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Resumo
Lidar com séries temporais financeiras traz muitos desafios à modelagem de dados, dada a
existência de caudas pesadas e valores extremos de retorno causados por eventos externos,
como eventos políticos, econômicos, desastres naturais ou por especulação. Fornecer insights
confiáveis e interpretáveis aos agentes do mercado, com base em modelos estatísticos, para
basear decisões estratégicas na criação de portfólios de ativos, tomar decisões de arbitragem
e gerenciar riscos de investimento é crucial para evitar perdas e precificar corretamente os
ativos para o desenvolvimento de estratégias de investimento bem sucedidas.

Rego e Santos (2020) propuseram o Modelo Não-Gaussiano de Volatilidade Estocástica
com Saltos (NGSVJ) para avaliação da volatilidade do mercado, que inclui procedimento
de inferência automática, permitindo que o modelo seja rápido o suficiente para trazer
resultados tangíveis para o usuário executar operações de negociação. A classe de Modelos
Dinâmicos (DM), da qual o NGSVJ faz parte, possui uma estrutura flexível que permite a
inclusão de novos recursos nos modelos e possui simplicidade de implementação pela ótica
computacional. Essa classe de modelos ainda é inexplorada para aplicações financeiras
quando comparada às outras classes de modelos comumente usadas na literatura, prin-
cipalmente baseadas nas classes de Volatilidade Estocástica (SV) e Heterocedasticidade
Condicional Autorregressiva Generalizada (GARCH).

Nesta tese, vários desenvolvimentos são feitos usando como base a classe DM e o modelo
NGSVJ. No âmbito de séries temporais financeiras univariadas, desenvolvimentos são
feitos ao NGSVJ para estimar o grau de liberdade do parâmetro da mistura Gamma e
incluir uma estrutura de Markov Oculto (HMM) para fornecer ao modelo flexibilidade e
interpretabilidade em operações de mercado intraday de arbitragem. No âmbito de séries
temporais financeiras multivariadas, o Modelo Multivariado de Volatilidade Estocástica com
Saltos (MSVJ) foi desenvolvido para permitir aos agentes financeiros estimar a volatilidade
e correlação entre os ativos do portfólio simultaneamente e desenvolver estratégias efetivas
de gerenciamento de riscos.

Esta tese fornece um conjunto amplo de modelos estatísticos, baseados na classe DM, que
podem ser usados em finanças para tomar decisões de arbitragem e investimento, sejam
para análise de um único ativo ou portfólio. São apresentados estudos de simulação, bem
como aplicações no índice de mercado S&P 500, derivativos de commodities e taxas de
câmbio, para ilustrar o desempenho do modelo. Os modelos propostos têm resultados
altamente interpretáveis, trazendo grandes desenvolvimentos para a classe de modelos DM
e suas aplicações em finanças.

Palavras-chave: Séries Temporais Financeiras. Modelos Dinâmicos. Modelos Estocásticos
Multivariados.



Abstract
Dealing with financial time series brings many challenges to data modeling, given the
existence of heavy tails and extreme return values caused by external events, such as
politics, natural disasters, economical events, or even speculation. Providing reliable
and interpretable insights to market agents, based on statistical models, to base strategic
decisions on building assets portfolios, taking arbitrage decisions, and managing investment
risks is crucial for avoiding losses and correctly pricing assets for developing successful
investment strategies.

Rego and Santos (2020) proposed the Non-Gaussian Stochastic Volatility Model with
Jumps (NGSVJ) for market volatility evaluation, which includes automatic inference
procedure that allows the model to be fast enough to bring tangible results for the user,
using an ordinary home computer, to perform trading operations. The Dynamic Models
(DM) class, on which the NGSVJ is based, has a flexible structure that enables the inclusion
of new features on the models and has implementation simplicity from the computational
perspective. The DM class of models is still unexplored for financial applications when
compared to the other classes of models commonly used on literature, mainly based on
Stochastic Volatility (SV) and Generalized Autoregressive Conditional Heteroskedasticity
(GARCH) classes of models.

In this thesis, several developments are made using as basis the DM class and the NGSVJ
model. For dealing with a single asset, or univariate, financial time series, developments are
made to the NGSVJ to be able to estimate the degree of freedom of the gamma mixture
parameter and include a Hiden Markov (HMM) to give flexibility and interpretability
to the model for applications on arbitrage intraday market operations. For dealing with
multiple assets portfolio, or multivariate, financial time series the Multivariate Stochastic
Volatility Model with Jumps (MSVJ) was developed, based on DM structure, to enable
financial agents to estimate the volatility and correlation between portfolio assets and
effectively develop a risk management strategy.

This thesis provides a wide set of statistical models, based on DM class, that can be used
in finance for taking arbitrage and investment decisions, whether it is used for analyzing
a single asset or a portfolio. Simulation studies are presented as well as applications
on the S&P 500 market index, commodity derivatives, and exchange rates, to illustrate
model performance. The proposed models have highly interpretable results, bringing major
developments to the DM class of models and their applications on finance. The proposed
models are robust in the sense to incorporate several stylized characteristics of return data,
bringing major developments to the NGSVJ and their applications.

Keywords: Financial Time Series. Dynamic Models. Multivariate Stochastic Models.
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1 Introduction

To understand the behavior of asset prices is essential for capital allocation decisions
between the available investment options. Arbitrage, buying and selling to make gains of
differing prices, catch the attention of several market players by the chance of getting rapid
gains, over other investment options. Several assets can be negotiated in that way, including
stocks, commodities, futures, currencies, etc. On the other hand, some investors prefer to
build a portfolio, containing multiple assets and hold this position for some period of time
to gain from dividends and asset valuation. For such investors, a diversified portfolio is
essential in reducing risks and increase the overall performance of the investment portfolio.

For evaluating market volatility precisely, the model must take into account that
returns usually follow a heavy-tailed distribution and are susceptible to market anomalies,
such as the impact of speculative movements bringing abnormal changes to return of asset.

Concerning the inferential procedure, under the Bayesian perspective, the stochastic
volatility models commonly used are mostly based on intensive computational methods,
e.g., Markov Chain Monte Carlo (MCMC) methods using Metropolis-Hastings algorithms,
that can fail on bringing tangible results on the required time frame, especially when
dealing with high-dimensional data.

Rego and Santos (2020) proposed the Non-Gaussian Stochastic Volatility Model
with Jumps (NGSVJ) for market volatility evaluation, that includes automatic inference
procedure that allows the model to be fast enough to bring tangible results for the user,
using an ordinary home computer, to perform trading operations. The NGSVJ allows
returns to assume non-Gaussian distributions and includes jumps to catch the speculative
movements of the market, preventing their negative impact on overestimating volatility.

Professional traders and investment funds usually rely on statistical models to take
investment and arbitrage decisions, however, non-professional traders usually do not have
access to complex models, and rely mostly on market reports, basic graphic analysis or
even intuition in order to take such decisions. Nevertheless, even if they had access to
those statistical models, most would lack the required knowledge to interpret the output
correctly, since it involves statistical and financial concepts that are not common on the
average user’s daily environment.

With that in mind and the simplicity of the NGSVJ, this thesis will explore the
incorporation of a Hidden Markov Model (HMM) to translate the volatility results from a
mathematical language to a user-friendly language, so that it can be used on day-to-day
operation for investment decisions. Furthermore, a natural extension of the NGSVJ is the
multivariate case, to be able to evaluate the risk of an entire asset portfolio.
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In the multivariate case, the main interest is on understanding how one asset affects
the other inside the portfolio since diversification requires that the correlation between
them is weak or even negative to mitigate risks from one specific asset. Thus, estimating
the covariance matrix will provide the needed information to build an investment strategy.
Prado and West (2010) present the Matrix-Beta evolution for a multivariate Dynamic
Model that is effective to small dimensionality, due to strong constraints on both degrees of
freedom from Wishart distribution and discount factor for the covariance matrix evolution.
The Matrix-Beta evolution can be adapted on the NGSVJ to produce a multivariate model
with jumps on returns and heavy tail distribution and take advantage of a retrospective
analysis for sampling the covariance matrix from a smoothed distribution, but also some
development must be made in order to solve the constrains of Matrix-Beta Evolution.

Another alternative is the use of a multivariate dynamic model with the Bartlett
evolution equation. The evolution for the covariance matrix can flexible the constrains
that exist on the Matrix-beta evolution, allowing a higher dimensionality to the model.
Although, a retrospective analysis was still not proposed for this model, which is a big
challenge that will be addressed by this doctoral dissertation.

In summary, the objective of this thesis is to provide a wide set of statistical models
that can be used in finance for taking arbitrage and investment decisions, whether it is
used by a professional or non-professional investor and with a single asset or a portfolio,
the proposed model has highly interpretable results, bringing major developments to the
DM class of models and their applications on finance. The proposed models are robust
in the sense to incorporate several stylized characteristics of return data, bringing major
developments to the NGSVJ and their applications.

1.1 The Data and Motivations

Dealing with financial data brings major challenges to data analysis. The first
challenge, highlighted by Alexander et al. (2017) and Subrahmanyam (2019) is on data
quality. According to Alexander et al. (2017), different financial firms report data differently,
so that it is a challenge to integrate, aggregate, and analyze these data, e.g., financial data
can be reported by transactions or quotes on specific time frames. Also, because financial
data are acquired by different data systems, particularities of those systems can interfere
with data acquisition: specific countries’ holidays, timezone, market open hours, etc, which
is especially relevant when dealing with multivariate data analysis, since data integration
is relevant on granting analysis quality.

In finance applications it is common to use as observations the log-returns time
series. Log-returns are calculated by taking the natural log of the assets price at time t
divided by the price at time t−1, that is, log

(
Pt
Pt−1

)
. By doing so it is assumed that returns
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are compounded continuously rather than discrete, taking advantages of mathematical
properties of its continuity for data modeling.

Furthermore, financial data also brings challenges to data modeling. The most
common methods used for financial log-return modeling rely on statistical methods that
assume a Gaussian distribution for asset price returns, however, empirical studies have
shown that they are better described by heavy-tailed distributions. Jondeau and Rockinger
(2003) investigates the existence and persistence of skewness and kurtosis of various
financial time series taken at the daily frequency, finding that for many series they are
persistent. Resnick (2007) defines a heavy-tail as a characteristic of phenomena where
the probability of huge value is relatively big and exemplifies financial log-returns as
heavy-tailed phenomena. Also, financial log-returns are subject to speculative movements
of the market, which are an additional challenge in modeling its behavior.

In this chapter, we briefly present the financial data used in this thesis and a review
of available models on literature that motivate the development of the NGSVJ, developed
by Rego and Santos (2020).
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1.1.1 Financial Data Sets

The first dataset contains S&P 500 stock index log-returns from January 2, 1980, to
December 31, 1999. Excluding weekends and holidays, there are 5,054 daily observations for
the S&P index. Data were obtained from the Yahoo Finance platform, and the purpose of
using this specific dataset is to keep comparable results to Rego and Santos (2020). Figure
1 shows log-returns time series and histogram, and Table 1 shows summary statistics for
this dataset.

Figure 1 – S&P 500 dataset: Log-returns time series and histogram.

Mean Variance Skewness Kurtosis Min Max
S&P500 0.0521 0.9989 -2.6357 63.0710 -22.8997 8.7089

Table 1 – S&P 500 dataset: Summary Statistics

The second dataset contains Brent Crude futures, ICE:BRN, intraday log-returns
time series, consisting of Brent Crude futures, ICE:BRN, log returns from August 15,
03:00, 2018 to August 16, 23:59, 2018, in a total of 2,472-minute observations, obtained
from the Yahoo Finance. Figure 2 shows log-returns time series and histogram, and Table
2 shows summary statistics for this dataset.
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Figure 2 – ICE:BRN dataset: Log-returns time series and histogram.

Mean Variance Skewness Kurtosis Min Max
ICE:BRN -0.0005 0.0490 -2.7660 64.5076 -0.9575 0.3536

Table 2 – ICE:BRN dataset: Summary statistics

The third dataset contains nine exchange rates against U.S. dollar: Brazilian Reals
(BZUS), Canadian Dollar (CAUS), Chinese Yuan (CHUS), Danish Kroner (DNUS), Hong
Kong Dollar (HKUS), Indian Rupees (INUS), Japanese Yen (JPUS), South Korean Won
(KOUS), Malaysian Ringgit (MAUS), obtained from Federal Reserve of St. Louis website.
The dataset contains 2,020 daily observations from December 2010 to January 2019.
Figures ?? to ?? show log-returns time series and histogram, and Table 3 shows summary
statistics for each time series of this dataset, individually.
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Figure 3 – Exchange rates dataset: Log-returns time series and histogram for BZUS.

Figure 4 – Exchange rates dataset: Log-returns time series and histogram for CAUS.
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Figure 5 – Exchange rates dataset: Log-returns time series and histogram for CHUS.

Figure 6 – Exchange rates dataset: Log-returns time series and histogram for DNUS.
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Figure 7 – Exchange rates dataset: Log-returns time series and histogram for HKUS.

