; see also Wu et al. (2012). In
addition, Ibrahim et al. (2010) state that these models reduce bias on parameter estimates.
According to Tsiatis and Davidian (2004), Ibrahim et al. (2010), Rizopoulos (2012) and
Wu et al. (2012), by using joint models we are capable to obtain interesting and useful
information such as:

(i) the trajectory of individuals related to the longitudinal variable. That is, how this
variable varies and behaves with time for each subject of the sample. This is very
important because it provides knowledge to the researcher about which periods of
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time these values will be too high or low, for example, helping the decision making
processes;

(ii) survival of patients, as it is usual and very relevant on the framework of survival
analysis. By using joint models, we can infer about characteristics that impacts on
the occurrence of the event under study with more precise estimates;

(iii) the relationship between longitudinal and survival variables, since we expect that the
values and the behavior of the longitudinal variable influences the survival outcome
and vice-versa.

Resuming the discussion about internal and external time dependent covariates (see
page 28), Rizopoulos (2012) and Wu et al. (2012) affirm that joint models are indicated
especially for treating internal longitudinal variables. This indication is based on the idea
that the occurrence of the event of interest intervenes directly on the measurements of the
longitudinal variable, and the structure of joint models is able to take this information
into account.

Next, we will take back the case of an HIV study with the longitudinal variable
being the CD4 cell count. We mentioned previously that this quantity is known in the
medical literature to be an important surrogate marker to the disease progression. Then,
if the count of this variable is low, we can expect that the event will occur more rapidly
for that specific individual. On the other hand, if it is relatively high, than the subject
might be with a better health status. By using the joint modeling approach, we can assess
and comprehend the ups and downs of CD4 cell quantity over time for each subject under
study. In addition, these estimates are obtained considering all the information such as
the covariates, survival times, failures and censorings, and their relationships. And these
information are accounted altogether. Moreover, we have interpretations for the survival
aspects. For this other variable we can tell the role of CD4 cell count to explain the time
until the appearance of an opportunistic disease or death.

The structure of the joint model for survival and longitudinal data is composed
by two sub-models. These sub-models are connected in some way and all parameters are
estimated simultaneously (Tsiatis and Davidian, 2004; Ibrahim et al., 2010). A simple
and commonly used structure for the longitudinal sub-model is the ME model. In turn,
we can use the accelerated failure time model (see Lawless (2003) for more information)
or proportional hazards model for time dependent covariates to model the the survival
component (Wu et al., 2012). The mentioned link between the two sub-models may be a
shared random effect or a coefficient, for example. In the list below, we cite the procedures
that one can follow to jointly model these variables. Then, we explain each one of them.

1. Define a function for the longitudinal variable whose behavior is able to properly
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represent the evolution over time for this variable. This function is called the
trajectory function;

2. specify a modeling structure for the longitudinal component based on the observed
values;

3. determine a proper model for the survival component.

We mention, in advance, that there is a connection between these steps. We will
explain this connection ahead.

The role of the trajectory function is to represent the values of the longitudinal
variable for all time 𝑡, such that 0 < 𝑡 < 𝑢. Therefore, we will have representations for
the unobserved true values, i. e., values considered free of measurement error. In addition,
we will also have values for time points in which no measurement was taken. In other
words, since this function is defined for all time unities, it provides information about the
evolutionary aspects of the longitudinal and also time-dependent variable. A possible way
to define the trajectory function is the following (Tsiatis and Davidian, 2004):

𝑊𝑖(𝑡) = f(𝑡)b𝑖, 𝑡 > 0, 𝑖 = 1, 2, . . . , 𝑛. (2.7)

In Equation (2.7), the term 𝑊𝑖(𝑡) is the trajectory function for the 𝑖-th individual on time
𝑡. This function represents the true value of the longitudinal variable on that time point,
whether we have an observation for this time or not. In turn, f is a vector of continuous
functions and b𝑖 is a vector of random effects. These random effects may be, for example,
a random intercept and slope at individual level. In this case, f(𝑡) would be the vector
(1, 𝑡). The formulation in this equation includes the case of linear trajectory, polynomials,
splines and other non-linear functions on time 𝑡 (Tsiatis and Davidian, 2004).

We highlight here that we can have other specifications for the vector of functions f.
For example, if we are interested in capturing specific nuances of the true biologic process,
we can add a stochastic process in Equation (2.7) (Tsiatis and Davidian, 2004; Rizopoulos,
2012). However, in order to determinate the trajectory function we must consider the
trade-off between the proximity to the true biologic process and the concept of parsimony.

Once we have defined the trajectory function, we can connect it with the model for
the observed values Y𝑖 = (𝑌𝑖(𝑡𝑖1), 𝑌𝑖(𝑡𝑖2), . . . , 𝑌𝑖(𝑡𝑖𝐽𝑖

)). It can be done as follows:

𝑌𝑖(𝑡𝑖𝑗) = 𝑊𝑖(𝑡𝑖𝑗) + 𝜖𝑖(𝑡𝑖𝑗), 𝑖 = 1, 2, . . . , 𝑛 and 𝑗 = 1, 2, . . . , 𝐽𝑖
= x𝑖𝛽 + f(𝑡𝑖𝑗)⊤b𝑖 + 𝜖𝑖(𝑡𝑖𝑗), (2.8)
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where 𝑌𝑖(𝑡𝑖𝑗) is a random variable representing the observed value of the longitudinal
variable at time 𝑡𝑖𝑗, and 𝑊 (𝑡𝑖𝑗) is the trajectory function evaluated at this same time.
It represents the true - and not necessarily observed - value of the longitudinal variable.
Here, the trajectory function is composed of both fixed and random effects. Then, x𝑖 is the
vector of covariates for the 𝑖-th subject, and 𝛽 is the vector of coefficients associated with
the covariates. The variation with time of this variable is represented by the vector f(.) and
b𝑖 is the vector of random effects. We will consider this vector as normally distributed with
mean 𝜇𝑏 and variance-covariance matrix Σ𝑏. This is a basic and usual assumption in this
framework. At last, 𝜖𝑖(𝑡𝑖𝑗) ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎2

𝜖 ) is the measurement error for the 𝑖-th subject
at the 𝑗-th time point. We call attention to the fact that the marginal distribution of 𝑌𝑖(𝑡𝑖𝑗)
is also Normal, and its parameters are described on the Appendix A, page 99. In addition
to that, by using the formulation in Equation (2.8) to connect the trajectory function
and the observed values, we are assuming that exists a significant and non-ignorable
measurement error. If such assumption does not match with the goals of the study, we
can simply ignore the error term 𝜖𝑖.

In order to make these concepts clearer, we prepared a toy example. Then, Figure
1 shows an illustration of the trajectory function on a framework where the measurements
were prone to error. The black “x” marks are equivalent to the observed values of the
longitudinal and time-dependent covariate, which is assumed to be measured with error.
So, on this example, there were six measurements along the follow-up period of this
hypothetical study. The time points were t𝑖 = (0, 2, . . . , 10). In addition, the continuous
red line is a reference to the trajectory function, representing the true and, in this case,
unobserved values of the longitudinal covariate.

Turning our attention to the survival component, we can use an adaptation of the
proportional hazards model for time-dependent covariates (Tsiatis and Davidian, 2004).
This model was described in Section 2.2.1 (page 26) and the extension is given by:

ℎ(𝑢𝑖) = lim
𝑑𝑢→0

P(𝑢𝑖 ≤ 𝑇𝑖 < 𝑢𝑖 + 𝑑𝑢|𝑇𝑖 ≥ 𝑢𝑖,𝑊
𝐻
𝑖 (𝑢𝑖), z𝑖)

𝑑𝑢

= ℎ0(𝑢𝑖) exp {𝜂𝑊𝑖(𝑢𝑖) + z𝑖𝜓} , 𝑖 = 1, 2, . . . , 𝑛, (2.9)

where 𝑢𝑖 is the observed survival time of subject 𝑖. The random variable 𝑇𝑖 represents
the time to failure. Then, 𝑊𝐻

𝑖 (𝑢𝑖) = {𝑊𝑖(𝑡), 0 ≤ 𝑡 < 𝑢𝑖} is the entire history of the
longitudinal variable up to time 𝑢𝑖. The covariates vector for this sub-model in represented
by z𝑖, and 𝜓 is the corresponding vector of coefficients. In turn, ℎ0(𝑡) is the baseline hazard
function evaluated on time 𝑢𝑖. The parameter that links both sub-models is 𝜂; this is a very
important quantity in this framework. It informs if there is an actual relationship between
the longitudinal and the survival variables. In case there is, it also tells the strength of
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Figure 1 – Illustration of the difference between the trajectory function and the observed
values.

this relationship.

We highlight that we use the “true” estimated value 𝑊𝑖(𝑢𝑖) in the proportional
hazards model for time-dependent covariates in Equation (2.9). Then, the vector of random
effects, which is a part of the trajectory function, is also in the survival sub-model. The
reason for using 𝑊𝑖(𝑢𝑖) is because there is no guarantee that we will observe the longitudinal
variable at this time point, that is, 𝑦𝑖(𝑢𝑖). In the case we do observe it, this value can be
measured with error. Moreover, it is also noteworthy that the model formulation for the
hazard function in (2.9) is conditioned on the entire history of the longitudinal variable
𝑊𝐻
𝑖 (𝑢). However, at the end, out of the entire history, we use only the value at the

observed survival time 𝑢𝑖. Nonetheless, we do use this information 𝑊𝐻
𝑖 (.) on the survival

function (Rizopoulos, 2012), as it is shown on Equation (2.10).

𝑆(𝑢𝑖) = exp{−𝐻(𝑢𝑖)} = exp
{︂

−
∫︁ 𝑢𝑖

0
ℎ(𝑠)𝑑𝑠

}︂
= exp

{︂
−
∫︁ 𝑢𝑖

0
ℎ0(𝑠) exp {𝜂𝑊𝑖(𝑠) + z𝑖𝜓} 𝑑𝑠

}︂
(2.10)

Finally, we have completely specified both longitudinal and survival components.
These specifications are composed by the Equations (2.7), (2.8) and (2.9). Then, we can
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write the joint likelihood function:

𝐿(Φ;𝐷𝑎𝑡𝑎) =
𝑛∏︁

𝑖=1
𝑝(𝑢𝑖,y𝑖|Φ) =

𝑛∏︁
𝑖=1

∫︁
𝑝(𝑢𝑖,y𝑖,b𝑖|Φ)𝑑b𝑖 =

𝑛∏︁
𝑖=1

∫︁
𝑝(𝑢𝑖,y𝑖|b𝑖,Φ)𝑝(b𝑖|𝜇𝑏,Σ𝑏)𝑑b𝑖

=
𝑛∏︁

𝑖=1

∫︁ 𝐽𝑖∏︁
𝑗=1

𝑝(𝑢𝑖, 𝑦𝑖(𝑡𝑖𝑗)|b𝑖,Φ)𝑝(b𝑖|𝜇𝑏,Σ𝑏)𝑑b𝑖

=
𝑛∏︁

𝑖=1

∫︁ 𝐽𝑖∏︁
𝑗=1

𝑝(𝑢𝑖|𝑦𝑖(𝑡𝑖𝑗),b𝑖,Φ)𝑝(𝑦𝑖(𝑡𝑖𝑗)|b𝑖,Φ)𝑝(b𝑖|𝜇𝑏,Σ𝑏)𝑑b𝑖

=
𝑛∏︁

𝑖=1

∫︁
ℎ(𝑢𝑖|Φ)𝛿𝑖 exp (−𝐻(𝑢𝑖|Φ))

⎛⎝ 𝐽𝑖∏︁
𝑗=1

𝑝(𝑦𝑖(𝑡𝑖𝑗)|b𝑖,Φ)

⎞⎠ 𝑝(b𝑖|𝜇𝑏,Σ𝑏)𝑑b𝑖

=
𝑛∏︁

𝑖=1

∫︁
[ℎ0(𝑢𝑖) exp (𝜂𝑊𝑖(𝑢𝑖) + z𝑖𝜓)]𝛿𝑖 exp

{︂
−
∫︁ 𝑢𝑖

0
ℎ0(𝑠) exp (𝜂𝑊𝑖(𝑠) + z𝑖𝜓) 𝑑𝑠

}︂
1

(2𝜋𝜎2
𝜖 )𝐽𝑖/2 exp

⎧⎨⎩−
𝐽𝑖∑︁

𝑗=1

{𝑌𝑖(𝑡𝑖𝑗) −𝑊𝑖(𝑡𝑖𝑗)}2

2𝜎2
𝜖

⎫⎬⎭ 𝑝(b𝑖|𝜇𝑏,Σ𝑏)𝑑b𝑖, (2.11)

where Φ = (𝛽,𝜇𝑏,Σ𝑏, 𝜂,𝜓, 𝜎
2
𝜖 ) is the vector of all unknown quantities to be estimated. 𝐷𝑎𝑡𝑎

represents the observed data. In this case we have that 𝐷𝑎𝑡𝑎 = {𝑢𝑖, 𝛿𝑖,y𝑖, t𝑖,x𝑖, z𝑖, for 𝑖 =
1, 2, . . . , 𝑛}. Then for the 𝑖-th subject, 𝑢𝑖 is the observed survival time and 𝛿𝑖 is the
indicator of censorship/failure. The vector of the observed measurements for the 𝑖-th
individual is y𝑖 = (𝑦𝑖(𝑡𝑖1), 𝑦𝑖(𝑡𝑖2), . . . , 𝑦𝑖(𝑡𝑖𝐽𝑖

)); t𝑖 = (𝑡𝑖1, 𝑡𝑖2, . . . , 𝑡𝑖𝐽𝑖
) is the vector of time

points in which the measurements were collected, and 𝐽𝑖 is the number of measurements.
The vector of covariates that are possibly associated with the longitudinal variable is
represented by x𝑖 and 𝛽 is the vector of coefficients associated with these covariates. In
the survival sub-model the vector of covariates for the 𝑖-th subject is z𝑖 and the vector of
coefficients is 𝜓. It is worth mentioning that the vectors of covariates x𝑖 and z𝑖 are not
necessarily the same. The measurement error is normally distributed with mean 0 and
variance 𝜎2

𝜖 . The parameter 𝜂 is the one that links both sub-models. Next, the vector of
random effects at individual level is b𝑖, for 𝑖 = 1, 2, . . . , 𝑛, with 𝑛 representing the sample
size. As we assume that this vector is normally distributed, 𝜇𝑏 represents its mean and Σ𝑏

is the variance-covariance matrix. The vector of true values for the longitudinal variable is
represented by W𝑖 = (𝑊𝑖(𝑡𝑖1),𝑊𝑖(𝑡𝑖2), . . . ,𝑊𝑖(𝑡𝑖𝐽𝑖

)), for the 𝑖-th subject. This trajectory
function is described in details in Equations (2.7) and (2.8). At last, the baseline hazard
function is ℎ0(.), the hazard function is ℎ(.), and its cumulative function is 𝐻(.).

Besides the complexity of joint models, a potential difficulty when dealing with
this approach is that we have to solve a complicated integral in Equation (2.11). The
complication of this calculation is due to the fact that there are two functions that depend
on the time. These functions are the baseline hazard ℎ0(.) and the time-varying part of
the trajectory function 𝑊𝑖(.). So, in a small set of combinations of these two functions, it
is possible to solve this integral analytically. Usually, these combinations are composed by



Chapter 2. Basic Concepts 35

simple structures. Then, in a sense, this would be a restriction.

A solution for this challenge is to solve this integral via Gaussian quadrature
(Rizopoulos, 2012). In this case, we can choose complex forms for both time-dependent
functions. In a very brief explanation, this method approximates the integral by trans-
forming it into summations. In this sum, we need a vector of 𝑄 nodes and a vector of
weights with the same size. Here, 𝑄 represents the number of quadratures. In turn, the
vector of nodes represents in which points we will calculate the function that we want to
integrate. Then, the resulting approximation is given by the calculation we just mentioned
weighted by the vector of weights. There are several forms of quadratures and one can
find more information about them in Kahaner et al. (1989). We point out that, since this
method is an approximation, it is evident that it presents estimates with error. However,
there are several quadrature methods and they usually present good approximations.

The method we will use to work this obstacle around is the Gauss-Kronrod
quadrature with 𝑄 = 15 nodes. This specific method was also used by Brilleman et al.
(2017). The nodes and the weights are originally calculated for the interval (−1, 1).
Nonetheless, we can apply a linear transformation to obtain the vector nodes at the
interval we are interested in, which is (0, 𝑢𝑖), for each subject 𝑖 = 1, 2, . . . , 𝑛.

An additional comment is that this specific form of quadrature for 𝑄 = 7 and
𝑄 = 15 is available in the R (R Core Team, 2019) package pracma (Borchers, 2019). The
command is gauss_kronrod. The vector of nodes and weights in the original scale for each
specification of quadratures is also available within this function. Even so, we implemented
it ourselves.

At last the Gauss-Kronrod approximation for the integral in Equation (2.11) is
given by

𝐻(𝑢𝑖) =
∫︁ 𝑢𝑖

0
ℎ(𝑡)𝑑𝑡

≈ 𝑢𝑖
2

𝑄∑︁
𝑞=1

𝑤𝑞ℎ

(︃
𝑢𝑖(1 + 𝑡𝑞)

2

)︃

≈ 𝑢𝑖
2

𝑄∑︁
𝑞=1

𝑤𝑞ℎ0

(︃
𝑢𝑖(1 + 𝑡𝑞)

2

)︃
exp

{︃
z𝑖𝜓 + 𝜂𝑊𝑖

(︃
𝑢𝑖(1 + 𝑡𝑞)

2

)︃}︃

≈ 𝑢𝑖
2 exp {z𝑖𝜓}

𝑄∑︁
𝑞=1

𝑤𝑞ℎ0

(︃
𝑢𝑖(1 + 𝑡𝑞)

2

)︃
exp

{︃
𝜂𝑊𝑖

(︃
𝑢𝑖(1 + 𝑡𝑞)

2

)︃}︃
, (2.12)

where 𝑤𝑞 represents the 𝑞-th component of the weights vector, and 𝑡𝑞 is the 𝑞-th reescaled
time point in which we will calculate the functions ℎ0(.) and 𝑊𝑖(.).

In the next chapter, we will discuss the Bernstein Polynomials. This is the method
we use to approximate both baseline hazard function and the time-varying aspect of the
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longitudinal variable under the joint model framework. The usage of the BP in this manner
is one of the main contributions of the present thesis.
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3 Bernstein Polynomials

The main goal of this chapter is to present and discuss the so called Bernstein
Polynomials, which is one of the key topics and the central contribution of this thesis. The
general usage of the BP is to approximate any smooth curve/function. An advantage of
approximating functions through polynomials is that they can be specified in a simple way
since they can be written in the form of summations; thereby, calculations of derivatives
and gradient matrices are relatively easy to obtain (Osman and Ghosh, 2012). In addition,
polynomials are infinitely differentiable (de Figueiredo, 1996). This feature allows us to
analyze the approximation with details. In this chapter, we will also explore some of the
mathematical and applied aspects of this methodology. A crucial discussion involving
polynomials is about their order. The degree/order of the BP plays an important role in
the approximation performance. Therefore, we aim to provide a way of fixing a minimum
degree so that important aspects of the target function can remain in the approximation.
We also propose two robust methods to serve as a guidance in the specification of the
maximum degree.

Bernstein Polynomials were proposed by Sergei Natanovich Bernstein in 1912. The
idea that led to the development of BP arose from a demonstration of a special case of the
Weierstrass theorem (Lorentz, 1986; Bernstein, 1912). This theorem is formally enunciated
in the following way (Bartle and Sherbert, 2011):

Theorem 1 (Weierstrass Approximation Theorem). Let 𝐼 = [𝑎, 𝑏] and let 𝑓 : 𝐼 → R be a
continuous function. If 𝜀 > 0 is given, then there exists a polynomial function 𝑝𝜀 such that
|𝑓(𝑥) − 𝑝𝜀(𝑥)| < 𝜀 for all 𝑥 ∈ 𝐼.

The implication of this theorem is that it is possible to approximate any continuous
function 𝑓 , defined on the closed interval [𝑎, 𝑏] by a polynomial 𝑝𝜀. In other words, for every
value 𝑥 in the interval 𝐼 = [𝑎, 𝑏], the absolute difference between 𝑓(𝑥) and the polynomial
𝑝𝜀 is lower than a pre-specified value 𝜀 > 0, and 𝜀 can be as small as desired. As it was
stated by Bartle and Sherbert (2011), mathematically, a high degree of the polynomial
should be considered in order to obtain a good approximation for the target function 𝑓 .
This function 𝑓 can be a density function, cumulative distribution function, or a mean
curve, for example.

The demonstration given by Bernstein was constructed based on the theory of
probabilities and his idea was the following: consider an event 𝐴 such that the probability
that it happens is equal to 𝑥, i. e. P(𝐴) = 𝑥. Next, assume that 𝑚 trials of this experiment
are performed in a way that the quantity 𝑓 (𝑘/𝑚) will be payed to a hypothetical player if
the event 𝐴 occurs 𝑘 times. Then, define a random variable 𝐾 as the number of successes
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(occurrence of the event 𝐴) in 𝑚 trials. It is clear that this random variable follows the
𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑚,𝑥) distribution. Therefore, the probability that the event 𝐴 will occur 𝑘
times in 𝑚 trials is equal to

P(𝐾 = 𝑘) =
(︃
𝑚

𝑘

)︃
𝑥𝑘(1 − 𝑥)𝑚−𝑘, 𝑘 = 0, 1, . . . ,𝑚

and the expected value of the quantity that is going to be paid to the player in this
situation is

𝐸𝑚(𝑥) =
𝑚∑︁
𝑘=0

𝑓

(︃
𝑘

𝑚

)︃(︃
𝑚

𝑘

)︃
𝑥𝑘(1 − 𝑥)𝑚−𝑘. (3.1)

Based on what was exposed above, Bernstein demonstrated that sup𝑥∈[0,1] (|𝑓(𝑥) − 𝐸𝑚(𝑥)|) <
𝜀, for an 𝜀 > 0 (Bernstein, 1912). In other words, 𝐸𝑚(𝑥) converges to 𝑓(𝑥) as 𝑚 → ∞,
that is:

𝑓(𝑥) = lim
𝑚→∞

𝑚∑︁
𝑘=0

𝑓

(︃
𝑘

𝑚

)︃(︃
𝑚

𝑘

)︃
𝑥𝑘(1 − 𝑥)𝑚−𝑘.

The BP approximation of order 𝑚 for the function 𝑓 is given by 𝐸𝑚(𝑥) in Equation

(3.1). The part 𝑏𝑘,𝑚(𝑥) =
(︃
𝑚

𝑘

)︃
𝑥𝑘(1 − 𝑥)𝑚−𝑘, 𝑘 = 0, 1, . . . ,𝑚 is called the Bernstein basis

and 𝑚 is the degree of this polynomial. We will often represent the vector of Bernstein
basis by b𝑚(𝑥) = (𝑏0,𝑚(𝑥), 𝑏1,𝑚(𝑥), . . . , 𝑏𝑚,𝑚(𝑥))⊤. We highlight that a BP with degree
𝑚 is composed of 𝑚 + 1 components. More details related to the demonstration of the
convergence can be found in Bernstein (1912), Kuller (1964) and Lorentz (1986).

It is noteworthy that Equation (3.1) can be rewritten in the form of a Beta density.
In this thesis we will use both ways of writing the Bernstein basis:

𝑏𝑘,𝑚(𝑥) =
(︃
𝑚

𝑘

)︃
𝑥𝑘(1 − 𝑥)𝑚−𝑘 = 1

𝑚+ 1𝑓𝐵𝑒𝑡𝑎(𝑥; 𝑘 + 1,𝑚− 𝑘 + 1),

where 𝑓𝐵𝑒𝑡𝑎(𝑥; 𝑎, 𝑏) represents the density function of a 𝐵𝑒𝑡𝑎(𝑎, 𝑏) distribution evaluated
at the point 𝑥 ∈ (0, 1).

In addition, the Bernstein basis can be seen as weights in (3.1), since 0 ≤ 𝑏𝑘,𝑚(𝑥) ≤ 1
for all 𝑘 = 0, 1, . . . ,𝑚, as it represents probabilities of the Binomial distribution for all
possible number of successes. For the same reason, the vector of Bernstein basis also sums
up to 1:
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𝑚∑︁
𝑘=0

𝑏𝑘,𝑚(𝑥) =
𝑚∑︁
𝑘=0

(︃
𝑚

𝑘

)︃
𝑥𝑘(1 − 𝑥)𝑚−𝑘 = 1.

An illustration of the vector of Bernstein basis for 𝑚 = 4 and for 𝑚 = 10 can be
seen in Figure 2a and Figure 2b, respectively. Note that we have 𝑚+ 1 lines in each figure.
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Figure 2 – Illustration of the vector of Bernstein basis for 𝑚 = 4 and 𝑚 = 10.

As mentioned above, the vector of basis has a role as weights. It can be noticed
in both panels (2a and 2b) that the weights varies with 𝑥, which is the probability of
the Binomial distribution. Thus, the approximation of the target function 𝑓(.) will be
weighted by 𝑚+ 1 values coming from the vector of basis. Clearly, when 𝑚 = 10 we will
have more information to weight the values of the function, resulting in a more accurate
approximation.

Bernstein (1912) highlights that the approximation via BP of the function 𝑓

requires the knowledge of values (or approximated values) of the very function 𝑓 . That is,
analytically, in order to approximate the desired function by the BP, it is not necessary to
know the behavior of this function, nor most of its characteristics. It is only required that 𝑓
is continuous and to know the values of 𝑓 on 𝑚+ 1 specific points of the domain, where 𝑚
represents the degree of the BP. These points usually are the set {𝑘/𝑚 : 𝑘 = 0, 1, . . . ,𝑚}.

Other interesting feature of the BP is the fact it maintains the shape restriction of
the target functions with simple constraints on its formulation (Chang et al., 2007; Osman
and Ghosh, 2012; Wang and Ghosh, 2012, 2013). These restrictions may be, for example,
monotone, concave/convex, increasing/decreasing behaviors. This is very convenient, since
the hazard function assumes values greater than 0, and growth curves and cumulative
hazard function are non-decreasing functions, as examples.

Based on what has been discussed above, the next two sections will concentrate
on explaining how to use the BP to model functions of the longitudinal and survival
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components of the joint model.

3.1 Bernstein Polynomials to Model the Longitudinal Component
In the previous section it was explained that it is possible to use the BP to obtain an

approximation for any function 𝑓(.), as long as this function is continuous and it is defined
in the interval (0, 1). Furthermore, it was discussed in Section 2.1.1 that a reasonable option
to model the longitudinal variable is through Linear Mixed Effects Model (LME). The
structure of the LME model is composed of both fixed and - possibly normally distributed
- random effects. We will use the Mixed Effect structure to approximate the time-varying
aspect of the longitudinal variable for an interval (0, 𝑇𝑚𝑎𝑥) via Bernstein Polynomials with
degree 𝑚𝐿 − 1. This approach was based on the proposal of Wang and Ghosh (2013). For
clarification, we define 𝑇𝑚𝑎𝑥 as the lower integer greater than the maximum of all observed

measurement and survival times, i. e., 𝑇𝑚𝑎𝑥 =

⎡⎢⎢⎢⎢ max
𝑖∈{1,2,...,𝑛}
𝑗∈{1,2,...𝐽𝑖}

(𝑡𝑖𝑗, 𝑢𝑖)

⎤⎥⎥⎥⎥.

Wang and Ghosh (2013) proposed a procedure to model the variation with respect
to the time of the longitudinal variable using the Bernstein Polynomials with degree 𝑚𝐿−1.
In their proposal for longitudinal data alone, the information from the data consisted only
of the observed measurements (possibly with error) and the time point in which each
measurement was taken. Thus, the role of the BP in their approach was to provide an
approximation for the trajectory function 𝑊 (.). The mentioned structure was the following

𝑌𝑖(𝑡𝑖𝑗) = 𝑊𝑖(𝑡𝑖𝑗) + 𝜖𝑖(𝑡𝑖𝑗), 𝑖 = 1, 2, . . . 𝑛, 𝑗 = 1, 2, . . . , 𝐽𝑖

=
𝑚𝐿∑︁
𝑙=1

𝑓𝑖

(︃
𝑙 − 1
𝑚𝐿 − 1𝑇𝑚𝑎𝑥

)︃(︃
𝑚𝐿 − 1
𝑙 − 1

)︃(︂
𝑡𝑖𝑗
𝑇𝑚𝑎𝑥

)︂𝑙−1 (︂
1 − 𝑡𝑖𝑗

𝑇𝑚𝑎𝑥

)︂𝑚𝐿−𝑙
+ 𝜖𝑖(𝑡𝑖𝑗)

=
𝑚𝐿∑︁
𝑙=1

𝜉𝑚𝐿−1
𝑖,𝑙 𝑏𝑙,𝑚𝐿−1

(︂
𝑡𝑖𝑗
𝑇𝑚𝑎𝑥

)︂
+ 𝜖𝑖(𝑡𝑖𝑗)

= (𝜉𝑚𝐿−1
𝑖 )⊤b𝑚𝐿−1

(︂
𝑡𝑖𝑗
𝑇𝑚𝑎𝑥

)︂
+ 𝜖𝑖(𝑡𝑖𝑗), (3.2)

where 𝑌𝑖(𝑡𝑖𝑗) is a random variable referring to the observed value of the longitudinal
variable for the 𝑖-th subject and the 𝑗-th measurement time, 𝑊𝑖(𝑡𝑖𝑗) represents the true
value of this variable, and 𝜖𝑖(𝑡𝑖𝑗) is the measurement error. Here, 𝜖𝑖(𝑡𝑖𝑗) ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎2

𝜖 ).
Suppose that the temporal evolution of the longitudinal variable is in accordance with
a function 𝑓𝑖 and that it will be modeled by Bernstein Polynomials with degree 𝑚𝐿 -
1. Thus, 𝜉𝑚𝐿−1

𝑖 = (𝜉𝑚𝐿−1
𝑖,1 , 𝜉𝑚𝐿−1

𝑖,2 , . . . , 𝜉𝑚𝐿−1
𝑖,𝑚𝐿

)⊤ is the vector composed of 𝑚𝐿 Bernstein
coefficients, at subject-level, approximating the values of the function 𝑓𝑖(.) for each subject
𝑖 at time points [(𝑙 − 1)/(𝑚𝐿 − 1)]𝑇𝑚𝑎𝑥, 𝑙 = 1, 2, . . . ,𝑚𝐿. At last, b𝑚𝐿−1

(︂
𝑡𝑖𝑗
𝑇𝑚𝑎𝑥

)︂
=
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(︂
𝑏1,𝑚𝐿−1

(︂
𝑡𝑖𝑗
𝑇𝑚𝑎𝑥

)︂
, 𝑏2,𝑚𝐿−1

(︂
𝑡𝑖𝑗
𝑇𝑚𝑎𝑥

)︂
, . . . , 𝑏𝑚𝐿,𝑚𝐿−1

(︂
𝑡𝑖𝑗
𝑇𝑚𝑎𝑥

)︂)︂⊤
is the vector composed of 𝑚𝐿

Bernstein basis that will weight the information from the vector of coefficients.