Figure 8 – Exchange rates dataset: Log-returns time series and histogram for INUS.
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Figure 9 – Exchange rates dataset: Log-returns time series and histogram for JPUS.

Figure 10 – Exchange rates dataset: Log-returns time series and histogram for KOUS.
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Figure 11 – Exchange rates dataset: Log-returns time series and histogram for MAUS.

Mean Variance Skewness Kurtosis Min Max
BZUS 0.0385 0.9397 0.2370 8.9720 -5.2991 8.6670
CAUS 0.0140 0.4967 0.0513 5.8700 -2.9001 3.3678
CHUS 0.0015 0.1805 0.4244 14.0396 -1.2417 1.8161
DNUS 0.0073 0.5534 0.0130 4.8866 -3.0555 2.6461
HKUS 0.0004 0.0338 -1.0342 32.4697 -0.4422 0.3345
INUS 0.0215 0.5007 0.1921 10.8799 -3.7560 3.7919
JPUS 0.0127 0.5885 0.1102 6.9096 -3.4977 3.3428
KOUS -0.0010 0.5397 0.0488 5.5663 -2.9630 2.8113
MAUS 0.0136 0.4507 -0.3009 8.7820 -3.6571 2.7750

Table 3 – Exchange rates dataset: Summary Statistics

A remarkable characteristic of the datasets here presented is the presence of heavy
tails, evidenced by the kurtosis statistical measure. For S&P500 and ICE:BRN log-returns
kurtosis is over 60, which strongly indicates the presence of heavy tails. Exchange rates
dataset time series also have kurtosis higher then what was expected to assume a Gaussian
distribution. Also, some degree of asymmetry can be detected in some time series, such as
S&P500, ICE:BRN and, HKUS, as evidenced by skewness statistical measure. Another
characteristic of the financial data here presented is the existence of extreme values, e.g.,
the minimum log-return of -22.8997 on S&P 500 log-returns time series, which presents
another challenge on data modeling.
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1.1.2 Motivations for Further Developments on NGSVJ

According to Ozturk and Richard (2015), the volatility of asset returns has been a
focus of financial econometrics for the last three decades, with the majority of available
models developed on ARCH-GARCH and SV classes of models. Those models have a
wide range of features for data modeling: The inclusion of jumps for capturing speculative
movements of the market was introduced by Eraker, Johannes and Polson (2003) and
further developed in earlier works as Gong and Zhuang (2016), Kirkby, Nguyen and Cui
(2017) and Chaim and Laurini (2018); Omori et al. (2007) develop the leverage effect for the
SV class of models, as Engle and Siriwardane (2018) for the GARCH class; The heavy-tail
modeling is discussed by Nakajima and Omori (2009) and also Warty, Lopes and Polson
(2018), with the inclusion of a Gamma process for volatility to capture the excess of returns,
while Jondeau and Rockinger (2003) develop the GARCH model to capture skewness
and kurtosis by modeling residuals as a generalized Student-t distribution; Feunou and
Tédongap (2012) develop the SV model for dealing with the skewness by allowing current
asset returns to be asymmetric conditional on current factors and past information, what
we term contemporaneous asymmetry; Smith (2002) reviews the inclusion of Markov-
switching structure on GARCH and SV classes of models for modeling volatility according
to current market state.

Generalizations were also made for the ARCH-GARCH and stochastic volatility
(SV) to extend their usage to the multivariate case for dealing with a portfolio risk
management challenge. Harvey, Ruiz, and Shephard (1994), however, highlight that such
generalizations to multivariate series can be difficult to estimate and interpret. According
to Yu and Meyer (2006), the multivariate ARCH models have attracted a lot of attention
in modern finance theory and enjoyed voluminous empirical applications as presented on a
survey made by Bauwens et al. (2006) on multivariate GARCH models. Yet more limited
due to the complexity of implementation and computational sampling issues, Yu and Meyer
(2006) state that developments were also made for the SV class of model for extending
to the multivariate case. Chib, Omori, and Asai (2009) present a collection of works
in multivariate stochastic volatility (MSV) models available on literature that includes
leverage effects, a mean factor MSV model and the inclusion of dynamic correlations
trough a Wishart Process on the MSV model. Another common approach is the usage of
copula methods, as explored by Dias and Embrechts (2004), Lee and Long (2009), Patton
(2013), and Nasri and Rémillard (2019), which also has a complex implementation.

Another class of models that can be used for modeling volatility is the dynamic
models (DM) in which the NGSVJ, developed by Rego and Santos (2020), resides. As
discussed by Rego and Santos (2020) this approach has the advantage of a simpler
implementation and a flexible model structure since the model is written in the space state
form. Also, the DM class of models is relatively unexplored when compared to works on
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ARCH and SV classes, rising the possibility of developing extensions and new applications
to expand the usage of DM models.

Triantafyllopoulos (2008) develops a Bayesian procedure for estimation and fore-
casting of the volatility of multivariate time series using a matrix-variate DLM for volatility.
This approach allows the estimation of the covariance matrix for an entire assets portfolio
simultaneously, but lacks of structures to accommodate log-returns of financial time series,
such as jumps and a heavy tail structure. In a latter work, Triantafyllopoulos (2014) pro-
poses a particle filter algorithm for sequential estimation of volatility and cross-correlation
of multivariate financial time series, including a structure so that innovations assume a
Skew-T distribution to capture the heavy tails and asymmetry of financial returns, and
the inverse of the volatility covariance matrix is modeled via a Wishart autoregressive
process.

Lopes, McCulloch and Tsay (2016) present a normal dynamic linear model proposing
flexible priors for applications on space-state models, so that posterior can be computed
using the Gibbs sampler. However, this model uses univariate DLM for estimating states in
each equation rather than using a multivariate structure to jointly draw the states, which
increases computational complexity for the proposed algorithm. Nasri and Rémillard (2019)
propose a time-dependent and time-independent copula model and univariate dynamic
models to couple several log-returns time series for a multivariate approach.

West (2020) presents the Dynamic dependence network models (DDNM) that use
the DLM structure together with a graphically structured space-state model, using hyper-
inverse Wishart distributions for estimating the correlation between assets log-returns. This
model however has its usage limited to lower-dimensional time series, since computational
challenges arise as dimensionality grows.

The NGSVJ proposed by Rego and Santos (2020) has the notable advantage of
its computational simplicity and a structure that grants an automatic sampling process
for parameters, that allows sampling the volatility in a block via Gibbs sampler. This
structure allows model parameters to achieve convergence with less MCMC iterations
when compared to other SV models on literature, as stated by Rego and Santos (2020),
providing fast and reliable estimates and allowing the model to be used in practical
situations. Naturally, extensions and the implementation of new features arise to expand
its applications and develop the model as a relevant new class on the literature for extensive
use on the market.

The NGSVJ model is a Dynamic Model that considers the volatility as being
stochastic. The Non-Gaussian comes from the mixture on volatility that leads to a heavy
tailed distribution, with the inclusion of a jump component to capture extreme values
from observations. Thus, the model is called NGSVJ, not to be confused to a model from
the SV class, since it belongs to DM class.
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The NGSVJ proposed by Rego and Santos (2020) includes jumps on returns to
capture speculative movements, together with a Gamma mixture on volatility to capture
the excess of kurtosis of returns, using an estimation procedure entire based on Gibbs
Sampling, achieving convergence in fewer iterations, when compared to other methods.
Yet, other possibilities were left unexplored, as the estimation of the degree of freedom
parameter and the inclusion of a classifier for market states, which has a lot of practical
appeal on financial markets, especially for the model interpretability by the final user.
Another natural extension of the model is the multivariate case, to evaluate multiple
time series jointly, as proposed by Rego and Santos (2020), since most applications on
the financial market require a portfolio analysis, instead of a single asset, keeping the
implementation and computational simplicity as a remarkable characteristic, in the same
way in which the NGSVJ was proposed.

This thesis will address these challenges, which have an immediate impact on
the the extensiveness of the model application and its usability, and is a larger step on
developing the NGSVJ as a complete alternative to other models extensively explored in
the literature, as the ARCH and SV classes models. On next chapter the NGSVJ model
will be revisited to review the basis needed to understand further developments made on
this thesis. On Chapter 3 the inclusion of a procedure for estimating degree of freedom
will be addressed. Chapter 4 discusses the inclusion of the HMM structure on NGSVJ.
Chapters 5 and 6 deal with the expansion to the multivariate case.
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2 The NGSVJ Revisited

In this chapter, we revisit the Non-Gaussian Stochastic Volatility Model with
Jumps on returns (NGSVJ), developed by Rego and Santos (2020) in order to build the
theoretical basis needed to understand the models further developed in this thesis. The
model has already presented advances, for example, it has a heavy tail with known degrees
of freedom and jumps. Although, the model do not incorporate the HMM model and
estimated degrees of freedom of Student-t distribution.

2.1 The Non-Gaussian stochastic volatility model with jumps on
returns

The NGSVJ for log-return time series {yt}nt=1 is given by:

yt = µt + Jyt + υt, υt|γt ∼ N(0, γ−1
t λ−1

t ), (2.1)

λt = β−1λt−1ζt, ζt|Dt−1, ϕ ∼ Beta(βat−1, (1− β)at−1), (2.2)

γt ∼ G
(
ν

2 ,
ν

2

)
. (2.3)

where,

Jyt = ξyt+1N
y
t+1 ,ξyt+1 ∼ N(µy, σ2

y), Pr(N
y
t+1 = 1) = ρy, and Pr(Ny

t+1 = 0) = 1− ρy.

In this model yt follows the DLM defined by {1, vt, λt, γt}. yt represents the log-
return in percentage, defined as yt = 100 × (log(Pt) − log(Pt−1)), where Pt is the asset
price at time t or continuous return. The jump, Jyt , is composed by the jump indicator
Ny
t+1 ∈ {0, 1} and magnitude ξyt+1 ∼ N(µy, σ2

y), following the same idea proposed by
Eraker, Johannes and Polson (2003). µt represents the equilibrium log-return of yt on time
t. γt is the variance mixture component, so that using γt ∼ G(ν2 ,

ν
2 ), the unconditional

distribution of errors is a tν(0, 1) distribution, λ−1
t is the volatility of returns, initialized

as λ0|D0 ∼ G(a0, b0), where D0 is the set of initial information. ϕ = {β, ν} is the vector
of static parameters, where β is a discount factor and is, in general, specified, since it
is a parameter of complex estimation, requiring more intensive computational methods
that were out of the initial scope of Rego and Santos (2020) of keeping the estimation
procedure more automatic via Gibbs Sampling. The problem of estimating of the degree of
freedom parameter is addressed on this thesis, since a grid analysis was originally made to
specify ν. at−1 is the shape parameter of the filtering distribution of λt, which is described
on details in Gamerman, Santos and Franco (2013) and Rego and Santos (2020).
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According to Gamerman, Santos and Franco (2013), the different temporal de-
pendence in the stochastic specifications of the γ−1

t and λ−1
t ensure their identification,

except for an arbitrary constant c as γ−1
t λ−1

t = (cγt)−1(cλt)−1, causing no concern for the
identification of the temporal variation of λ−1

t , which is their most relevant feature.

In order to assure identifiability, we have from Stoyanov and Lin (2011) that for
a mixture distribution H to be identifiable, given family F = {Fθ, θ ∈ Θ} of conditional
distributions f(x|θ), there must be only one mixture distribution G on Θ producing H,
where:

h(x) =
∫

Θ
f(x|θ)dG(θ)

Thus, if the mixture H is identifiable, the mixture model of (X, θ) is also identifiable.
According to Gamerman, Santos and Franco (2013) the Student t distribution is obtained
when mixing Normal and Gamma distributions as in Equation 2.1, so that the resulting
distribution is identifiable. As, in this case, H is the Student t distribution, that is
identifiable, so is the mixture model.

The NGSVJ model contrasts with other stochastic volatility models available in
the literature by its implementation simplicity. It has a formulation that allows the full
conditional posterior distributions to be available, so that a Gibbs sampler can be used to
sample from the full conditional posterior distributions, making model implementation
simpler. Also, it includes a mixture on variance in order to achieve non-Gaussian distribution
for innovations, is an identifiable model and has a jump structure to capture outliers and
avoid their direct effect on the volatility.

2.2 Bayesian Inference
For the mean parameter of the log-returns, µt, a prior N(m0, C0) is specified and

the samples of its posterior distribution can be obtained through a Forward Filtering
Backward Sampling (FFBS) algorithm, available in Prado and West (2010). For ease
notation, let Φ = (µ, γ

∼
, λ
∼
, µy, σ

2
y, ξ∼

, ρ
∼
, Ny

∼
, ν), with under-tilde notation refering to vector,

e.g. λ
∼

= λ1, . . . , λn. The brackets notation means that the parameter inside is excluded
from Φ , e.g., Φ[−λ] = (µ, γ

∼
, µy, σ

2
y, ξ∼

, ρ
∼
, Ny

∼
, ν), and Dt all available information until time

t .