As we will include both fixed and random effects - which was not the case of Wang
and Ghosh (2013) -, the proposed longitudinal sub-model using the BP will be

𝑌𝑖(𝑡𝑖𝑗) = 𝑊𝑖(𝑡𝑖𝑗) + 𝜖𝑖(𝑡𝑖𝑗), 𝑖 = 1, 2, . . . 𝑛 , 𝑗 = 1, 2, . . . , 𝐽𝑖

= x𝑖𝛽 + (𝜉𝑚𝐿−1
𝑖 )⊤b𝑚𝐿−1

(︂
𝑡𝑖𝑗
𝑇𝑚𝑎𝑥

)︂
+ 𝜖𝑖(𝑡𝑖𝑗),

where x𝑖 is the vector of covariates for the 𝑖-th subject that are possibly related to the
longitudinal variable, and 𝛽 is the vector of coefficients associated with these covariates,
for 𝑖 = 1, 2, . . . , 𝑛.

Wang and Ghosh (2013) assumed that the vector of coefficients of the BP was
normally distributed, that is, 𝜉𝑚𝐿−1

𝑖 ∼ 𝑁𝑚𝐿
(𝜇𝜉,Σ𝜉), for 𝑖 = 1, 2, . . . , 𝑛. In this case,

𝜇𝜉 = (𝜇𝜉1 , 𝜇𝜉2 , . . . , 𝜇𝜉𝑚𝐿
)⊤ represents the overall mean of the longitudinal variable changing

with time and Σ𝜉 is the (𝑚𝐿 × 𝑚𝐿) variance-covariance matrix, accommodating the
correlation coming from the different measurements of the same subject. As a result, 𝑊𝑖(.),
which represents the true value of the longitudinal variable, is approximated by a Gaussian
Process. We call attention to the fact that there is a straight relationship between the
vector of coefficients 𝜉𝑚𝐿−1

𝑖 and the function being approximated; see Equation (3.2).
Thus, if necessary it is possible to impose constraints to this vector to maintain essential
characteristics of the target function.

Since the measurement error 𝜖𝑖(𝑡𝑖𝑗) follows a Normal distribution, it is clear that the
distribution of 𝑌𝑖(𝑡𝑖𝑗) conditioned on the vector of random effects (whether they are coeffi-
cients of the Bernstein Polynomials or the regular random intercept and slope) also follows a
Normal distribution. That is, 𝑌𝑖(𝑡𝑖𝑗)|𝜉𝑚𝐿−1

𝑖 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙
(︂

x𝑖𝛽 + (𝜉𝑚𝐿−1
𝑖 )⊤b𝑚𝐿−1

(︂
𝑡𝑖𝑗
𝑇𝑚𝑎𝑥

)︂
, 𝜎2

𝜖

)︂
,

for 𝑖 = 1, 2, . . . , 𝑛 and 𝑗 = 1, 2, . . . , 𝐽𝑖. Moreover, the marginal distribution of 𝑌𝑖(𝑡𝑖𝑗) is
Normal with mean and variance given, respectively, by

E[𝑌𝑖(𝑡𝑖𝑗)] = E
[︁
E[𝑌𝑖(𝑡𝑖𝑗)|𝜉𝑚𝐿−1

𝑖 ]
]︁

= x𝑖𝛽 + (𝜇𝑚𝐿−1
𝜉 )⊤b𝑚𝐿−1

(︂
𝑡𝑖𝑗
𝑇𝑚𝑎𝑥

)︂
, (3.3)

and

𝑉 𝑎𝑟[𝑌𝑖(𝑡𝑖𝑗)] = E
[︁
𝑉 𝑎𝑟

[︁
𝑌𝑖(𝑡𝑖𝑗)|𝜉𝑚𝐿−1

𝑖

]︁]︁
+ 𝑉 𝑎𝑟

[︁
E
[︁
𝑌𝑖(𝑡𝑖𝑗)|𝜉𝑚𝐿−1

𝑖

]︁]︁
= 𝜎2

𝜖 +
𝑚𝐿∑︁
𝑘=1

𝑚𝐿∑︁
𝑙=1

𝑏𝑘,𝑚𝐿−1

(︂
𝑡𝑖𝑗
𝑇𝑚𝑎𝑥

)︂
𝑏𝑙,𝑚𝐿−1

(︂
𝑡𝑖𝑗
𝑇𝑚𝑎𝑥

)︂
𝜎𝑘𝑙, (3.4)
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where 𝜎𝑘𝑙 is the covariance between the coefficients 𝜉𝑚𝐿−1
𝑖,𝑘 and 𝜉𝑚𝐿−1

𝑖,𝑙 , for all 𝑖. Note that
both overall mean and variance may change along the time. These results can be seen
with more details in the Appendix A (page 99).

An important restriction is that the degree 𝑚𝐿 − 1 of the BP in this specific
approach must be greater than 1. Besides that, 𝑚𝐿 − 1 has to be lower than the maximum
number of measurements. According to Wang and Ghosh (2013), the first requirement is
made aiming to obtain a non-degenerated Gaussian Process, while the second one is to
avoid collinearity issues. Thus, the degree of the BP for the longitudinal sub-model is an
integer in the interval 𝑚𝐿 ∈ [2,max𝑖 𝐽𝑖), where 𝐽𝑖 is the number of measurements for each
one of the 𝑛 subjects under study.

Considering the longitudinal sub-model, the unknown quantities to be estimated
are 𝛽, 𝜇𝜉, Σ𝜉 and 𝜎2

𝜖 . Since we are basing the inference process under a Bayesian point
of view, prior distributions are specified for these parameters. Moreover, it is highlighted
here that, in case it is desired and necessary, it is also possible to shape constraint the BP
by imposing restrictions on the vector of overall means 𝜇𝜉.

It is worth pointing out that 𝜉𝑚𝐿−1
𝑖,𝑙 ≈ 𝑓𝑖([(𝑙−1)/(𝑚𝐿−1)]𝑇𝑚𝑎𝑥) for 𝑙 = 1, 2, . . . ,𝑚𝐿.

Then, we will thin the grid of points at which the function 𝑓𝑖(.) will be evaluated - within
the interval (0, 𝑇𝑚𝑎𝑥) - by making 𝑚𝐿 → ∞. Thus, in a way, the greater is the degree,
the more accurate will be the estimation of the function 𝑓𝑖(.). In addition to that, there
may have a case where we will have estimates for this function in contradictory time
points, i. e., time points after which a specific subject is no longer being followed-up. This
happens because the BP smooths the target function by estimating it in all the domain
(0, 𝑇𝑚𝑎𝑥), but putting lower weights as time gets far from the observed measurement times
𝑡𝑖𝑗, 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝐽𝑖. Therefore, this method does give estimates for times
that may not make sense in practice, since there will be estimates for all time points
[(𝑙 − 1)/(𝑚𝐿 − 1)]𝑇𝑚𝑎𝑥 even for those subjects who had stopped being followed-up before
one of these points, because of death, for example. The idea is to take into account values
that were observed as well as those that could have been observed, with the latter having
smaller probability (or weight). A better discussion for this matter is given in Section
3.3. The next section focuses on explaining how to approximate both cumulative baseline
hazard function and baseline hazard function via Bernstein Polynomials.

3.2 Bernstein Polynomials to Model the Survival Component
This section focuses on the details of the survival sub-model. This sub-model was

defined as the proportional hazard model for time dependent covariates. Our proposal
is to approximate both cumulative baseline hazard function 𝐻0(.) and baseline hazard
function ℎ0(.) using Bernstein Polynomials. The scheme is to first approximate 𝐻0(.) and
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then, the approximation of ℎ0(.) is obtained straightforwardly. Our main interest relies
on the baseline hazard function, since it is directly a part of the proportional hazards
model (with or without time-dependent variables). This modeling approach was based
on the ideas seen in Osman and Ghosh (2012), with the difference that their main goal
relied on the case where survival curves cross each other along the time. So, our aim in
this section is to explain how to use this procedure on the survival sub-model in the joint
model framework.

First, consider the approximation of the Bernstein Polynomials with degree 𝑚𝑆 for
the cumulative baseline hazard function𝐻0. As defined in Equation (3.1) this approximation
is given by:

𝐻0(𝑢;𝑚𝑆) ≈
𝑚𝑆∑︁
𝑘=0

𝐻0

(︃
𝑘

𝑚𝑆

𝑇𝑚𝑎𝑥

)︃(︃
𝑚𝑆

𝑘

)︃(︂
𝑢

𝑇𝑚𝑎𝑥

)︂𝑘 (︂
1 − 𝑢

𝑇𝑚𝑎𝑥

)︂𝑚𝑆−𝑘

=
𝑚𝑆∑︁
𝑘=1

𝐻0

(︃
𝑘

𝑚𝑆

𝑇𝑚𝑎𝑥

)︃(︃
𝑚𝑆

𝑘

)︃(︂
𝑢

𝑇𝑚𝑎𝑥

)︂𝑘 (︂
1 − 𝑢

𝑇𝑚𝑎𝑥

)︂𝑚𝑆−𝑘

=
𝑚𝑆∑︁
𝑘=1

𝐻0

(︃
𝑘

𝑚𝑆

𝑇𝑚𝑎𝑥

)︃
𝑏𝑘,𝑚𝑆

(︂
𝑢

𝑇𝑚𝑎𝑥

)︂
, (3.5)

where 𝑚𝑆 is the degree of the BP for the survival sub-model, 𝑇𝑚𝑎𝑥 is fixed as a value
greater than the maximum of the observed survival times and 𝑏𝑘,𝑚𝑆

(𝑢/𝑇𝑚𝑎𝑥) is 𝑘-th the
Bernstein basis, for 𝑘 = 0, 1, . . . ,𝑚𝑆. The value 𝑇𝑚𝑎𝑥 should be in accordance with this
quantity in the approximation of the BP in the longitudinal sub-model, since the time scale
is the same. It is guaranteed by the Weierstrass theorem that there is uniform convergence
on the interval (0, 𝑇𝑚𝑎𝑥] as 𝑚𝑆 −→ ∞ (Bernstein, 1912; Lorentz, 1986; Osman and Ghosh,
2012). That is, 𝐻0(𝑢) = lim

𝑚𝑆→∞
𝐻0(𝑢;𝑚𝑆).

The approximation for the baseline hazard function ℎ0(.) via BP is obtained by
taking the derivative of expression (3.5) above. Thus,

ℎ0(𝑢;𝑚𝑆) = 𝜕

𝜕𝑢
𝐻0(𝑢;𝑚𝑆)

=
𝑚𝑆∑︁
𝑘=1

[︂
𝐻0

(︂
𝑘

𝑚𝑆
𝑇𝑚𝑎𝑥

)︂
−𝐻0

(︂
𝑘 − 1
𝑚𝑆

𝑇𝑚𝑎𝑥

)︂]︂
𝑚𝑆

𝑇𝑚𝑎𝑥

(︂
𝑚𝑆 − 1
𝑘 − 1

)︂(︂
𝑢

𝑇𝑚𝑎𝑥

)︂𝑘−1(︂
1 − 𝑢

𝑇𝑚𝑎𝑥

)︂𝑚𝑆−𝑘

=
𝑚𝑆∑︁
𝑘=1

[︂
𝐻0

(︂
𝑘

𝑚𝑆
𝑇𝑚𝑎𝑥

)︂
−𝐻0

(︂
𝑘 − 1
𝑚𝑆

𝑇𝑚𝑎𝑥

)︂]︂
𝑚𝑆

𝑇𝑚𝑎𝑥
𝑓𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙

(︂
𝑘 − 1;𝑚𝑆 − 1, 𝑢

𝑇𝑚𝑎𝑥

)︂

=
𝑚𝑆∑︁
𝑘=1

[︂
𝐻0

(︂
𝑘

𝑚𝑆
𝑇𝑚𝑎𝑥

)︂
−𝐻0

(︂
𝑘 − 1
𝑚𝑆

𝑇𝑚𝑎𝑥

)︂]︂
𝑓𝐵𝑒𝑡𝑎 (𝑢/𝑇𝑚𝑎𝑥; 𝑘,𝑚𝑆 − 𝑘 + 1)

𝑇𝑚𝑎𝑥
, (3.6)

where 𝑓𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑘 − 1;𝑚𝑆 − 1, 𝑢/𝑇𝑚𝑎𝑥) represents the probability of 𝑘 − 1 successes from
a 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑚𝑆 − 1, 𝑢/𝑇𝑚𝑎𝑥) distribution and 𝑓𝐵𝑒𝑡𝑎 (𝑢/𝑇𝑚𝑎𝑥; 𝑘,𝑚𝑆 − 𝑘 + 1) is a density
function of a 𝐵𝑒𝑡𝑎(𝑘,𝑚𝑆 − 𝑘 + 1) distribution evaluated at the point 𝑢/𝑇𝑚𝑎𝑥. It is also
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true, by the Weierstrass theorem, that ℎ0(.;𝑚𝑆) −→ ℎ0(.) uniformly on the interval
(0, 𝑇𝑚𝑎𝑥] as 𝑚𝑆 −→ ∞. We point out that the approximation for the baseline hazard
function is via a BP with degree 𝑚𝑆 − 1, since the basis function is a probability of a
𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑚𝑆 − 1, 𝑢/𝑇𝑚𝑎𝑥). More details about this result can be found in the Appendix
A (page 100).

Note from Equations (3.5) and (3.6) that it is necessary to know the values of the
function 𝐻0 at 𝑚𝑆 + 1 points of the domain (0, 𝑇𝑚𝑎𝑥). However, since the function 𝐻0

is unknown, this is not a realistic requirement in the present scenario. Thus, in order to
work this obstacle around, we will simply represent the differences between the cumulative
baseline hazard functions as a vector of parameters to be estimated. That is,

ℎ0(𝑢;𝑚𝑆) ≈
𝑚𝑆∑︁
𝑘=1

[︃
𝐻0

(︃
𝑘

𝑚𝑆

𝑇𝑚𝑎𝑥

)︃
−𝐻0

(︃
𝑘 − 1
𝑚𝑆

𝑇𝑚𝑎𝑥

)︃]︃
𝑓𝐵𝑒𝑡𝑎 (𝑢/𝑇𝑚𝑎𝑥; 𝑘,𝑚𝑆 − 𝑘 + 1)

𝑇𝑚𝑎𝑥

=
𝑚𝑆∑︁
𝑘=1

𝛾𝑚𝑆−1
𝑘

𝑓𝐵𝑒𝑡𝑎 (𝑢/𝑇𝑚𝑎𝑥; 𝑘,𝑚𝑆 − 𝑘 + 1)
𝑇𝑚𝑎𝑥

. (3.7)

Therefore, 𝛾𝑚𝑆−1
𝑘 , for 𝑘 = 1, 2, . . . ,𝑚𝑆, will represent the difference between the unknown

cumulative baseline hazard function applied at two different points. It is important to

mention that 𝛾𝑚𝑆−1
𝑘 ≈ 𝐻0

(︃
𝑘

𝑚𝑆

𝑇𝑚𝑎𝑥

)︃
− 𝐻0

(︃
𝑘 − 1
𝑚𝑆

𝑇𝑚𝑎𝑥

)︃
≥ 0 since 𝐻0

(︃
𝑘

𝑚𝑆

𝑇𝑚𝑎𝑥

)︃
≥

𝐻0

(︃
𝑘 − 1
𝑚𝑆

𝑇𝑚𝑎𝑥

)︃
. Then, it is assured that the model for the cumulative baseline hazard

function in (3.5) provides a non-decreasing approximation. In other words, the BP approx-
imation for the 𝐻0(.), based on the work of Osman and Ghosh (2012), is in agreement
with one important property of this function.

An interesting fact is that the difference between the points in which the function
𝐻0 is evaluated (Equation (3.7)) diminishes as the degree of the BP increases, i. e.,
𝑘

𝑚𝑆

𝑇𝑚𝑎𝑥 − (𝑘 − 1)
𝑚𝑆

𝑇𝑚𝑎𝑥 = 1
𝑚𝑆

𝑇𝑚𝑎𝑥 −−−−→
𝑚𝑆→∞

0. Therefore,

𝛾𝑚𝑆−1
𝑘 = 𝐻0

(︃
𝑘

𝑚𝑆

𝑇𝑚𝑎𝑥

)︃
−𝐻0

(︃
𝑘 − 1
𝑚𝑆

𝑇𝑚𝑎𝑥

)︃
=
∫︁ (𝑘/𝑚𝑆)𝑇𝑚𝑎𝑥

(𝑘−1)𝑇𝑚𝑎𝑥/𝑚𝑆

ℎ0(𝑢)𝑑𝑢 −−−−→
𝑚𝑆→∞

ℎ0

(︃
𝑘

𝑚𝑆

𝑇𝑚𝑎𝑥

)︃
,

since there is no accumulation of the hazards when 𝑚𝑆 → ∞. So, the greater the degree
𝑚𝑆 is, the more accurate will be the estimates of the vector 𝛾𝑚𝑆−1 in the sense of having
values of the target function ℎ0(.) over a fine grid of the domain . This is also true for the
cumulative hazard function. Moreover,

𝐻0

(︃
𝑘

𝑚𝑆

𝑇𝑚𝑎𝑥

)︃
≈

𝑘∑︁
𝑜=1

𝛾𝑚𝑆−1
𝑜 , (3.8)
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for 𝑘 = 1, 2, . . . ,𝑚𝑆, precisely because, summing up the components of 𝛾𝑚𝑆−1 is equivalent
to accumulating values of the baseline hazard function (see more about this result in the
Appendix A, page 102).

The proposed model for the survival component is fully specified. For clarification,
we remind that we will use the BP with degree 𝑚𝑆 to approximate the cumulative baseline
hazard function under the proportional hazards model for time dependent covariates
(Equation (2.9)). Thus, we will use the whole procedure described in this section as

ℎ(𝑢𝑖) = ℎ0(𝑢𝑖) exp
{︁
𝜂𝑊𝑖(𝑢𝑖) + z⊤

𝑖 𝜓
}︁

, 𝑖 = 1, 2, . . . , 𝑛,

=
[︃
𝑚𝑆∑︁
𝑘=1

𝛾𝑚𝑆−1
𝑘

𝑓𝐵𝑒𝑡𝑎 (𝑢/𝑇𝑚𝑎𝑥; 𝑘,𝑚𝑆 − 𝑘 + 1)
𝑇𝑚𝑎𝑥

]︃
exp

{︁
𝜂𝑊𝑖(𝑢𝑖) + z⊤

𝑖 𝜓
}︁
.

In addition, as we described on page 35, the cumulative hazard function will be approx-
imated by the Gauss-Kronrod quadrature with 𝑄 = 15 nodes. Then, in this case, we
have

𝐻(𝑢𝑖) =
∫︁ 𝑢𝑖

0
ℎ(𝑠)𝑑𝑠 =

∫︁ 𝑢𝑖

0
ℎ0(𝑠) exp

{︀
𝜂𝑊𝑖(𝑠) + z⊤

𝑖 𝜓
}︀
𝑑𝑠

≈ 𝑢𝑖

2 exp {z𝑖𝜓}
𝑄∑︁

𝑞=1
𝑤𝑞ℎ0

(︂
𝑢𝑖(1 + 𝑡𝑞)

2

)︂
exp

(︂
𝜂𝑊𝑖

(︂
𝑢𝑖(1 + 𝑡𝑞)

2

)︂)︂

≈ 𝑢𝑖

2 exp {z𝑖𝜓}
𝑄∑︁

𝑞=1

⎧⎪⎪⎨⎪⎪⎩𝑤𝑞

⎡⎢⎢⎣𝑚𝑆∑︁
𝑘=1

𝛾𝑚𝑆−1
𝑘

𝑓𝐵𝑒𝑡𝑎

(︂
𝑢𝑖(1 + 𝑡𝑞)

2𝑇𝑚𝑎𝑥
; 𝑘,𝑚𝑆 − 𝑘 + 1

)︂
𝑇𝑚𝑎𝑥

⎤⎥⎥⎦ ×

exp
(︂
𝜂

(︂
x𝑖𝛽 + (𝜉𝑚𝐿−1

𝑖 )⊤b𝑚𝐿−1

(︂
𝑢𝑖(1 + 𝑡𝑞)

2𝑇𝑚𝑎𝑥

)︂)︂)︂}︂
.

Note that the only unknown quantity to be estimated on the approximation of the baseline
hazard function (Equation (3.7)) is the vector of coefficients 𝛾𝑚𝑆−1. Under the Bayesian
inference, a prior distribution is attributed for this vector. Here, we highlight that 𝛾𝑚𝑆−1

𝑘

represents points of a non-negative function. Therefore, the values that it assumes must
be in the domain (0,∞). In our case, we assumed that log(𝛾𝑚𝑆−1

𝑘 ) followed, a priori, a
Normal distribution. More details about the prior specifications will be discussed ahead in
the simulation and real application chapters.

We point out that, although mathematically ℎ0(.;𝑚𝑆) converges to the true function
ℎ0(.) when 𝑚𝑆 → ∞, one must consider practical aspects such as the number of parameters.
In other words, one must choose the degree of BP to provide a good approximation and,
at the same time, being careful about the complexity of the model. Moreover, we dealt
with examples, both in literature (Wang and Ghosh, 2013) and in practice, in which a
relatively low degree was sufficient to provide a good performance.
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As an example of a possible value for the degree of the BP, Osman and Ghosh
(2012) suggested using 𝑚𝑆 as being the smallest integer greater than the square root of 𝑛,
where 𝑛 is the sample size (that is, 𝑚𝑆 = ⌈

√
𝑛⌉). Guan (2016) proposed an estimator for

the degree of the BP that can be used in general applications. Another alternative is to
obtain estimates varying the value of 𝑚𝑆 and then choosing the best value by performing
a sensitivity analysis. In addition, Wang and Ghosh (2013) proposed criteria for selecting
the value of 𝑚𝑆 that can be used in the sensitivity analysis. Some works consider the
degree as a unknown quantity and proceed with the inferential analysis. We will consider
𝑚𝑆 fixed and we propose ways of choosing this value in Section 3.5 (page 51).

For comparison purposes, the structure of the BP can be related with that of
splines. However, according to Carnicer and Peña (1993), Farouki (2012) and Osman and
Ghosh (2012), the BP has the best approximation between all polynomial approximations,
in the sense of preserving the shape of the target function. Moreover, the “knots” in the
BP are already specified in opposition to the case of splines. The number of knots is
another point to consider; there are works that help with this choice. Nonetheless, by
using BP we were able to propose a way of specifying its degree. Finally, Crowther et al.
(2012) showed via simulation studies that to model the baseline hazard function with
B-splines, specifically, can lead to an underestimation of the linking parameter 𝜂 when joint
modeling longitudinal and survival data. The underestimation depends on the quadrature
method used to approximate the cumulative hazard function. We can investigate if this
underestimation would occur to the BP. However, we have no such indication or suspicion.

In order to make all these concepts related to the modeling approach via Bernstein
Polynomials clearer, next section briefly shows how the BP incorporate data information
to provide the approximation for the target functions.

3.3 An Intuition about Bernstein Polynomials
The focus of this section is to give an idea of the role and the importance of each

quantity that composes the BP. Here, we aim to shed a light on discussions such as the
impact of the choice of 𝑇𝑚𝑎𝑥 and practical interpretations of the degree of this polynomial,
for example. We will use the same notation as the previous section, but the ideas are also
true for the approximation of the longitudinal component.

Consider 𝐾 a random variable such that, given an observed survival time 𝑢𝑖, it
represents the number - say 𝑘 - of successes in 𝑚𝑆 trials. Note that 𝑘 ∈ {0, 1, . . . ,𝑚𝑆}.
Next, the information that 𝑢𝑖 brings to the random variable 𝐾 is the probability of success,
which will be 𝑢𝑖/𝑇𝑚𝑎𝑥, and 𝑇𝑚𝑎𝑥 = max

𝑖∈{1,2,...,𝑛}
𝑗∈{1,2,...𝐽𝑖}

(𝑡𝑖𝑗, 𝑢𝑖). Thus, we have that 𝐾|(𝑢𝑖/𝑇𝑚𝑎𝑥) ∼

𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑚𝑆, 𝑢𝑖/𝑇𝑚𝑎𝑥). Then,
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P
(︂
𝐾 = 𝑘| 𝑢𝑖

𝑇𝑚𝑎𝑥

)︂
=
(︃
𝑚𝑆

𝑘

)︃(︂
𝑢𝑖
𝑇𝑚𝑎𝑥

)︂𝑘 (︂
1 − 𝑢𝑖

𝑇𝑚𝑎𝑥

)︂𝑚𝑆−𝑘

for 𝑘 = 0, 1, . . . ,𝑚𝑆; and the relationship between the possible values of 𝐾 and the
observed survival time 𝑢𝑖 is given by (for 𝑘 = 0, 1, . . . ,𝑚𝑆 − 1)

𝑘

𝑚𝑠

≤ 𝑢𝑖
𝑇𝑚𝑎𝑥

<
𝑘 + 1
𝑚𝑠

⇔ 𝑘

𝑚𝑠

𝑇𝑚𝑎𝑥 ≤ 𝑢𝑖 <
𝑘 + 1
𝑚𝑠

𝑇𝑚𝑎𝑥 ⇔ 𝑘 ≤ 𝑢𝑖
𝑇𝑚𝑎𝑥

𝑚𝑠 < 𝑘 + 1, (3.9)

Figures 3a to 3e are a tentative to clarify this construction. These panels were made
based on a data set composed of HIV+ patients that underwent a treatment (this data set
will be described with more details in Chapter 5). Here, the information we need from this
data set is only the vector of 𝑛 = 467 observed survival times (𝑢1, 𝑢2, . . . , 𝑢467), regardless
if they were a failure or a censoring. In this example, we fixed 𝑚𝑆 = 5 and 𝑇𝑚𝑎𝑥 = 22.
In these panels, the lower 𝑥-axis is the number of possible successes 𝑘 = 0, 1, . . . , 5, and
the upper 𝑥-axis is the follow-up time varying from (0, 22]. These two axis are related
according to the equivalences described in Equation (3.9).

Thus, consider the smallest observed survival time, which was a failure time of
𝑢(1) = 𝑢355 = 0.47 month. Figure 3a shows the distribution of 𝐾 given this failure time.
We can see on the upper 𝑥-axis the representation of this survival time in the follow-up
scale, and in the lower 𝑥-axis this same time but in terms of the number of successes.
For the minimum survival time, this number was 𝑢355

𝑇𝑚𝑎𝑥
𝑚𝑆 = 0.47

22 5 = 0.11. Hence, the
figure shows that the probabilities coming from the Binomial distribution are higher for
an integer 𝑘 that is near 0.11; and it diminishes as 𝑘 gets far from 0.11.

We chose other four observed survival times to reinforce the interpretation of the
quantities composing the BP. These times were 𝑢32 = 7.17 (Panel 3b), 𝑢133 = 16.70 (Panel
3d), 𝑢283 = 21.40 (Panel 3e) and 𝑢306 = 12.07 (Panel 3c). By observing all these panels it
is clear that conditioning in different observed times redistributes the probabilities of K,
which have the role of weights on Bernstein Polynomials. The distribution is such that
we have high probabilities around the observed time and it gets smaller as the number
of successes gets far from this time. That is, the information that the observed survival
data adds to the BP is how to distribute the probabilities that come from a Binomial
distribution. So the greater is the degree, the closer the survival times will be to the integer
representing the number of successes. In addition, as 𝑇𝑚𝑎𝑥 increases, the probability of
observing 𝑘 successes around 𝑢𝑖

𝑇𝑚𝑎𝑥
𝑚𝑆 diminishes.

Finally, Figure 3f shows the frequency of the number of successes considering all
observed survival times - both failures and censoring. The grey dots are the observed
survival times. It is evident that the interval in which we observe more survival times is
directly related to the highest frequency of the number of successes.
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(f) Barplot with all observed survival times.

Figure 3 – Distribution of 𝐾 given different observed survival times. Each of the panels 3a
to 3e take into account only one survival time. Panel 3f is a barplot considering
all observed survival times.

Next section discusses about few and important properties of the BP.
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3.4 Important Properties of Bernstein Polynomials
In this section we briefly discuss few useful properties of the BP. We will focus on

the properties that have a connection with the modeling procedures explored in this work.
The introduction of these properties will be very useful to endorse theoretical arguments
involving the BP. More properties and details can be found in Lorentz (1986) and Farouki
(2012).

The first property refers to the relation between the function representing a straight
line and the approximation by BP for this function.

Property 1 (Equivalency with a straight line). There is a equivalency between BP with
an arbitrary degree 𝑚 and the straight line equation, i. e. 𝑓(𝑡) = 𝑎𝑡 + 𝑏, 𝑎, 𝑏 ∈ R and
𝑡 ∈ (0, 1). The BP approximation with degree 𝑚 for this function (see Equation (3.1)) is
given by

𝑓(𝑡) ≈
𝑚∑︁
𝑘=0

𝑓

(︃
𝑘

𝑚

)︃(︃
𝑚

𝑘

)︃
𝑡𝑘(1 − 𝑡)𝑚−𝑘 =

𝑚∑︁
𝑘=0

(︃
𝑎
𝑘

𝑚
+ 𝑏

)︃(︃
𝑚

𝑘

)︃
𝑡𝑘(1 − 𝑡)𝑚−𝑘,

and it reduces to 𝑎𝑡+ 𝑏.

Therefore, the mathematical BP approximation for the function 𝑓(𝑡) = 𝑎𝑡+ 𝑏 leads to the
very function 𝑓(𝑡), exactly. This result will be important for the case where the temporal
behavior of the longitudinal variable is expected to present a linear trend. Although we
approximate this function by estimating the coefficients of the BP, we assume that results
might be slightly more accurate due to this property. It is worth mentioning that we
defined the function 𝑓 on the interval (0, 1) for simplification. In case it is needed, a
transformation on the variable 𝑡 can be applied.

The second property covers both the first and the last coefficients that compose
the BP.

Property 2 (First and last Bernstein coefficients). The first and the last coefficients of
a BP with degree 𝑚 and from a BP with degree 𝑚 + 𝑟, 𝑟 = 1, 2, . . . represent the same
values of the function being approximated. That is,

𝜉𝑚0 ≈ 𝑓
(︂ 0
𝑚
𝑇𝑚𝑎𝑥

)︂
= 𝑓(0) = 𝑓

(︂ 0
𝑚+ 𝑟

𝑇𝑚𝑎𝑥

)︂
≈ 𝜉𝑚+𝑟

0

and

𝜉𝑚𝑚 ≈ 𝑓
(︂
𝑚

𝑚
𝑇𝑚𝑎𝑥

)︂
= 𝑓(𝑇𝑚𝑎𝑥) = 𝑓

(︂
𝑚+ 𝑟

𝑚+ 𝑟
𝑇𝑚𝑎𝑥

)︂
≈ 𝜉𝑚+𝑟

𝑚+𝑟 .
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In the property above, the role of 𝑇𝑚𝑎𝑥 is only to rescale the variable 𝑡 to the
interval (0, 𝑇𝑚𝑎𝑥). The practical interpretation of this property is that we expect the
estimates of these pair of coefficients to be similar, i. e., 𝜉𝑚0 ≈ 𝜉𝑚+𝑟

0 and 𝜉𝑚𝑚 ≈ 𝜉𝑚+𝑟
𝑚+𝑟 .

The last property is about the degree elevation. This property characterizes the
association between the vector of Bernstein coefficients with different degrees. More
specifically, given a vector of BP coefficients with degree 𝑚 it is possible to know exactly -
in theory - the vector of coefficients with a degree 𝑚+ 𝑟, 𝑟 = 1, 2, . . . . We will make use of
this property to establish a stopping rule for the degree of the BP, which will be discussed
on the next section.

Property 3 (Degree elevation). This property refers to the relationship between the vector
of Bernstein coefficients of degree 𝑚 and 𝑚+ 𝑟, 𝑟 = 1, 2, . . . . It allows us to determine
coefficients of a BP with degree 𝑚+ 𝑟 given the vector of coefficients of a BP with degree
𝑚. This relationship is

𝜉𝑚+𝑟
𝑘 =

min (𝑚,𝑘)∑︁
𝑗=max (0,𝑘−𝑟)

(︃
𝑟

𝑘 − 𝑗

)︃(︃
𝑚

𝑗

)︃
(︃
𝑚+ 𝑟

𝑘

)︃ 𝜉𝑚𝑘 , 𝑘 = 1, 2, . . . ,𝑚+ 𝑟, (3.10)

where 𝜉𝑚+𝑟
𝑘 represents the 𝑘-th coefficient of a BP with degree 𝑚+ 𝑟 obtained via degree

elevation and 𝜉𝑚𝑘 is the 𝑘-th coefficient from a BP with degree 𝑚. Note that: (i) the Binomial
coefficient terms of the summation in Equation (3.10) come from a 𝐻𝑦𝑝𝑒𝑟𝐺(𝑚+ 𝑟,𝑚, 𝑘)
distribution and (ii) if 𝑟 = 1, Equation (3.10) reduces to

𝜉𝑚+1
𝑘 = 𝑘

𝑚+ 1𝜉
𝑚
𝑘−1 +

(︃
1 − 𝑘

𝑚+ 1

)︃
𝜉𝑚𝑘 , 𝑘 = 1, 2, . . . ,𝑚 (3.11)

and 𝜉𝑚+1
0 = 𝜉𝑚0 and 𝜉𝑚+1

𝑚+1 = 𝜉𝑚𝑚 .

It means that, theoretically, it is only required a vector of Bernstein coefficients of degree
𝑚 and then all the other approximations with higher degrees would follow immediately.
For this reason, at a first look it may seem dispensable to estimate the vector of coefficients
𝜉𝑚+𝑟, 𝑟 = 1, 2, . . . with an entire procedure of estimation. That is, we could simply use
Property 3 to instantly obtain this result. However, this behavior of similarity was not
observed in practice. At last, note that the results 𝜉𝑚+1

0 = 𝜉𝑚0 and 𝜉𝑚+1
𝑚+1 = 𝜉𝑚𝑚 are in

accordance with the second property.

Demonstrations of properties 1 and 3 are on the Appendix A (page 102). In the
next section we discuss the guidance we are proposing to help choosing the degree of the
BP. This guidance is another contribution of our work.
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3.5 Degree Selection
The choice of the degree of the BP represents a great challenge due to the fact

that it has an important role in the approximation performance. This characteristic was
verified both in literature (Petrone, 1999a; Osman and Ghosh, 2012; Wang and Ghosh,
2013) and in practice. If the degree is too small, the approximated curve may be too simple
in the sense of smoothness. Particularly considering the case of survival data, as mentioned
in Crowther and Lambert (2013), it is frequent to come across with real data in which
the behavior of the hazard function has one or more turning points. Therefore, in these
cases the approximation by BP may not encompass such important features of the target
function. On the other hand, if this number is too large, there will be an unnecessary
large number of parameters. This trait goes against the concept of parsimony and it can
lead to computational issues. Nonetheless, the convergence of the BP is only guaranteed
when the degree 𝑚 −→ ∞. This theoretical statement is also true for the accuracy of the
estimates for the vector of coefficients, as it is related to the value of the function being
approximated (discussed on pages 42 and 44). Then, in a general framework, an “optimal”
choice for the degree would be the minimum value that manages to approximate well and
that accommodates the important features of the target function.

Curtis and Ghosh (2011) fixed the degree and discussed ways of making this choice.
Osman and Ghosh (2012) and Wang and Ghosh (2013) also fixed the degree basing their
choice of this value on sample sizes. Other works such as Petrone (1999b) and Chang et al.
(2005), treated the degree of the BP as an unknown quantity to be estimated. However,
considering the complexity of joint modeling longitudinal and survival data, it may be
more interesting to fix this quantity with a good strategy. It is then needed a guidance on
this choice as well as a sensitivity analysis.

In order to work this obstacle around, we propose a solution that consists on
establishing a routine to choose the minimum suitable degree for the BP. This instruction
is probabilistic method based on a previous knowledge of a possibly existing turning point
on the target function. Here, we mention in anticipation that our method can still be used
if one does not know this feature in the function. Our findings point out that the degree of
the BP is more associated to how close a change in the behavior of the target function is
to the boundaries of the domain, than it is related to sample sizes. Hence, we established
a random variable 𝑀 that represents the minimum degree necessary to capture a change
in the target function. We also derived two criteria to serve as stopping rule for the degree
of the BP. This stopping rule is based on the degree elevation property (Property 3) seen
in Farouki (2012).

Another point that is worth discussing is about the terminology we use in the
next sections. We use expressions such as “turning point” or “change point” in the target
function to refer to as a change of increasing/decreasing to decreasing behavior on this
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function, i. e. local minimum or maximum. It is not associated with the change point
literature.

First, note by Equations (3.2) and (3.7) that each coefficient is related to a Bern-
stein basis 𝑏𝑘,𝑚−1(.), 𝑘 = 1, 2, . . . ,𝑚. With these same equations we can recall that the
approximation provided by the BP is a linear combination of these two vectors. Since
Bernstein basis can be regarded to as weights, it means that each coefficient 𝜉𝑚−1

𝑘 will
have more weight on sub-intervals of the domain that takes place around 𝑡 such that

𝑏′
𝑘,𝑚−1

(︂
𝑡

𝑇𝑚𝑎𝑥

)︂
= 0 ⇔ 𝑡

𝑇𝑚𝑎𝑥
= 𝑘 − 1
𝑚− 1 ⇔ 𝑡 = 𝑘 − 1

𝑚− 1𝑇𝑚𝑎𝑥, 𝑘 = 1, 2, . . . ,𝑚. (3.12)

Details of this result can be seen in the Appendix A, page 104. In order to show these
maximum values, Figure 2 was revisited in Figure 4. Here, each colored line represent a
Bernstein basis, of a BP with degree 𝑚 − 1, for 𝑡/𝑇𝑚𝑎𝑥 ∈ (0, 1) and the vertical dotted
gray lines represent at which point 𝑡 each basis reaches its maximum value, according to
the relationship in Equation (3.12).
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Figure 4 – Illustration of the vector of Bernstein basis, of a BP with degree 𝑚 − 1, for
𝑚 = 4 and 𝑚 = 10 and the representation of the time where these functions
reach their maximum.

In what follows, one of our interests lies on studying the increasing and decreasing
behavior of the target function 𝑓 being approximated. Thus, we must evaluate the derivative
of Bernstein approximation for this function. The BP approximation for 𝑓 with degree
𝑚− 1 is

𝑓(𝑡;𝑚− 1) ≈
𝑚∑︁
𝑘=1

𝑓

(︃
𝑘 − 1
𝑚− 1

)︃(︃
𝑚− 1
𝑘 − 1

)︃(︂
𝑡

𝑇𝑚𝑎𝑥

)︂𝑘−1 (︂
1 − 𝑡

𝑇𝑚𝑎𝑥

)︂𝑚−𝑘

=
𝑚∑︁
𝑘=1

𝜉𝑚−1
𝑘 𝑏𝑘,𝑚−1

(︂
𝑡

𝑇𝑚𝑎𝑥

)︂
(3.13)
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and its derivative is

𝑓 ′(𝑡;𝑚− 1) =
𝑚∑︁

𝑘=1

𝜉𝑚−1
𝑘

(︀𝑚− 1
𝑘 − 1

)︀[︂ (𝑘 − 1)
𝑇𝑚𝑎𝑥

(︁
𝑡

𝑇𝑚𝑎𝑥

)︁𝑘−2 (︁
1 −

𝑡

𝑇𝑚𝑎𝑥

)︁𝑚−𝑘

−
(𝑚− 𝑘)
𝑇𝑚𝑎𝑥

(︁
𝑡

𝑇𝑚𝑎𝑥

)︁𝑘−1 (︁
1 −

𝑡

𝑇𝑚𝑎𝑥

)︁𝑚−𝑘−1
]︂

=
(𝑚− 1)
𝑇𝑚𝑎𝑥

𝑚−1∑︁
𝑘=1

(𝜉𝑚−1
𝑘+1 − 𝜉𝑚−1

𝑘
)
(︀𝑚− 2
𝑘 − 1

)︀(︁ 𝑡

𝑇𝑚𝑎𝑥

)︁𝑘−1 (︁
1 −

𝑡

𝑇𝑚𝑎𝑥

)︁𝑚−𝑘−1

=
(𝑚− 1)
𝑇𝑚𝑎𝑥

𝑚−1∑︁
𝑘=1

(𝜉𝑚−1
𝑘+1 − 𝜉𝑚−1

𝑘
)𝑏𝑘,𝑚−2

(︁
𝑡

𝑇𝑚𝑎𝑥

)︁
. (3.14)

It is well-known that if 𝑓 ′(𝑡;𝑚− 1) < 0, the curve 𝑓(𝑡;𝑚− 1) presents a decreasing
behavior and if 𝑓 ′(𝑡;𝑚− 1) > 0, then 𝑓(𝑡;𝑚− 1) will be an increasing function on 𝑡. Also,
it is clear that (𝑚 − 1)/𝑇𝑚𝑎𝑥 ≥ 0 and 𝑏𝑘,𝑚−2(𝑡/𝑇𝑚𝑎𝑥) ≥ 0, for 𝑘 = 1, 2, . . . ,𝑚 − 1. As
a conclusion, the only term in Equation (3.14) that controls the increasing/decreasing
behavior of this approximation is the vector of coefficients 𝜉𝑚−1. This result is coherent
considering that each of the coefficients represents the function 𝑓 in a specific point of
the domain. Therefore, the vector of Bernstein basis does not affect the form of the
approximation directly.

If the difference (𝜉𝑚−1
𝑘 − 𝜉𝑚−1

𝑘−1 ) has an opposite sign than (𝜉𝑚−1
𝑘+1 − 𝜉𝑚−1

𝑘 ) or, equiv-
alently, if (𝜉𝑚−1

𝑘 − 𝜉𝑚−1
𝑘−1 )(𝜉𝑚−1

𝑘+1 − 𝜉𝑚−1
𝑘 ) < 0, for 𝑘 = 2, 3, . . . ,𝑚 − 2 we can assure that

the approximated function 𝑓 has a turning point. This behavior is such that it begins

at 𝜉𝑚−1
𝑘−1 ≈ 𝑓

(︃
𝑘 − 2
𝑚− 1𝑇𝑚𝑎𝑥

)︃
, it happens around 𝜉𝑚−1

𝑘 ≈ 𝑓

(︃
𝑘 − 1
𝑚− 1𝑇𝑚𝑎𝑥

)︃
, and it finally

ends at 𝜉𝑚−1
𝑘+1 ≈ 𝑓

(︃
𝑘

𝑚− 1𝑇𝑚𝑎𝑥
)︃

. Therefore, we need three coefficients to be able to

inform this feature. Thus, both 𝑘 and 𝑚 impact this result and this method is capa-
ble of detecting a change for a time 𝑡 ≥ 1/(𝑚 − 1) and 𝑡 ≤ (𝑚 − 2)/(𝑚 − 1). In
other words, we will be able to capture this change only on an interval (𝑎, 𝑏) such that

1
𝑚− 1 < 𝑎 < 𝑏 <

𝑚− 2
𝑚− 1 ⇔ 𝑚 > max

(︃
1
𝑎

+ 1, 2 − 𝑏

1 − 𝑏

)︃
.

From now on, we will focus on the interval (0, 1), because any time scale can
be transformed into this range. Thus, consider two random variables 𝑈1 and 𝑈2 defined
on (0, 1) that will form an interval (𝑢(1), 𝑢(2)) ⊂ (0, 1), where 𝑢(1) = min(𝑈1, 𝑈2) and

𝑢(2) = max(𝑈1, 𝑈2). Assume a random variable 𝑀 =
⌈︃
max

(︃
1
𝑈(1)

+ 1, 2 − 𝑈(2)

1 − 𝑈(2)

)︃⌉︃
, which

refers to the minimum degree that is necessary to capture a change in the interval (𝑢(1), 𝑢(2)).
We have that

P(𝑀 = 𝑚|(𝑈1, 𝑈2)) = P
(︂⌈︂

max
(︂

1
𝑈(1)

+ 1,
2 − 𝑈(2)

1 − 𝑈(2)

)︂⌉︂
= 𝑚

)︂
(3.15)

= P
(︂

𝑚 − 1 < max
(︂

1
𝑈(1)

+ 1,
2 − 𝑈(2)

1 − 𝑈(2)

)︂
≤ 𝑚|(𝑈1, 𝑈2)

)︂
=

[︁
P
(︁

𝑈1 ≤ 𝑚 − 2
𝑚 − 1

)︁
− P

(︁
𝑈1 <

1
𝑚 − 1

)︁]︁2
−
[︁
P
(︁

𝑈1 ≤ 𝑚 − 3
𝑚 − 2

)︁
− P

(︁
𝑈1 <

1
𝑚 − 2

)︁]︁2
,
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for 𝑚 = 4, 5, . . . ; see details in Appendix A (page 104). The cumulative distribution
function of 𝑀 conditioned on (𝑈1, 𝑈2) is

𝐹𝑀|(𝑈1,𝑈2)(𝑚) =
𝑚∑︁

𝑙=4

P(𝑀 = 𝑙|(𝑈1, 𝑈2))

=
𝑚∑︁

𝑙=4

{︂[︁
P
(︁

𝑈1 ≤ 𝑙 − 2
𝑙 − 1

)︁
− P

(︁
𝑈1 <

1
𝑙 − 1

)︁]︁2
−
[︁
P
(︁

𝑈1 ≤ 𝑙 − 3
𝑙 − 2

)︁
− P

(︁
𝑈1 <

1
𝑙 − 2

)︁]︁2
}︂

=
[︁
P
(︁

𝑈1 ≤ 𝑚 − 2
𝑚 − 1

)︁
− P

(︁
𝑈1 <

1
𝑚 − 1

)︁]︁2
. (3.16)

This result is easily obtained because the summation in Equation (3.16) is a telescope
sum. We can see that, since 1/(𝑚 − 1) −−−→

𝑚→∞
0 and (𝑚 − 2)/(𝑚 − 1) −−−→

𝑚→∞
1, then

𝐹𝑀 |(𝑈1,𝑈2)(𝑚) −→ 1.

Once we have derived the cumulative distribution function of 𝑀 , it becomes trivial
to calculate quantiles of the minimum degree. Table 1 shows some quantiles considering
that 𝑈1 and 𝑈2 follow a 𝐵𝑒𝑡𝑎(𝜃1, 𝜃2) distribution. In this case, Equation (3.16) becomes

𝐹𝑀 |(𝑈1,𝑈2)(𝑚) =
[︂
𝐹𝐵𝑒𝑡𝑎

(︂
𝑚− 2
𝑚− 1

)︂
− 𝐹𝐵𝑒𝑡𝑎

(︂ 1
𝑚− 1

)︂]︂2
.

The values of 𝜃1 and 𝜃2 were chosen so that we could have high densities near 0 and/or 1
as well as densities concentrated in the middle of this interval. The density functions of
the 𝐵𝑒𝑡𝑎 distributions with the parameters in the Table 1 can be seen in Figure 5.

Table 1 – Quantiles of the minimum value of 𝑚 that is necessary to model a change
in the approximated curve on an interval (𝑈(1), 𝑈(2)); greatest 𝑚 such that
P(𝑀 ≤ 𝑚|(𝑈1, 𝑈2)) ≤ 𝑝.

Distribution of 𝑈1 and 𝑈2 𝑝 = 0.5 𝑝 = 0.9 𝑝 = 0.95 𝑝 = 0.99 𝑝 = 0.999
𝐵𝑒𝑡𝑎(1, 1) 7 39 79 399 3999
𝐵𝑒𝑡𝑎(3, 1) 10 58 118 598 5998
𝐵𝑒𝑡𝑎(2, 150) 141 418 618 1453 4709
𝐵𝑒𝑡𝑎(3, 3) 4 7 9 16 34
𝐵𝑒𝑡𝑎(50, 800) 19 22 23 25 29
𝐵𝑒𝑡𝑎(200, 1300) 8 9 9 9 10

As an example, suppose that a change is expected on the interval (𝑢(1), 𝑢(2)) such
that both 𝑈1 and 𝑈2 follow a 𝐵𝑒𝑡𝑎(3, 1). This density function is shown in Figure 5a.
Then, if 𝑚 = 10 we have a 0.5 probability that the change will be represented in the
approximated curve. If we want to be more precise about this result, we should consider
𝑚 ≥ 118, which is a very high degree.
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(a) Examples of densities spread on the entire in-
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trated at the lower boundary.

Figure 5 – Density functions of the Beta distributions used in the examples described in
Table 1.

The first example in Table 1 is an 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 1) distribution; in this case we would
have no prior information about where the function being approximated may change its
behavior, in what concerns the increasing/decreasing course of this function. We can see
that P(𝑀 ≤ 39|(𝑈1, 𝑈2)) ≈ 0.9. In what follows, the next two examples 𝐵𝑒𝑡𝑎(3, 1) and
𝐵𝑒𝑡𝑎(2, 150) admit high density on the lower boundary. So, it is required a large minimum
degree in order for the BP to be able to approximate this behavior. On the other hand, if
the focus relies far from 0 and 1, 𝑚 can be considerably lower, as in the last three rows of
Table 1.

In practice, one can follow the subsequent step-by-step in order to choose the
minimal degree 𝑚:

Step 1: In which part of the domain the curve will probably change behavior? If
the domain is other than (0, 1), then proceed to the next step with a transformation
on the scale;

Step 2: Find (𝜃1, 𝜃2) such that 𝐵𝑒𝑡𝑎(𝜃1, 𝜃2) has high density on the region above;

Step 3: Find quantiles of minimum 𝑚 by solving P(𝑀 ≤ 𝑚|(𝑈1, 𝑈2)) = 𝑝 ⇔
𝐹𝐵𝑒𝑡𝑎

(︂
𝑚− 2
𝑚− 1; 𝜃1, 𝜃2

)︂
− 𝐹𝐵𝑒𝑡𝑎

(︂ 1
𝑚− 1; 𝜃1, 𝜃2

)︂
− √

𝑝 = 0. The command uniroot in
R can be used to solve this equation.

The instructions above are a conclusion that leads to a probabilistic view of a
suitable minimum degree for the BP. We highlight that all the discussion and results
involving this minimum value is a contribution of our work. The final results of this chapter
focus on completing the guidance on choosing the degree by discussing a reasonable
maximum value for 𝑚.
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Degree elevation to achieve optimal 𝑚

The stopping rule we will discuss in this section was based on the degree elevation
property, seen in Farouki (2012). Regarding this property, it is intuitive to expected
that estimates of Bernstein coefficients obtained either via a direct way or using degree
elevation should be similar. That is, |𝜉𝑚𝑘 − 𝜉𝑚𝑘 | ≈ 0 for all 𝑘. However, in practice, we
observed that when 𝑚 is small there can be a significant difference between estimates
based on 𝜉𝑚−1 = (𝜉𝑚−1

1 , 𝜉𝑚−1
2 , . . . , 𝜉𝑚−1

𝑚 )⊤ and 𝜉𝑚 = (𝜉𝑚1 , 𝜉𝑚2 . . . , 𝜉𝑚𝑚+1)⊤. Consequently,
this discrepancy leads to a difference between 𝜉𝑚 and 𝜉𝑚. Nevertheless, when 𝑚 is large
enough, the estimated curve stabilizes and the difference between these two vectors of
coefficients gets considerably small. Based on this discussion, we came up with two criteria
that, along with regular model comparison measures, can help us to provide an optimal
degree for the BP. These two criteria is another contribution of this thesis.

Criterion 1 - difference between coefficients

Under a Bayesian framework, let 𝐷(𝑠)
𝑚−1 = 1

𝑚

𝑚∑︁
𝑘=1

|𝜉𝑚−1
𝑘

(𝑠) − 𝜉𝑚−1
𝑘

(𝑠)|, for 𝑚 ≥ 5 and

𝑠 = 1, 2, . . . , 𝑆. The quantity 𝐷(𝑠)
𝑚−1 represent the difference between coefficients obtained

via degree elevation (𝜉𝑚−1
𝑘 ) and direct estimation (𝜉𝑚−1

𝑘 ) based on the 𝑠-th posterior
sampled values. If 𝑚 is small, then it is expected that Median(D𝑚−1) > Median(D𝑚),
where D𝑚 = (𝐷(1)

𝑚 , 𝐷(2)
𝑚 , . . . , 𝐷(𝑆)

𝑚 )⊤. However, if 𝑚 is considered to be large enough there
will be no significant difference between these two quantities, meaning that we have reached
an optimal degree.

Hence, we will test the hypothesis 𝐻0 : Median(D𝑚−1) = Median(D𝑚) vs. 𝐻1 :
Median(D𝑚−1) > Median(D𝑚) and we will increase 𝑚 unity by unity until we no longer
reject the null hypothesis. Thus, the optimal degree is given by 𝑚𝑜𝑝𝑡 = min{𝑚 > 4 :
p-value > 0.1} + 1. Here, 𝑚 ≥ 5 because our proposed method for the minimum degree is
available for 𝑚 ≥ 4. Then, we will start the comparison of the direct estimation for 𝑚 = 5
with the degree elevation method based on the posterior sample of a BP with 𝑚 = 4.

Criterion 2 - difference between estimated curves

The estimation for the function of interest, as defined in Equation (3.13), can be
rewritten as 𝑓(𝑡;𝑚 − 1) = (𝜉𝑚−1)⊤b𝑚−1(𝑡/𝑇𝑚𝑎𝑥), where b𝑚−1(𝑡/𝑇𝑚𝑎𝑥) is the vector of
Bernstein basis and 𝜉𝑚−1 is the vector of coefficients. The second criterion is based on the
distance between estimated curves based on both 𝜉𝑚−1 and 𝜉𝑚−1. This distance will be
defined as
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𝐷𝑚−1 =
∫︁ 1

0
(𝑓(𝑡; 𝑚 − 1) − 𝑓(𝑡; 𝑚 − 1))2𝑑(𝑡/𝑇𝑚𝑎𝑥)

=
∫︁ 1

0

(︁
(𝜉𝑚−1)⊤b𝑚−1

(︁
𝑡

𝑇𝑚𝑎𝑥

)︁
− (𝜉𝑚−1)⊤b𝑚−1

(︁
𝑡

𝑇𝑚𝑎𝑥

)︁)︁2
𝑑(𝑡/𝑇𝑚𝑎𝑥)

=
∫︁ 1

0

[︃
𝑚∑︁

𝑘=1

𝑚∑︁
𝑙=1

(𝜉𝑚−1
𝑘 − 𝜉𝑚−1

𝑘 )(𝜉𝑚−1
𝑙 − 𝜉𝑚−1

𝑙 )𝑏𝑘,𝑚−1

(︁
𝑡

𝑇𝑚𝑎𝑥

)︁
𝑏𝑙,𝑚−1

(︁
𝑡

𝑇𝑚𝑎𝑥

)︁]︃
𝑑(𝑡/𝑇𝑚𝑎𝑥)

=
𝑚∑︁

𝑘=1

𝑚∑︁
𝑙=1

(𝜉𝑚−1
𝑘 − 𝜉𝑚−1

𝑘 )(𝜉𝑚−1
𝑙 − 𝜉𝑚−1

𝑙 )
∫︁ 1

0

[︁
𝑏𝑘,𝑚−1

(︁
𝑡

𝑇𝑚𝑎𝑥

)︁
𝑏𝑙,𝑚−1

(︁
𝑡

𝑇𝑚𝑎𝑥

)︁]︁
𝑑(𝑡/𝑇𝑚𝑎𝑥)

=
𝑚∑︁

𝑘=1

𝑚∑︁
𝑙=1

(𝜉𝑚−1
𝑘 − 𝜉𝑚−1

𝑘 )(𝜉𝑚−1
𝑙 − 𝜉𝑚−1

𝑙 )
(︂

𝑚 − 1
𝑘 − 1

)︂(︂
𝑚 − 1
𝑙 − 1

)︂
Γ(𝑘 + 𝑙 − 1)Γ(2𝑚 − 𝑘 − 𝑙 + 1)

Γ(2𝑚)

=
𝑚∑︁

𝑘=1

𝑚∑︁
𝑙=1

(𝜉𝑚−1
𝑘 − 𝜉𝑚−1

𝑘 )(𝜉𝑚−1
𝑙 − 𝜉𝑚−1

𝑙 ) 1
(2𝑚 − 1)𝐻𝑦𝑝𝑒𝑟𝐺(𝑘 − 1; 2𝑚 − 2, 𝑘 + 𝑙 − 2, 𝑚 − 1)

= (𝜉𝑚−1 − 𝜉𝑚−1)⊤A(𝜉𝑚−1 − 𝜉𝑚−1), (3.17)

where A is an 𝑚×𝑚 matrix such that A = [𝑎𝑘𝑙], for 𝑘 = 1, 2, . . . ,𝑚, 𝑙 = 1, 2, . . . ,𝑚 with
𝑎𝑘𝑙 = 1

(2𝑚− 1)𝐻𝑦𝑝𝑒𝑟𝐺(𝑘− 1; 2𝑚− 2, 𝑘+ 𝑙− 2,𝑚− 1). At last, 𝐻𝑦𝑝𝑒𝑟𝐺(𝑘− 1; 2𝑚− 2, 𝑘+

𝑙 − 2,𝑚− 1) is the probability of 𝑘 − 1 successes from an 𝐻𝑦𝑝𝑒𝑟𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 distribution
with parameters (2𝑚− 2, 𝑘 + 𝑙− 2,𝑚− 1). See this result with details in the Appendix A,
page 105.

Here, we are interested in testing 𝐻0 : Median(D𝑚−1) = Median(D𝑚) vs. 𝐻1 :
Median(D𝑚−1) > Median(D𝑚). Similarly to the first criterion, to reject the null hypothesis
means that 𝑚 is still low and, as a result, a better estimated curve can be obtained by
increasing the degree by a unity. The optimal value of 𝑚 is 𝑚𝑜𝑝𝑡 = min{𝑚 > 4 : p-value >
0.1} + 1.

The difference between the proposed criteria is that the first one considers only BP
coefficients, which evaluate the approximated curve difference in 𝑚 points. The second one
takes into account the entire approximation difference. In order to test these hypothesis,
we can use Sign Test and/or Wilcoxon Rank Test; see more about these tests in Gibbons
and Chakraborti (2003). In addition, both tests are available in R. The Sign test can be
accessed using the package BSDA (Arnholt and Evans, 2017) and the Wilcoxon test at the
R basis.

In this chapter we have introduced the Bernstein Polynomials and we described
how to use this tool to approximate target functions. In our case, these functions were the
baseline hazard function / cumulative baseline hazard function and the time-varying part
of the longitudinal component. We also gave an intuition of how this mechanism uses data
information in the approximation procedure. Moreover, we discussed properties and we
proposed methods to choose an optimal degree.

We remind that our main contribution is to jointly model longitudinal and survival
data using Bernstein Polynomials in both sub-models. Besides that, the method that we
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proposed for choosing for the minimum and optimal values of the degree is a novelty. Next
chapter focuses on simulation studies.
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4 Simulation Studies

In this thesis we conducted two simulation studies. The main goal of the first
one was to verify the performance of the two proposed degree selection methods. We
aimed at investigating if the theoretical results that we derived could be put into practice.
In the second simulation study, our purpose was to (i) check the performance of the
proposed model, and (ii) compare our proposal to other models available in the literature.
Description, discussion and results of these studies will be covered in this chapter.