Independent priors were chosen so that proper posteriors are obtained, simplifying
the sample procedure. When no initial information is available, non-informative priori are
chosen.

With the prior distribution for λt, that is given by λt|Dt−1,Φ[−λ] ∼ G(βat−1, βbt−1),
with at−1 and bt−1 being shape and rate hyperparameters respectively, the updating
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distribution is:

p(λt|Dt,Φ[−λ]) ∼ G

(
βat−1 + 1

2 , βbt−1 + γt
(yt − µt − Jyt )2

2

)
. (2.4)

Sampling from (λ
∼
|Dn,Φ[−λ]) follows the procedure available in Gamerman, Santos

and Franco (2013), where the distribution of (λt|λt+1,Φ[−λ],Dt) is given by:

λt − βλt+1|λt+1,Φ[−λ],Dt ∼ G ((1− β)at, bt) ,∀t ≥ 0, (2.5)

Thus, for a fixed discount factor β, an exact sample of the joint distribution
(λ
∼
|Dn,Φ[−λ]) can be obtained following the algorithm:

1. set t = n and sample p(λn|Φ[−λ],Dn);

2. set t = t− 1 and sample p(λt|λt+1,Φ[−λ],Dt);

3. if t > 1, go back to step 2; otherwise, the sample of (λ1, ..., λn|Φ[−λ],Dn) is complete.

For the mixture component γt, a prior G(ν2 ,
ν
2 ) is defined, which, when mixed as

γ−1
t , resulting in Inverse-Gamma, leads to a Student-t with ν degrees of freedom to the

innovations, where ν is specified in order to avoid Metropolis step, keeping an automatic
and simple procedure for the model estimation. The full conditional posterior distribution
is:

p(γt|Dn,Φ[−γ]) ∼ G

(
ν

2 + 1
2 ,
ν

2 + λt
(yt − µt − Jt)2

2

)
. (2.6)

The jump sizes ξyt+1 follow a N(µy, σ2
y). For the mean µy a prior N(m, v) is set,

resulting in a full conditional posterior:

p(µy|Dn,Φ[−µy ]) ∼ N
(
mσ2

y + vnj ξ̄y

σ2
y + njv

,
vσ2

y

σ2
y + njv

)
. (2.7)

For the variance σ2
y a prior IG(α, β) is assumed, resulting in the full conditional

posterior:

p(σ2
y|Dn,Φ[−σ2

y ]) ∼ IG

α + nj
2 , β +

∑n
i=1
Ji 6=0

(ξyi+1 − µy)2

2

 . (2.8)

In both cases, nj is the number of times that the jump is observed, and ξ̄y the mean
of jump sizes ξyt+1. As the prior of jump sizes is assumed to follow a Normal distribution,
the full conditional posterior is also Normal, given by:

p(ξyt+1|Dn,Φ[−ξ]) ∼ N
(
m∗ξ , v

∗
ξ

)
. (2.9)
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where:

m∗ξ =
µyγ

−1
t λ−1

t + ytσ
2
y − µσ2

y

σ2
y + γ−1

t λ−1
t

, (2.10)

v∗ξ =
σ2
yγ
−1
t λ−1

t

σ2
y + γ−1

t λ−1
t

. (2.11)

For jump probability ρy, a prior Beta(α, β) is set. The full conditional posterior is
given by:

p(ρy|Dn,Φ[−ρy ]) ∼ Beta

(
α +

n∑
i=0

Ny
i , β + n−

n∑
i=0

Ny
i

)
. (2.12)

Since the jump indicator Ny
t+1 can assume only two values, 0 or 1. The posterior

probability of observation at t+ 1 be a jump is given by:

P (Ny
t+1 = 1|Dt+1,Φ[−N ]) ∝ ρyP (yt+1|Ny

t+1 = 1,Φ[−N ]). (2.13)

which is easy to calculate, since P (yt+1|Ny
t+1 = 1,Φ[−N ]) is a Normal distribution. Using

the concept proposed by Brooks an Prokopczuk (2011), if P (Ny
t+1 = 1|Dt+1,Φ[−N ]) is

greater then a threshold α, then Ny
t+1 = 1. The threshold α is chosen such that the number

of jumps identified corresponds to the estimate of the jump intensity ρy.

2.3 General Procedure
Let Yn = {yt}nt=1, µ∼ = {µt}nt=1, J∼ = {Jyt }nt=1 = {ξyt+1N

y
t+1}nt=1, γ∼ = {γt}nt=1,

λ
∼

= {λt}nt=1, ξ∼ = {ξyt+1}nt=1, N∼ = {Ny
t+1}nt=1 and independent prior probability den-

sity p(γ
∼

), p(µy), p(σ2
y), p(ξ), p(ρy) are set for γ

∼
, µy, σ

2
y, ξ∼

, ρy. Then, a sample of size M from
the joint posterior distribution p(µ, λ

∼
, γ
∼
, µy, σ

2
y, J∼

, ρy|Dn) is drawn via Gibbs Sampler,
which is given by:

1. Initialize µ
∼

(0), λ
∼

(0), γ
∼

(0), µ(0)
y , (σ2

y)(0), ξ
∼

(0), N
∼

(0) and ρ(0)
y .

2. Set j = 1.

3. Sample µ
∼

(j)|Dn, J∼
(j−1), λ

∼
(j−1), γ

∼
(j−1) using FFBS algorithm.

4. Block sample λ
∼

(j)|Dn, µ
∼

(j), J
∼

(j−1), γ
∼

(j−1) using algorithm proposed by Gamerman,
Santos and Franco (2013).

5. Block sample γ
∼

(j)|Dn, µ
∼

(j), J
∼

(j−1), λ
∼

(j), as in Eq. (2.6).

6. Sample µ(j)
y |ξ∼

(j−1), (σ2
y)(j−1) as in Eq. (2.7).

7. Sample (σ2
y)(j)|ξ

∼
(j−1), µ(j)

y as in Eq. (2.8).
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8. Block sample J
∼

(j)|Dn, µ
∼

(j), λ
∼

(j), γ
∼

(j), µ(j)
y , (σ2

y)(j) by

a) Block sample ξ
∼

(j)|Dn, µ
∼

(j), λ
∼

(j), γ
∼

(j), µ(j)
y , (σ2

y)(j) as in Eq. (2.9).

b) Block sample N
∼

(j)|Dn, µ
∼

(j), λ
∼

(j), γ
∼

(j), ξ
∼

(j) as in Eq. (2.13).

9. Sample ρ(j)
y |J∼

(j) as in Eq. (2.12).

10. Set j = j + 1.

11. If j ≤M , go to 3, otherwise stop.

Since all full conditional posterior distribution has closed-form, only Gibbs sampler
steps are used in this procedure.

2.4 Additional Comments
The NGSVJ is innovative on presenting the DM class as an alternative to SV and

GARCH classes for volatility modeling with the inclusion of relevant features for finance
applications, jumps and a mixture for modeling heavy-tailed distributed observations.
Despite the simpler implementation structure, the NGSVJ could benefit of a procedure
for estimating the degree of freedom of the mixture component. The inclusion of such
procedure would eliminate the grid analysis that is undesirable for practical applications,
since it is not an efficient method for setting the parameter ν. Chapter 3 will address this
modification by proposing a Jeffrey’s prior together with a Metropolis step to estimate ν
directly on the MCMC algorithm.

Another feature that can potentially increase the usage of the NGSVJ model on
practical applications is the inclusion of a structure to help users to interpret model
results in terms of market states. Non professional users, specially those not used to
statistical theory, may have difficult to interpret volatility values in numerical terms. As
the philosophy behind the NGSVJ is being a simple implementation and universal usage
model, the inclusion of such structure is justified. The inclusion of a HMM structure for
classifying model states will be addressed on Chapter 4.
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3 Estimating degrees of freedom

The problem of estimating the degree of freedom is particularly important when
dealing with financial time series and risk management, where heavy-tailed distributions
better describe the log-returns data. Lin and Shen (2006) reported substantial improve-
ments of using Student-t distribution over Gaussian distribution, especially when using a
credibility interval over 98.5%, when studying the empirical performance of value-at-risk
calculations.

One natural extension of the NGSVJ model is to include a Metropolis step to
estimate the degrees of freedom, ν, and avoid a grid analysis in order to set this parameter.
By estimating the degree of freedom, the automaticity of the model is enhanced, since grid
analysis is not an efficient method for setting a parameter, requiring overhead effort each
time the model is fit for a new time series. To keep the original essence of the NGSVJ
model, the chosen method for estimating ν must be such that requires minimum effort
from the user to tune parameters for estimation.

According to Villa and Walker (2014), the estimation of degrees of freedom pa-
rameter of a Student-t distribution is typically problematic in Bayesian inference since
usual proper priors such as Gamma or Exponential distribution, as proposed by Juárez
and Steel (2010) and Ding (2014), do not result in a precise estimation and improper
priors lead to improper posteriors, whilst proper priors may dominate the data likelihood.
The reason is, as stated by Anscombe (1967) and Fonseca, Ferreira, and Migon (2008)
the estimation of degree of freedom parameter, ν, of the Student-t distribution is not
straightforward, as the likelihood function tends to infinity as ν → 0, so that proper
priors such as Exponential and Gamma distribution, and improper prior distributions, as
proposed by Jacquier, Polson and Rossi (2004) and Juárez and Steel (2006), might lead to
improper posterior distributions and, even when the parameter space is restricted to a
desired region in which likelihood is bounded, the maximum likelihood estimator may not
exist with a positive probability.

Another attempt to address the question of estimating the degree of freedom using
a parametric prior is proposed Gelman and Hill (2006), that restricts the degree-of freedom
parameter to be at least 2, supporting that it is possible and convenient to assign a uniform
distribution to its inverse in this case. Therefore, Simpson et al (2017) refutes the usage of
uniform priors on a fixed interval for the degrees of freedom in a Student-t distribution,
proposing a penalized complexity prior, and supporting it to have a good behavior for the
degrees of freedom estimation, yet it requires numerical computation of the prior, making
it a computationally intensive method.
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Fonseca, Ferreira and Migon (2008) and Villa and Walker (2014), on the other
hand, defend the usage of an objective prior. Jeffrey priors have the disadvantage of the
need to be derived for the specific model at hand and the derivation may be difficult, but it
allows a non-subjective statistical analysis with adaptive robustness to outliers and may be
a good option provided that the posterior distribution is proper. The biggest advantage of
adopting an objective prior to estimate the degrees of freedom parameter for the NGSVJ
model is keeping its automatic structure, by the addition of a Metropolis step without
requiring further tunning or any other computationally extensive method.

Kwok-Wah (2012) compares the usage of two Jeffreys priors, Jeffreys-rule prior
and the marginal independence Jeffreys prior, motivated by a practical financial risk
management application, with other priors proposed on the literature to estimate quantiles
for the Student-t model with unknown degrees of freedom, and concludes that both priors
perform better than common priors suggested in the literature. By studying a similar
application, on financial data, and obtaining favorable results on the usage of objective
priors Kwok-Wah’s work provides a strong insight on how to enhance the NGSVJ model
on including a method for estimating ν while keeping its original essence of computational
simplicity.

3.1 Proposed procedure

In order to estimate the degrees of freedom, ν, in the NGSVJ model, as there
is not previous information about ν available, the Jeffreys reference prior proposed by
Kwok-Wah (2012) is used:

p(ν | D0) ∝ ν1/2(ν + 1)1/2

ν + 3

{
ψ′
(
ν

2

)
− ψ′

(
ν + 1

2

)
− 2(ν + 3)
ν(ν + 1)2

}1/2

(3.1)

where ψ(a) = Γ′(a) and ψ′(a) = Γ′′(a) are the digamma and trigamma functions, respec-
tively.

The full conditional posterior distribution for ν is then given by:

p(ν|Dn,Φ[−ν]) ∝ p(ν)×
(ν2 )nν/2∏n
t=1 Γ(ν2 )

n∏
t=1

γ
−1−ν/2
t exp

{
−

n∑
t=1

ν

2γt

}
(3.2)

which has no closed-form. A Metropolis step is included in the general procedure exposed
in Section 2.3 in order to estimate the degree of freedom parameter.
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3.2 Simulation Study

A Monte-Carlo study with 1,000 replications is made to test the efficiency of the
proposed procedure to estimate the degrees of freedom, ν, of the gamma mixture parameter.
Replications are built using the same procedure and parameter scenario proposed in Rego
and Santos (2020).

To generate the volatility, we use:

vt = vt−1 + κ(θ − vt−1)∆ + ρσv
√
vt−1∆ε1,t + σv

√
(1− ρ2)vt−1∆ε2,t (3.3)

where ε1,t and ε2,t ∼ N(0, 1). Synthetic data for returns is then generated from:

rt = N(µ+ Jt, γ−1
t vt), Jt = Ntξt, (3.4)

where the jump times, Nt are generated from a Bernoulli(ρy), jump sizes ξt from N(µy, σ2
y),

and γt from G(ν2 ,
ν
2 ). Setup of parameters was: log-returns mean µ = 0.05; jump probability

ρy = 0.015; jump magnitude mean µy = −2.5 and standard deviation σy = 4; volatility
components ∆ = 1, θ = 0.8, κ = 0.015, σv = 0.1, ρ = 0.4, n = 1000 observations, same
used by Rego and Santos (2020).