The comparison measures we adopted in this work were the Deviance Information
Criterion (DIC) (Spiegelhalter et al., 2002), the Logarithm of the Pseudo-Marginal Like-
lihood (LPML) (Gelman et al., 2003) and the Watanabe-Akaike Information Criterion
(WAIC) (Watanabe, 2010; Vehtari and Gelman, 2014). The last two measures will be
shown multiplied by -2 in order to be in the same scale as the DIC. These measures tell
which model is the best one within all the fitted models. So, in this comparison, the lower
these measures are, the better the model is. Details about these criteria can be seen in the
Appendix B (page 107).

Analyses were performed using the software R (R Core Team, 2019) and the platform
Stan (Carpenter et al., 2017; Stan Development Team, 2018). In order to connect R and
Stan, the package RStan (Stan Development Team, 2019) was used.

4.1 Evaluation of the degree selection methods
Suppose that the true curve of a certain phenomena evolves according to a function

𝑓(𝑡) = 10 + 10 sin (2𝜋𝑡), 𝑡 ∈ (0, 1). The random variable referring to the observed values is
𝑌𝑖(𝑡𝑖𝑗) for subjects 𝑖 = 1, 2, . . . , 𝑛 and measurements 𝑗 = 1, 2, . . . , 𝐽𝑖. Each observation is
equal to the “true” and unobserved value 𝑓(𝑡𝑖𝑗) plus a measurement error:

𝑌𝑖(𝑡𝑖𝑗) = 𝑊𝑖(𝑡𝑖𝑗) + 𝜖(𝑡𝑖𝑗) = 𝑓(𝑡𝑖𝑗) + 𝜖(𝑡𝑖𝑗). (4.1)

Here, 𝑊𝑖(𝑡𝑖𝑗) represents the true value of the longitudinal variable. This true value behaves
according to the function 𝑓 . Next, 𝜖(𝑡𝑖𝑗) is an independent and identically normally
distributed random error with mean 0 and variance 𝜎2

𝜖 .

We generated 100 data sets with sample size 𝑛 = 50 each. The number of mea-
surements were uniformly distributed within the set {3, 4, . . . , 10}. The first measurement
time was always 0 (i. e., 𝑡𝑖1 = 0 ∀ 𝑖) and the measurement times for 𝑖 = 1, 2, . . . , 𝑛
and 𝑗 = 2, 3, . . . , 𝐽𝑖 were sampled from a 𝐵𝑒𝑡𝑎(1, 3) distribution. This distribution
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has high density at the beginning of the interval (0, 1), representing the idea that
there are more measurements at initial times and fewer ones at final times. Thus,
∀ 𝑖 we sampled W𝑖 = (𝑊𝑖(𝑡𝑖1),𝑊𝑖(𝑡𝑖2), . . . ,𝑊𝑖(𝑡𝑖𝐽𝑖

))⊤ ∼ 𝑁𝑜𝑟𝑚𝑎𝑙𝐽𝐼
(f𝑖,Σ𝐽𝑖

), where f𝑖 =
(𝑓(𝑡𝑖1), 𝑓𝑖(𝑡𝑖2), . . . , 𝑓𝑖(𝑡𝑖𝐽𝑖

))⊤, Σ𝐽𝑖
= [𝜎𝑗𝑗′ ], 𝜎𝑗𝑗′ = 6 if 𝑗 ̸= 𝑗′ and 𝜎𝑗𝑗′ = 32 if 𝑗 = 𝑗′. At last,

we used Equation (4.1) to obtain the observed values y𝑖 = (𝑦𝑖(𝑡𝑖1), 𝑦𝑖(𝑡𝑖2), . . . , 𝑦𝑖(𝑡𝑖𝐽𝑖
)),

∀ 𝑖, with 𝜎𝜖 = 1.5. We highlight that the structure of these data being in a longitudinal
configuration was merely for convenience, and it does not favor our degree selection method.

The true curve 𝑓(𝑡) is illustrated on Figure 6. We can see that it changes behavior
in two points, at 𝑡 = 1/4 and 𝑡 = 3/4. Therefore, considering that this information is
known by an expert, the next step is to translate this knowledge to Beta distributions
with high densities in intervals including these two points (see step by step in page 55).
Then, we chose 𝐵𝑒𝑡𝑎(11, 34), 𝐵𝑒𝑡𝑎(117, 351) and 𝐵𝑒𝑡𝑎(1172, 3515). The expected values
for these distributions are 0.2444, 0.2500 and 0.2501 and the variances are 0.0040, 0.0004
and 0.00004.
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Figure 6 – Graph of the function 𝑓(𝑡) = 10 + 10 sin (2𝜋𝑡), 𝑡 ∈ (0, 1).

In this example both turning points are equally spaced in relation to the boundaries.
So, in this specific case, we can consider only one of them, because the indicated minimum
value will be exactly the same. We chose the first one, 𝑡 = 1/4. In a case where the points
in which a change of behavior is expected are not equally spaced, one can apply the step
by step for each one of them. Then, the final minimum degree would be the maximum of
the indicated values. Another strategy would be to choose the point that is closer to the
boundaries.

The representation of these densities along with the true mean curve can be observed
at Appendix B, Figure 24 (page 109). Tables 2 and 3 show the probability function and
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the cumulative distribution function of the random variable 𝑀 given the three chosen Beta
distributions for 𝑈1 and 𝑈2. We can see that the highest probability for all three cases
is when 𝑚 = 6. In addition, P(𝑀 ≥ 6|(𝑈1, 𝑈2)) ≥ 0.5 in all examples. Thus, a suitable
minimum value for 𝑚 in this example is 6. We will use the proposed methods to point out
the optimal degree for the BP that best approximates 𝑓(𝑡).

Table 2 – Probability function of 𝑀 given different distributions for 𝑈1 and 𝑈2, i. e., P(𝑀 =
𝑚|(𝑈1, 𝑈2))).

Distribution of 𝑚

𝑈1 and 𝑈2 4 5 6 7 8 9 10 11 12 13 14 . . .

𝐵𝑒𝑡𝑎(11, 34) 0.0078 0.1878 0.3612 0.2463 0.1148 0.0477 0.0195 0.0082 0.0035 0.0016 0.0008 . . .
𝐵𝑒𝑡𝑎(117, 351) 0.0000 0.2430 0.7480 0.0090 0.0000 0.0000 0.000 0.0000 0.0000 0.0000 0.0000 . . .
𝐵𝑒𝑡𝑎(1172, 3515) 0.0000 0.2511 0.7489 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 . . .

Table 3 – Cumulative distribution function of 𝑀 given different distributions for 𝑈1 and 𝑈2,
i. e., P(𝑀 ≤ 𝑚|(𝑈1, 𝑈2))).

Distribution of 𝑚

𝑈1 and 𝑈2 4 5 6 7 8 9 10 11 12 13 14 . . .

𝐵𝑒𝑡𝑎(11, 34) 0.0078 0.1957 0.5569 0.8032 0.9180 0.9656 0.9851 0.9933 0.9969 0.9985 0.9992 . . .
𝐵𝑒𝑡𝑎(117, 351) 0.0000 0.2430 0.9909 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 . . .
𝐵𝑒𝑡𝑎(1172, 3515) 0.0000 0.2511 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 . . .

For each data set, we fitted the model in Equation (3.2) with orders in the
set {4, 5, . . . , 16}. For the MCMC specification, we set a burn-in of 50,000, a lag of
20 and we saved 5,000 posterior values. The prior distributions were weakly infor-
mative: 𝜇𝜉 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙𝑚𝐿

(0𝑚𝐿
, (10)2I𝑚𝐿

), Σ−1
𝜉 ∼ 𝑊𝑖𝑠ℎ𝑎𝑟𝑡(𝑚𝐿 + 2, (1/𝑚𝐿)I𝑚𝐿

), and
1/𝜎2

𝜖 ∼ 𝐺𝑎𝑚𝑚𝑎(0.01, 0.01). Here, 0𝑚𝐿
represents a vector of length 𝑚𝐿 in which each

component is equal to 0, and I𝑚𝐿
stands for an 𝑚𝐿 ×𝑚𝐿 identity matrix.

Our aims were (i) to compare the best degree for the BP suggested by both proposed
criteria; and (ii) given the optimal degree, to indicate when changes in the target curve occur.
Moreover, since we know the true curve function 𝑓(𝑡), we can use both proposed methods
to obtain the optimal degree by comparing the estimates 𝜉𝑚−1 = (𝜉𝑚−1

1 , 𝜉𝑚−1
2 , . . . , 𝜉𝑚−1

𝑚 )⊤

and the true values that this vector of parameters represents, which are 𝑓((𝑙− 1)/(𝑚− 1)),
for 𝑙 = 1, 2, . . . ,𝑚.

Table 4 shows results regarding the optimal degree for the BP. The contents in
this table are the frequencies in which each degree was selected as the best one. This
selection varied according to the criterion (1 or 2, see Section 3.5 on page 56) and the
non-parametric tests (Sign or Wilcoxon). The left side of this table is based on Criterion
1, i. e., difference between coefficients. We compared the difference between estimated BP
coefficients versus BP coefficients obtained via degree elevation as well as the difference
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between estimated BP coefficients versus true BP coefficients. In all these cases, both
Sign and Wilcoxon tests indicated that 𝑚𝑜𝑝𝑡 = 10. Nonetheless, when we compare the
direct estimation against points of the true curve (columns 3 and 4), there was not a clear
difference between 𝑚 = 10 and 𝑚 = 11. Since in the real data scenario we do not know
the true curve, we will choose the best degree as 𝑚𝑜𝑝𝑡 = 10. Notwithstanding, merely for
comparison purposes, we will also discuss results when 𝑚𝑜𝑝𝑡 = 11.

Table 4 – Optimal degree for BP (𝑚𝑜𝑝𝑡) based on proposed criteria.

Difference between coefficients Difference between mean curves
degree elevation true degree elevation true

𝑚 Sign Wilcoxon Sign Wilcoxon Sign Wilcoxon Sign Wilcoxon
5 0 0 0 0 0 0 0 0
6 0 0 0 1 65 60 0 0
7 0 0 0 0 12 7 2 2
8 14 11 8 6 4 5 3 3
9 16 17 7 8 11 10 2 2
10 47 45 35 36 4 5 15 15
11 20 24 34 35 3 8 18 17
12 3 3 14 13 1 4 15 13
13 0 0 0 0 0 1 17 14
14 0 0 2 1 0 0 7 10
15 0 0 0 0 0 0 8 8
16 0 0 0 0 0 0 4 4
≥ 17 0 0 0 0 0 0 9 12

In turn, the right side of Table 4 shows results for the same comparisons above
based on the differences between the entire mean curves (Criterion 2). Thus, we have
differences between direct estimated mean curve versus mean curve via degree elevation
as well as the difference between direct estimated mean curve versus true mean curve.
According to Criterion 2, the best degree is 𝑚𝑜𝑝𝑡 = 6; on the other hand, if we compare
estimated results to the true mean curve, 𝑚𝑜𝑝𝑡 = 11. Using the same arguments above,
this method selects the best degree 𝑚𝑜𝑝𝑡 = 6 but it is also worth discussing results when
𝑚𝑜𝑝𝑡 = 11.

Based on the previous discussion, we evaluated the probability of change in the
mean curve for 𝑚 = 6, 10 and 11, see Figure 7. On the left panel of this figure (Figures 7a,
7c and 7e) we can observe boxplots based on 100 posterior probabilities of a change in the
mean curve. These probabilities are defined as P

(︁
(𝜇𝑚−1

𝜉𝑙
− 𝜇𝑚−1

𝜉𝑙−1
)(𝜇𝑚−1

𝜉𝑙+1
− 𝜇𝑚−1

𝜉𝑙
) < 0|Data

)︁
,

for 𝑙 = 2, 3, . . . ,𝑚− 2 and they can be calculated as

(i) fix one data set and compute the difference between adjacent coefficients (𝜇𝑚−1
𝜉𝑙

−
𝜇𝑚−1
𝜉𝑙−1

), for 𝑙 = 2, 3, . . . ,𝑚, using the posterior sample. It leads to a 5000 × (𝑚− 1)
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matrix. We can call this matrix 𝑆1;

(ii) verify the sign of each element of the matrix 𝑆1. Let this matrix with the sign
representations be called 𝑆2;

(iii) build matrix 𝑆3 with dimensions (5000 × (𝑚− 2)). In order to fill matrix 𝑆3 we will
compare the signs of matrix 𝑆2. Then, for the 𝑠-th posterior sample if the signs of
(𝜇𝑚−1

𝜉𝑙
− 𝜇𝑚−1

𝜉𝑙−1
) and (𝜇𝑚−1

𝜉𝑙+1
− 𝜇𝑚−1

𝜉𝑙
) are equal, the (𝑠, 𝑙)-th element is equal to zero,

for 𝑠 = 1, 2, . . . , 5000 and 𝑙 = 1, 2, . . . ,𝑚− 2. Otherwise, it is equal to 1;

(iv) compute a vector of the posterior probability of a change by checking how many
values in each column of matrix 𝑆3 were equal to 1. This number is divided by the
posterior sample size 5000. This vector is composed of 𝑚− 2 components;

(v) repeat the procedures above for the results of all generated data sets.

The procedures above led us to the results shown in the boxplots of the left panel of Figure
7. Each value of the vector in item (iv) refers to the possibility of a change in one of the
𝑚−2 time points. The red line in these figures represent a cutting value of 0.5. In addition,
if the model captures a change in the target function, it starts in 𝑡 = (𝑙 − 2)/(𝑚 − 1),
happens around 𝑡 = (𝑙 − 1)/(𝑚 − 1) and finishes on 𝑡 = 𝑙/(𝑚 − 1), 𝑙 = 2, 3, . . . ,𝑚 − 1.
It means that it is necessary the information of three coefficients in order to capture a
change; therefore, there will be 𝑚− 2 boxplots in each figure of the left panels.

The right panel in Figure 7 shows each of the 𝑚 Bernstein basis. The red dotted line
is the true curve 𝑓 after it was reescaled to the (0, 1) interval. We reescaled this function
so that it could fit in the figures of the basis and, therefore, facilitate the comparisons. The
colored straight lines represent the bases related to the coefficients that, in turn, represent
at each time point the mean curve is expected to change its behavior. We determined that
it is likely that a change will occur if the median of the probabilities for the data sets was
equal or above 0.6.

Consider 𝑚 = 6 (Figures 7a and 7b); this value was selected as the optimal degree
according to Criterion 2. We can see that the posterior probabilities of change around
𝑡 = 0.2 are all below 0.5. That is, results show that is extremely unlikely that a change
starts in 𝑡 = 0, happens around 𝑡 = 0.2 and ends until 𝑡 = 0.4. The second boxplot is
entirely above the straight line 0.5; thus, it is extremely likely that a change will occur
around 𝑡 = 0.4. In turn, the median of the third boxplot is above 0.5, therefore we can
consider that there will be another change around 𝑡 = 0.6 and, at last, the fourth boxplot
indicates that no change is likely to occur in 𝑡 = 0.8. Figure 7b shows all 𝑚 = 6 Bernstein
basis and the colored ones are those related to the coefficients that detected a change in
the mean curve. We can see that the BP detects the changes even with a small degree.
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(a) 𝑚 = 6.
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(b) 𝑚 = 6.
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(c) 𝑚 = 10.
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(d) 𝑚 = 10.
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(e) 𝑚 = 11.
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(f) 𝑚 = 11.

Figure 7 – Posterior probability of a change point in the mean curve (left panel) and basis
related to these changes (right panel), for 𝑚 = 6, 10 and 11.

However, this degree was too low to allow the estimation to detect this change at a precise
time point.

The same analysis was done considering 𝑚 = 10. We can see in Figure 7c that
the results indicate that changes occur in the intervals 𝑡 ∈ (0.11, 0.44) and 𝑡 ∈ (0.56, 1).
The highest probabilities are on 𝑡 = 0.33 and 𝑡 = 0.67. An interesting aspect to point out
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is that, since there were fewer observations at final times, there are more uncertainty in
these estimates. The implication of this characteristic is that it leads to a wider interval
pointing to where the change might occur. In Figure 7d we can see that there is one basis
related to the first change and three basis related to the second one. We have more basis
related to the second change precisely due to less data at this part.

In Figure 7e we can see results indicating that a change will occur around 𝑡 ∈
(0.1, 0.5) with higher probability centered on 𝑡 = 0.3. Another change is detected on
𝑡 ∈ (0.5, 1), being most likely to happen around 𝑡 = 0.7. Figure 7f shows the basis functions
that are related to the changes. Similar to what we discussed for 𝑚 = 10, here we also
have more uncertainty related to the second change due to fewer data.

Figure 8 shows the median of the estimated posterior mean curves for each of the
100 data sets (i. e., median of estimated mean function based on all 5000 posterior values)
and 𝑚 = {6, 10, 11}. The true mean curve is the straight red line. In a general aspect,
performance based on the three selected degrees presented similar results. Then, we must
consider the trade-off between a higher degree (in this case 𝑚 = 10 or 𝑚 = 11) and the
concept of parsimony. A higher degree leads to a more accurate indication of time when
the change happens, due to the fact that the proposed method detects changes around
a time 𝑡 such that 𝑡 = (𝑙 − 1)/(𝑚 − 1). However, regarding the overall mean curve the
lower degree (𝑚 = 6) is enough to provide good estimates. In addition, the variability of
estimates at the end of follow up is larger due to fewer data.

This simulation study indicates that the two methods we propose for the degree
selection presented adequate results. Comparing the outcomes, both BP with degrees
𝑚 = 6 and 𝑚 = 10 were able to approximate well the target function. On one hand,
estimates based on the lower degree presented lower variability even at the final times -
this region is where we had less data. On the other hand, the greater is the degree of the
BP, the more accurate it will point out the time points in which the changes occur. That
is, when 𝑚 = 6 the possible times points evaluated were 𝑡 ∈ {0.2, 0.4, 0.6, 0.8}; in turn, if
𝑚 = 10, this approximation has the set 𝑡 ∈ {0.1, 0.2, . . . , 0.8, 0.9} to point out the changes.
Thus, in the cases where the methods we proposed are not in accordance with each other,
one should prioritize or (i) the final result of the estimation of the target function; or (ii)
the will of being able to tell when the approximate curve will change behavior. In the first
case, one should choose the lower indicated degree; on the other hand, if the main goal is
(ii) then the choice of the optimal degree should be the maximum value indicated by our
proposed criteria.

The next sections focuses on the second simulation study. Our main goal with
this study was to discuss the performance of the proposed model, i. e., joint modeling
longitudinal and survival data using BP in both sub-models.
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(c) 𝑚 = 11.

Figure 8 – Overall median of the posterior mean curves along with the true curve, for
𝑚 = 6, 10 and 11.

4.2 Evaluating the proposed modeling approach
It was described on Section 2.3 that joint models are composed of two sub-models.

At the basics, these sub-models consist of a NLME for the longitudinal part and a
proportional hazards framework for modeling survival times.

Focusing on the survival sub-model, Bender et al. (2005) described a way of
generating survival data based on the parametric proportional hazard model. This method
can be applied for any distribution using the baseline cumulative hazard function 𝐻0(.)
and its inverse 𝐻−1

0 (.); therefore, it includes usual and non usual distributions for the
failure times. Following this method, Austin (2012) showed how to simulate survival data
from a proportional hazards model with a time-dependent covariate. This paper considers
the case of continuous and binary time-dependent variables; the latter can present one or
more changes through time. The author also derived calculations to obtain closed-form
expressions to generate survival times if we assume that they follow an Exponential or a
Gompertz distribution.
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Despite of these data generation methods for survival times, Bender et al. (2005)
and Crowther et al. (2012) claim that most common distributions for these times such as
Exponential, Gompertz, and Weibull may be restrictive and, therefore, fail to represent
practical situations. One of these situations, for example, is the hazard function presenting
one or more turning points. According to Crowther and Lambert (2013), it is frequent
to come across real data with such peculiarity. In this context, Crowther et al. (2012)
overcame this challenge by generating survival times assuming that they follow a mixture of
Weibull distributions. By using this mixture, it is possible to obtain flexible hazard curves,
including the mentioned situation of a turning point. After defining this distribution for
the survival times, the authors followed the method proposed by Bender et al. (2005) to
generate survival times. Crowther and Lambert (2013), among other characteristics such
as time dependent effect, showed how to simulate joint longitudinal and survival data with
a flexible baseline hazard function.

The scenario of the simulation that we will explore in this section consists of a
NLME Model for the longitudinal sub-model and a Gompertz distribution for the survival
times. These joint data were generated following the step by step found in Crowther and
Lambert (2013) and the expressions obtained by Austin (2012). This specific configuration
has the advantage that the cumulative hazard function can be obtained in a closed-form,
even considering the time-varying covariate. In this case, although the form of the baseline
hazard function is necessarily a monotone function of time and, due to this reason, it will
not present a change point, it is not as trivial as a constant function.

Following the methods discussed above, the procedure to generate joint longitudinal
and survival data is:

1. obtain the cumulative hazard function 𝐻(.);

2. find its inverse function 𝐻−1(.);

3. sample survival times following Bender et al. (2005);

4. define event and censored times considering a hypothetical maximum follow-up time
(type I scheme of censorship);

5. define measurement times based on the observed survival times;

6. generate longitudinal data.

A relevant observation is that there can be variations in the scheme described above. More
details about them can be seen in Crowther and Lambert (2013).

Regarding the longitudinal sub-model, it is expected that the approximation by
the BP presents results especially similar to the true model. This expectation is due to the
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fact that the BP can approximate well smooth curves, but mainly motivated by the result
of Property 1 (Section 3.4, page 49). The formulation of both longitudinal and survival
sub-models are given by Equations (4.2) and (4.3), respectively.

𝑌𝑖(𝑡𝑖𝑗) = 𝑊𝑖(𝑡𝑖𝑗) + 𝜖𝑖(𝑡𝑖𝑗) , 𝑖 = 1, 2 . . . 𝑛 , 𝑗 = 1, 2, . . . , 𝐽𝑖
= x𝑖𝛽 + 𝑏0𝑖 + 𝑏1𝑖𝑡𝑖𝑗 + 𝜖𝑖(𝑡𝑖𝑗)

= 𝑥𝑖1𝛽1 + 𝑥𝑖2𝛽2 + 𝑏0𝑖 + 𝑏1𝑖𝑡𝑖𝑗 + 𝜖𝑖(𝑡𝑖𝑗), (4.2)

ℎ𝑖(𝑢𝑖) = ℎ0(𝑢𝑖) exp{𝜂𝑊𝑖(𝑢𝑖) + z𝑖𝜓}

= 𝜆𝑒𝛼𝑢𝑖 exp{𝜂 [𝑥𝑖1𝛽1 + 𝑥𝑖2𝛽2 + 𝑏0𝑖 + 𝑏1𝑖𝑢𝑖] + 𝑧𝑖1𝜓1 + 𝑧𝑖2𝜓2}, (4.3)

where 𝜖𝑖(𝑡𝑖𝑗) ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎2
𝜖 = 1.52) is the i. i. d. measurement error. We considered a

sample size of 𝑛 = 400. Since the number of measurements for each subject depends on the
generated survival times, this quantity was also random. There were two covariates: one
continuous, x1 = (𝑥11, 𝑥12, . . . , 𝑥1𝑛) = (𝑧11, 𝑧12, . . . , 𝑧1𝑛) = z1, and one dichotomous, x2 =
(𝑥21, 𝑥22, . . . , 𝑥2𝑛) = (𝑧21, 𝑧22, . . . , 𝑧2𝑛) = z2. Their distributions were 𝑥1𝑖 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 1)
and 𝑥2𝑖 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5), 𝑖 = 1, 2, . . . , 𝑛. In turn, the vector of coefficients related to
the covariates on the longitudinal model were 𝛽1 = −2 and 𝛽2 = 0.5, whereas the
coefficients associated with covariates in the survival sub-model had opposite signs, 𝜓1 = 2
and 𝜓2 = −0.5. The vector of random effects followed a bivariate Normal distribution,

b𝑖 = (𝑏0𝑖, 𝑏1𝑖) ∼ 𝑁𝑜𝑟𝑚𝑎𝑙2

⎛⎝⎡⎣ 0.2
−1.2

⎤⎦ ,
⎡⎣ 1.32 0.52

0.52 12

⎤⎦⎞⎠, 𝑖 = 1, 2, . . . , 𝑛. In addition to that,

the failure times followed a 𝐺𝑜𝑚𝑝𝑒𝑟𝑡𝑧(𝛼 = 1.1, 𝜆 = 0.1) distribution and we set that
subjects could be followed-up until 3 unities of time. Then, the generated survival times
greater than 3 were considered censorings. The parameter that links both sub-models
was set to be 𝜂 = 0.25. This whole set-up led to an approximate 50% of observed failure
times and a maximum of six measurements per person. More details related to the data
generation process and about the Gompertz distribution can be seen in Appendix B, page
110.

The fitted models and their notation are described in Table 5. This configuration
was based on the idea to adjust the true model, the proposed model, as well as an
alternative framework representing an intermediate model in what concerns their flexibility
and robustness.

Basically, we can compare the true model for the longitudinal component against
the approximation by the BP. In what concerns the survival sub-model, the comparison
takes its place between the true distribution (Gompertz) with the Weibull distribution and
the BP approximation. It is noteworthy that, in our example, the hazard function of the
Gompertz distribution presents an increasing behavior (see the hazard function in page
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Table 5 – Description and notation of the fitted models.

Notation Longitudinal Sub-Model Survival Sub-Model

ℳ𝑁
𝐺𝑜 Linear Normal Mixed Effects Gompertz

ℳ𝑁
𝑊 𝑒 Linear Normal Mixed Effects Weibull

ℳ𝐵𝑃𝑚𝐿

𝐵𝑃𝑚𝑆
Bernstein Polynomial with degree 𝑚𝐿 − 1 Bernstein Polynomial with degree 𝑚𝑆

We recall the degree 𝑚𝑆 is referred to the cumulative baseline hazard function. Therefore, the
baseline hazard function is modeled by a BP with degree 𝑚𝑆 − 1.

110) and that this characteristic is encompassed by the Weibull distribution. Evidently,
the theory of the BP indicates that they are also able to capture such function. So, in a
sense, all configurations of Table 5 are expected to present a good performance.

The prior distributions for the parameters were set to be weakly informative.
These settings were defined aiming at a good mixing of the MCMC chains regarding the
total number of parameters and model complexity. There is a set of parameters that are
the same for all fitted models, they are 𝛽, 𝜎𝜖, 𝜂, 𝜓. Evidently, the prior distributions
for these parameters were the same: 𝛽 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙2(02, 52I2), 𝜎𝜖 ∼ 𝐺𝑎𝑚𝑚𝑎(0.1, 0.1),
𝜂 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 52) and 𝜓 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙2(02, 52I2). We remind that the notation I2 represents
a 2 × 2 identity matrix and 02 is a vector of length 2 in which all the components are
equal to zero. In addition, the prior distributions for the parameters of the random effects
under a Normal distribution were 𝜇𝑏 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙2 (02, 52I2) and Σ−1

𝑏 ∼ 𝑊𝑖𝑠ℎ𝑎𝑟𝑡(4, 1/2I2).
Under a Bernstein Polynomial approach with degree 𝑚𝐿 − 1 = 4, the prior distributions
were 𝜇𝜉 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙𝑚𝐿

(0𝑚𝐿
, 52I𝑚𝐿

) and Σ𝜉 ∼ 𝑊𝑖𝑠ℎ𝑎𝑟𝑡(𝑚𝐿 + 2, (1/𝑚𝐿)I𝑚𝐿
). At last, the

shape 𝛼 and scale 𝜆 parameters of the Gompertz and Weibull distributions had, a priori,
a 𝐺𝑎𝑚𝑚𝑎(0.1, 0.1) distribution. The vector of coefficients of the BP in the survival sub-
model was set with log(𝛾𝑘) ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 52), 𝑘 = 1, 2, . . . ,𝑚𝑆. The degree of the BP for
the longitudinal sub-model was 𝑚𝐿 = 5 and for the survival sub-model was 𝑚𝑆 = 5 and
10. This simulation study was based in 500 Monte Carlo (MC) replicas. Here we set the
burn-in as 3,000, a lag of 1, and 4,000 posterior values were saved for the analyzes.

It is important to mention that the shape parameter of the Gompertz distribution
is defined in the real domain, i. e., 𝛼 ∈ R (see details in the Appendix B, page 110).
Therefore, by setting the prior distribution for this parameter as 𝛼 ∼ 𝐺𝑎𝑚𝑚𝑎(0.1, 0.1),
we are restricting the possible values for this quantity to the R+. Then, in this case, we
are using a prior information that the baseline hazard function presents an increasing
behavior. Thus, we give the true model an advantage.

We also tested to fit all these models with a different prior distribution for the
variance-covariance matrices, Σ𝑏 and Σ𝜉. In this alternative, we did not take into account
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the dependence between the vector of coefficients / random effects. However, note that

if Σ𝑏 =
⎡⎣𝜎2

00 𝜎01

𝜎10 𝜎2
11

⎤⎦ =
⎡⎣𝜎2

00 0
0 𝜎2

11

⎤⎦ . That is, if 𝜎01 = 𝜎10 = 0, we have that 𝑉 𝑎𝑟[𝑌𝑖(𝑡𝑖𝑗)] =

𝜎2
𝜖 + [f(𝑡𝑖𝑗)] Σ𝑏 [f(𝑡𝑖𝑗)]⊤ = 𝜎2

00 + 𝜎2
11𝑡

2
𝑖𝑗 + 𝜎2

𝜖 . Thus, there can be an identifiability problem
with the parameters 𝜎2

00 and 𝜎2
𝜖 because 𝜎2

00 + 𝜎2
𝜖 = (𝜎2

00 + 𝑐) + (𝜎2
𝜖 − 𝑐), where 𝑐 can be

any real constant. In the case of Bernstein Polynomials, Σ𝜉 is a 𝑚𝐿 ×𝑚𝐿 matrix; then, if
the element 𝜎𝑘𝑙 = 0 for 𝑘 ̸= 𝑙 we have that

𝑉 𝑎𝑟[𝑌𝑖(𝑡𝑖𝑗)] = 𝜎2
𝜖 +

𝑚𝐿∑︁
𝑘=1

𝑚𝐿∑︁
𝑙=1

𝑏𝑘,𝑚𝐿−1

(︂
𝑡𝑖𝑗
𝑇𝑚𝑎𝑥

)︂
𝑏𝑙,𝑚𝐿−1

(︂
𝑡𝑖𝑗
𝑇𝑚𝑎𝑥

)︂
𝜎𝑘𝑙

= 𝜎2
𝜖 +

𝑚𝐿∑︁
𝑙=1

[︂
𝑏𝑘,𝑚𝐿−1

(︂
𝑡𝑖𝑗
𝑇𝑚𝑎𝑥

)︂]︂2
𝜎2
𝑙 .

As a result, at time 𝑡𝑖1 = 0 the variance of 𝑌𝑖(𝑡𝑖1) will be

𝑉 𝑎𝑟[𝑌𝑖(𝑡𝑖1)] = 𝜎2
𝜖 +

𝑚𝐿∑︁
𝑙=1

[︂
𝑏𝑙,𝑚𝐿−1

(︂
𝑡𝑖1
𝑇𝑚𝑎𝑥

)︂]︂2
𝜎2
𝑙

= 𝜎2
𝜖 + 𝜎2

1, (4.4)

because the vector of Bernstein basis for the longitudinal sub-model at time 𝑡𝑖1 = 0 is
b𝑚𝐿−1(0) = (1, 0, . . . , 0). So, there may have an exchange of information between the
variance terms.

The prior distributions for the variance-covariance matrices when we did not take
the correlation into account were Σ𝑏 = diag(𝜎2

𝑏0 , 𝜎
2
𝑏1), 𝜎𝑏𝑙

∼ 𝐺𝑎𝑚𝑚𝑎(1, 1), 𝑙 = 0, 1 and
Σ𝜉 = diag(𝜎2

𝜉1 , 𝜎
2
𝜉2 , . . . , 𝜎

2
𝜉𝑚𝐿

), 𝜎𝜉𝑙
∼ 𝐺𝑎𝑚𝑚𝑎(1, 1), 𝑙 = 1, 2, . . . ,𝑚𝐿. Results for this test

can be seen in Appendix B (page 111).

A solution to the identifiability matter discussed above is to fully model the
variance-covariance matrix. It can be done by assuming that they follow, a priori, a
Wishart distribution. This specification avoids the exchange of information between the
variances since the structure of these matrices are sampled altogether, as a single parameter.
Therefore, this is the justification for the usage of this prior distribution.

Table 6 shows the coverage percentage (CP) for the main parameters based on the
HPD interval with 95% probability. The dotted line indicates a separation between the
results of the parameters associated to the longitudinal sub-model and those related to
the survival part. The dashes in this table mean that there is no related parameters in the
BP model.

Focusing on the first part of Table 6, note that the probability that the true value of
a parameter is in the HPD interval is extremely similar for all four fitted models. Moreover,
most of them are around the nominal value of 95%. This result was more than expected for
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Table 6 – Coverage percentage based on HPD intervals for main the parameters.

ℳ𝑁
𝐺𝑜 ℳ𝑁

𝑊𝑒 ℳ𝐵𝑃5
𝐵𝑃5 ℳ𝐵𝑃5

𝐵𝑃10

𝜇𝑏0 94.00 94.00 95.40 94.60

𝜇𝑏1 96.60 95.60 - -

𝛽1 94.60 94.20 94.60 94.80

𝛽2 96.00 96.40 96.00 96.00

𝜎00 93.60 94.40 - -

𝜎11 93.20 93.40 - -

𝜎01 95.00 94.60 - -

𝜎𝜖 95.20 96.00 86.20 86.40

𝜓1 96.60 52.40 96.20 96.40

𝜓2 94.40 93.40 94.80 94.60

𝜂 96.80 61.80 96.60 96.60

the first (ℳ𝑁
𝐺𝑜) and the second (ℳ𝑁

𝑊𝑒) models because, in these cases, we are fitting the
exact true model. Nonetheless, we can see that approximating the time-varying behavior
of the longitudinal variable with Bernstein Polynomials - regardless of the degree of the
BP in the survival sub-model - showed to be no disadvantageous for the most important
parameters. The only parameter in which the CP is far from the nominal value is the
standard deviation of the measurement error 𝜎𝜖. In this case, the approximation by BP
covered the true value only on 86% of the times.

The last three rows of Table 6 show results of the CP for parameters related to
the survival sub-model. It is clear that assuming a Weibull distribution for the survival
times can present issues. Using this model, the coverage for the coefficient related to the
continuous covariate 𝜓1 was only of 52.40%; for 𝜂, which is the most important parameter
in this framework, the model ℳ𝑁

𝑊𝑒 covered the true value only in 61.80% of the times. On
the other hand, the true model and the approximation by BP, with both degrees evaluated,
were able to cover the true values of these parameters in percentages close to the nominal
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value.

In order to further investigate the model performances regarding each of the
main parameters, Table 7 shows the mean (and the standard deviation) of the relative
biases (RBs) for all fitted models. This measure evaluates the difference between the
point estimates and the true values of the parameters, taking into account their scale.
These quantities were based on the posterior means, medians and modes of the 500 MC
replications. The formula for the RB measure can be seen in Equation (4.5).

𝑅𝐵(𝜃) = 𝜃 − 𝜃𝑡𝑟𝑢𝑒
|𝜃𝑡𝑟𝑢𝑒|

100%, (4.5)

where 𝜃 represents an unknown parameter. Then, 𝜃 is an estimate for this parameter. As
mentioned above, the estimates we used here were the posterior mean, median and mode.
At last, 𝜃𝑡𝑟𝑢𝑒 is the true value for this quantity.

Table 7 – Mean and standard deviations of the relative biases for the main parameters based
on the posterior means, medians and modes.

Mean Median Mode

ℳ𝑁
𝐺𝑜 ℳ𝑁

𝑊 𝑒 ℳ𝐵𝑃5
𝐵𝑃5

ℳ𝐵𝑃5
𝐵𝑃10

ℳ𝑁
𝐺𝑜 ℳ𝑁

𝑊 𝑒 ℳ𝐵𝑃5
𝐵𝑃5

ℳ𝐵𝑃5
𝐵𝑃10

ℳ𝑁
𝐺𝑜 ℳ𝑁

𝑊 𝑒 ℳ𝐵𝑃5
𝐵𝑃5

ℳ𝐵𝑃5
𝐵𝑃10

𝜇𝑏0
2.80 0.78 5.03 4.89 2.79 0.74 5.04 4.95 3.52 0.80 5.28 5.12

(62.69) (62.61) (67.41) (67.34) (62.74) (62.66) (67.52) (67.36) (63.60) (63.31) (68.44) (68.32)

𝜇𝑏1
0.20 -1.34 - - 0.17 -1.38 - - 0.16 -1.49 - -

(6.35) (6.41) - - (6.34) (6.41) - - (6.37) (6.45) - -

𝛽1
0.18 0.39 0.22 0.22 0.18 0.39 0.22 0.21 0.16 0.36 0.21 0.20

(4.42) (4.45) (4.49) (4.48) (4.42) (4.45) (4.49) (4.48) (4.47) (4.46) (4.50) (4.53)

𝛽2
-0.03 -0.21 -1.06 -0.98 -0.04 -0.26 -1.03 -0.96 -0.14 -0.12 -1.01 -0.65

(33.24) (33.25) (33.18) (33.14) (33.24) (33.26) (33.19) (33.15) (33.77) (33.48) (33.77) (33.76)

𝜎00
-3.08 -2.35 - - -3.67 -2.95 - - -4.73 -4.08 - -

(12.94) (13.02) - - (12.92) (13.00) - - (12.94) (13.07) - -

𝜎11
-1.05 -0.84 - - -1.86 -1.64 - - -3.37 -3.02 - -

(13.35) (13.36) - - (13.29) (13.31) - - (13.27) (13.32) - -

𝜎01
4.65 3.53 - - 4.95 3.88 - - 5.44 4.61 - -

(24.61) (24.79) - - (24.51) (24.70) - - (24.65) (24.83) - -

𝜎𝜖
0.50 0.33 -2.06 -2.06 0.46 0.29 -2.08 -2.09 0.37 0.23 -2.14 -2.13

(2.30) (2.29) (2.39) (2.39) (2.31) (2.29) (2.39) (2.39) (2.35) (2.32) (2.40) (2.40)

𝜓1
1.00 -11.75 1.52 1.27 0.90 -11.82 1.43 1.19 0.71 -11.98 1.20 1.03

(6.24) (5.91) (6.32) (6.28) (6.23) (5.90) (6.31) (6.27) (6.31) (5.94) (6.32) (6.30)

𝜓2
1.20 13.83 0.13 -1.16 1.29 13.87 0.19 -1.08 1.60 13.82 0.28 -1.07

(27.08) (24.62) (27.17) (27.02) (27.08) (24.60) (27.16) (27.00) (27.25) (24.79) (27.33) (27.10)

𝜂
0.90 -22.43 1.49 1.42 0.74 -22.54 1.34 1.25 0.51 -22.73 1.22 0.94

(12.54) (12.17) (12.61) (12.51) (12.51) (12.15) (12.58) (12.46) (12.55) (12.25) (12.51) (12.46)
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We can observe from this table that the RBs for the parameters related to the
longitudinal sub-model were substantially low (< 6) for all models - regardless of the
posterior point estimates. Again, this conclusion is almost immediate for the models ℳ𝑁

𝐺𝑜

and ℳ𝑁
𝑊𝑒 because they are the true ones. The novelty that we point out is the good

performance of the BP. Furthermore, it is important to highlight that although the CP for
the parameter 𝜎𝜖 was somewhat lower than the nominal value using models ℳ𝐵𝑃5

𝐵𝑃5 and
ℳ𝐵𝑃5

𝐵𝑃10 , the RBs are considerably low. It means that the estimates for this parameter are
really close to the true value, but the HPD intervals are too short to be capable to cover it.

When it comes to the parameters of the survival sub-model the RBs values were
low only for the true model and the approximation by BP, both for 𝑚𝑆 = 5 and 𝑚𝑆 = 10.
The RBs for these parameters when the survival times were assumed to follow a 𝑊𝑒𝑖𝑏𝑢𝑙𝑙

distribution were relatively higher when compared to the others. Moreover, we highlight
that these elevated values for model ℳ𝑁

𝑊𝑒 occurred especially for the parameter that links
both sub-models 𝜂. This is the most important parameter in the joint models.

The values of the CP and the RBs presented so far indicate some interpretations.
Nonetheless, a more complete analysis can be done by observing the entire distribution
of the RBs. For this purpose, Figures 9 to 15 show the boxplots of the relative biases
based on all the 500 posterior means, medians and modes. It is important to mention that
we removed the outliers from these figures. The aim with this removal was to shorten
the intervals in order to better evaluate the results. These same figures with all values
represented can be seen in Appendix B, page 112. In addition to that, one should be
attentive to the different scales of these figures.

Figures 9 to 12 show results of the parameters related to the longitudinal sub-model.
One more time, we anticipate that it is expected that the performance of the first two
models to be better, since they are exactly the model of which the longitudinal data
was generated. It is possible to note from Figure 9 that the estimates for the intercept
𝜇𝛽0 presented a quite large variation. This variation was a little bit greater for the BP
approximation. Nevertheless, the medians in these boxplots are all close to 0, which
indicates non-biased estimates. The boxplots for the approximation via BP presented a
slightly higher median for this parameter, but still close to zero.

Figure 10 focuses on the parameter 𝛽1. It represents the coefficient related to the
continuous covariate in the longitudinal sub-model. For this case, we can see that all the
medians are close to zero with a minor elevation for the models ℳ𝑁

𝐺𝑜 and ℳ𝑁
𝑊𝑒. Therefore,

the results indicate unbiased estimates. Also, the scale of this figure is remarkably lower
when compared to the previous one.

The next figure concerns the coefficient associated to the binary covariate, 𝛽2. We
can observe in Figure 11 that the estimates presented a somewhat large variation, but
the median for all the RBs were close to zero. Thus, we have unbiased estimates for this
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Figure 9 – Comparison of the relative biases of the parameter 𝜇𝑏0 based on the posterior
mean, median and mode and comparing each modeling approach.
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Figure 10 – Comparison of the relative biases of the parameter 𝛽1 based on the posterior
mean, median and mode and comparing each modeling approach.

parameter.

The results related to the standard deviation of the measurement error are shown
in Figure 12. Note that the scale of this figure is the shorter comparing to the figures in
this section. The models ℳ𝑁

𝐺𝑜 and ℳ𝑁
𝑊𝑒 present a better performance compared to that of

the BP approximation. However, we point out that the distribution of the RBs obtained by
using the BP approximation is concentrated in the interval (−5, 0). Thus, despite of this
deviation, presented in the BP approximation from what could be considered unbiased, its
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Figure 11 – Comparison of the relative biases of the parameter 𝛽2 based on the posterior
mean, median and mode and comparing each modeling approach.

values are still reasonable. As a conclusion, it reinforces the interpretation that we have
estimates that are close to the true value but with small HPD intervals.
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Figure 12 – Comparison of the relative biases of the parameter 𝜎𝜖 based on the posterior
mean, median and mode and comparing each modeling approach.

The next figures (13 to 15) show results of parameters related to the survival
sub-model. In Figure 13 we can see the relative biases for the parameter 𝜓1. This is the
representation of the coefficient related to the continuous covariate. We can observe that
to assume the survival times with a Weibull distribution, i. e. to use the model ℳ𝑁

𝑊𝑒,
leads to an underestimation of this parameter. On the other hand, the estimates obtained
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by modeling the baseline hazard function with Bernstein Polynomials indicates that it is a
competitive alternative. We recall that there is an “advantage” in the model ℳ𝑁

𝑊𝑒 since
the longitudinal sub-model is the same as the generated one.
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Figure 13 – Comparison of the relative biases of the parameter 𝜓1 based on the posterior
mean, median and mode and comparing each modeling approach.

Considering the binary covariate on the survival sub-model, see Figure 14. It shows
the relative biases for all fitted models and based on three point estimates. Similarly to
the case in Figure 13, this parameter is overestimated for the Weibull sub-model. The
performance of the BP with both degrees considered and the true model are in accordance.
That is, low bias and similar variability.

Finally, the most important parameter in the joint model framework is the linking
parameter 𝜂. We can see in Figure 15 the performance of this parameter for all fitted
models. Note that the estimates for 𝜂 using the model ℳ𝑁

𝑊𝑒 are underestimated. The
true model ℳ𝑁

𝐺𝑜, of course, presents good results as well as both models using Bernstein
Polynomials.

A form of comparing these four models can be via usual comparison measures.
Hence, Figure 16 shows the boxplots with the values of DIC, -2LPML and -2WAIC relative
to the values of the true model. That is, for each MC sample we calculated the ratio
between a particular comparison measure for one of the models with respect to the true
model. These values compose the boxplots in this figure. Then, the interpretation of the
relative rescaled comparison measures is, within the fitted models, the lower the better.
Still considering the relative measures, an additional interpretation is that when these
values are lower than 1 it means that, in this case, the performance of this model was
better than the true one. We also removed outliers from these boxplots. A figure with the
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Figure 14 – Comparison of the relative biases of the parameter 𝜓2 based on the posterior
mean, median and mode and comparing each modeling approach.
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Figure 15 – Comparison of the relative biases of the parameter 𝜂 based on the posterior
mean, median and mode and comparing each modeling approach.

comparison measures for all models and another for Figure 16 with the outliers can be
seen on the Appendix B (page 112).

According to the three comparison measures, we can conclude that the best model
is the BP approximation with degree 𝑚𝑆 = 5 for the survival sub-model. Yet, the
performance of the model ℳ𝐵𝑃5

𝐵𝑃10 was very similar to the model ℳ𝐵𝑃5
𝐵𝑃5 . However, the

comparison measures indicated that the additional flexibility and complexity provided by
the BP with degree 𝑚𝑆 = 10 is superfluous. Furthermore, note that the boxplots of the
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Figure 16 – Comparison measures relative to the true model.

relative LPML and WAIC measures for model ℳ𝑁
𝑊𝑒 are above the value 1. In Figure 27b

we can see that there were few outliers below this value. Hence, this means that the model
ℳ𝑁

𝑊𝑒 had a worse performance compared to the true one ℳ𝑁
𝐺𝑜, for almost every single

generated data set.

Next, we computed the frequency (and the percentage) of the times that each of
the models was chosen as the best one, for every single generate data set. Here, we did
not take into account the true model ℳ𝑁

𝐺𝑜. This frequency was calculated based on the
three comparison measures. These results can be seen on Table 8.

Table 8 – Frequency and percentage of the times in which each model was chosen as the
best one - excluding the true model ℳ𝑁

𝐺𝑜.

ℳ𝑁
𝑊𝑒 ℳ𝐵𝑃5

𝐵𝑃5 ℳ𝐵𝑃5
𝐵𝑃10

DIC 91 (18.20%) 244 (48.80%) 165 (33.00%)
LPML 2 (0.40%) 418 (83.60%) 80 (16.00%)
WAIC 2 (0.40%) 418 (83.60%) 80 (16.00%)

Then, we can verify that the DIC pointed out to the model ℳ𝐵𝑃5
𝐵𝑃5 as the best one

in almost 50% of all data sets. In the second place, we have the model ℳ𝐵𝑃5
𝐵𝑃10 , which was

chosen in 33% of the cases. Regarding both LPML and WAIC, this frequency/percentage
increases for nearly 84%. As a conclusion, if we had fitted only the models ℳ𝑁

𝑊𝑒, ℳ𝐵𝑃5
𝐵𝑃5 ,

and ℳ𝐵𝑃5
𝐵𝑃10 , the best choice would be to use the BP in both longitudinal and survival

sub-models. In the latter with degree 𝑚𝑆 = 5. This conclusion is in accordance with that
of Figure 16. An additional result is this same frequency (and percentage), but considering
all fitted models; see the Appendix, Table 19.
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Proceeding with the analysis of the simulated data, Figure 17 shows the mean of
the median estimated functions along with their true counterparts. That is, this figure
shows the mean of the 500 median estimated functions in the MC scheme. The functions
we evaluated were: the baseline hazard function (Panel 17a), cumulative baseline hazard
function (Panel 17b), baseline survival function (Panel 17c), and overall mean function
(Panel 17d). By observing these panels it is clear that, except for the model ℳ𝑁

𝑊𝑒, all
fitted models were able to approximate well the survival functions and the overall mean
function.
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Figure 17 – Comparison between the median baseline hazard function, cumulative baseline
hazard function, baseline survival function and overall mean curve along with
the true curve. MC scheme with 500 replications (we summarize the result by
taking the mean of the 500 estimated functions).

As a final comment, we expected that the true model would provide the best fit,
immediately followed by the model ℳ𝑁

𝑊𝑒. This expectation is based on the fact that
the longitudinal model is the same as the generated one; and the Weibull distribution
encompasses the increasing behavior presented by the true baseline hazard function in this
example. However, results show that Bernstein Polynomials were able to perform as good
as the true model - except, maybe, for the parameter 𝜎𝜖. It is also worth pointing out the
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importance of accounting a priori the information from the correlation of the measurements
from the same subjects. That is, to set a prior distribution for the variance-covariance
matrices Σ𝑏 and Σ𝜉 other than a diagonal matrix. The results shown in the Appendix B
(page 111) confirmed that the performance worsened with respect to this simpler prior
formulation.

The next section concerns a brief discussion involving the estimated baseline survival
function and the Kaplan-Meier estimates.

4.2.1 Difference between estimated baseline survival function and Kaplan-
Meier estimates

In this section we bring up a discussion about a result that we found worth of
commenting. This result concerns the difference between the estimated baseline survival
function 𝑆0(.) obtained via the joint model framework, and the Kaplan-Meier estimates.
We elaborated this brief section of debate because of the lack of information about it in
papers and books - to the best or our knowledge.

After we had fully implemented the joint model and we obtained the first results,
we compared the estimates for the baseline survival function with the KM estimates. At
that time, we were expecting that there would be a strong similarity between both results.
In our perception back then, this would be an indication that the joint model was correctly
implemented. However, it was not what we have encountered. Then, we were caught in a
doubt between the belief that: (i) the presence of a possible error in the coding, or (ii) the
expected result does not make sense. The primary tentative to solve this puzzle was to
search a reinforcement in literature. Although it may be a simple comparison, we were not
able to find works with this discussion.

Then, in order to evaluate this difference, we came up with a way of testing this
questioning. This test consisted on setting the variance of the prior distribution for the
coefficients of the survival sub-model, 𝜂 and 𝜓, to a value close to zero. The idea of these
tests was to use the same Stan model and R script, changing only the prior variance
according to the tests. This was a way of verifying that the difference between the two
estimated functions was not due to code error.

We chose randomly one of the 500 generated data sets. The chosen one was the 66𝑡ℎ

data set. Next, we fitted the true model as well as the best one according to the conclusion
of the simulation study. Then, the models were ℳ𝑁

𝐺𝑜 and ℳ𝐵𝑃5
𝐵𝑃5 (see their description in

Table 5, page 69). The prior distributions and their respective specifications were all the
same, except for the cases described below

1. Test 0: both 𝜂 and each component of 𝜓 followed a 𝑁𝑜𝑟𝑚𝑎𝑙(0, 52). This was the
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previous configuration;

2. Test 1: the prior distribution for the linking parameter was 𝜂 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 0.00012);

3. Test 2: the prior distribution for each component in the vector of coefficients 𝜓 was
𝑁𝑜𝑟𝑚𝑎𝑙(0, 0.00012);

4. Test 3: both 𝜂 and all coefficients of the vector𝜓 followed, a priori, a𝑁𝑜𝑟𝑚𝑎𝑙(0, 0.00012)
distribution;

The exact difference between each test and the original specification is highlighted in red.
In addition, the MCMC configurations were all the same as in the simulation study.

Figure 18 shows the results of the tests described above. In Panel 18a we repeated the
result of the simulation study with the regular prior specifications, merely for comparison
purposes. This was Test 0. Then, in Panel 18b we can observe results of Test 1. In turn,
Panel 18c shows results for Test 2 and, at last, Panel 18d refers to the outcomes of Test
3. In Panels 18b to 18d, the straight black line is the KM estimate and the red curve
is the theoretical true baseline survival function. The other curves represent the median
estimated curve for 𝑆0(.) and the HPD interval for the fitted models.

The first aspect that we call attention to is the discrepancy between the true
curve for 𝑆0(.) (red line) and the estimation by the KM (black line). Then, as we set the
information coming from covariates to null, the estimated baseline survival curve has the
tendency to get closer to the KM estimate. This feature is more evident in the result of
Test 3 (Panel 18d). It makes sense considering that the longitudinal variable is also a
function of the time. Therefore, by setting the importance of this information to zero, this
other information of time cease to exist.

Another point to consider is that the example of our simulation study was not a
great choice to clarify the point we came up with. Our guess is that the coefficient of the
linking parameter, combined with the values of the longitudinal variable, was too small to
be able to show a clear difference. Then, we will do these tests again in the real data set.
Nonetheless, we reinforce that by simply comparing the true baseline survival curve and
the KM estimate we can see that they do not match.

The conclusion of this experiment is that, under a joint model framework, we
should not directly compare the estimated baseline survival function with the estimation
obtained using the Kaplan-Meier. Both approximated functions are valid but they deliver
different interpretations.

The next chapter shows an application of joint modeling longitudinal and survival
data for HIV+ patients.
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(a) Test 0 - previous result.
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Figure 18 – Comparison between the estimation of the baseline survival function 𝑆0(.)
obtained in the joint model framework and by the Kaplan-Meier estimator.
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5 Real Data Application

This chapter shows an application with real data. The data set we will use in
here was collected aiming at comparing two alternative treatments - didanosine (ddI) and
zalcitabine (ddC) - for HIV positive patients who failed or were intolerant to zidovudine
(AZT). It was first described in Abrams et al. (1994) and it is available in the R package
JM (Rizopoulos, 2010). The response variable was the time, in months, until death. The
covariates were: (i) drug - the alternative drug used on the treatment, which could be
either ddC or ddI; (ii) gender - female or male; (iii) prevOI - opportunistic diseases
at study entry, i. e., if they had AIDS or not at the time they entered in the study;
(iv) AZT - the reason for their entrance in this study, it could be either because they
failed to the treatment with AZT or were intolerant to this drug. In addition to those, a
longitudinal variable, the CD4 cell count, was also recorded at five pre-defined points along
the follow-up time. They were: the baseline, the 2𝑛𝑑, 6𝑡ℎ, 12𝑡ℎ and 18𝑡ℎ months. Note that,
there were at most five measurements of this marker for each patient and the total number
of measurements were 𝑁 = 1,408. It should also be mentioned that, as seen in Guo and
Carlin (2004), the CD4 cell count exhibited skewness; for this reason, this variable will be
analyzed in the square root scale.

The analysis of this data set will take place in two parts. In Section 5.1 we describe
the data descriptively - this is a fundamental part of any statistical analysis that enhance
the understanding of the problem being addressed. Then, in Section 5.2 we fit several
models and compare them, reaching to a final result. For all fitted models we run two
chains. The burn-in was set to be 5,000, a lag of 1 was taken and, at the end 2,500 posterior
values were saved for each chain. We use both the regular comparison measures and the
criteria we proposed (page 56) to reach to an optimal degree to choose the best model for
this data.

5.1 Descriptive Analysis
This data set is composed of 𝑛 = 467 patients. The minimum and maximum

follow-up times were 0.47 and 21.40 months, respectively. The minimum was a failure time,
and the maximum was a censorship. The median survival time was 13.20 months and
40.26% of patients died during follow-up period. The remaining ones are right-censored
observations.

Table 9 shows descriptive statistics for the baseline covariates. From this table, it
is possible to note that 50.75% of patients were treated with the ddC drug. The majority
(90.36%) of patients were male, had AIDS diagnosis at study entry (65.74%), and entered
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in this study due to AZT intolerance (62.53%).

Table 9 – Descriptive statistics of the categorical variables.

Covariate Frequency (%)

Drug
zalcitabine (ddC) 237 (50.75%)
didanosine (ddI) 230 (49.25%)

Gender
female 45 (9.64%)
male 422 (90.36%)

Opportunistic diseases at study entry
AIDS diagnosis 307 (65.74%)
no AIDS diagnosis 160 (34.26%)

AZT
failure 175 (37.47%)
intolerance 292 (62.53%)

Regarding the longitudinal variable, Figure 19a shows the boxplots of the square
root of the observed CD4 cell count values at each of the five time points. The number
of patients composing each boxplot can be checked in Table 10. We can note that there
was not much difference in the distribution of this variable among the measurement times.
However, the variability of the measurements at the 6𝑡ℎ and the 12𝑡ℎ months were higher
compared to the others. Also, the minimum value for this variable at the 18𝑡ℎ month was
higher. It makes sense considering that the patients that were still being under follow
up until the end of the study can be regarded to as less susceptible to suffer the event
of interest. Thus, as they are, in a sense, stronger and healthier, their CD4 cell count is
expected to be higher.

Figure 19b presents the profiles graph of the observed square root of CD4 cell
count. This type of graph is usual on longitudinal data analysis. It illustrates the observed
behavior of the variable for each patient in all measurement times. The black thick line
represents the observed mean curve of this variable. Analogously to what we concluded
with Figure 19a, it is also possible to note the decay in the number of observations at the
last time point (18𝑡ℎ month).

An interesting information is the number of observed measurements for each
individual and the number of possible measurements. Since CD4 count is an internal
variable, see page 28 and/or Rizopoulos (2012), the number of measurements of each
patient depends on their respective follow-up time.
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Figure 19 – Description of the square root of the observed CD4 cell count.

Table 10 – Number of observed and possible observed measurements, at each time point.

Time Number of observed measurements (%) Number of possible measurements (%)

Baseline 467 (100.00%) 467 (100.00%)
2𝑛𝑑 month 368 (78.80%) 453 (97.00%)
6𝑡ℎ month 310 (66.38%) 404 (86.51%)
12𝑡ℎ month 226 (48.39%) 318 (68.09%)
18𝑡ℎ month 34 (7.28%) 58 (12.42%)

Note that, at the baseline time, CD4 cell count was observed for all 467 patients
under study. The second measurement was performed at the second month of follow-up.
At this point there were 453 (or 97% of total patients) being accompanied, however CD4
was accounted for only 368 (or 78.80%) of them. This situation, in which the number
of observed values was lower than the possible number of measurements remained until
the end of follow-up time. At the last measurement time (the 18𝑡ℎ month) there were
only 58 subjects on the risk group, which represented only 12.42% of the sample - all the
other subjects had already been censored or had failed. Nonetheless, CD4 cell count was
evaluated for only 34 of these patients. Therefore, the total number of measurements was
𝑁 = 1,405 while it could have been 1,700.

At last, Table 11 presents the frequency and the percentage of the number of
measurements. Thus, 61 (13.06%) patients had only one value for the CD4 cell count; in
these cases, the measurements were necessarily taken at the baseline. Next, 91 (19.49%)
had two observed values: the first one at time 0 and the other one could have been taken
in any of the other measurement times. 122 (26.12%) individuals had three values of the
longitudinal variable. The highest frequency was for the amount of four measurements, 169
(36.19%) patients had their CD4 cell count evaluated four times. The maximum number
of measurements was taken for only 24 (5.14%) of the subjects under study.
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Table 11 – Frequency and percentage of the number of measurements.

Number of measurements 1 2 3 4 5

Frequency (%) 61 (13.06%) 91 (19.49%) 122 (26.12%) 169 (36.19%) 24 (5.14%)

The next section contains results of the fitted models and the comparisons that
enabled us to choose the best one.

5.2 Modeling Approaches
We fitted all models described in Table 5. Likewise the comparison in the simulation

study (in Section 4.2, page 66), we aim at contrasting two models for the longitudinal
component: a NLME model versus BP approximation with degree 𝑚𝐿 − 1. Regarding
the survival sub-model the evaluation is between the Gompertz distribution, Weibull
distribution and BP approximation with degree 𝑚𝑆. For the BP approximation, we fixed
𝑚𝐿 as 5, which is the maximum number of measurements; in turn, we varied 𝑚𝑆 in the
set {5, 6 . . . , 15, 22}. The last value is the ceiling of the square root of the sample size
⌈
√
𝑛⌉. This choice was suggested in Osman and Ghosh (2012) as a suitable one for survival

data analysis via BP. We remind that the approximation for the cumulative baseline
hazard function 𝐻0(.) is via a BP with degree 𝑚𝑆. Nonetheless, the BP approximation
for the baseline hazard function ℎ0(.) is with a degree 𝑚𝑆 − 1. In addition, we considered

𝑇𝑚𝑎𝑥 =

⎡⎢⎢⎢⎢ max
𝑖∈{1,2,...,𝑛}
𝑗∈{1,2,...𝐽𝑖}

(𝑡𝑖𝑗, 𝑢𝑖)

⎤⎥⎥⎥⎥ = 22. The main goal at this point is to verify which model has

the best performance.