Table 4 shows true values and the summary estimates of the posterior distribution
for the degrees of freedom of the NGSVJ, over the 1,000 simulation scenarios. The model
was able to closely estimate all the values ranging from ν = 1 to ν = 50.

True Value MCMC Mean RMSE Q2.5 Q50 Q97.5 Min Max
1 1.0001 0.0212 0.9601 0.9999 1.042 0.9179 1.0603
2 2.0272 0.0275 2.0198 2.0272 2.0347 2.0139 2.0386
3 2.8999 0.1002 2.8893 2.9000 2.9106 2.8798 2.9167
4 3.8445 0.1556 3.8293 3.8444 3.8590 3.8224 3.8692
5 5.002 0.1263 4.7623 5.0018 5.2458 4.5341 5.4033
8 7.7958 0.2046 7.7678 7.7956 7.8245 7.7514 7.8490
10 9.9980 0.2593 9.4966 9.9828 10.5221 9.094 10.9532
15 14.9732 0.3763 14.2059 14.975 15.6998 13.9075 16.0706
20 19.9782 0.4914 19.0521 19.9745 20.9383 18.5055 22.0725
25 25.0133 0.6485 23.7900 25.0005 26.2920 23.2166 27.2702
30 29.9944 0.7798 28.5743 29.9658 31.4994 27.6653 33.0256
50 49.9648 1.3626 47.3766 49.9561 52.8543 45.9504 54.3098

Table 4 – Summary estimates of the posterior distribution for the degrees of freedom of
the NGSVJ model, ν, over 1,000 simulation scenarios.

Figure 12 shows one realization of a simulation scenario. The proposed procedure
was able to estimate the degree of freedom,with ν = 25, of the mixture parameter. MCMC
chain convergence was verified trough graphical methods, using different initial values.
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Figure 13 shows MCMC chains for different initial values: ν0 = {5, 20, 50, 100}, and
convergence is achieved regardless of the initial value used, with ν = 25. Figure 14 shows
histograms of posterior distributions for ν for each MCMC chain. Posterior mean estimate
is the same up to one decimal place.

(a) MCMC chain for df ν. (b) Histogram of df ν.

Figure 12 – MCMC results for degree of freedom parameter ν over a simulation scenario.
Right graph shows MCMC effective chain with gray line being the true value
and left graph shows histogram of MCMC sample with gray dashed line being
true value and gray solid line the posterior mean.

Figure 13 – Multiple MCMC chain using different start values for one realization of
simulation study, with black solid line being the true value (ν = 25).
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Figure 14 – Multiple histograms for posterior distributions for ν parameter using different
start values for one realization of a simulation study with ν = 25. Gray dashed
line is the true value and gray solid line is the posterior mean.

Figure 15 and Table 5 show posterior estimates for one realization of a simulation
scenario. Posterior estimates for volatility can capture the true values shown in dashed
line most of the time. For static parameters the model has difficult in estimate jump
magnitude parameters with good precision, since the effective sample for those parameters
is limited, e.g., for a simulated scenario with 1,000 observations and jump probability
of 5%, the expected number of jump samples is 50 observations. This issue tends to be
smaller for higher observation number and higher jump probability parameter, so that
the number of jump samples is enough to estimate these parameters with better precision.
BIC and AICc are shown on Table 5 so that the model results can be easily compared to
other models available on literature, since those criteria are more commonly available on
statistical models available on statistical softwares.
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Figure 15 – Simulation study: Posterior mean estimates for instantaneous volatility vt for
simulated data. True volatility series shown in dashed line; posterior mean
estimates λ−1

t in solid line; and 95% credibility interval is the light gray area.

True Mean SD
µ 0.05 0.020 0.011
ν 10 9.915 1.439
ρy 0.05 0.058 0.013
µy -2.5 -1.086 0.669
σy 4.0 4.385 0.542
log L - -1308
BIC - 2665
AICc - 2632

Table 5 – Posterior estimate of MSVJM static parameters for simulated daily returns (n
= 1,000).

3.3 Application to S&P log-returns data set
The model is applied on S&P500 daily log-returns data set from January 2, 1980,

to December 31, 1999, consisting of 5,054 daily observations, the same data set used in
Rego and Santos (2020). The objective here is to see if other parameters estimates will
significative change whereas setting the degree of freedom parameter, ν, or estimating
it using proposed procedure. The log returns equilibrium parameter µt was set static as
µt = µ to keep results comparable to NGSVJ and SV results in Rego and Santos (2020).

Table 6 present model estimates for static parameters in NGSVJ by both fixing
ν parameter (NGSVJ) and estimating it using Metropolis steps (NGSVJ - MS) and SV
model results shown in Rego and Santos (2020). There was significative change on jump
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related parameters since a heavier tail caused by a lower value of the degree of freedom ν

tends to reduce the effect of jumps on capturing extreme values, since they are already
captured by the heavy tail. Figure 16 shows MCMC results for degree of freedom parameter
ν, convergence was verified trough graphical methods.

NGSVJ NGSVJ - MS SV
Mean SD Mean SD Mean SD

µ 0.0616 0.0020 0.0591 0.0038 0 -
ν 30 - 7.8983 1.4080 - -
ρy 0.0042 0.0012 0.0238 0.0061 - -
µy -2.4598 1.4302 -0.3139 0.3142 - -
σy 5.2793 1.2598 2.5447 0.3136 - -
log L -5,972 -5,633 -8,468
BIC 12,012 11,343 12,206
AICc 11,960 11,284 -

Table 6 – Posterior estimates of static parameters for NGSVJ, and NGSVJ with Metropolis
step for estimating degrees of freedom, ν, (NGSVJ - MS) for S&P500 daily
returns.

(a) MCMC chain for the parameter ν.
(b) Histogram of the parameter ν.

Figure 16 – MCMC results for degree of freedom parameter ν. Right graph shows MCMC
effective chain and left graph shows histogram of MCMC sample. Grey line is
the posterior mean.

Figure 17 shows the comparison between estimated jumps on NGSVJ and NGSVJ-
MS. By estimating a smaller value of ν, NGSVJ-MS tends to have more frequent jumps,
but with smaller magnitude, since part of the excess of returns is captured by the heavy
tail. Points identified at jumps on NGSVJ are still present on NGSVJ-MS.
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Figure 18 shows the comparison between estimated spot volatility, λ−1/2
t , on NGSVJ

and NGSVJ-MS. A smaller degree of freedom, ν, leads to a smaller volatility estimative
since more points are now captured by the heavier tail.

Figure 19 shows the posterior estimates for instantaneous volatility, λ−1/2
t , for the

S&P500 index, using NGSVJ-MS model over the entire period of analysis and two specific
periods of time.

(a) NGSVJ jumps. (b) NGSVJ-MS jumps.

Figure 17 – Posterior estimates for instantaneous jumps and jump probabilities for NGSVJ
(a) and NGSVJ-MS (b). Grey line on top graphs is the S&P 500 log-returns
series, jumps are the black crosses.

Figure 18 – Posterior estimates for instantaneous volatility λ−1/2
t . NGSVJ-MS mean esti-

mates in solid line and NGSVJ mean estimates in dashed gray line.
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Figure 19 – Posterior estimates for instantaneous volatility, λ−1/2
t , for the S&P500 index.

Solid line is the posterior mean. The gray area indicates the 95% credibility
intervals.

Table 7 shows descriptive statistics for the residuals for NGSVJ-MS model. The
skewness that exists on S&P500 log-returns is captured by the model trough the jump
component so that even though the model does not have a parameter for modeling skewness
directly, it can deal with existing asymmetry on data trough the jump component.

Mean Standard
Dev.

Min Q25% Q50% Q75% Max

Residuals 0.0044 1.098 -4.5668 -0.7805 -0.0076 0.7961 4.2103

Table 7 – Posterior mean residuals: Summary statistics
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Table 8 show results for Jarque-Bera test (Jarque and Bera, 1980), for testing
normality of residuals. As p-value is higher than the significance level of 5% for every
statistic tested, the normality of residuals can be assumed, as shown on Figure 20 where
the histogram of residuals is plotted with the density of a standard Gaussian distribution
in solid gray line.

Statistic df p-value Kurtosis [IC 95%] Skewness [IC 95%]
JB Test 0.57105 2 0.7516 0.0181 [-0.1168 ; 0.1530] -0.0385 [-0.1060 ; 0.0290]

Table 8 – Jarque-Bera test results

Figure 20 – Histrogram of posterior mean residuals is shown in bars and standard normal
curve in gray solid line.

Figure 21 shows ACF and PACF for residuals and squared residuals. There is
significant correlation between lags for both cases. This is expected since the model treats
the autocorrelation trough the beta evolution for volatility. Table 9 show results for
Box-Pierce and Box-Ljung tests for autocorrelation for lags 1, 6, 12, 24 and 36, excluding
residuals for first 100 observations. There is no evidence of violation in model hypothesis.
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Figure 21 – Top left graph shows ACF for posterior mean residuals; Top right graph shows
PACF for posterior mean residuals; Bottom left graph shows ACF for posterior
mean squared residuals; Bottom right graph shows ACF for posterior mean
squared residuals. Dashed line is the 5% significance interval around zero.

Residuals Squared Residuals
Statistic df p-value Statistic df p-value

Box-Pierce 0.30884 1 0.5784 2.0768 1 0.1496
Box-Ljung 0.3182 1 0.5727 2.1397 1 0.1435

4.8483 6 0.5634 8.8226 6 0.1838
11.15 12 0.5161 15.646 12 0.208
28.834 24 0.2264 21.011 24 0.6381
35.762 36 0.4798 29.161 36 0.7834

Table 9 – Box-Pierce and Box-Ljung tests results
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3.4 Additional Comments
The method proposed was effective in estimating ν by using a Jeffreys prior

proposed by Kwow-Wah (2012). Simulation studies show that the proposed prior and
the usage of a Metropolis algorithm, since full conditional posterior distribution has no
closed-form, was able to estimate the degrees of freedom with good precision, over different
simulation scenarios.

The inclusion of a Metropolis step to estimate the gamma mixture degree of freedom
ν adds more flexibility to the model and excludes the need for a grid analysis in order to
set ν. This extra flexibility comes with a cost since the Metropolis steps require a larger
number of iterations to achieve convergence when compared to the Gibbs Sampler. This is
a drawback when dealing with situations where a fast response is required from the model,
i.e. intra-day operations.

In terms of model applications on financial risk measurement, the NGSVJ-MS is
able to better capture the heavy tail effect from data, reducing jumps magnitudes and
volatility, while increasing jumps frequency. This effect was already expected, since there
is an overlap between the jumps and heavy tails structures, since both are designed to
capture tail events.
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4 The NGSVJ-HMM Model

The non-Gaussian Stochastic Volatility with Jumps and Hidden Markov Model
(NGSVJ-HMM) model is an extension of the NGSVJ model that includes a Hidden Markov
Model structure to classify different levels of volatility. This extension was originally
developed to be applied to financial markets, supporting strategic decisions. Nevertheless,
it can be used in any other applications where classifying different states of volatility is
crucial for decision making.

The Hidden Markov Models (HMM) are widely used for classification, also referred
to as decoding, in many areas. Rabiner (1989) gives an overview of HMM functioning, as
well as a detailed tutorial on its implementation, and applies it to a speech recognition
problem, where the sound waves that come from a speech must be classified as letters to
form a text. Diez, Burget and Matejka (2018) uses a Bayesian HMM to make a classification
in a speaker diarization context, on identifying who spoken and when in an audio recording
of a conversation. Ji (2018), Sebastian et. al (2018) and Pohle et. al (2017) also use this
approach, in a biological application context.

Further developments on the HMM were done by Benyacoub et. al. (2014) on
expanding the usage of HMM to problems where supervised learning is not available
directly. Their approach consists of evaluating the probability to belonging in one group,
given the observations by a linear classifier, to estimate HMM parameters. Liu (2019)
develops a computational method for a CUDA implementation of HMM training and
classification, for increasing its computational efficiency.

The traditional approach to Hidden Markov Models relies on Expectation Opti-
mization algorithms to estimate HMM parameters. Xu and Jordan (1996) defend the usage
of EM algorithms for HMM problems, despite the reputation of being a slow algorithm,
specially when mixture components are not well separated. On the Bayesian perspective,
the work of Meeden and Vardeman (2000) propose a method for a Bayesian approach
to the HMM modeling with time dependent data, allowing the incorporation of different
types of prior information and discussing the implementation of a Bayesian HMM.

Nkemnole and Wulu (2017) stated that HMMs have been applied for at least three
decades in signal-processing applications, especially in automatic speech recognition, and
now this theory and application has expanded to other fields, such as finance. According
to Smith (2002), Markov-switching models have proven to be very useful in modeling a
range of economic time series including business cycles, stock market, exchange rates and
short-term interest rates. Smith (2002) develops the Markov-switching stochastic volatility
model, a generalization of the SV model to estimate the elasticity of variance and evaluate
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whether the interest rate process in explosive.

Hassan and Nath (2005) propose the usage of a HMM to forecast airline stock prices,
by modeling behavioral data patterns from the past dataset of prices data, comparing its
results to those obtained by applying a Artificial Neural Network for prices forecasting,
concluding that the HMM has the advantage of being an explainable model with solid
statistical foundation. In a later work, Hassan, Nath and Kirley (2007) propose a model
for stock market forecasting by combining HMM, Artificial Neural Networks and Genetic
Algorithms, for using on deep analysis of the stock market, so that the advantages of
HMM can be combined to the Artificial Neural Network model, to produce a model
with good results for forecasting and interpretability. Their work gives insights on the
versatility of Hidden Markov Models on being able to be included inside other models,
giving interpretability to results.

Lopes and Carvalho (2007) develop a Factor Stochastic Volatility model using
Markov Switching regimes to allow Markovian jumps in the levels of log-volatilities. These
jumps allow for fast track of possible abrupt changes in the variance and covariance
structures while addressing the issue of high persistency commonly present in financial
data. Sun (2018) uses a HMM approach to implement a trading strategy, by determining
the current market price level for stock and suggesting to sell when stock is in high
trend level and buy when it is in low trend. Nkemnole and Wulu (2017) use an HMM-SV
approach, in two stages, using a HMM to divide the entire time series into regimes with
different volatility levels, so that the return of the time series is assumed to be modeled by
a mixture of probability densities and each density function corresponds to a hidden state
with its mean and variance. Subsequently the subsets of original time series corresponding
to different states (volatility levels) are modeled using a SV model with different parameter
sets to model the conditional variance.

The aforementioned works give insights on how to include a Markovian structure
inside the NGSVJ to classify volatility states for enhancing model interpretability and
usage on real applications on financial markets. HMM methods have strong appeal on
finance applications specially on giving interpretability for statistical models. The inclusion
of a HMM structure inside the NGSVJ is not straightforward and a well documented
method for addressing this question, into a Bayesian perspective and computationally
effective way, strengthens the DM class of models and makes the NGSVJ more competitive
in relation to SV models, since it shows that the model is versatile enough to include
features with great appeal on SV class of models, that were not yet developed on the
NGSVJ perspective.

In this chapter, we present the Non-Gaussian Stochastic Volatility with Jumps
and Hidden Markov Model to estimate market volatility and provide an interpretable
result to the final user by classifying the volatility in a high or low state, developing the



53

required theoretical background needed for the inclusion of the structure on the NGSVJ
model. This information can be used in a market operation context, to take investment
or arbitrage strategic decisions, in an intraday or daily time frame. In this scenario, the
return data are high dimensional. When classified as high volatility state, it means that the
change in log-returns is higher for the asset’s standards, which means there is an arbitrage
window for speculative traders. Note that the model is not able to determine if the price
will rise or fall, only that the price is changing faster than usual, in either direction. We
apply the model on intraday log returns from Brent Crude Oil future contracts, to show
its application.

The main objective of this chapter is to introduce the NGSVJ-HMM which present
to the final user an interpretable and intuitive result for market volatility to use this
information on financial decisions. This model includes all characteristics from NGSVJ:
computational simplicity, flexibility, the inclusion of a heavy-tailed distribution and jumps
for accommodating financial returns data, together with the HMM structure to classify
the volatility state based on both log-returns and estimated volatility.

The proposal is to combine these two models, finding an optimal structure for the
HMM classifier to be able to effectively classify the observations that belong to each state
inside the NGSVJ structure, given that the estimated volatility is subject to variations
that can affect on classification.

Our first attempt of implementing NGSVJ-HMM used only estimated log-volatility
as information for the classifier to separate observations on two groups: high and low
volatility state. Therefore, given the shape of density for the log-volatility, the model
was only able to effective classify states when using the EM algorithm proposed by Xu
and Jordan (1996), using two stages: first to estimate volatility, second to classify states.
Although, the two stage strategy is not desirable.

By including log-returns as a piece of additional data for the classifier, and the
usage of a bivariate density for volatility and log-returns into a Bayesian mixture approach,
we were able to effectively classify states in a one-stage model, so that the HMM structure
is included inside the MCMC algorithm for the NGSVJ. This approach leads to a more
elegant mathematical solution for the classification structure and a more computational
efficient approach, which we will discuss in the next pages with more details.
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4.1 Model Structure

The NGSVJ-HMM model is an enhancement of the NGSVJ model to include a
Markov classifier for market volatility states. The advantage of this structure is keeping an
automatic sampling procedure, mostly using Gibbs steps, since most conditional posterior
distributions have closed-form and are known.

The NGSVJ-HMM for log-return time series {yt}nt=1 is given by:

yt = µt + Jyt + υt, υt|γt ∼ N(0, γ−1
t λ−1

t ), (4.1)

λt = β−1λt−1ζt, ζt|Dt−1, ϕ ∼ Beta(βat−1, (1− β)at−1), (4.2)

γt = G(ν2 ,
ν

2), (4.3)

κ = (A,B, π
∼

). (4.4)

where

Jyt = ξyt+1N
y
t+1, ξy ∼ N(µy, σ2

y), and Pr(Ny
t+1 = 1) = ρy.

A = {a∗i,j ∼ Dir(δj
∼

)}, B = {bj(yt, logλt|γt, st = j)) ≈ N2(µDj ,ΣDj)},

and π
∼
∼ Dir(δ∗j

∼
).

In this model yt follows the DLM defined by {1, vt, λt, γt}. yt represents the log-
return in percentage, defined as yt = 100× (log(Pt)− log(Pt−1)), where Pt is the asset price
on time t. Jyt is the jump, composed by the jump indicator Ny

t+1 ∈ {0, 1} and magnitude
ξy ∼ N(µy, σ2

y). µt represents the equilibrium log-return of yt on time t. γt is the variance
mixture component and λ−1

t is the volatility of returns and it’s has a G(ν2 ,
ν
2 ) distribution

in order to achieve a Student-t distribution with ν degrees of freedom for innovations,
initialized as λ0|D0 ∼ G(a0, b0), where D0 is the set of initial information. ϕ = {β, ν, µ, κ}
is the vector of static parameters, where β controls information loss over time and is
specified, and at−1 is the shape parameter of the filtering distribution of λt. Both yt and
λt are subject to a state classification st.

The HMM is described by the static parameters κ = (A,B, π). We define N = 2 the
number of states so that st ∈ {1, 2}, namely st ∈ {low, high}, and our observation vector
is the pair log-returns, yt, and estimated volatility, the log posterior volatility measure,
logλt. A = {a∗i,j} is the state transition matrix, so that for each row i, ai,j indicates the
probability that the next state becomes the state i, for j = 1, 2, B = {bj(yt, logλt|γt, st =
j))} is the observation probability density distribution in state j for the position of
centroid, that is given by a multiplication of a conditional Gaussian and Log-Gamma
distribution, that will be approximated by a pt = N2(µDj ,ΣDj), and π

∼
= {πi}, with a

Dir(δ∗j
∼

) prior, the initial state probability. Dirichlet prior was chosen so that the model
can be expanded for any desired number of states that may be needed for user application,
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e.g. st ∈ {low,medium, high}. Our goal is to sample from the posterior distribution of
p(κ|Dn).

The probability distribution bj(yt, logλt|γt, st = j)) is approximated by a Bivariate
Gaussian to estimate the position and dispersion of the centroids in that distribution,
since it is more convenient to the classification approach under the HMM structure, as in
Rabiner (1989) and Marin et. al. (2005). Also, as logλt is distributed as a Log-Gamma,
it can be approximated by a Gaussian distribution for usual values of shape and scale
parameter, so that there is no loss in generality by the model by approximating bj as a
bivariate Gaussian for estimating centroid position and range of influence for the HMM
classifying structure. From now on γt, st = j is omitted from bj to simplify notation.
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4.2 Bayesian Inference
For ease notation, let Φ = (µ

∼
, γ
∼
, λ
∼
, µy
∼
, σ2

y
∼
, ξ
∼
, ρ
∼
, Ny

∼
, κ, s

∼
, µDj
∼
,ΣDj
∼
, ν), excluding the

parameter being evaluated, i.e. Φ[−λ] = (µ
∼
, γ
∼
, µy
∼
, σ2

y
∼
, ξ
∼
, ρ
∼
, Ny

∼
, κ, s

∼
,ΣDj
∼
, ν) . Given proper

priors for the parameters, a sample from the posterior of Φ after observing the series up
to time n is drawn. Independent priors were chosen so that proper posteriors are obtained,
simplifying the sample procedure. When no initial information is available, non-informative
priori are chosen. The joint posterior is:

p(Φ|Dn) = p(Φ[−(κ,s
∼

)]|κ, s∼,Dn) (4.5)

= p(Φ[−(κ,s
∼

)]|Dn)× p(κ, s
∼
|Φ[−(κ,s

∼
)],Dn) (4.6)

= p(Φ[−(κ,s
∼

)]|Dn)× p(s
∼
|κ,Φ[−s

∼
],Dn)× p(κ|Φ[−s

∼
],Dn) (4.7)

For NGSVJ related parameters,(µt, λt, γt, µy, σ2
y, ξ

y
t+1, Ny

t+1, ρ, ν), prior and
posterior distributions are exactly the same of that in Section 2.2, the reason why they
are here omitted. Note that, as can be seen on Eq. (4.5), none of the NGSVJ related
parameters are influenced by the HMM related parameters κ and s

∼
, so that the full

conditional posterior distribution stays unchanged, but HMM parameters are affected by
the parameters of NGSVJ.

For state transition probabilities, A = {a∗i,j}, a Dirichlet(δ1, . . . , δj) prior is specified
for each row ai, for i = 1, 2 and j = 1, 2, resulting in a full conditional posterior distribution:

a∗i |y∼
, λ
∼
, st,Φ[−ai] ∼ Dir

(
δ1 +

n∑
t=1

1[st = 1, st−1 = i],

. . . , δj +
n∑
t=1

1[st = j, st−1 = i]
)
.

(4.8)

where 1[·] stands for the indicator function.

For the initial state probabilities, π = {π1, π2}, a Dirichlet(δ∗1, δ∗2) prior is specified,
resulting in a full conditional posterior distribution:

π|y
∼
, λ
∼
, st,Φ[−π] ∼ Dir

(
δ∗1 +

n∑
t=1

1[st = 1], δ∗2 +
n∑
t=1

1[st = 2]
)
. (4.9)

For estimating the probability distribution bj(y
∼
, logλ

∼
) parameters mean µDj and

covariance matrix ΣDj , a prior N2(m0,Σ0) and IW (η0,Ψ0) were specified respectively,
resulting in a full conditional posterior distribution:

µDj |y∼
, λ
∼
, st,ΣDj = N2

(
Vj
(
Σ−1

0 m0 + Σ−1
Dj
Sxj

)
, Vj

)
(4.10)
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ΣDj |y∼
, λ
∼
, st, µDj = IW

(
nj + η0,Ψ0 + Sx2

j

)
(4.11)

where Vj =
(
Σ−1

0 + njΣ−1
Dj

)
, j = 1, 2 refers to the states (low, high), x stands for the

pair (y, logλ), nj = ∑n
t=1 1[st = j] is the number of times a state was classified as

1 (low) or 2 (high), Sxj = ∑N
t=1 x1[st = j] is the sum of x for state j, and Sx2

j
=∑n

t=1(x− µDj)(x− µDj)T1[st = j].