The equations for the longitudinal sub-model are

𝑌𝑖(𝑡𝑖𝑗) = 𝑊𝑖(𝑡𝑖𝑗) + 𝜖𝑖(𝑡𝑖𝑗), 𝑖 = 1, 2, . . . 𝑛 , 𝑗 = 1, 2, . . . , 𝐽𝑖

= 𝛽1 AZT𝑖 + 𝛽2 Drug𝑖 + 𝛽3 Gender𝑖 + 𝛽4 PrevOI𝑖 + 𝑏0𝑖 + 𝑏1𝑖𝑡𝑖𝑗 + 𝜖𝑖(𝑡𝑖𝑗),

for the NLME model, and

𝑌𝑖(𝑡𝑖𝑗) = 𝑊𝑖(𝑡𝑖𝑗) + 𝜖𝑖(𝑡𝑖𝑗), 𝑖 = 1, 2, . . . 𝑛 , 𝑗 = 1, 2, . . . , 𝐽𝑖

= 𝛽1 AZT𝑖 + 𝛽2 Drug𝑖 + 𝛽3 Gender𝑖 + 𝛽4 PrevOI𝑖 + (𝜉𝑚𝐿−1
𝑖 )⊤b𝑚𝐿−1

(︂
𝑡𝑖𝑗
𝑇𝑚𝑎𝑥

)︂
+ 𝜖𝑖(𝑡𝑖𝑗),

for the BP approximation with degree𝑚𝐿−1. In both structures, let 𝜖𝑖(𝑡𝑖𝑗) ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎2
𝜖 ).

The vector of random effects b𝑖 follows a 𝑁𝑜𝑟𝑚𝑎𝑙2 (𝜇𝑏,Σ𝑏) distribution, while the vector
of coefficients of the BP had a 𝜉𝑚𝐿−1

𝑖 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙𝑚𝐿
(𝜇𝜉,Σ𝜉) distribution. The prior dis-

tributions were the same as those in the second simulation study (Section 4.2, page 66).
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So, a priori, 𝛽 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(04, 52I4), 𝜎𝜖 ∼ 𝐺𝑎𝑚𝑚𝑎(0.1, 0.1), 𝜇𝑏 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙2(02, 52I2) and
𝜇𝜉 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙5(05, 52I5). We modeled the inverse of the variance-covariance structure with
Wishart distributions. Thus, Σ−1

𝑏 ∼ 𝑊𝑖𝑠ℎ𝑎𝑟𝑡(4, 1/2I2) and Σ−1
𝜉 ∼ 𝑊𝑖𝑠ℎ𝑎𝑟𝑡(7, 1/5I5).

In what concerns the survival sub-model, the equations were

ℎ(𝑢𝑖) = ℎ0(𝑢𝑖) exp
{︁
𝜂𝑊𝑖(𝑢𝑖) + z⊤

𝑖 𝜓
}︁

, 𝑖 = 1, 2, . . . , 𝑛,

= ℎ0(𝑢𝑖) exp {𝜂𝑊𝑖(𝑢𝑖) + 𝜓1 AZT𝑖 + 𝜓2 Drug𝑖 + 𝜓3 Gender𝑖 + 𝜓4 PrevOI𝑖} ,

where the baseline hazard function could be either, (i) ℎ0(𝑡) = 𝜆𝑒𝛼𝑡 if we assume that the fail-

ure times come from a𝐺𝑜𝑚𝑝𝑒𝑟𝑡𝑧(𝛼, 𝜆), (ii) ℎ0(𝑡) ≈
[︃
𝑚𝑆∑︁
𝑘=1

𝛾𝑚𝑆−1
𝑘

𝑓𝐵𝑒𝑡𝑎 (𝑢/𝑇𝑚𝑎𝑥; 𝑘,𝑚𝑆 − 𝑘 + 1)
𝑇𝑚𝑎𝑥

]︃

if we approximate ℎ0(.) by BP of order 𝑚𝑆 − 1, or (iii) or ℎ0(𝑡) = 𝛼

𝜆

(︂
𝑡

𝜆

)︂𝛼−1
if we consider

that these times follow a 𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝛼, 𝜆) distribution.

For this part, the prior distributions were 𝜓 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙4(04, 52I4) and 𝜂 ∼
𝑁𝑜𝑟𝑚𝑎𝑙(0, 52). Both parameters of the Weibull distribution 𝛼 and 𝜆 had, a priori, a
𝐺𝑎𝑚𝑚𝑎(0.1, 0.1) distribution. In the case of the Gompertz for the failure times, these
distributions were 𝛼 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 52) and 𝜆 ∼ 𝐺𝑎𝑚𝑚𝑎(0.1, 0.1). At last, for the approxi-
mation with BP, log(𝛾𝑚𝑆−1

𝑘 ) ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 52), for 𝑘 = 1, 2, . . . ,𝑚𝑆.

Table 12 shows the comparison measures for each fitted model. It is important to
mention that we computed these measures based on the marginal log-likelihood for the
longitudinal variable, not the conditional one. The results about the marginal distributions
can be verified in page 99. The values of the comparison measures can also be seen in
Figure 20. In this figure, Panel 20a shows the values of DIC and Panel 20b displays -2LPML
and -2WAIC. We separated the results into two figures due to the scale, facilitating the
interpretation and visualization.
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Figure 20 – Comparison measures for all fitted models.
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Table 12 – Comparison measures for fitted models.

Model DIC LPML WAIC

ℳ𝑁
𝐺𝑜 5533.08 5279.89 5271.30

ℳ𝑁
𝑊𝑒 5515.83 5274.01 5267.71

ℳ𝐵𝑃5
𝐵𝑃5 5277.47 5180.61 5179.57

ℳ𝐵𝑃5
𝐵𝑃6 5267.92 5176.95 5176.44

ℳ𝐵𝑃5
𝐵𝑃7 5270.08 5175.14 5174.33

ℳ𝐵𝑃5
𝐵𝑃8 5265.62 5175.20 5174.32

ℳ𝐵𝑃5
𝐵𝑃9 5271.01 5179.82 5179.44

Model DIC LPML WAIC

ℳ𝐵𝑃5
𝐵𝑃10 5264.90 5174.54 5173.89

ℳ𝐵𝑃5
𝐵𝑃11 5263.82 5177.49 5176.46

ℳ𝐵𝑃5
𝐵𝑃12 5271.25 5175.08 5174.11

ℳ𝐵𝑃5
𝐵𝑃13 5263.11 5176.10 5175.28

ℳ𝐵𝑃5
𝐵𝑃14 5268.02 5178.56 5177.13

ℳ𝐵𝑃5
𝐵𝑃15 5275.15 5177.04 5176.39

ℳ𝐵𝑃5
𝐵𝑃22 5270.17 5177.63 5176.40

Thus, according to the DIC measure, the best model is the BP approximation with
𝑚𝐿 = 5 for the longitudinal sub-model and 𝑚𝑆 = 13 in the survival part. On the other
hand, both LPML and WAIC indicated that the best model is the BP approximation
with degree 𝑚𝑆 = 10 for the survival component. Moreover, note that even in the worst
scenario of the BP approximation - which happened when 𝑚𝑆 = 5 for all three measures
-, this approach had a better performance when compared to the others. It is simple to
check this statement by observing Figure 20. In the panels of this figure, the first and the
second results are related to the Gompertz and the Weibull distributions. All the other
points are of the Bernstein Polynomials approximation with increasing degrees. We point
out to the big drop from the first two points of these figures in relation to the others.
Another comment about the choice of the BP degree in the survival sub-model is that the
indicated value of ⌈

√
𝑛⌉ = ⌈

√
467⌉ = 22 seems to be unnecessarily large, as none of these

measures select model ℳ𝐵𝑃5
𝐵𝑃22 as the best one.

Another point to consider is that the comparison measures DIC, LPML and WAIC
are quite general. In addition to that, the conclusion of the best model that they point
out is not in accordance with one another. That is, while DIC indicates 𝑚𝑆 = 13, both
LPML and WAIC lead to the conclusion that it is best to choose 𝑚𝑆 = 10. Hence, we will
use the stopping rule we proposed in this thesis (Section 3.5, page 56) to chose the final
model - between all the BP approximations - for the survival component. This stopping
rule is specific for the BP approximation.

The results considering the two criteria we propose in this thesis can be seen in
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Tables 13 and 14. So, according to the Criterion 1 and both tests used - Sign and Wilcoxon
-, the best degree to model the survival component is 𝑚𝑆 = 9. However, Criterion 2 leads
to a doubt between 𝑚𝑆 = 9 and 𝑚𝑆 = 14.

Table 13 – Results to the stopping rule for the degree for the BP in the survival sub-model.
Criterion 1: difference between coefficients.

Median P-value
Degrees D𝑚𝑆−1 D𝑚𝑆

Sign test Wilcoxon test
6 × 7 0.6634 0.4936 < 0.0001 < 0.0001
7 × 8 0.4936 0.4717 < 0.0001 < 0.0001
8 × 9 0.4717 0.4725 0.9825 0.8345

Table 14 – Results to the stopping rule for the degree for the BP in the survival sub-model.
Criterion 2: difference between curves

Median P-value
Degrees D𝑚𝑆−1 D𝑚𝑆

Sign test Wilcoxon test
6 × 7 0.1522 0.0957 < 0.0001 < 0.0001
7 × 8 0.0957 0.0793 0.0001 < 0.0001
8 × 9 0.0793 0.0725 0.1093 0.0008
9 × 10 0.0725 0.0658 0.8354 0.0013
10 × 11 0.0658 0.0607 0.7558 0.0042
11 × 12 0.0658 0.0536 0.1093 < 0.0001
12 × 13 0.0536 0.0485 0.4382 0.0002
13 × 14 0.0485 0.0465 0.9538 0.1550

For comparison purposes we plotted the overall mean curve, the baseline hazard
function and the baseline survival functions for some of the fitted models. The chosen
models were the ones highlighted in red in Table 12, the best models according to our
proposed criteria (𝑚𝑆 = 9 and 𝑚𝑆 = 14) as well as the simplest ℳ𝐵𝑃5

𝐵𝑃5 and the most
complex ℳ𝐵𝑃5

𝐵𝑃22 BP approximation. In addition to those, we also plotted these estimated
functions for models ℳ𝑁

𝐺𝑜 and ℳ𝑁
𝑊𝑒, as we wanted to show the contrast between BP

approximation and other distributions. These graphs are in Figure 21. We emphasize that
our intention with this figure is solely to make possible an overall comparison between the
approximations based on different models.

By observing Panel 21a we can see the estimations for ℎ0(.). We emphasize the
flexibility of the BP approximation comparing to the results obtained by assuming that
the failure times follow a Gompertz or a Weibull distribution. Panel 21b illustrates the
baseline survival function for the selected models in comparison to the Kaplan-Meier
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estimator. The curves in this figure reinforces the discussion of Section 4.2 (page 66), that
these two results are not directly comparable. Finally, Panel 21c presents the estimates for
the overall mean function. We can clearly see that a straight line is not enough to model
the variation along the time for this variable. Evidently, we could have used a non-linear
structure of time in the longitudinal sub-model. However, the advantage of using the BP
to approximate this function is that, even with a small degree, this method was able to
approximate the mean curve with a non-linear behavior. And we did not have to assume
that this would the behavior of this function.
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Figure 21 – Comparison between estimated baseline hazard function, baseline survival
function and overall mean curve.

An extra and final comparison between these models is the estimated mean curves
based on the selected models of Figure 21c, but along with the trajectory of each subject
and the observed mean curve, as in Figure 19b. This comparison can be seen in Figure
28, in Appendix C (page 116). It gives the perspective of the observed values for the
longitudinal variable and all the estimated mean curves based on all selected models in
the same scale.

We follow our criteria and chose the best model being the BP approximation with
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𝑚𝑆 = 9 for the survival component. This specification was pointed out in 3 out of the 4
indications in Tables 13 and 14. Point and interval estimates for the vector coefficients
related to the covariates in both sub-models (𝛽 and 𝜓) can be seen in Table 15. For each
covariate, if the respective HPD interval includes zero, then the conclusion is that the
referred covariate is not statistically related to the response. Otherwise, if this value is not
in the interval, we can affirm that there is a relationship between this covariate and the
response variable.

By observing Table 15, we can verify that opportunistic diseases at study entry
(PrevOI) was important to predict the square root of the CD4 cell count. This variable
was lower for those patients that had AIDS at the time they entered the study. More
specifically, the mean of the

√
CD4 count for the patients that had AIDS was -0.8777

unities lower, comparing to those who did not have AIDS. All the other covariates - AZT,
drug and gender - do not interfere in this quantity (their HPD intervals had the value 0
included). It is important to mention that according to the medical literature, a low CD4
cell count indicates disease progression. Therefore, the patients that had AIDS presented
a worse health status.

Table 15 – Point and interval estimates for the coefficients associated to the covariates
of both longitudinal and survival sub-models. Results according to the model
ℳ𝐵𝑃5

𝐵𝑃9 .

Longitudinal Sub-model
Covariate Mean Median Mode Std. Dev. HPD 95%
AZT (failure) -0.0680 -0.0685 -0.0835 0.0944 [-0.2526, 0.1212]
Drug (ddI) 0.0643 0.0645 0.0781 0.0763 [-0.0855, 0.2118]
Gender (male) 0.0402 0.0457 0.0458 0.1458 [-0.2481, 0.3072]
PrevOI (AIDS) -0.8777 -0.8779 -0.8782 0.0937 [-1.0661, -0.6983]

Survival Sub-model
Covariate Mean Median Mode Std. Dev. HPD 95%
√

CD4 -0.9979 -0.9956 -0.9863 0.1232 [-1.2319, -0.7501]
AZT (failure) 0.1263 0.1250 0.1437 0.1666 [-0.1919, 0.4475]
Drug (ddI) 0.3217 0.3192 0.3024 0.1504 [0.0298, 0.6065]
Gender (male) -0.4050 -0.4099 -0.4054 0.2510 [-0.8890, 0.0996]
PrevOI (AIDS) 0.6385 0.6387 0.6365 0.2349 [0.1859, 1.1128]

Turning our attention to the results of the survival sub-model, we can see that the√
CD4 cell count, the alternative drug used in the treatment, and the presence or not of

opportunistic diseases at study entry affect the survival to death. On the other hand, the
reason for their entrance in this study (AZT - failure or intolerance) and their gender did
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not influence this event to happen.

The hazard of death for patients who received ddI as an alternative medication
was 𝑒0.3217 = 1.3795 times the hazard of those patients that were prescribed with ddC. In
other words, this hazard was 37.95% higher for subjects who received ddI.

In the same way as in the longitudinal sub-model, the patients who had opportunistic
diseases at study entrance presented a worse condition. The hazard of death for those
patients who had AIDS was 𝑒0.6385 = 1.8936 times the hazard of experimenting this event
for the patients who did not present opportunistic infection at the time they entered in
the study. It means a 89.36% higher hazard.

At last, the longitudinal variable
√

CD4 was indeed an important prognostic factor
for disease progression. For a unity (in the square root scale) decrease in this variable, the
hazard of death increases in 𝑒0.9979 = 2.7126, i. e., it gets 2.71 times higher.

So, the overall conclusion is that the worst prognosis is when patients were treated
with ddI, had AIDS at study entry and low

√
CD4 count. An additional information

concerns the functions approximated by the chosen model, that is ℳ𝐵𝑃5
𝐵𝑃9 , and their HPD

intervals. So, in Figure 22, Panel 22a contains the baseline hazard function; Panel 22b the
cumulative baseline hazard function. In Panel 22c we can see the baseline survival function
along with the Kaplan-Meier estimate. Finally, the overall median of the posterior mean
curve of the longitudinal variable can be observed in Panel 22d.

Extra interpretation that can be made by using BP to approximate target functions
is the posterior probability that it will change its behavior in a set of time points. This in-
terpretation depends on the posterior sample of the vector of coefficients 𝜇𝑚𝐿−1

𝜉 and 𝛾𝑚𝑆−1.
In practical aspects the calculation is P

(︁
(𝜇𝑚𝐿−1

𝜉𝑙
− 𝜇𝑚𝐿−1

𝜉𝑙−1
)(𝜇𝑚𝐿−1

𝜉𝑙+1
− 𝜇𝑚𝐿−1

𝜉𝑙
) < 0|Data

)︁
,

𝑙 = 2, 3, . . . ,𝑚𝐿 − 2, for the overall mean function. In the case of the baseline hazard
function, this probability is obtained via P

(︁
(𝛾𝑚𝑆−1
𝑘 − 𝛾𝑚𝑆−1

𝑘−1 )(𝛾𝑚𝑆−1
𝑘+1 − 𝛾𝑚𝑆−1

𝑘 ) < 0|Data
)︁
,

for 𝑙 = 2, 3, . . . ,𝑚𝑆 − 2. We explained a possible way of calculating this probability on
page 62. Then, in Table 16 we can observe the results of the estimates of both functions
at specific time points as well as the posterior probabilities (𝑝) of a turning point at these
times.

Following the results of Table 16, we can see that it is extremely likely that there
will be a change in the behavior of the overall mean function at times 𝑡 = 11 months and
𝑡 = 16.5 months. Although it is difficult to visualize this feature at 𝑡 = 11 in Figure 22d
due to the scale, we can observe it more clearly in Figure 21c. The change at time 𝑡 = 16.5
months is also easier to observe in the latter mentioned figure. Moreover, we can verify
that there was an actual change by examining the estimates for this function in this same
table.

The information of this whole analysis about the behavior of this function has a
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Figure 22 – Comparison between estimated baseline hazard function, baseline survival
function and overall mean curve. Results according to the model ℳ𝐵𝑃5

𝐵𝑃9 .

Table 16 – Posterior probability of turning points in the overall mean curve and in the
baseline hazard function. Results according to the model ℳ𝐵𝑃5

𝐵𝑃9 .

Overall mean curve
Time 0.00 5.50 11.00 16.50 22.00

𝑓(𝑡) 3.0342 3.0092 1.9486 3.1703 2.1060
𝑝 - 0.4240 0.9624 0.9518 -

Baseline hazard function
Time 0.00 2.75 5.50 8.25 11.00 13.75 16.50 19.25 22.00

ℎ̂0(𝑡) 0.0055 0.7751 0.0228 0.0336 0.3981 0.8696 0.1431 0.1344 0.0659
𝑝 - 0.9644 0.5708 0.6056 0.6670 0.8242 0.6852 0.6694 -

practical interpretation. In terms of overall mean and in the square root scale, the CD4
cell count has a decreasing course. This trajectory is maintained until a time around 𝑡 = 11
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months. After that, it starts getting higher - possibly due to the efficacy of the treatment.
Then, around the 16𝑡ℎ month, these counts begin to decrease again. Possible explanations
could be a loss of treatment strength or a weakened health, for example.

In what concerns the baseline hazard function, results in Table 16 point out that
it is very likely that a change will occur in times 𝑡 = 2.75 months and 𝑡 = 13.75 months.
By observing Figure 22a, we can see that these points are exactly the ones in which the
approximated ℎ0(𝑡) presents peaks. In addition, since these probabilities for the in between
times are around 0.6, we can expect small variations in this curve in the mentioned interval.

As it is an important point, we bring up a brief discussion about the degree. It is
true that with a higher 𝑚𝑆 the probabilities in the second part of Table 16 would be more
accurate, in relation to the time points in which the change will occur. So, for the sake of
the accuracy of this specific information, we could verify these probabilities based on a BP
model with a higher degree 𝑚𝑆. However, aiming at a good approximation, our criteria
pointed out to this value of 𝑚𝑆. Therefore, it is considered adequate and precise enough.

At last, we did again the tests that we have discussed on Section 4.2.1 (page 80) on
the chosen model ℳ𝐵𝑃5

𝐵𝑃9 . In summary, the idea was to set the importance of the coefficients
in the survival sub-model to null. This procedure was done in three parts. In each part, our
goal was to verify the impact of the coefficients in the estimation of the baseline survival
function, and to compare it to the KM estimates. The results are shown in Figure 23.
In each panel of this figure, the black line represents the KM estimate, the blue thick
line is the median baseline survival function, and the dotted line is the HPD interval for
this curve. Here, we have used the same prior distributions for the parameters, except, of
course, for the case specified in each test. The MCMC specifications were all the same as
well.

In Panel 23a of Figure 23, we repeated previous results to easier comparisons. Next,
in Panel 23b we can understand what happens with the estimation of the baseline survival
function 𝑆0(.) when we ignore the importance of the longitudinal variable. Note that the
behavior of this function changes completely, as: (i) it does not go to zero as time increases,
and (ii) it gets close to the KM estimates. The results of Test 2 can be seen in Panel 23c. In
this case, we can observe that there was not much difference between this approximation
and that of Panel 23a. That is, the role of the covariates fixed in time did not affect much
the estimation of 𝑆0(.). Finally, when we assumed a priori that there was no relationship
between the covariates - fixed and varying with time - and the survival response, the final
estimation matches exactly the KM estimate. This last result makes sense because, if we
have no other information than the survival times (and the indicator of censoring), then
the baseline survival function 𝑆0(.) gets equivalent to 𝑆(.).

As a conclusion to this discussion, it is very important to take the longitudinal
variable into account. In addition, the KM and the baseline survival function in the joint
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Figure 23 – Comparison between the estimation of the baseline survival function 𝑆0(.)
obtained in the joint model framework and by the Kaplan-Meier estimator.
Results according to the model ℳ𝐵𝑃5

𝐵𝑃9 .

model scheme have different meanings. However, we should further investigate this matter
to fully understand it. The next chapter concerns the conclusions and the ideas for future
works.
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6 Conclusions and Next Steps

Our main proposition in this thesis was to use Bernstein Polynomials to approximate
functions that compose the joint modeling of longitudinal and survival data. We used the
BP with degree 𝑚𝐿 − 1 to model the evolution with time of the longitudinal component,
and a BP with degree 𝑚𝑆 to approximate the cumulative baseline hazard function. As a
consequence, the baseline hazard function is approximated with a BP with degree 𝑚𝑆 − 1.
The usage of the BP to approximate these functions here is one of the contributions of
this work.

Throughout this study, we discoursed about the importance of fully considering
the information coming from longitudinal and survival data by jointly modeling these
components. Regarding the Bernstein Polynomials, we discussed about a diverse list of
topics such as: description, properties, historical aspects, explanation of how to use this
tool in each of the sub-models in the joint modeling approach, and an intuition of how the
BP incorporates data in the approximation.

We implemented the proposed approach in the platform Stan. Then, via simulation
study, we compared the new method to commonly used approaches. With this study and by
real data application, we were able to verify the flexibility of this tool. It can approximate
well not only simple functions - such as a linear trends - but also complex ones - like the
baseline hazard function in the real application. Besides that, another advantage of using
the BP is that there is no need to anticipate the shape of the target function. For example,
in the longitudinal sub-model we usually define a form to represent the relationship of the
longitudinal variable and the time. This form can be a square root, a simple linear trend,
a quadratic or cubic term, among others. When using the BP, it will approximate the true
curve in any of the mentioned cases, without having to previously assume one of them. As
a result, we can affirm that the proposed modeling approach is in fact a strong competitor.

Another advantage we obtain by using the BP is the posterior probability of a
change in the approximated curve. This information is available for 𝑚− 2 equally spaced
points of the domain, where 𝑚 represent the degree of this polynomial. Such information
can be very useful to the researcher, as we can tell when a drug is likely to actually start
to increase or decrease a marker, for example.

An additional contribution of this thesis was our proposed method for the degree
selection. As we have discussed in previous chapters, this is an important step when using
the BP. A degree that is too small leads to an approximated function that can be too
smooth. In this case, the resulting approximation may fail to represent important aspects
of the target function. On the other hand, if this number is too large, we will have an
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unnecessary large number of parameters. This excess can also lead to computational issues.
Several works have fixed this quantity based on sample sizes. In opposition to that, our
proposal consists in a probabilistic based method that indicates a minimum adequate value.
We also presented two stopping rules that indicates the optimal degree. According to the
results obtained in the simulation study, our methods have a satisfactory performance.
Besides that, our proposal is a robust method, since its usage only needs an indication of
a turning point in the function being approximated.

Evidently there are another points we can consider to extend the present work. We
will list and discuss some of them.

Initially, we mention that the coding part of this thesis was constructed with the
idea of building a package in the software R. This tool will certainly facilitate and propagate
the usage of our proposals.

We can properly handle missing data. As we have discussed, longitudinal data
usually present missing information. Ignoring their presence may lead to bias in the
analyses. Therefore, we can focus our attention on treating them in an adequate manner.

Perform residual analysis. We have shown, in the case of the simulated data, that
to joint model longitudinal and survival data via BP presents an adequate performance.
However, in the case of real data, a residual analysis is indicated to check model adequacy.
According to Zhu et al. (2012), non-robust priors for the parameters of the joint model,
outliers and model misspecification can lead to biased estimates. In addition, it is known
that the occurrence of the event of interest restrain the measurements being taken, i. e.,
there may exist no more longitudinal observations for a subject after the event or censorship
is observed. This phenomena leads to a change in the residual interpretation, since the
event occurrence may induce a scenario where there may have more measurements at the
beginning of follow-up (Rizopoulos et al., 2010). There are methods for longitudinal and
survival data alone, however these methods do not consider the dependence between the
components and its implications. Moreover, Rizopoulos et al. (2010) describe examples
showing that we can obtain misleading interpretation by using regular residual analysis in
joint models. Therefore, this type of modeling requires specific techniques. As a start, we
can follow the works of Rizopoulos et al. (2010), Rizopoulos (2012) and Zhu et al. (2012).

We can study different linking forms between the longitudinal and the survival
sub-models. Other possibilities of this form may be the acceleration (derivative) of the
longitudinal variable, for example. We can also consider more than one longitudinal
variable, as well as non continuous longitudinal variables.

Other examples of possible extensions are the consideration of left censoring,
interval censoring, informative censoring, presence of a cure fraction and competing risks.
Combinations of these proposals are also possible and they can bring interesting results.
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Moreover, we can model the survival data in a different structure, such as the proportional
odds (Bennett, 1983; Kirmani and Gupta, 2001) and/or the accelerated failure time models.

Another point we can consider to improve the present work concerns the quadrature
method that we used to approximate the integral in the survival sub-model. Crowther
et al. (2012) says that it is a flaw in this framework not to check if the quadrature form is
performing well. Therefore, we can study the usage of different quadrature forms and/or
different number of quadratures.

At last, regarding the BP we can plan to use a dynamic prior distribution for the
vector of BP coefficients. We have already discussed that there is a straight relationship
between the vector of coefficients and the function being approximated. Then, it is possible
that this type of prior improves the estimation procedure. We can also assume that the
degree of the BP is a random quantity to be estimated. A possible prior distribution could
be a Hypergeometric. Then, we could compare these results to our proposed criteria to
reach to an optimal degree.
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A Details of calculations

In this part of the Appendix we will show the details of the main calculations
presented in the text. The results are separated in sections. The order of these sections
are in accordance with the organization of this thesis.

Mixed Effects Model
The conditional distribution of the random variable representing the observed

values for the longitudinal variable, given the vector of random effects, is Normal, i. e.
𝑌𝑖(𝑡𝑖𝑗)|b𝑖 ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝑏,Σ𝑏). In addition, we consider that the vector of random effects
b𝑖 also follow a Normal distribution with vector of means 𝜇𝑏 and variance-covariance
matrix Σ𝑏. Then, the mean and variance of the conditioned distribution of the observed
longitudinal variable are given below. The description of this model is in page 22 and 31.

E[𝑌𝑖(𝑡𝑖𝑗)] = E [E[𝑌𝑖(𝑡𝑖𝑗)|b𝑖]] = E[E[𝑊𝑖(𝑡𝑖𝑗) + 𝜖𝑖(𝑡𝑖𝑗)|b𝑖]]

= E[E[𝑊𝑖(𝑡𝑖𝑗))|b𝑖]] + E[E[𝜖𝑖(𝑡𝑖𝑗)|b𝑖]] = E[E[𝑊𝑖(𝑡𝑖𝑗))|b𝑖]] + E[𝜖𝑖(𝑡𝑖𝑗)]

= E[E[𝑊𝑖(𝑡𝑖𝑗))|b𝑖]] = E [E [x𝑖𝛽 + f(𝑡𝑖𝑗)b𝑖|b𝑖]] = E [x𝑖𝛽 + f(𝑡𝑖𝑗)b𝑖]

= E [x𝑖𝛽] + E [f(𝑡𝑖𝑗)b𝑖] = x𝑖𝛽 + f(𝑡𝑖𝑗)E [b𝑖]

= x𝑖𝛽 + f(𝑡𝑖𝑗)𝜇𝑏

V𝑎𝑟[𝑌𝑖(𝑡𝑖𝑗)] = E [V𝑎𝑟 [𝑌𝑖(𝑡𝑖𝑗)|b𝑖]] + V𝑎𝑟 [E [𝑌𝑖(𝑡𝑖𝑗)|b𝑖]]

= E [V𝑎𝑟 [𝑊𝑖(𝑡𝑖𝑗) + 𝜖𝑖(𝑡𝑖𝑗)|b𝑖]] + V𝑎𝑟 [E [𝑊𝑖(𝑡𝑖𝑗) + 𝜖𝑖(𝑡𝑖𝑗)|b𝑖]]

= E [V𝑎𝑟 [𝑊𝑖(𝑡𝑖𝑗)|b𝑖] + V𝑎𝑟 [𝜖𝑖(𝑡𝑖𝑗)|b𝑖]] + V𝑎𝑟 [E [𝑊𝑖(𝑡𝑖𝑗)|b𝑖] + E [𝜖𝑖(𝑡𝑖𝑗)|b𝑖]]

= E [V𝑎𝑟 [𝑊𝑖(𝑡𝑖𝑗)|b𝑖] + 𝑉 𝑎𝑟 [𝜖𝑖(𝑡𝑖𝑗)]] + V𝑎𝑟 [E [𝑊𝑖(𝑡𝑖𝑗)|b𝑖] + E [𝜖𝑖(𝑡𝑖𝑗)]]

= E
[︁
V𝑎𝑟 [x𝑖𝛽 + f(𝑡𝑖𝑗)b𝑖|b𝑖] + 𝜎2

𝜖

]︁
+ V𝑎𝑟 [x𝑖𝛽 + f(𝑡𝑖𝑗)b𝑖]

= E
[︁
𝜎2
𝜖

]︁
+ [f(𝑡𝑖𝑗)]V𝑎𝑟 [b𝑖] [f(𝑡𝑖𝑗)]⊤

= 𝜎2
𝜖 + [f(𝑡𝑖𝑗)] Σ𝑏 [f(𝑡𝑖𝑗)]⊤ .

If the Bernstein Polynomials of degree 𝑚𝐿 − 1 is used to model the time-varying
aspect of the longitudinal variable, these quantities are
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E[𝑌𝑖(𝑡𝑖𝑗)] = E
[︁
E[𝑌𝑖(𝑡𝑖𝑗)|𝜉𝑚𝐿−1

𝑖 ]
]︁

= E[E[𝑊𝑖(𝑡𝑖𝑗) + 𝜖𝑖(𝑡𝑖𝑗)|𝜉𝑚𝐿−1
𝑖 ]]

= E[E[𝑊𝑖(𝑡𝑖𝑗)|𝜉𝑚𝐿−1
𝑖 ]] + E[E[𝜖𝑖(𝑡𝑖𝑗)|𝜉𝑚𝐿−1

𝑖 ]] = E[E[𝑊𝑖(𝑡𝑖𝑗)|𝜉𝑚𝐿−1
𝑖 ]] + E[𝜖𝑖(𝑡𝑖𝑗)]

= E[E[𝑊𝑖(𝑡𝑖𝑗))|𝜉𝑚𝐿−1
𝑖 ]] = E

[︂
E
[︂
x𝑖𝛽 + b𝑚𝐿−1

(︂
𝑡𝑖𝑗
𝑇𝑚𝑎𝑥

)︂
𝜉𝑚𝐿−1
𝑖 |𝜉𝑚𝐿−1

𝑖

]︂]︂
= E

[︂
E
[︁
x𝑖𝛽|𝜉𝑚𝐿−1

𝑖

]︁
+ E

[︂
b𝑚𝐿−1

(︂
𝑡𝑖𝑗
𝑇𝑚𝑎𝑥

)︂
𝜉𝑚𝐿−1
𝑖 |𝜉𝑚𝐿−1

𝑖

]︂]︂
= E

[︂
x𝑖𝛽 + b𝑚𝐿−1

(︂
𝑡𝑖𝑗
𝑇𝑚𝑎𝑥

)︂
𝜉𝑚𝐿−1
𝑖

]︂
= E [x𝑖𝛽] + E

[︂
b𝑚𝐿−1

(︂
𝑡𝑖𝑗
𝑇𝑚𝑎𝑥

)︂
𝜉𝑚𝐿−1
𝑖

]︂
= x𝑖𝛽 + b𝑚𝐿−1

(︂
𝑡𝑖𝑗
𝑇𝑚𝑎𝑥

)︂
E
[︁
𝜉𝑚𝐿−1
𝑖

]︁
= x𝑖𝛽 + b𝑚𝐿−1

(︂
𝑡𝑖𝑗
𝑇𝑚𝑎𝑥

)︂
𝜇𝑚𝐿−1
𝜉

V𝑎𝑟[𝑌𝑖(𝑡𝑖𝑗)] = E
[︀
V𝑎𝑟

[︀
𝑌𝑖(𝑡𝑖𝑗)|𝜉𝑚𝐿−1

𝑖

]︀]︀
+ V𝑎𝑟

[︀
E
[︀
𝑌𝑖(𝑡𝑖𝑗)|𝜉𝑚𝐿−1

𝑖

]︀]︀
= E

[︀
V𝑎𝑟

[︀
𝑊𝑖(𝑡𝑖𝑗) + 𝜖𝑖(𝑡𝑖𝑗)|𝜉𝑚𝐿−1

𝑖

]︀]︀
+ V𝑎𝑟

[︀
E
[︀
𝑊𝑖(𝑡𝑖𝑗) + 𝜖𝑖(𝑡𝑖𝑗)|𝜉𝑚𝐿−1

𝑖

]︀]︀
= E

[︀
V𝑎𝑟

[︀
𝑊𝑖(𝑡𝑖𝑗)|𝜉𝑚𝐿−1

𝑖

]︀
+ 𝑉 𝑎𝑟

[︀
𝜖𝑖(𝑡𝑖𝑗)|𝜉𝑚𝐿−1

𝑖

]︀]︀
+ V𝑎𝑟

[︀
E
[︀
𝑊𝑖(𝑡𝑖𝑗)|𝜉𝑚𝐿−1

𝑖

]︀
+ E

[︀
𝜖𝑖(𝑡𝑖𝑗)|𝜉𝑚𝐿−1

𝑖

]︀]︀
= E

[︀
V𝑎𝑟

[︀
𝑊𝑖(𝑡𝑖𝑗)|𝜉𝑚𝐿−1

𝑖

]︀
+ 𝑉 𝑎𝑟 [𝜖𝑖(𝑡𝑖𝑗)]

]︀
+ V𝑎𝑟

[︀
E
[︀
𝑊𝑖(𝑡𝑖𝑗)|𝜉𝑚𝐿−1

𝑖

]︀
+ E [𝜖𝑖(𝑡𝑖𝑗)]

]︀
= E

[︂
V𝑎𝑟

[︂
x𝑖𝛽 + b𝑚𝐿−1

(︂
𝑡𝑖𝑗
𝑇𝑚𝑎𝑥

)︂
𝜉𝑚𝐿−1

𝑖 |𝜉𝑚𝐿−1
𝑖

]︂
+ 𝜎2

𝜖

]︂
+ V𝑎𝑟

[︂
x𝑖𝛽 + b𝑚𝐿−1

(︂
𝑡𝑖𝑗
𝑇𝑚𝑎𝑥

)︂
𝜉𝑚𝐿−1

𝑖

]︂
= E

[︀
𝜎2

𝜖

]︀
+
[︂
b𝑚𝐿−1

(︂
𝑡𝑖𝑗
𝑇𝑚𝑎𝑥

)︂]︂
V𝑎𝑟

[︀
𝜉𝑚𝐿−1

𝑖

]︀ [︂
b𝑚𝐿−1

(︂
𝑡𝑖𝑗
𝑇𝑚𝑎𝑥

)︂]︂⊤

= 𝜎2
𝜖 +

[︂
b𝑚𝐿−1

(︂
𝑡𝑖𝑗
𝑇𝑚𝑎𝑥

)︂]︂
Σ𝜉𝑚𝐿 −1

[︂
b𝑚𝐿−1

(︂
𝑡𝑖𝑗
𝑇𝑚𝑎𝑥

)︂]︂⊤

= 𝜎2
𝜖 +

𝑚𝐿∑︁
𝑘=1

𝑚𝐿∑︁
𝑙=1

𝑏𝑘,𝑚𝐿−1

(︂
𝑡𝑖𝑗
𝑇𝑚𝑎𝑥

)︂
𝑏𝑙,𝑚𝐿−1

(︂
𝑡𝑖𝑗
𝑇𝑚𝑎𝑥

)︂
𝜎𝑘𝑙.

More information about this model is given in section 3.1.

Derivative of the BP approximation for the cumulative hazard func-
tion

The approximation of the Bernstein Polynomial of degree 𝑚𝑆 − 1 for the baseline
hazard function is obtained by taking the derivative of the approximation of the BP for
the cumulative baseline hazard function. The model for 𝐻0 and the calculations to obtain
the derivative are given in this section.

The BP approximation with degree 𝑚𝑆 for the baseline cumulative hazard function
is
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𝐻0(𝑢) ≈
𝑚𝑆∑︁
𝑘=0

𝐻0

(︃
𝑘

𝑚𝑆

𝑇𝑚𝑎𝑥

)︃(︃
𝑚𝑆

𝑘

)︃(︂
𝑢

𝑇𝑚𝑎𝑥

)︂𝑘 (︂
1 − 𝑢

𝑇𝑚𝑎𝑥

)︂𝑚𝑆−𝑘
.

Then

ℎ0(𝑢) = 𝐻′
0(𝑢) ≈

𝑚𝑆∑︁
𝑘=0

[︂
𝑘

𝑇𝑚𝑎𝑥
𝐻0

(︁
𝑘

𝑚𝑆
𝑇𝑚𝑎𝑥

)︁(︀𝑚𝑆

𝑘

)︀(︁ 𝑢

𝑇𝑚𝑎𝑥

)︁𝑘−1 (︁
1 −

𝑢

𝑇𝑚𝑎𝑥

)︁𝑚𝑆−𝑘

−

(𝑚𝑆 − 𝑘)
𝑇𝑚𝑎𝑥

𝐻0

(︁
𝑘

𝑚𝑆
𝑇𝑚𝑎𝑥

)︁(︀𝑚𝑆

𝑘

)︀(︁ 𝑢

𝑇𝑚𝑎𝑥

)︁𝑘 (︁
1 −

𝑢

𝑇𝑚𝑎𝑥

)︁𝑚𝑆−𝑘−1
]︂

=
𝑚𝑆∑︁
𝑘=0

1
𝑇𝑚𝑎𝑥

𝐻0

(︁
𝑘

𝑚𝑆
𝑇𝑚𝑎𝑥

)︁(︀𝑚𝑆

𝑘

)︀[︂
𝑘

(︁
𝑢

𝑇𝑚𝑎𝑥

)︁𝑘−1 (︁
1 −

𝑢

𝑇𝑚𝑎𝑥

)︁𝑚𝑆−𝑘

− (𝑚𝑆 − 𝑘)
(︁

𝑢

𝑇𝑚𝑎𝑥

)︁𝑘 (︁
1 −

𝑢

𝑇𝑚𝑎𝑥

)︁𝑚𝑆−𝑘−1
]︂

(for 𝑘 = 0) =
1

𝑇𝑚𝑎𝑥
𝐻0

(︁ 0
𝑚𝑆

𝑇𝑚𝑎𝑥

)︁(︀𝑚𝑆

0
)︀[︂

0
(︁

𝑢

𝑇𝑚𝑎𝑥

)︁−1 (︁
1 −

𝑢

𝑇𝑚𝑎𝑥

)︁𝑚𝑆

− (𝑚𝑆 − 0)
(︁

𝑢

𝑇𝑚𝑎𝑥

)︁0 (︁
1 −

𝑢

𝑇𝑚𝑎𝑥

)︁𝑚𝑆−1
]︂

(for 𝑘 = 1) =
1

𝑇𝑚𝑎𝑥
𝐻0

(︁ 1
𝑚𝑆

𝑇𝑚𝑎𝑥

)︁(︀𝑚𝑆

1
)︀[︂

1
(︁

𝑢

𝑇𝑚𝑎𝑥

)︁0 (︁
1 −

𝑢

𝑇𝑚𝑎𝑥

)︁𝑚𝑆−1
− (𝑚𝑆 − 1)

(︁
𝑢

𝑇𝑚𝑎𝑥

)︁1 (︁
1 −

𝑢

𝑇𝑚𝑎𝑥

)︁𝑚𝑆−2
]︂

(for 𝑘 = 2) +
1

𝑇𝑚𝑎𝑥
𝐻0

(︁ 2
𝑚𝑆

𝑇𝑚𝑎𝑥

)︁(︀𝑚𝑆

2
)︀[︂

2
(︁

𝑢

𝑇𝑚𝑎𝑥

)︁1 (︁
1 −

𝑢

𝑇𝑚𝑎𝑥

)︁𝑚𝑆−2
− (𝑚𝑆 − 2)

(︁
𝑢

𝑇𝑚𝑎𝑥

)︁2 (︁
1 −

𝑢

𝑇𝑚𝑎𝑥

)︁𝑚𝑆−3
]︂

(for 𝑘 = 3) +
1

𝑇𝑚𝑎𝑥
𝐻0

(︁ 3
𝑚𝑆

𝑇𝑚𝑎𝑥

)︁(︀𝑚𝑆

3
)︀[︂

3
(︁

𝑢

𝑇𝑚𝑎𝑥

)︁2 (︁
1 −

𝑢

𝑇𝑚𝑎𝑥

)︁𝑚𝑆−3
− (𝑚𝑆 − 3)

(︁
𝑢

𝑇𝑚𝑎𝑥

)︁3 (︁
1 −

𝑢

𝑇𝑚𝑎𝑥

)︁𝑚𝑆−4
]︂

...

(for 𝑘 = 𝑚𝑆 − 2) +
1

𝑇𝑚𝑎𝑥
𝐻0

(︁
𝑚𝑆 − 2
𝑚𝑆

𝑇𝑚𝑎𝑥

)︁(︀ 𝑚𝑆

𝑚𝑆 − 2
)︀[︂

(𝑚𝑆 − 2)
(︁

𝑢

𝑇𝑚𝑎𝑥

)︁𝑚𝑆−3 (︁
1 −

𝑢

𝑇𝑚𝑎𝑥

)︁2
− 2
(︁

𝑢

𝑇𝑚𝑎𝑥

)︁𝑚𝑆−2 (︁
1 −

𝑢

𝑇𝑚𝑎𝑥

)︁1
]︂

(for 𝑘 = 𝑚𝑆 − 1) +
1

𝑇𝑚𝑎𝑥
𝐻0

(︁
𝑚𝑆 − 1
𝑚𝑆

𝑇𝑚𝑎𝑥

)︁(︀ 𝑚𝑆

𝑚𝑆 − 1
)︀[︂

(𝑚𝑆 − 1)
(︁

𝑢

𝑇𝑚𝑎𝑥

)︁𝑚𝑆−2 (︁
1 −

𝑢

𝑇𝑚𝑎𝑥

)︁1
− 1
(︁

𝑢

𝑇𝑚𝑎𝑥

)︁𝑚𝑆−1 (︁
1 −

𝑢

𝑇𝑚𝑎𝑥

)︁0
]︂

(for 𝑘 = 𝑚𝑆) +
1

𝑇𝑚𝑎𝑥
𝐻0

(︁
𝑚𝑆

𝑚𝑆
𝑇𝑚𝑎𝑥

)︁(︀𝑚𝑆

𝑚𝑆

)︀[︂
𝑚𝑆

(︁
𝑢

𝑇𝑚𝑎𝑥

)︁𝑚𝑆−1 (︁
1 −

𝑢

𝑇𝑚𝑎𝑥

)︁𝑚𝑆−𝑚𝑆

− 0
(︁

𝑢

𝑇𝑚𝑎𝑥

)︁𝑚𝑆
(︁

1 −
𝑢

𝑇𝑚𝑎𝑥

)︁−1
]︂
.

The next step is to rearrange the expressions above by putting together the ones

with the same exponents. In addition, note that (𝑚𝑆 − (𝑘 − 1))
(︃
𝑚𝑆

𝑘 − 1

)︃
= 𝑘

(︃
𝑚𝑆

𝑘

)︃
, for

𝑘 = 1, 2, . . . ,𝑚𝑆. So, we have that

ℎ0(𝑢) ≈
𝑚𝑆∑︁
𝑘=0

1
𝑇𝑚𝑎𝑥

𝐻0

(︁
𝑘

𝑚𝑆
𝑇𝑚𝑎𝑥

)︁(︀𝑚𝑆

𝑘

)︀[︂
𝑘

(︁
𝑢

𝑇𝑚𝑎𝑥

)︁𝑘−1 (︁
1 −

𝑢

𝑇𝑚𝑎𝑥

)︁𝑚𝑆−𝑘

− (𝑚𝑆 − 𝑘)
(︁

𝑢

𝑇𝑚𝑎𝑥

)︁𝑘 (︁
1 −

𝑢

𝑇𝑚𝑎𝑥

)︁𝑚𝑆−𝑘−1
]︂

=
𝑚𝑆∑︁
𝑘=1

1
𝑇𝑚𝑎𝑥

[︁
𝐻0

(︁
𝑘

𝑚𝑆
𝑇𝑚𝑎𝑥

)︁
−𝐻0

(︁
𝑘 − 1
𝑚𝑆

𝑇𝑚𝑎𝑥

)︁]︁
𝑚𝑆

(︀𝑚𝑆 − 1
𝑘 − 1

)︀(︁ 𝑢

𝑇𝑚𝑎𝑥

)︁𝑘−1 (︁
1 −

𝑢

𝑇𝑚𝑎𝑥

)︁𝑚𝑆−𝑘

=
𝑚𝑆∑︁
𝑘=1

1
𝑇𝑚𝑎𝑥

[︁
𝐻0

(︁
𝑘

𝑚𝑆
𝑇𝑚𝑎𝑥

)︁
−𝐻0

(︁
𝑘 − 1
𝑚𝑆

𝑇𝑚𝑎𝑥

)︁]︁
𝑚𝑆𝑓𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙

(︁
𝑘 − 1;𝑚𝑆 − 1,

𝑢

𝑇𝑚𝑎𝑥

)︁
=

𝑚𝑆∑︁
𝑘=1

1
𝑇𝑚𝑎𝑥

[︁
𝐻0

(︁
𝑘

𝑚𝑆
𝑇𝑚𝑎𝑥

)︁
−𝐻0

(︁
𝑘 − 1
𝑚𝑆

𝑇𝑚𝑎𝑥

)︁]︁
𝑓𝐵𝑒𝑡𝑎

(︁
𝑢

𝑇𝑚𝑎𝑥
; 𝑘,𝑚𝑆 − 𝑘 + 1

)︁
.
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Relationship between the summation of the components of 𝛾𝑚𝑆−1

and the baseline cumulative hazard function

As described in Section 3.2 (page 44), we have that 𝛾𝑚𝑆−1
𝑘 = 𝐻0

(︃
𝑘

𝑚𝑆

𝑇𝑚𝑎𝑥

)︃
−

𝐻0

(︃
𝑘 − 1
𝑚𝑆

𝑇𝑚𝑎𝑥

)︃
, for 𝑘 = 1, 2, . . . ,𝑚𝑆 and 𝛾𝑚𝑆−1

0 = 0. Then,

for 𝑘 = 1, 𝛾
𝑚𝑆−1
1 = 𝐻0

(︁ 1
𝑚𝑆

𝑇𝑚𝑎𝑥

)︁
−𝐻0

(︁ 0
𝑚𝑆

𝑇𝑚𝑎𝑥

)︁
=⇒ 𝐻0

(︁ 1
𝑚𝑆

𝑇𝑚𝑎𝑥

)︁
= 𝛾

𝑚𝑆−1
1

for 𝑘 = 2, 𝛾
𝑚𝑆−1
2 = 𝐻0

(︁ 2
𝑚𝑆

𝑇𝑚𝑎𝑥

)︁
−𝐻0

(︁ 1
𝑚𝑆

𝑇𝑚𝑎𝑥

)︁
= 𝐻0

(︁ 2
𝑚𝑆

𝑇𝑚𝑎𝑥

)︁
− 𝛾

𝑚𝑆−1
1 =⇒ 𝐻0

(︁ 2
𝑚𝑆

𝑇𝑚𝑎𝑥

)︁
=

2∑︁
𝑜=1

𝛾
𝑚𝑆−1
𝑜

for 𝑘 = 3, 𝛾
𝑚𝑆−1
3 = 𝐻0

(︁ 3
𝑚𝑆

𝑇𝑚𝑎𝑥

)︁
−𝐻0

(︁ 2
𝑚𝑆

𝑇𝑚𝑎𝑥

)︁
= 𝐻0

(︁ 3
𝑚𝑆

𝑇𝑚𝑎𝑥

)︁
− 𝛾

𝑚𝑆−1
2 =⇒ 𝐻0

(︁ 3
𝑚𝑆

𝑇𝑚𝑎𝑥

)︁
=

3∑︁
𝑜=1

𝛾
𝑚𝑆−1
𝑜

...

for 𝑘 = 𝑚𝑆 , 𝛾
𝑚𝑆−1
𝑚𝑆

= 𝐻0

(︁
𝑚𝑆

𝑚𝑆
𝑇𝑚𝑎𝑥

)︁
−𝐻0

(︁
𝑚𝑆 − 1
𝑚𝑆

𝑇𝑚𝑎𝑥

)︁
= 𝐻0

(︁
𝑚𝑆

𝑚𝑆
𝑇𝑚𝑎𝑥

)︁
− 𝛾

𝑚𝑆−1
𝑚𝑆−1 =⇒ 𝐻0

(︁
𝑚𝑆

𝑚𝑆
𝑇𝑚𝑎𝑥

)︁
=

𝑚𝑆∑︁
𝑜=1

𝛾
𝑚𝑆−1
𝑜 .

Hence 𝐻0

(︃
𝑘

𝑚𝑆

𝑇𝑚𝑎𝑥

)︃
=

𝑘∑︁
𝑜=1

𝛾𝑚𝑆−1
𝑘 .

Proof of the properties of the Bernstein Polynomials
The first property is the equivalency with the straight line. The BP approximation

with degree 𝑚 (arbitrary) is given by

𝑓(𝑡) ≈
𝑚∑︁
𝑘=0

𝑓

(︃
𝑘

𝑚

)︃(︃
𝑚

𝑘

)︃
𝑡𝑘(1 − 𝑡)𝑚−𝑘 =

𝑚∑︁
𝑘=0

(︃
𝑎
𝑘

𝑚
+ 𝑏

)︃(︃
𝑚

𝑘

)︃
𝑡𝑘(1 − 𝑡)𝑚−𝑘

=
𝑚∑︁
𝑘=0

𝑎
𝑘

𝑚

(︃
𝑚

𝑘

)︃
𝑡𝑘(1 − 𝑡)𝑚−𝑘 +

𝑚∑︁
𝑘=0

𝑏

(︃
𝑚

𝑘

)︃
𝑡𝑘(1 − 𝑡)𝑚−𝑘

= 𝑎
𝑚∑︁
𝑘=0

𝑘

𝑚

(︃
𝑚

𝑘

)︃
𝑡𝑘(1 − 𝑡)𝑚−𝑘 + 𝑏

𝑚∑︁
𝑘=0

(︃
𝑚

𝑘

)︃
𝑡𝑘(1 − 𝑡)𝑚−𝑘.

Note that the terms in the second summation are probabilities from a 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑚, 𝑡)
distribution, for all possible number of successes. Then, these terms sum up to 1. So,

𝑓(𝑡) ≈ 𝑎
𝑚∑︁
𝑘=0

𝑘

𝑚

(︃
𝑚

𝑘

)︃
𝑡𝑘(1 − 𝑡)𝑚−𝑘 + 𝑏 = 𝑎

𝑚∑︁
𝑘=1

𝑘

𝑚

(︃
𝑚

𝑘

)︃
𝑡𝑘(1 − 𝑡)𝑚−𝑘 + 𝑏.

Using the result 𝑘

𝑚

(︃
𝑚

𝑘

)︃
=
(︃
𝑚− 1
𝑘 − 1

)︃
, we have that
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𝑓(𝑡) ≈ 𝑎
𝑚∑︁
𝑘=1

(︃
𝑚− 1
𝑘 − 1

)︃
𝑡𝑘(1 − 𝑡)𝑚−𝑘 + 𝑏

= 𝑎𝑡
𝑚∑︁
𝑘=1

(︃
𝑚− 1
𝑘 − 1

)︃
𝑡𝑘−1(1 − 𝑡)𝑚−𝑘 + 𝑏

= 𝑎𝑡+ 𝑏.

The last result is true because the terms in the summation are probabilities of a𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑚−
1, 𝑡) distribution for all possible number of successes.

The demonstration of the degree elevation property starts by noticing that 1 =

(1 − 𝑡) + 1. So, the Bernstein basis 𝑏𝑘,𝑚(𝑡) =
(︃
𝑚

𝑘

)︃
𝑡𝑘(1 − 𝑡)𝑚−𝑘 is equal to

𝑏𝑘,𝑚(𝑡) = [(1 − 𝑡) + 1] 𝑏𝑘,𝑚(𝑡) = (1 − 𝑡)
(︃
𝑚

𝑘

)︃
𝑡𝑘(1 − 𝑡)𝑚−𝑘 + 𝑡

(︃
𝑚

𝑘

)︃
𝑡𝑘(1 − 𝑡)𝑚−𝑘

=
(︃
𝑚

𝑘

)︃
𝑡𝑘(1 − 𝑡)(𝑚+1)−𝑘 +

(︃
𝑚

𝑘

)︃
𝑡𝑘+1(1 − 𝑡)𝑚−𝑘

=

(︃
𝑚

𝑘

)︃
(︃
𝑚+ 1
𝑘

)︃(︃𝑚+ 1
𝑘

)︃
𝑡𝑘(1 − 𝑡)(𝑚+1)−𝑘 +

(︃
𝑚

𝑘

)︃
(︃
𝑚+ 1
𝑘 + 1

)︃(︃𝑚+ 1
𝑘 + 1

)︃
𝑡𝑘+1(1 − 𝑡)𝑚−𝑘

=
(︃

1 − 𝑘

𝑚+ 1

)︃
𝑏𝑘,𝑚+1(𝑡) +

(︃
𝑘 + 1
𝑚+ 1

)︃
𝑏𝑘+1,𝑚+1(𝑡).

As a result, we have for an arbitrary continuous function 𝑓 that

𝑓(𝑡) ≈
𝑚∑︁
𝑘=0

𝑓

(︃
𝑘

𝑚

)︃(︃
𝑚

𝑘

)︃
𝑡𝑘(1 − 𝑡)𝑚−𝑘 =

𝑚∑︁
𝑘=0

𝜉𝑚𝑘 𝑏𝑘,𝑚(𝑡)

=
𝑚∑︁
𝑘=0

𝜉𝑚𝑘

[︃(︃
1 − 𝑘

𝑚+ 1

)︃
𝑏𝑘,𝑚+1(𝑡) +

(︃
𝑘 + 1
𝑚+ 1

)︃
𝑏𝑘+1,𝑚+1(𝑡)

]︃

=
𝑚∑︁
𝑘=0

𝜉𝑚𝑘

(︃
1 − 𝑘

𝑚+ 1

)︃
𝑏𝑘,𝑚+1(𝑡) +

𝑚∑︁
𝑘=0

𝜉𝑚𝑘

(︃
𝑘 + 1
𝑚+ 1

)︃
𝑏𝑘+1,𝑚+1(𝑡)

(𝑙 = 𝑘 + 1) =
𝑚∑︁
𝑘=0

𝜉𝑚𝑘

(︃
1 − 𝑘

𝑚+ 1

)︃
𝑏𝑘,𝑚+1(𝑡) +

𝑚+1∑︁
𝑙=1

𝜉𝑚𝑙−1

(︃
𝑙

𝑚+ 1

)︃
𝑏𝑙,𝑚+1(𝑡)

=
𝑚+1∑︁
𝑘=0

[︃
𝜉𝑚𝑘

(︃
1 − 𝑘

𝑚+ 1

)︃
+ 𝜉𝑚𝑘−1

(︃
𝑘

𝑚+ 1

)︃]︃
𝑏𝑘,𝑚+1(𝑡)

=
𝑚+1∑︁
𝑘=0

𝜉𝑚+1
𝑘 𝑏𝑘,𝑚+1(𝑡),

where 𝜉𝑚+1
0 = 𝜉𝑚0 and 𝜉𝑚+1

𝑚+1 = 𝜉𝑚𝑚 . For clarification, the term 𝜉𝑚𝑘−1 does not make sense
when 𝑘 = 0. However, this notation is not a concern, since the coefficient is being multiplied
by zero.
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Maximum of the Bernstein basis
The approximation for both the temporal behavior of the longitudinal variable and

hazard function are given by a BP with degree 𝑚− 1. Then, each of the 𝑚 components

of the Bernstein basis is 𝑏𝑘,𝑚−1

(︂
𝑡

𝑇𝑚𝑎𝑥

)︂
=
(︃
𝑚− 1
𝑘 − 1

)︃(︂
𝑡

𝑇𝑚𝑎𝑥

)︂𝑘−1 (︂
1 − 𝑡

𝑇𝑚𝑎𝑥

)︂𝑚−𝑘
and its

derivative is

𝑏′
𝑘,𝑚−1

(︂
𝑡

𝑇𝑚𝑎𝑥

)︂
= (𝑘 − 1)

𝑇𝑚𝑎𝑥

(︃
𝑚− 1
𝑘 − 1

)︃(︂
𝑡

𝑇𝑚𝑎𝑥

)︂𝑘−2 (︂
1 − 𝑡

𝑇𝑚𝑎𝑥

)︂𝑚−𝑘
−

(𝑚− 𝑘)
𝑇𝑚𝑎𝑥

(︃
𝑚− 1
𝑘 − 1

)︃(︂
𝑡

𝑇𝑚𝑎𝑥

)︂𝑘−1 (︂
1 − 𝑡

𝑇𝑚𝑎𝑥

)︂𝑚−𝑘−1
.

The point where this function reaches its maximum is a value 𝑡 such that 𝑏′
𝑘,𝑚

(︂
𝑡

𝑇𝑚𝑎𝑥

)︂
= 0.

Thus,

(𝑘 − 1)
𝑇𝑚𝑎𝑥

(︂
𝑚− 1
𝑘 − 1

)︂(︂
𝑡

𝑇𝑚𝑎𝑥

)︂𝑘−2(︂
1 − 𝑡

𝑇𝑚𝑎𝑥

)︂𝑚−𝑘

− (𝑚− 𝑘)
𝑇𝑚𝑎𝑥

(︂
𝑚− 1
𝑘 − 1

)︂(︂
𝑡

𝑇𝑚𝑎𝑥

)︂𝑘−1(︂
1 − 𝑡

𝑇𝑚𝑎𝑥

)︂𝑚−𝑘−1
= 0

⇒ (𝑘 − 1)
𝑇𝑚𝑎𝑥

(︂
𝑚− 1
𝑘 − 1

)︂(︂
𝑡

𝑇𝑚𝑎𝑥

)︂𝑘−2(︂
1 − 𝑡

𝑇𝑚𝑎𝑥

)︂𝑚−𝑘

= (𝑚− 𝑘)
𝑇𝑚𝑎𝑥

(︂
𝑚− 1
𝑘 − 1

)︂(︂
𝑡

𝑇𝑚𝑎𝑥

)︂𝑘−1(︂
1 − 𝑡

𝑇𝑚𝑎𝑥

)︂𝑚−𝑘−1

⇒
(︂

𝑡

𝑇𝑚𝑎𝑥

)︂−1(︂
1 − 𝑡

𝑇𝑚𝑎𝑥

)︂
= 𝑚− 𝑘

𝑘 − 1

⇒
1 − 𝑡

𝑇𝑚𝑎𝑥

𝑡

𝑇𝑚𝑎𝑥

= 𝑚− 𝑘

𝑘 − 1 ⇒
(︂

𝑡

𝑇𝑚𝑎𝑥

)︂−1
− 1 = 𝑚− 𝑘

𝑘 − 1

⇒ 𝑡

𝑇𝑚𝑎𝑥
=
(︂
𝑚− 𝑘

𝑘 − 1 + 1
)︂−1

=
(︂
𝑚− 1
𝑘 − 1

)︂−1
= 𝑘 − 1
𝑚− 1 .