A sample for the states st given all information available and κ, can be obtained by
the Viterbi algorithm, described in Rabiner (1989). According to Rabiner (1989), the Viterbi
procedure has the advantage of avoiding transitions where state transition probability
is zero so that it guarantees a valid state sequence. The procedure consists in finding
the single best state sequence, Q = (q1, q2, . . . , qn), for the given observation sequence
(y, logλ) = ((y1, logλ1), (y2, logλ2), . . . , (yn, logλn)), where δt(i) is the best score (higher
probability) along a single path, at time t, which accounts for the first t observations and
ends in state si. To retrieve the state sequence, we keep track of which argument maximized
δt+1(j) for each time t and state j, via the array Ψt(j), and do a path backtracking to
determine the best path. The Viterbi algorithm steps are:

1. Initialization:

δ1(i) = πibi((y, logλ)1), 1 ≤ i ≤ N (4.12)

Ψ1(i) = 0. (4.13)

2. Recursion:

δt(j) = max
1≤i≤N

[
δt−1(i)a∗ij

]
bi((y, logλ)t), 2 ≤ t ≤ n, 1 ≤ j ≤ N (4.14)

Ψt(j) = max
1≤i≤N

[
δt−1(i)a∗ij

]
, 2 ≤ t ≤ n, 1 ≤ j ≤ N. (4.15)

3. Termination:

P ∗ = max
1≤i≤N

[δT (i)] (4.16)

q∗T = max
1≤i≤N

[δT (i)] . (4.17)

4. Path (state sequence) backtracking:

q∗t = Ψt+1(q∗t+1), t = n− 1, n− 2, . . . , 1. (4.18)
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4.3 General Procedure

Let be Yn = {yt}nt=1, the NGSVJ parameters µ
∼
J
∼

= {Jyt }nt=1 = {ξyt+1N
y
t+1}nt=1,

γ
∼

= {γt}nt=1, λ∼ = {λt}nt=1, ξ∼ = {ξyt+1}nt=1, N∼ = {Ny
t+1}nt=1, and the HMM parameters

s
∼

= {st}nt=1, A = {ai,j}, π∼ = {πi}, µDi
∼

, ΣDi , for i, j = 1, 2 and the prior probability
density p(γ

∼
), p(ν), p(µy), p(σ2

y), p(ξ∼), p(ρy), p(ai,j), p(πi), p(µDi
∼

), p(ΣDi) are set for
γ
∼
, ν, µy, σ

2
y, ξ∼

, ρy, a
∗
ij, πi, µDi

∼
, ΣDi , for i, j = 1, 2, respectively. Then, a sample of size M

from the posterior distribution of the parameters is drawn from algorithm is described as
follows:

1. Initialize µ
∼

(0), λ
∼

(0), γ
∼

(0), µ(0)
y , (σ2

y)(0), ξ
∼

(0), N
∼

(0), ρ(0)
y and ν(0).

2. Initialize s
∼

(0), A(0), π
∼

(0), µ
(0)
Di
,Σ(0)

Di
, for i = 1, 2.

3. Set j = 1.

4. Sample from µ
∼

(j), λ
∼

(j), γ
∼

(j), µ(j)
y , (σ2

y)(j), ξ
∼

(j), N
∼

(j) and ρ(j)
y , as in Section 2.3.

5. Sample ν(j) from Eq. (3.2), using a Metropolis step.

6. Sample A(j) as in Eq. (4.8).

7. Sample π
∼

(j) as in Eq. (4.9).

8. Sample µ(j)
Di
, for i = 1, 2 as in Eq. (4.10).

9. Sample Σ(j)
Di
, for i = 1, 2 as in Eq. (4.11).

10. Block sample s
∼

(j) using the Viterbi algorithm in Rabiner (1989).

11. Set j = j + 1.

12. If j ≤M , go to step 4, otherwise stop.

13. Reorder states so that s = 1 corresponds to lowest and s = 2 corresponds to highest
values of volatility.

Since most full conditional posterior distribution has closed-form, there is no need
to appeal to Metropolis algorithms, except for the degree of freedom parameter ν. The
increase of dimensionality by using the pair (y, logλ) for classification instead of using only
the volatility as observation for the HMM classifier assures that no identifiability issues
will occur when estimating parameters for B. As in NGSVJ, static such as β are set.
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4.4 Simulation Study
The procedure in Rego and Santos (2020) was adapted to build simulation scenarios

for a market daytrade operation with two volatility states. A Monte-Carlo study with
1,000 replications is made to test the efficiency of the proposed procedure to estimate the
market states using the HMM structure.

To generate the volatility, we use:

vt = vt−1 + κ(θ − vt−1)∆ + ρσv
√
vt−1∆ε1,t + σv

√
(1− ρ2)vt−1∆ε2,t (4.19)

where ε1,t and ε2,t ∼ N(0, 1). A transition matrix A was built so that for each state
st ∈ {1, 2} there is a probability of moving to the next state or remaining in the current
state. If for an instant t votatility state is High, st = 2, then a fixed multiplier, χ, is applied
to vt to increase volatility in this specific instant, highlighting the increased volatility state.

Synthetic data for returns is then generated from:

rt = N(µt + Jt, γ−1
t (1[st = 1]vt) + 1[st = 2]χvt), Jt = Ntξt, (4.20)

where the jump times, Nt are generated from a Bernoulli(ρy), jump sizes ξt from N(µy, σ2
y),

and γt from G(ν2 ,
ν
2 ), with ν = 15. Setup of parameters was: log-returns mean µt = µ = 0.05;

jump probability ρy = 0.015; jump magnitude mean µy = −2.5 and standard deviation
σy = 4; volatility components ∆ = 1, θ = 0.8, κ = 0.015, σv = 0.1, ρ = 0.4, n = 1000. For
transition matrix a1,1 = 0.99, a1,2 = 0.01, a2,1 = 0.02 and a2,2 = 0.98. The multiplier was
fixed in χ = 2.

Tables 10 to 22 show model estimatives for simulated parameters. Estimative for
jump magnitude mean, µy, is influenced by the increase in volatility caused by the market
state change in the simulation scenarios, since with a higher estimative for instantaneous
volatility the model capability to recognize jumps is reduced. Other static parameters are
well estimated by the model. Another point of attention is on estimative for instantaneous
state probability π, since this value is not set in the simulation procedure, and true value
is obtained by the reason of the number of observations in each state by the total number
of observations. As some points can still remain in a lower volatility region even when
multiplied by the constant χ, it is expected that estimates for π are different from true
values, which does not influence the final analysis.

True Mean SD True Mean SD
µ 0.05 0.0516 0.0077 µD1 - (0.0786, -0.1029) (0.0715, 0.1701)
ρy 0.015 0.0154 0.0075 µD2 - (0.0215, 1.0388) (0.0345, 0.1505)
µy -2.5 -0.2858 1.6032 π1 0.777 0.4491 0.0582
σy -4 4.1659 1.5123 π2 0.223 0.5509 0.0582
ν 15 16.1564 1.277 BIC 2553
log L -1245 AICc 2509

Table 10 – Posterior inference of static parameters for simulated data.
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ΣD1 ΣD2

1 2 1 2
1 2.0691 (0.2077) -0.0447 (0.0905) 1 0.4876 (0.0529) 0.0034 (0.0253)
2 -0.0447 (0.0905) 0.3571 (0.0725) 2 0.0034(0.0253) 0.4681 (0.0877)

Table 11 – Posterior means for HMM classifier covariance matrix ΣDi . Standard deviations
are in parenthesis.

Low High
True Estimated True Estimated

Low 0.99 0.9837 (0.0067) 0.01 0.0163 (0.0067)
High 0.02 0.0149 (0.006) 0.98 0.9851 (0.006)

Table 12 – Posterior transition probability, ai,j, means for simulated data, log returns in
an intuitive approach. Standard deviations are in parenthesis.

Figure 22 – HMM classification for market states according to values of log-return, yt, and
mean posterior log volatility, logλ.
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Figure 22 show model classification for one simulated scenario. There is a well
defined cut-point between states in the region around logλt = 0.6, which corresponds
to a spot volatility of approximately λ−1/2

t ≈ 0.74, as can be seen on Figure 23, where
volatility posterior estimative (solid line) is plotted together with true value (dashed line)
and market states are shown on bottom graph. In moments with increased volatility, as
around observation number 800, the model capability of detecting of jumps is reduced due
to the higher volatility behavior, which caused the estimative for µy to be underestimated.

Figure 23 – Simulated log returns data are shown at the top graph, together with jumps as
dots; Mean posterior estimates of spot volatility in percentage λ−1/2

t ×100% at
the middle graph in solid line, the gray area is the 95% credibility interval, the
true value is the dashed line; and estimates of instantaneous Market Regime
at the bottom graph.
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Figure 24 show posterior estimate for jump probabilities in solid line together with
true values in dashed line. The model is able to capture most regions of high and low
volatility correctly, with a small delay, which is acceptable for the purposes here presented.

Figure 24 – Market Regime probability for each observation of simulated log returns data.
Dashed line is the true value of regime.

4.5 Intraday Log-Returns of Brent Crude Oil Futures
In this section we show an application of the model to Brent Crude futures,

ICE:BRN, intraday log-returns time series. The particular interest in this application is to
identify moments of increased volatility so that a speculator can use trading strategies to
obtain profit from arbitrage. The data set consists of Brent Crude futures, ICE:BRN, log
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returns from August 15, 03:00, 2018 to August 16, 23:59, 2018, in a total of 2,472-minute
observations.

Parameter specification for the NGSVJ-HMM model follows specifications used
and presented in previous sections. For state transition probabilities, ai,j, and for initial
state probabilities πi, i = 1, 2, a Dirichlet(0.1,0.1) is defined, so that there are only two
states, namely low and high volatility states. For this application, the log-returns mean,
µt will be assumed as a static parameter, so that µt = µ. MCMC specification is 50,000
iteration chain, a burn-in of 20,000 observations, with a lag of 10 observations, resulting
in 2,728 samples.

Convergence of MCMC chains was verified trough graphical methods. Residual
analysis was made in the same way as in Section 3.3, with no evidence of strong violations
of the model hypotheses.

Table 13 and Table 14 shows posterior inference of static parameters. Convergence
was achieved after approximately 10,000 iterations. As expected based on previous ap-
plications, the jump probability is small, ρy = 3.19%, and the presence of heavy-tail is
observed by the estimated degree of freedom, ν = 8.6094. Physically, the estimates of µD1

and µD2 represent the positions of the centroids used by the HMM classifier. As can be
seen in Table 15, there is a high probability that a low(high) state remains the same on
the next observation, which brings the desirable amount of predictability for the user to
take arbitrage decisions based on model results.

Mean SD Mean SD
µ 0.0000 0.0002 µD1 (0.0000, 8.3042) (0.0037, 0.1527)
ρy 0.0319 0.0088 µD2 (0.0000, 6.5737) (0.0026, 0.1135)
µy 0.0002 0.0209 π1 0.3607 0.0297
σy 0.1545 0.0253 π2 0.6393 0.0297
ν 8.6094 2.6278 BIC -9,981
log L 5,045 AICc -10,062

Table 13 – Posterior inference of static parameters for ICE:BRN.

ΣD1 ΣD2

1 2 1 2
1 0.0118 (0.0010) 0.0001 (0.0025) 1 0.0097 (0.0005) 0.0001 (0.0017)
2 0.0001 (0.0025) 0.5020(0.0970) 2 0.0001(0.0017) 0.4622 (0.0580)

Table 14 – Posterior means for HMM classifier covariance matrix ΣDi . Standard deviations
are in parenthesis.
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Low High
Low 0.9936 (0.0030) 0.0064 (0.0030)
High 0.0043 (0.0019) 0.9957 (0.0019)

Table 15 – Posterior transition probability, ai,j, means for ICE:BRN, log returns in an
intuitive approach. Standard deviations are in parenthesis.

Figure 25 shows the pair log-returns yt and posterior mean log volatility, logλ.
Light gray dots are the observations classified as Low volatility state and dark gray dots
are the observations classified as High volatility state. As can be seen in Table 14, values
that belong to State 1 are more uniform, whereas the ones that belong to State 2 are more
sparse and have higher values for the covariance matrix.

Figure 25 – HMM classification for market states according to values of log-return, yt, and
mean posterior log volatility, logλ.

Figure 26 shows intraday observations of ICE:BRN log-returns together with the
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jump component, as black dots. The second graph shows mean posterior estimates of
instantaneous volatility and the 95% credibility interval, obtained by the NGSVJ-HMM
model. The third graph shows the instantaneous market regime for each observation, in
an intuitive approach for the final user. The model was able to classify volatility increases
on both days, which are propitious moments for arbitrage strategies.

Figure 26 – Log returns for intraday ICE:BRN are shown at the top graph, together
with jumps as dots; Mean posterior estimates of spot volatility in percentage
λ
−1/2
t × 100% at the middle graph in solid line and the gray area is the 95%

credibility interval; and estimates of instantaneous Market Regime at the
bottom graph.

Figure 27 shows market regime probabilities for each observation. The market state
on a specific time t is that of higher probability. Also, as estimated state probability goes
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closer to 1, the more certain the model is about its classification.

Figure 27 – Market Regime probability for each intraday observation of BRN:ICE log
returns.

The model was able to effectively classify market states and the classification
matches moments with higher estimated spot volatility. The model user can rely on market
states classified by the model to take strategic arbitrage decisions in order to pursue short
terms gain on financial markets, by speculating.
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4.6 Additional Comments
The NGSVJ-HMM model was able to capture speculative movements in the market

through the jump components and detect periods with increased market risk through the
volatility component. Also, the decoding structure allows the model to deliver an intuitive
approach to the final user, to assist arbitrage via HMM and investment decisions.

The most notable advantage of using NGSVJ-HMM is its computational simplicity
derived from the structure of the NGSVJ model presented by Rego and Santos (2020),
which grants an automatic sampling process for parameters, that allows to sample the
volatility in block mostly using Gibbs sampler, into one single stage. Furthermore, the
HMM structure can be included inside the NGSVJ structure allowing it to achieve fast
convergence and implementation simplicity, which allows it to get reliable estimates with
less MCMC iterations, since the model is mostly based on Gibbs Sampling steps, achieving
convergence after approximately 10,000 iterations, so that it can give results fast enough
to be used on practical situations. Another advantage is the model flexibility, since it
include jumps and heavy-tailed distribution for innovations, allowing the model to give a
more precise estimative of volatility, by not letting tail events interfere on the estimative.