So, the maximum of the Bernstein basis is achieved when 𝑡/𝑇𝑚𝑎𝑥 = (𝑘 − 1)/(𝑚− 1) ⇔
𝑡 = ((𝑘 − 1)/(𝑚− 1))𝑇𝑚𝑎𝑥.

Probability function and probability distribution function of M
The random variable 𝑀 represents the minimum degree that is needed to capture a

change in an interval (𝑈(1), 𝑈(2)). This variable is defined as𝑀 =
⌈︃
max

(︃
1
𝑈(1)

+ 1, 2 − 𝑈(2)

1 − 𝑈(2)

)︃⌉︃
.

So, we have that

P(𝑀 = 𝑚|(𝑈1, 𝑈2)) = P

(︂⌈︂
max

(︂
1

𝑈(1)
+ 1,

2 − 𝑈(2)

1 − 𝑈(2)

)︂⌉︂
= 𝑚|(𝑈1, 𝑈2)

)︂
= P

(︂
𝑚− 1 < max

(︂
1

𝑈(1)
+ 1,

2 − 𝑈(2)

1 − 𝑈(2)

)︂
≤ 𝑚|(𝑈1, 𝑈2)

)︂
= P

(︂
max

(︂
1

𝑈(1)
+ 1,

2 − 𝑈(2)

1 − 𝑈(2)

)︂
≤ 𝑚|(𝑈1, 𝑈2)

)︂
− P

(︂
max

(︂
1

𝑈(1)
+ 1,

2 − 𝑈(2)

1 − 𝑈(2)

)︂
≤ 𝑚− 1|(𝑈1, 𝑈2)

)︂
.
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Now, note that

[︃
max

(︃
1
𝑈(1)

+ 1, 2 − 𝑈(2)

1 − 𝑈(2)

)︃
≤ 𝑚

]︃
=

[︃
1
𝑈(1)

+ 1 ≤ 𝑚,
2 − 𝑈(2)

1 − 𝑈(2)
≤ 𝑚

]︃

=
[︂
𝑈(1) ≥ 1

𝑚− 1 , 𝑈(2) ≤ 𝑚− 2
𝑚− 1

]︂
=

[︂ 1
𝑚− 1 ≤ 𝑈1 ≤ 𝑚− 2

𝑚− 1 ,
1

𝑚− 1 ≤ 𝑈2 ≤ 𝑚− 2
𝑚− 1

]︂
.

Consequently,

[︃
max

(︃
1
𝑈(1)

+ 1, 2 − 𝑈(2)

1 − 𝑈(2)

)︃
≤ 𝑚− 1

]︃
=
[︂ 1
𝑚− 2 ≤ 𝑈1 ≤ 𝑚− 3

𝑚− 2 ,
1

𝑚− 2 ≤ 𝑈2 ≤ 𝑚− 3
𝑚− 2

]︂
.

In the case that 𝑈1 and 𝑈2 are equally distributed, we have that

P(𝑀 = 𝑚|(𝑈1, 𝑈2)) = P

(︂
max

(︂
1

𝑈(1)
+ 1,

2 − 𝑈(2)

1 − 𝑈(2)

)︂
≤ 𝑚|(𝑈1, 𝑈2)

)︂
− P

(︂
max

(︂
1

𝑈(1)
+ 1,

2 − 𝑈(2)

1 − 𝑈(2)

)︂
≤ 𝑚− 1|(𝑈1, 𝑈2)

)︂
=

[︁
P
(︁
𝑈1 ≤

𝑚− 2
𝑚− 1

)︁
− P
(︁
𝑈1 <

1
𝑚− 1

)︁]︁2
−
[︁
P
(︁
𝑈1 ≤

𝑚− 3
𝑚− 2

)︁
− P
(︁
𝑈1 <

1
𝑚− 2

)︁]︁2
.

At last, considering 𝑈1 ∼ 𝐵𝑒𝑡𝑎(𝜃1, 𝜃2) and 𝑈2 ∼ 𝐵𝑒𝑡𝑎(𝜃1, 𝜃2)

P(𝑀 = 𝑚|(𝑈1, 𝑈2)) =
[︁
𝐹𝐵𝑒𝑡𝑎

(︁
𝑚− 2
𝑚− 1

; 𝜃1, 𝜃2

)︁
− 𝐹𝐵𝑒𝑡𝑎

(︁ 1
𝑚− 1

; 𝜃1, 𝜃2

)︁]︁2
−
[︁
𝐹𝐵𝑒𝑡𝑎

(︁
𝑚− 3
𝑚− 2

; 𝜃1, 𝜃2

)︁
− 𝐹𝐵𝑒𝑡𝑎

(︁ 1
𝑚− 2

; 𝜃1, 𝜃2

)︁]︁2
.

Difference between two estimated curves
The difference between two approximated functions - one estimating the vector of

coefficients directly (𝑓(𝑡;𝑚− 1)) and the other one obtained by using the degree elevation
property (𝑓(𝑡;𝑚− 1)), is given by
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𝐷𝑚−1 =
∫︁ 1

0
(𝑓(𝑡; 𝑚 − 1) − 𝑓(𝑡; 𝑚 − 1))2𝑑(𝑡/𝑇𝑚𝑎𝑥)

=
∫︁ 1

0

(︁
(𝜉𝑚−1)⊤b𝑚−1

(︁
𝑡

𝑇𝑚𝑎𝑥

)︁
− (𝜉𝑚−1)⊤b𝑚−1

(︁
𝑡

𝑇𝑚𝑎𝑥

)︁)︁2
𝑑(𝑡/𝑇𝑚𝑎𝑥)

=
∫︁ 1

0

[︁
(𝜉⊤

𝑚−1 − 𝜉
⊤
𝑚−1)b𝑚−1

(︁
𝑡

𝑇𝑚𝑎𝑥

)︁]︁2
𝑑(𝑡/𝑇𝑚𝑎𝑥)

=
∫︁ 1

0

[︁
(𝜉𝑚−1 − 𝜉𝑚−1)⊤b𝑚−1

(︁
𝑡

𝑇𝑚𝑎𝑥

)︁]︁2
𝑑(𝑡/𝑇𝑚𝑎𝑥)

=
∫︁ 1

0

[︃
𝑚∑︁

𝑘=1

𝑚∑︁
𝑙=1

(𝜉𝑚−1
𝑘 − 𝜉𝑚−1

𝑘 )(𝜉𝑚−1
𝑙 − 𝜉𝑚−1

𝑙 )𝑏𝑘,𝑚−1

(︁
𝑡

𝑇𝑚𝑎𝑥

)︁
𝑏𝑙,𝑚−1

(︁
𝑡

𝑇𝑚𝑎𝑥

)︁]︃
𝑑(𝑡/𝑇𝑚𝑎𝑥)

=
𝑚∑︁

𝑘=1

𝑚∑︁
𝑙=1

(𝜉𝑚−1
𝑘 − 𝜉𝑚−1

𝑘 )(𝜉𝑚−1
𝑙 − 𝜉𝑚−1

𝑙 )
∫︁ 1

0

[︁
𝑏𝑘,𝑚−1

(︁
𝑡

𝑇𝑚𝑎𝑥

)︁
𝑏𝑙,𝑚−1

(︁
𝑡

𝑇𝑚𝑎𝑥

)︁]︁
𝑑(𝑡/𝑇𝑚𝑎𝑥)

=
𝑚∑︁

𝑘=1

𝑚∑︁
𝑙=1

(𝜉𝑚−1
𝑘 − 𝜉𝑚−1

𝑘 )(𝜉𝑚−1
𝑙 − 𝜉𝑚−1

𝑙 )
∫︁ 1

0

(︂
𝑚 − 1
𝑘 − 1

)︂(︂
𝑚 − 1
𝑙 − 1

)︂(︁
𝑡

𝑇𝑚𝑎𝑥

)︁𝑘+𝑙−2 (︁
1 − 𝑡

𝑇𝑚𝑎𝑥

)︁2𝑚−𝑘−𝑙

𝑑(𝑡/𝑇𝑚𝑎𝑥)

=
𝑚∑︁

𝑘=1

𝑚∑︁
𝑙=1

(𝜉𝑚−1
𝑘 − 𝜉𝑚−1

𝑘 )(𝜉𝑚−1
𝑙 − 𝜉𝑚−1

𝑙 )
(︂

𝑚 − 1
𝑘 − 1

)︂(︂
𝑚 − 1
𝑙 − 1

)︂
Γ(𝑘 + 𝑙 − 1)Γ(2𝑚 − 𝑘 − 𝑙 + 1)

Γ(2𝑚)

=
𝑚∑︁

𝑘=1

𝑚∑︁
𝑙=1

(𝜉𝑚−1
𝑘 − 𝜉𝑚−1

𝑘 )(𝜉𝑚−1
𝑙 − 𝜉𝑚−1

𝑙 ) 1
(2𝑚 − 1)

(︂
𝑘 + 𝑙 − 2

𝑘 − 1

)︂(︂
2𝑚 − 𝑘 − 𝑙

𝑚 − 𝑘

)︂
(︂

2𝑚 − 2
𝑚 − 1

)︂
=

𝑚∑︁
𝑘=1

𝑚∑︁
𝑙=1

(𝜉𝑚−1
𝑘 − 𝜉𝑚−1

𝑘 )(𝜉𝑚−1
𝑙 − 𝜉𝑚−1

𝑙 ) 1
(2𝑚 − 1)𝐻𝑦𝑝𝑒𝑟𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐(𝑘 − 1; 2𝑚 − 2, 𝑘 + 𝑙 − 2, 𝑚 − 1)

= (𝜉𝑚−1 − 𝜉𝑚−1)⊤A(𝜉𝑚−1 − 𝜉𝑚−1),

where A is an 𝑚 × 𝑚 matrix. Each component 𝑎𝑘𝑙 of this matrix is given by 𝑎𝑘𝑙 =
1

(2𝑚− 1)𝐻𝑦𝑝𝑒𝑟𝐺(𝑘 − 1; 2𝑚− 2, 𝑘 + 𝑙 − 2,𝑚− 1), for 𝑘 = 1, 2, . . . ,𝑚 and 𝑙 = 1, 2, . . . ,𝑚.

At last, 𝐻𝑦𝑝𝑒𝑟𝐺(𝑘−1; 2𝑚−2, 𝑘+ 𝑙−2,𝑚−1) represents the probability of 𝑘−1 successes
from an 𝐻𝑦𝑝𝑒𝑟𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 distribution with parameters (2𝑚− 2, 𝑘 + 𝑙 − 2,𝑚− 1).
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B Extra results of the simulation studies

Here, we will show details and extra results of the simulation studies. First, we give
a brief description about the comparison measures we used to point to the best model,
within the fitted ones. Then, we focus on the simulation study for the degree selection
method we proposed. Next, we show results concerning the evaluation of the proposed
modeling approach.

Comparison measures
In order to compare the fitted models and to be able to point out to the best one

within this set, we used the DIC, the LPML and WAIC as comparison measures. Their
formula are given below.

The DIC is based on the deviance measure, and it is described as

𝐷𝐼𝐶 = E [𝐷(Φ)|𝐷𝑎𝑡𝑎] + 𝑝𝐷

= E [𝐷(Φ)|𝐷𝑎𝑡𝑎] + {E [𝐷(Φ)|𝐷𝑎𝑡𝑎] −𝐷(E(Φ)|𝐷𝑎𝑡𝑎)} (B.1)

where 𝐷(Φ) = −2 log(𝑝(𝑡|Φ) is the deviance measure. In the DIC, the first component
in the sum of Equation (B.1) accounts for the goodness of fit. Then, 𝑝𝐷 concerns the
model complexity (Gamerman and Lopes, 2006; Robert, 2007). This latter is also called
the effective number of parameters. In practice, we can approximate the DIC in Equation
(B.1) by

𝐷𝐼𝐶 ≈ 2
𝑆

𝑆∑︁
𝑠=1

𝐷(Φ(𝑠)) −𝐷

(︃
1
𝑆

𝑆∑︁
𝑠=1

Φ(𝑠)
)︃

(B.2)

here, Φ(𝑠) represents the 𝑠-th vector of the posterior sample, for 𝑠 = 1, 2, . . . , 𝑆.

In turn, the LPML measure is based on the Conditional Predictive Ordinate (CPO)
(Ibrahim et al., 2001). The CPO is a quantity that measures how a specific observation
influences the model. Thus, for a specific 𝑖-th observation, the CPO statistic is given by:

𝐶𝑃𝑂𝑖 = 𝑓(𝑡𝑖|𝐷𝑎𝑡𝑎(−𝑖)) =
∫︁

Φ
𝑓(𝑡𝑖|Φ, 𝐷𝑎𝑡𝑎(−𝑖))𝑝(Φ|𝐷𝑎𝑡𝑎(−𝑖))𝑑Φ, (B.3)

where 𝐷𝑎𝑡𝑎(−𝑖) is the observed data excluding the 𝑖-th observation, Φ is a general vector of
parameters to be estimated. Since it is not possible to calculate expression B.3 analytically,
an approximation is given by:
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𝐶𝑃𝑂𝑖 = 𝑆

{︃
𝑆∑︁
𝑠=1

[𝑓(𝑡𝑖|Φ𝑙, 𝐷𝑜𝑏𝑠)]−1
}︃−1

,

where 𝑠 = 1, 2, . . . , 𝑆 represents the index of the posterior sample. Finally, the LPML
measure can be obtained via:

𝐿𝑃𝑀𝐿 =
𝑛∑︁
𝑖=1

log (𝐶𝑃𝑂𝑖). (B.4)

At last, the WAIC can be seen as a substitute to the DIC. This measure is an
approximation to the following quantity:

elpd = expected log pointwise predictive density for a new dataset =
𝑛∑︁
𝑖=1

𝐸𝑓𝑖
[log (𝑝(𝑡|𝐷𝑎𝑡𝑎))],

where 𝑡 represents a new observation and 𝐷𝑎𝑡𝑎 is the observed data.

The mentioned approximation is based on the posterior sample and it is given by:

̂︂elpdwaic = ̂︂lpd − p̂waic, (B.5)

where

̂︂lpd = computed log pointwise predictive density =
𝑛∑︁
𝑖=1

log
(︃

1
𝑆

𝑆∑︁
𝑠=1

𝑓(𝑡𝑖|Φ𝑠)
)︃
,

likewise the notation to the LPML criteria, 𝑠 = 1, 2, . . . , 𝑆 is the index associated to the
posterior sample, 𝑆 is the size of the posterior sample and Φ is the vector of estimated
parameters.

In turn, p̂waic is the estimated the effective number of parameters. It is also
estimated using the posterior sample, in the following way:

p̂waic =
𝑛∑︁
𝑖=1

𝑉 𝑆
𝑠=1(log (𝑓(𝑡𝑖|Φ𝑠))), (B.6)

where 𝑉 𝑆
𝑠=1𝑎𝑠 = 1

𝑆 − 1

𝑆∑︁
𝑠=1

(𝑎𝑠 − �̄�)2 is the sample variance.

Next, we show extra results for both simulation studies.
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Simulation Study 1: Degree selection
Figure 24 shows, in red, the true curve that was generated in the simulation study.

The gray lines represent densities of the Beta distributions we chose to follow the routine
we propose to define a minimum degree for the BP.

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20

t

f(t
)

true curve
Beta(11,34)
Beta(34,11)

(a) 𝐵𝑒𝑡𝑎(11, 34) and 𝐵𝑒𝑡𝑎(34, 11).
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(b) 𝐵𝑒𝑡𝑎(117, 351) and 𝐵𝑒𝑡𝑎(351, 117).
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(c) 𝐵𝑒𝑡𝑎(1172, 3515) and 𝐵𝑒𝑡𝑎(3515, 1172).

Figure 24 – True curve 𝑓(𝑡) along with Beta densities that have high mass concentrated
at the turning points.

We can observe that these densities are concentrated on the turning points of the
true curve. The mean of these distributions are very close. On the other hand, as we can
see, their variance diminishes from Figures 24a to 24c.

Simulation Study 2: Evaluation of the proposed model
In this section we will show details of the second simulation study. The focus of

this other simulation study was to verify the performance of Bernstein Polynomials for
both sub-models in the joint model framework. In addition, we compared this model to
two others.
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Details of data generation

Let 𝑇 ∼ 𝐺𝑜𝑚𝑝𝑒𝑟𝑡𝑧(𝛼, 𝜆), 𝛼 ∈ R is the shape parameter and 𝜆 > 0 is a scale
parameter. Then, for 𝑡 > 0, the survival functions are given by

𝑓0(𝑡) = 𝜆𝑒𝑎𝑡 exp
{︃

−𝜆

𝑎

(︁
𝑒𝑎𝑡 − 1

)︁}︃
,

𝐹0(𝑡) = 1 − exp
{︃

−𝜆

𝑎

(︁
𝑒𝑎𝑡 − 1

)︁}︃
,

𝑆0(𝑡) = exp
{︃

−𝜆

𝑎

(︁
𝑒𝑎𝑡 − 1

)︁}︃
,

𝐻0(𝑡) = 𝜆

𝑎

(︁
𝑒𝑎𝑡 − 1

)︁
,

ℎ0(𝑡) = 𝜆𝑒𝑎𝑡.

Note that ℎ′
0(𝑡) = 𝑑

𝑑𝑡
ℎ0(𝑡) = 𝛼𝜆𝑒𝑎𝑡. Then, since 𝜆 > 0, if 𝛼 > 0, ℎ0(.) is an increasing

function of time. On the other hand, if 𝛼 < 0, then we have a decreasing function. In
addition, considering the joint model structure described and detailed in Equations (4.2)
and (4.3), the calculations necessary to generate joint longitudinal and survival data are
given below.

The cumulative hazard function is

𝐻(𝑢𝑖) =
∫︁ 𝑢𝑖

0
ℎ(𝑤)𝑑𝑤

= exp{z𝑖𝜓}
∫︁ 𝑢𝑖

0
𝜆𝑒𝛼𝑠 exp {𝜂(x𝑖𝛽 + 𝑏0𝑖 + 𝑏1𝑖𝑠)} 𝑑𝑠

= exp{z𝑖𝜓}𝜆 exp{𝜂(x𝑖𝛽 + 𝑏0𝑖)}
∫︁ 𝑢𝑖

0
𝑒𝛼𝑠 exp {𝜂(𝑏1𝑖𝑠)} 𝑑𝑠

= exp{z𝑖𝜓}𝜆 exp{𝜂(x𝑖𝛽 + 𝑏0𝑖)}
∫︁ 𝑢𝑖

0
exp {𝑠 [𝛼 + 𝜂𝑏1𝑖]} 𝑑𝑠

= exp{z𝑖𝜓}𝜆 exp{𝜂 (x𝑖𝛽 + 𝑏0𝑖)}
[︃

1
𝛼 + 𝜂𝑏1𝑖

exp {[𝛼 + 𝜂𝑏1𝑖]𝑤}
]︃𝑢𝑖

𝑠=0

= exp{z𝑖𝜓}𝜆 exp{𝜂(x𝑖𝛽 + 𝑏0𝑖)}
[︃

1
𝛼 + 𝜂𝑏1𝑖

(exp {[𝛼 + 𝜂𝑏1𝑖]𝑢𝑖} − 1)
]︃
.

The inverse function of the cumulative hazard function is given by
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𝐻(𝑢𝑖) = exp{z𝑖𝜓}𝜆 exp{𝜂(x𝑖𝛽 + 𝑏0𝑖)}
[︃

1
𝛼 + 𝜂𝑏1𝑖

(exp {[𝛼 + 𝜂𝑏1𝑖]𝑢𝑖} − 1)
]︃

⇒ 𝛼 + 𝜂𝑏1𝑖

exp{z𝑖𝜓}𝜆 exp{𝜂(x𝑖𝛽 + 𝑏0𝑖)}
𝐻(𝑢𝑖) = exp {[𝛼 + 𝜂𝑏1𝑖]𝑢𝑖} − 1

⇒ exp {[𝛼 + 𝜂𝑏1𝑖]𝑢𝑖} = 1 + 𝛼 + 𝜂𝑏1𝑖

exp{z𝑖𝜓}𝜆 exp{𝜂[x𝑖𝛽 + 𝑏0𝑖]}
𝐻(𝑢𝑖)

⇒ [𝛼 + 𝜂𝑏1𝑖]𝑢𝑖 = log
{︃

1 + 𝛼 + 𝜂𝑏1𝑖

exp{z𝑖𝜓}𝜆 exp{𝜂[x𝑖𝛽 + 𝑏0𝑖]}
𝐻(𝑢𝑖)

}︃

⇒ 𝑢𝑖 = 1
[𝛼 + 𝜂𝑏1𝑖]

log
{︃

1 + 𝛼 + 𝜂𝑏1𝑖

exp{z𝑖𝜓}𝜆 exp{𝜂[x𝑖𝛽 + 𝑏0𝑖]}
𝐻(𝑢𝑖)

}︃
.

Therefore,

𝑡 = 1
[𝛼 + 𝜂𝑏1𝑖]

log
{︃

1 + [𝛼 + 𝜂𝑏1𝑖](− log(𝑢*))
exp{z𝑖𝜓}𝜆 exp{𝜂[x𝑖𝛽 + 𝑏0𝑖]}

}︃
,

where 𝑢* is a value of random variable following a 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 1) distribution.

Results of the case in which the estimation procedure neglects the correlation
between measurements.

This section shows results of the simulation study for all fitted models when we
did not use the Wishart distribution for the variance-covariance matrices. That is, when
Σ𝑏 = diag(𝜎2

𝑏0 , 𝜎
2
𝑏1) and Σ𝜉 = diag(𝜎2

𝜉1 , 𝜎
2
𝜉2 , . . . , 𝜎

2
𝜉𝑚𝐿

). In this case, the prior distributions
were 𝜎𝑏𝑙

∼ 𝐺𝑎𝑚𝑚𝑎(1, 1), for 𝑙 = 1, 2, and 𝜎𝜉𝑙
∼ 𝐺𝑎𝑚𝑚𝑎(1, 1), for 𝑙 = 1, 2, . . . ,𝑚𝐿.

Table 17 presents the coverage percentage for the main parameters based on the
HPD interval. We highlight the lower coverage percentage for the variance/standard
deviation parameters 𝜎00, 𝜎11 and 𝜎𝜖. We can compare these results with those of Table
6. These outcomes show that to disregard the correlation between measurements lead
to lower CP. A solution can be to model the variance-covariance matrix with a Wishart
prior distribution. In addition, considering the approximation via BP, this interpretation is
only valid for the standard deviation of the measurement error, since there are no related
parameters for the standard deviations 𝜎00 and 𝜎11. We also point out that there is no
estimate for the covariance of the random effects 𝜎01 = 𝜎10 for any of the fitted models,
specifically because of to the modeling structure we applied here.

Table 18 shows results for the relative bias. We can note that, comparing to the
RB of all other parameters, this measure for 𝜎00 and 𝜎11 are relatively high. Then, turning
our attention to the standard deviation of the measurement error 𝜎𝜖, we can see that the
RB is higher when using the BP to model the unknown functions. We can compare these
values with those of Table 7. With this comparison, we can see that the RBs diminishes
when we model the entire variance-covariance matrices Σ𝑏 and Σ𝜉.
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Table 17 – Coverage percentage based on HPD intervals for main the parameters. Here,
the estimation procedure neglects the correlation between measurements.

ℳ𝑁
𝐺𝑜 ℳ𝑁

𝑊𝑒 ℳ𝐵𝑃5
𝐵𝑃5 ℳ𝐵𝑃5

𝐵𝑃10

𝜇𝑏0 94.80 94.60 91.60 91.20

𝜇𝑏1 96.40 94.80 - -

𝛽1 94.40 94.80 85.00 84.60

𝛽2 96.00 96.40 87.40 86.20

𝜎00 68.00 66.40 - -

𝜎11 70.40 71.00 - -

𝜎𝜖 88.20 86.60 38.40 37.60

𝜓1 97.00 51.20 97.60 97.60

𝜓2 94.40 93.80 94.00 95.20

𝜂 96.40 62.00 95.00 95.40

Figures with complete results (including outliers)

Figures 25, 26, and 27 represents the figures shown in the simulation study chapter.
Nonetheless, here they are shown including the outlier values. The panels in Figure 25
concern the parameters in the longitudinal sub-model. Then, we can relate these panels
with Figures 9 to 12.

In turn, Figure 26 focuses on the parameters of the survival sub-models. These
same figures without the outlier values are the Figures 13 to 15.

In Figure 27, the Panel 27a shows the comparison measures for all models. Thus,
it includes these measures for the true model ℳ𝑁

𝐺𝑜. Panel 27b shows the comparison
measures related to the true model, including the outliers. We can compare the outcomes
in this panel with those in Figure 16.

At last, Table 19 shows the frequency (and percentage) of how many times each
model was chosen as the best one, for each of the three comparison measures.
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Table 18 – Mean and standard deviations of the relative biases for the main parameters. Here,
the estimation procedure neglects the correlation between measurements.

Mean Median Mode

ℳ𝑁
𝐺𝑜 ℳ𝑁

𝑊 𝑒 ℳ𝐵𝑃5
𝐵𝑃5

ℳ𝐵𝑃5
𝐵𝑃10

ℳ𝑁
𝐺𝑜 ℳ𝑁

𝑊 𝑒 ℳ𝐵𝑃5
𝐵𝑃5

ℳ𝐵𝑃5
𝐵𝑃10

ℳ𝑁
𝐺𝑜 ℳ𝑁

𝑊 𝑒 ℳ𝐵𝑃5
𝐵𝑃5

ℳ𝐵𝑃5
𝐵𝑃10

𝜇𝑏0
2.64 1.07 1.87 1.62 2.10 0.98 1.95 1.82 -4.93 0.96 2.04 2.71

(63.41) (63.51) (71.57) (71.64) (63.41) (63.61) (71.56) (71.58) (63.41) (64.64) (72.00) (72.59)

𝜇𝑏1
-1.12 -2.76 - - -1.15 -2.80 - - -1.17 -2.83 - -
(6.37) (6.41) - - (6.37) (6.42) - - (6.42) (6.53) - -

𝛽1
0.00 0.02 -1.97 -1.94 0.05 0.01 -1.98 -1.94 -0.58 0.02 -2.00 -1.90

(4.51) (4.52) (4.98) (4.98) (4.51) (4.53) (4.98) (4.97) (4.51) (4.56) (5.03) (5.03)

𝛽2
0.05 0.07 0.81 0.99 -0.27 0.06 0.74 0.90 -1.59 -0.14 0.56 0.92

(34.20) (34.15) (38.20) (38.29) (34.20) (34.16) (38.22) (38.31) (34.20) (34.49) (38.54) (38.42)

𝜎00
20.80 21.32 - - 20.19 20.71 - - 19.03 19.70 - -

(13.34) (13.33) - - (13.28) (13.28) - - (13.26) (13.21) - -

𝜎11
21.11 21.05 - - 20.27 20.20 - - 18.74 18.66 - -

(15.12) (15.09) - - (15.04) (15.02) - - (14.98) (14.91) - -

𝜎𝜖
-1.40 -1.52 -6.84 -6.80 -1.33 -1.56 -6.90 -6.85 -1.19 -1.64 -7.00 -6.94
(2.20) (2.20) (3.26) (3.26) (2.20) (2.19) (3.26) (3.27) (2.20) (2.20) (3.30) (3.32)

𝜓1
0.75 -11.73 1.30 1.01 0.35 -11.81 1.20 0.90 -0.61 -12.00 1.00 0.69

(6.21) (5.95) (6.55) (6.48) (6.21) (5.94) (6.54) (6.48) (6.21) (6.00) (6.57) (6.52)

𝜓2
1.43 13.80 0.20 -1.07 1.76 13.88 0.32 -0.96 3.06 14.00 0.56 -0.87

(27.03) (24.59) (27.22) (27.05) (27.03) (24.57) (27.21) (27.12) (27.03) (24.82) (27.49) (27.74)

𝜂
0.45 -22.23 2.54 2.49 -0.28 -22.35 2.34 2.28 -2.03 -22.51 1.90 1.88

(12.53) (12.35) (13.77) (13.64) (12.53) (12.32) (13.73) (13.63) (12.53) (12.36) (13.91) (13.83)

Table 19 – Frequency and percentage of the times in which each model was chosen as the
best one.

ℳ𝑁
𝐺𝑜 ℳ𝑁

𝑊𝑒 ℳ𝐵𝑃5
𝐵𝑃5 ℳ𝐵𝑃5

𝐵𝑃10

DIC 337 (67.40%) 36 (7.20%) 81 (16.20%) 46 (9.20%)
LPML 446 (89.20%) 2 (0.40%) 37 (7.40%) 15 (3.00%)
WAIC 448 (89.60%) 2 (0.40%) 36 (7.20%) 14 (2.80%)
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Figure 25 – Comparison of the relative biases of the parameters related to the longitudinal
sub-model based on the posterior mean, median and mode and comparing
each modeling approach.
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Figure 26 – Comparison of the relative biases of the parameters related to the survival
sub-model based on the posterior mean, median and mode and comparing
each modeling approach.
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fitted models.
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Figure 27 – Comparison measures for the fitted models.
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C Extra results of the application

This chapter shows an extra result of the application. Figure 28 shows some of the
estimated models for the data set and the trajectory of all subjects under study. Thus, this
figure is the same as Figure 21c but including the trajectories of subjects and the observed
mean curve, as it was done in Figure 19b. This figure was made to allow a comparison with
the observed longitudinal values for each person, the observed mean and the estimated
mean curve for the selected models.
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Figure 28 – Comparison between estimated overall mean curve along with the trajectory
of all subjects.
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