The development of NGSVJ-HMM fills a gap of NGSVJ when compared to other
models existing on literature, as SV with inclusion of Markov Switching structure, pre-
senting detailed theory behind the inclusion of such structure on NGSVJ and presenting
the NGSVJ-HMM model as an alternative model with a simpler computational structure,
sice it is mostly based on Gibbs Sampling steps.

As a disadvantage when compared to models for similar application on literature is
that the NGSVJ-HMM was conceived only for classifying the volatility, without allowing
the feedback of this information into the model to achieve the jump effect on volatility.
This approach requires a more complex structure and will be addressed to future works.
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5 Multivariate Stochastic Volatility Model
with Jumps

In finance, diversification is a technique of allocating the available capital in different
investments to reduce the investment risk without sacrificing return. According to Drake
and Fabozzi (2010), to build an efficient portfolio (that is, a group of available assets
that jointly have the lowest risk, or volatility, for a given value of expected return) the
investor or portfolio manager must be able to estimate both expected return and the
covariance matrix so that the combination of assets and weights for each one of them can
be chosen according to the investors strategy. The covariance matrix, in this case, not only
provides information about the variance of each asset, which is a measure of the risk of
this particular asset. It also provides the covariance between available investment options,
which is essential for choosing the composition of the portfolio in order to reduce its risk.

As the ARCH-GARCH and stochastic volatility (SV) models are the most dominant
approaches to modeling volatility in literature, extending them to the multivariate case was
a natural way to deal with the portfolio risk management challenge. Early works as Harvey,
Ruiz, and Shephard (1994) develop a generalization of the SV model but highlight that
such generalizations to multivariate series can be difficult to estimate and interpret, Engle
and Kroner (1995) present a multivariate generalized ARCH model within simultaneous
equation systems, Kroner and Ng (1998) develop a general model based on GARCH
to estimate time-varying covariances between asset returns. With the consolidation of
such models, recent works improvements focus on including heavy-tailed distributions
and a jump structure to obtain a more accurate estimation of risk. Chib, Nadari, and
Shephard (2006) present a multivariate SV model that includes both heavy-tailed student-t
distribution and series-specific jump components. Chib, Omori, and Asai (2009) present
a collection of works in multivariate stochastic volatility (MSV) models available in the
literature that includes leverage effects, a mean factor MSV model and the inclusion of
dynamic correlations trough a Wishart Process on the MSV model. Luciano and Schoutens
(2006) develop a Lévy multivariate model for financial assets which incorporates jumps,
skewness, kurtosis and stochastic volatility. More recent works on this subject include
new features to the existing class of SV multivariate models, as Izzeldin, Tsionas, and
Michaelides (2019) that propose a MSV model that generalizes the approach of Dendramis
et al. (2015) by including impulse response functions to capture e impact of large shocks
on returns or structural breaks in volatility, as contrast to the jump structure used on
literature. Clark and Marcellino (2019) investigate the usage of Normal-Wishart and non-
conjugate priors on a vector autoregressive SV model when dealing with high dimensional
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data, defending that the usage of non-conjugate priors give extra flexibility on their
model. Fengler, Herwartz, and Raters (2017) explore the BEKK algorithm, named after its
creator names initials, to estimate volatility for foreign exchange rates using a multivariate
GARCH model. However, the model is only able to estimate volatility for pairs of assets,
instead of the entire portfolio simultaneously, which is a drawback when dealing with real
applications on financial markets, that require to estimate volatility and covariance matrix
for a large number of assets inside the same portfolio.

A strong disadvantage of ARCH-GARCH and SV classes for multivariate appli-
cations is that, as stated by Yu and Meyer (2006), apart from the inherent problems
of multivariate models, such as high dimensionality of the parameter space and the re-
quired positive semidefiniteness of covariance matrices, the likelihood function has no
closed form for the multivariate ARCH-GARCH and SV models, requiring more complex
computational methods to sample from the parameters posterior distributions or even
approximations for those distributions. This turns our attention to the dynamic models
(DM) class for modeling volatility, where resides the NGSVJ developed by Rego and Santos
(2020).

The DM approach has the advantage of a simpler implementation and a flexible
model structure since the model is written in the space state form. Quintana, Lourdes,
Aguilar and Liu (2003) present the General Multivariate Dynamic Linear Model (GMDLM)
and the Bayesian Dynamic Factor Model (BDFM) as models used for investment manage-
ment, specifically for building mean-variance efficient portfolios.

Approaches using DM to multivariate financial time series on literature lacks
relevant features for dealing with financial time series, such as jumps on returns to
capture speculative movements and an effective way to deal with high dimensional assets
portfolio log returns. Triantafyllopoulos (2014) uses a particle filter together with a Skew-T
distribution for innovations in a multivariate approach. Lopes, McCulloch, and Tsay (2016)
use a normal dynamic linear model but has the advantage of a sampling procedure fully
based on Gibbs sampling. Nasri and Rémillard (2019) use a copula model for a multivariate
approach from univariate dynamic models. The Dynamic dependence network models in
West (2020) suffer from dimensionality issues due to the graphical approach. A multivariate
extension for NGSVJ in Rego and Santos (2020) brings a model that includes a jump
structure, heavy tails for log-returns, and a sampling procedure based on Gibbs sampler.

Rego and Santos (2020) present a univariate approach to estimating volatility from
financial assets, including both heavy-tailed distribution and jump structure. Extending
this model to the multivariate case is possible using the Matrix-Beta evolution structure,
presented in Prado and West (2010). It has the advantage of an already developed
retrospective analysis procedure, using a Wishart distribution, which is presented in
this work, for sampling from the covariance matrix, Σt, posterior distribution, similar
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to smoothing procedure of λt from Gamerman, Santos and Franco (2013). Although,
this structure suffers from two constraints: the degree of freedom, ht, for sampling from
the Wishart distribution in the retrospective analysis must be such that ht > q − 1,
where q is model dimensionality, the number of assets being jointly evaluated; and the
discount factor β must be such that β > q−2

q−1 . Such constraints are not a problem for low
dimensionality applications, but, as q grows, the discount factor range becomes limited
and it may be necessary to generate from singular Wishart distributions, which would
increase the computational complexity of the algorithm.

The model with Beta-Bartlett evolution equation, present by Prado and West
(2010), enables us to flexible the constraints regards the discount factor β and the model
dimensionality, but lacks a retrospective analysis procedure, which is proposed in this
thesis.

In this chapter, the Multivariate Stochastic Volatility Model with Jumps (MSVJ)
is presented as an extension of the NGSVJ to the multivariate case. Two approaches are
evaluated for the multivariate model: the Matrix-Beta and the Beta-Bartlett evolutions.

5.1 Multivariate Stochastic Volatility Model With Jumps and Matrix-
Beta Evolution
The proposed Multivariate Stochastic Volatility Model with Jumps and Matrix-

Beta Evolution (MSVJM) for extending the NGSVJ model, developed by Rego and Santos
(2020) to the multivariate case, for an q×1 vector log-returns time series with observations
yt
∼
, is:

yt
∼

= F
′

t θt∼
+ Jt
∼

+ vt
∼
, where vt

∼
|γt ∼ Nq(0, γ−1

t Σt), (5.1)

θt
∼

= Gtθ∼ t−1 + ωt
∼
, where ωt

∼
∼ Nq(0, wtΣt), (5.2)

Σ−1
t = β−1Σ−1

t−1ζt, where ζt|Dt−1,Φ ∼ Betaq

(
βht−1

2 ,
(1− β)ht−1

2

)
, (5.3)

γt ∼ G
(
ν

2 ,
ν

2

)
(5.4)

where:
Ωt = Σ−1

t , Jt
∼

= ξt+1
∼
◦Nt+1

∼
, ξt ∼ Nq(µy,Σy),

P (Nqt+1 = 1) = ρq, and P (Nqt+1 = 0) = 1− ρq

In this model yt
∼
follows the DLM defined by {Ft, Gt,Σt, γt, ωt}, with Ft = I and

Gt = I, for I being the identity matrix. yt
∼
denotes the tth observed value of the q×1 vector

time series of portfolio’s assets log-returns, θt
∼

is the q × 1 vector of latent states, Σt is the
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covariance matrix at time t and the main interests lay on estimating its value over time,
since it is the main variable on risk and stock options pricing. As Σt is positive definite, by
defining a proper prior to Σt the full conditional posterior distribution is also proper. wt
and β are specified discount factors. Initialization for θ and Σ are θ0|D0,Σ0 ∼ Nq(m0

∼
, c0)

and Σ0|D0, θ0 ∼ IW (n0, D0). γt is the variance mixture component and, depending on
the choice of its prior distribution, the vt unconditional posterior distribution can assume
specific heavy-tailed distribution, e.g., by using the mixture component γt ∼ G

(
ν
2 ,

ν
2

)
, the

unconditional marginal distribution of errors assume a multivariate tν(0
∼
, I) distribution,

for a specified ν, so we achieve the effect of a heavy-tailed distribution for the innovations.

The gamma mixture component γt was conceived as a scalar in order to preserve
the correlations between log-returns in the covariance matrix Σt. Note that, as a scalar,
we have that:

γ−1
t Σt = γ−1

t


σ1,1,t σ1,2,t . . . σ1,q,t

σ1,2,t σ2,2,t . . . σ2,q,t
... . . . ...

σ1,q,t σ2,q,t . . . σq,q,t

 =


γ−1
t σ1,1,t γ−1

t σ1,2,t . . . γ−1
t σ1,q,t

γ−1
t σ1,2,t γ−1

t σ2,2,t . . . γ−1
t σ2,q,t

... . . . ...
γ−1
t σ1,q,t γ−1

t σ2,q,t . . . γ−1
t σq,q,t

(5.5)

So that the pearson correlation between two log return time series would be given by:

corri,j,t = γ−1
t σi,j,t√

γ−1
t σi,i,tγ

−1
t σj,j,t

= �
��γ−1
t σi,j,t

�
��γ−1
t
√
σi,i,tσj,j,t

= σi,j,t√
σi,i,tσj,j,t

(5.6)

where σi,j,t is the correlation between log-returns for asset i and j on time t and σi,i,t

the variance of log-returns for asset i on time t. In this case, the correlation between
log-returns for assets inside the portfolio is not affected by the mixture component γt,
property that is not achieved by using a non-scalar mixture component that would lead to
a matrix multiplication.

Each series on vector yt
∼

has a jump component, Ji,t, i = 1, . . . , q, composed by the
element-wise product, denoted by operator ◦, of the jump indicator Nt+1 and magnitude
ξ ∼ Nq(µy

∼
,Σy), in the same way proposed by Rego and Santos (2020). This jump structure

gives extra flexibility to the model by allowing each vector of observations that compose
yt
∼

to assume its own jump characteristics, which is particularly important when dealing
with assets that have different intrinsic behavior.

5.2 Bayesian Inference
For ease notation, let Φ = (θ

∼
, J
∼
, γ,Σ, µy

∼
,Σy, ρ

∼
, ν), excluding the parameter being

evaluated, i.e. Φ[−γ] = (θ
∼
, J
∼
,Σ, µy

∼
,Σy, ρ

∼
, ν) . Detailed calculations on how to find the

posterior distributions henceforth mentioned can be found on Appendix A. Independent
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priors were chosen so that proper posteriors are obtained, simplifying the sample procedure.
When no initial information is available, non-informative priors can be chosen.

The latent state parameter, θt
∼
, and covariance matrix, Σt, are jointly sampled using

the Forward Filtering Backward Sampling algorithm proposed by Prado and West (2010).
In this case, wt is defined via a single discount factor ι. All distributions for states and
observational covariance matrix in the sequential updating and retrospective smoothing are
multivariate Normal Inverse Wishart, NIW (θt,Σt|mt

∼
, ct, nt, Dt,Φ[−(θ,Σ)]), where mt

∼
, ct, nt,

Dt parameters are the mean, scale, degree of freedom and covariance matrix, respectively.
Initialization for θ and Σ are θ0|D0,Σ0 ∼ Nq(m0

∼
, c0) and Σ0|D0, θ0 ∼ IW (n0, D0). The

summary sequential updating equations at times t− 1 to t are:

mt
∼

= m
∼ t−1 + ktet and ct = rt − k2

t qt, (5.7)

Dt = βDt−1 + γt
ct
ete

T
t and nt = βnt−1 + 1, (5.8)

where et
∼

= yt
∼
−mt−1

∼
−Jt, rt = ct−1 +wt ≡ ct−1/ι, qt = rt+ 1 and kt = rt/qt. The summary

equations for the retrospective computations over t = (T − 1) : 1 are, for the states, given
by:

zT
∼

(t− T ) = (1− ι)mt
∼

+ ιzT
∼

(t− T + 1), (5.9)

rT (t− T ) = (1− ι)ct + ι2rT (t− T + 1). (5.10)

The smoothing procedure for the covariance matrix Σt in MSVJM is analogous
to the procedure for retrospective sampling from the volatility component, λt, in the
NGSVJ model developed by Rego and Santos (2020). By using the Wishart distribution
as a multivariate generalization of the Gamma distribution, or analogously, the Inverse
Wishart distribution as a generalization of the Inverse Gamma distribution, a very similar
procedure for retrospective sampling is obtained.

Proposition 1 A draw from the conditional posterior distribution p(Σt|Σt+1,Dt) can be
obtained by setting Σ−1

t = Ωt and recursively sampling from:

(Ωt − βΩt+1|Dt) ∼ W ((1− β)ht, D−1
t ) (5.11)

so that (Σt − βΣt+1|Dt) ∼ IW ((1− β)ht, Dt).

A more detailed approach on the proof of Proposition 1 can be found in Appendix B.

Retrospective simulation of the covariance matrix, Σt sequence is obtained as in
Proposition 1 and the algorithm for sampling from its full conditional posterior distribution
proceeds precisely as defined in Appendix B.2.
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Note that the Matrix-Beta evolution is a generalization of the evolution Beta in
the NGSVJ model, developed by Rego and Santos (2020). By evaluating a single return
time series, Ωt in MGSVJM is equivalent to λt in NGSVJ and the Matrix-Beta evolution
is equivalent to the evolution Beta procedure.

For the mixture component γt, a gamma distribution G
(
ν
2 ,

ν
2

)
is defined, which,

when mixed as γ−1
t , resulting in Inverse-Gamma, leads to a multivariate Student-t with ν

degrees of freedom to the innovations. The full conditional posterior distribution is:

p(γt|Dn,Φ[−γt]) ∼ G
(
ν + q

2 − 1, ν
∗

2

)
, (5.12)

ν∗ = ν + tr
(

(y
∼
t − θ∼ t − Jt)

T (Σt)−1(y
∼
t − θ∼ t − Jt)

)
. (5.13)

The parameter ν will be specified, since its posterior distribution does not have
closed-form, leading to a Metropolis step. Since the main objective of this work is defining
the methodology and a general procedure for extending the NGSVJ, we preserve its initial
structure and address further developments to future works. Recall that our focus in this
chapter is on expanding the applications of the model to a portfolio of assets, presenting
the MSVJM as an alternative to the multivariate models commonly used on literature.

The jump sizes ξt+1 follow a Nq(µy,Σy), for µy = (µy1 , µy2 , . . . , µyq) and Σy =
diag(σ2

y1 , σ
2
y2 , . . . , σ

2
yq), q is the dimension of yt

∼
. For the mean µy a non-informative prior

µyq ∼ N(m, v) is set, resulting in a full conditional posterior:

p(µyq |Dn,Φ[−µy ]) ∼ N

mσ2
yq + vnq ξ̄q

σ2
yq + nqv

,
vσ2

yq

σ2
yq + nqv

 . (5.14)

For the covariance matrix Σy, a prior σ2
yq ∼ IG(α, β) is assumed for each of the

diagonal elements, resulting in the full conditional posterior:

p(σ2
yq |Dn,Φ[−σ2

y ]) ∼ IG

α + nq
2 , β +

∑n
i=1
Ji 6=0

(ξq,i+1 − µyq)2

2

 . (5.15)

In both cases, nq is the number of times that the jump is observed on dimension q,
and ξ̄ the mean of jump sizes ξq,t.

As the prior of jump sizes are assumed to be Multivariate Normal, the full condi-
tional posterior is also Multivariate Normal, given by:

p(ξt+1|Dn,Φ[−ξ]) ∼ Nq

(
m∗ξ , v

∗
ξ

)
. (5.16)

where:

m∗ξ =
(
Σ−1
y + (γ−1Σt)−1

)−1
(

Σ−1
y µy + (γ−1Σt)−1(y

∼
t − θ∼ t)

)
(5.17)

v∗ξ =
(
Σ−1
y + (γ−1Σt)−1

)−1
(5.18)
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For jump probabilities ρ = (ρ1, ρ2, . . . , ρq), a prior Beta(α, β) is set. The full conditional
posterior, for a sample size n, is given by:

p(ρq|Dn,Φ[−ρ]) ∼ Beta

(
α +

n∑
i=0

Nq,i, β + n−
n∑
i=0

Nq,i

)
(5.19)

Since the jump indicator Ny can assume only two values, 0 or 1. The probability of
observation at t+ 1 be a jump is given by:

P (Nq,t+1 = 1|Dt+1,Φ[−N ]) ∝ ρqP (y
∼
t+1|Nq,t+1 = 1,Φ[−N ]). (5.20)

which is easy to calculate, since P (y
∼
t+1|Nq,t+1 = 1,Φ[−N ]) is a Multivariate Normal

distribution. If this probability is greater then a threshold α, then Nq,t+1 = 1. The
threshold α is chosen such that the number of jumps identified corresponds to the estimate
of the jump intensity ρq.

5.3 General Procedure
Here we present the Gibbs Sampler algorithm to sample from the MSVJM model’s

parameters.

Let Yn
∼

= {y
∼
t}nt=1, θ∼ = {θt

∼
}nt=1, Σ = {Σt}nt=1, J∼ = {Jt

∼
}nt=1 = {ξt+1Nt+1}nt=1,

γ = {γt}nt=1, ξ = {ξt+1}nt=1, N = {Nt+1}nt=1 and prior probability density p(γ), p(µy),p(Σy),
p(ξ),p(ρ

∼
) are set for γ, µy,Σy, ξ, ρ

∼
. Then, a sample of size M from the joint posterior

distribution p(θ
∼
,Σ, γ, µy,Σy, J∼, ρ∼

|Yn
∼

) is drawn via Gibbs Sampler, whose follows:

1. Initialize θ
∼

(0),Σ(0), γ(0), µ(0)
y ,Σ(0)

y , ξ(0), N (0) and ρ
∼

(0).

2. Set j = 1.

3. Block sample θ
∼

(j),Σ(j)|Yn
∼
, γ(j−1), J (j−1) using the FFBS algorithm presented in Sec-

tion 5.2 by:

a) Sample {Σ−1
t }nt=1 as in the algorithm in Appendix B.2 using as parameters

values in Eq. (5.8).

b) Sample θt
∼
∼ Nq(at, rtΣt) using the smoothed parameters in Eq. (5.9) and Eq.

(5.10).

4. Block sample γ(j)|Yn
∼
, θ(j),Σ(j), J

∼
(j−1) as in Eq. (5.12).

5. Sample µ(j)
y |ξ(j−1),Σ(j−1)

y as in Eq. (5.14).

6. Sample Σ(j)
y |ξ(j−1), µ(j)

y as in Eq. (5.15).

7. Block sample J
∼

(j)|Yn
∼
, θ
∼

(j),Σ(j), γ(j), µ(j)
y ,Σ(j)

y by
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a) Block sample ξ(j)|Yn
∼
, θ
∼

(j),Σ(j), γ(j), µ(j)
y ,Σ(j)

y as in Eq. (5.16).

b) Block sample N (j)|Yn
∼
, θ
∼

(j),Σ(j), γ(j), ξ(j) as in Eq. (5.20).

8. Sample ρ
∼

(j)|J
∼

(j) as in Eq. (5.19).

9. Set j = j + 1.

10. If j ≤M , go to step 3, otherwise stop.

Since all full conditional posterior distribution has closed-form, only Gibbs Sampler
steps are used. The MSVJM structure is similar to the NGSVJ, but allowing the estimation
of the covariance matrix for a portfolio of assets, instead of a single asset at time, which is
specially relevant for financial market applications.

5.4 Simulation
To illustrate the performance of the MSVJM, we adapt the method to synthetic

data from the model proposed by Warty, Lopes and Polson (2018) to the multivariate case.
To generate from the covariance matrix, Σt, we generate the diagonal values i = 1, . . . , q
from:

vi,i,t = vi,i,t−1 + κ(θ − vi,i,t−1)∆ + ρσv
√
vi,i,t−1∆ε1,t + σv

√
(1− ρ2)vi,i,t−1∆ε2,t (5.21)

where ε1,t and ε2,t ∼ N(0, 1). The covariance matrix off-diagonal values for each time t are
obtained by making:

σi,j,t = ρσ,i,j ×
√
vi,i,t × vj,j,t, i 6= j (5.22)

for i = 1, . . . , q, j = 1, . . . , q, t = 1, . . . , n and ρσ,i,j the correlation between vi,i,t and vj,j,t.

Synthetic data for returns is then generated from:

yt
∼

= Nq(µ+ Jt
∼
, γ−1

t Σt), (5.23)

Jt
∼

= ξt+1Nt+1, (5.24)

where the jump times,Nq,t are generated from a Bernoulli(ρq), jump sizes ξt fromNq(µy,Σy),
and γt from G(ν2 ,

ν
2 ). Setup of parameters was: log-returns mean µ = (0.05, 0.01,−0.04);

jump probability ρq = (0.015, 0.02, 0.009); jump magnitude mean µy = (−2.5,−1.0, 2.0)
and covariance matrix Σy = diag(16, 4, 9); variance mixture degrees of freedom ν = 30;
Returns covariance matrix diagonal components ∆ = 1, θ = 0.8, κ = 0.015, σv = 0.1,
ρ = 0.4, same used by Rego and Santos (2020). Correlations were defined as ρσ,1,2 = 0.8,
ρσ,1,3 = −0.4, ρσ,2,3 = 0.01. 30 replications were maid to evaluate model performance.
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Figure 28 – Simulation study: One simulated realization (n = 1,000).

The simulated portfolio consists of approximately 4 years of daily data (n =
1,000). Figure 28 shows one realization generated from the model. All codes for the model
estimation were written in R software, using package Rcpp, available at The Comprehensive
R Archive Network (CRAN). Machine specifications are Intel Core i7-8700K 3.70 GHz
processor, 16GB RAM, using a 64-bit Windows 10 Operating System. MCMC retained
2,020 samples after 40,000 iterations, burn-in of 20,000 and lag of 10 iterations.

Figure 29 shows the time series of true instantaneous volatility vi,t, together with
the estimated volatility σ−1

i,i,t, for i = 1, . . . , 3. The MSVJM is able to closely track the
latent state. Almost every point from the true volatility is inside the 95% credibility
interval, even when the estimate mean slightly deviates from the true value. Figure 30
shows the estimated correlation between the time series. True value ρσ is shown in dashed
line.

Figure 5.4 shows the time series of true instantaneous jumps Jt, together with
the estimated jumps Jt. Recall that the jumps represent moments of punctual abnormal
returns, caused by the market’s speculative movements. The MSVJ is able to catch most
of the simulated jumps, together with its magnitudes.
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Figure 29 – Simulation study: Posterior mean estimates of instantaneous volatility vi,t for
simulated data. True volatility series shown in dashed line; posterior mean
estimates σi,i,t in solid line; and 95% credibility interval is the light gray area.
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Figure 30 – Simulation study: Posterior estimates of correlation coefficient ρσ for simulated
data. True value is shown in dashed line; posterior mean estimates in solid
line; and 95% credibility interval is the light gray area.

Figure 31 – Simulation study: Posterior estimates of instantaneous jumps Jt for simulated
data. True values of the time series shown in gray; posterior mean estimates
Jt in black.
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Table 16 presents true values and the summary information for the posterior
estimates over the 30 replications. As jump related parameters are estimated based only
on values recognized by the model as jumps, they tend to have higher variance and root
mean square error when compared to true values. Despite that, estimations obtained by
the model are close to real parameters.

True MCMC Mean SD RMSE
ρy1 0.015 0.0537 0.0068 0.0015
ρy2 0.020 0.0392 0.0060 0.0004
ρy3 0.009 0.0594 0.0101 0.0026
µy1 -2.5 -3.5700 0.4836 1.3715
µy2 -1.0 -1.1340 0.3311 0.8562
µy3 2.0 0.35545 0.3932 0.5654
σy1 4.0 4.2088 0.3352 0.1524
σy2 2.0 1.7006 0.3908 0.2376
σy3 3.0 3.6459 0.2950 0.5015
log L - -3119
BIC - 6405
AICc - 6289

Table 16 – Posterior estimates descriptive estatistics of MSVJM mean posterior static
parameters for simulated daily returns (n = 1,000), over 30 replications.

5.5 Model application

The MSVJM model is applied to a dataset containing nine exchange rates against
U.S. dollar: Brazilian Reals (BZUS), Canadian Dollar (CAUS), Chinese Yuan (CHUS),
Danish Kroner (DNUS), Hong Kong Dollar (HKUS), Indian Rupees (INUS), Japanese
Yen (JPUS), South Korean Won (KOUS), Malaysian Ringgit (MAUS), obtained from
Federal Reserve of St. Louis website. The dataset contains 2,020 daily observations from
December 2010 to January 2019. Table 17 provides descriptive statistic for the log-returns,
multiplied by 100. They will be referred in the model as time series y1, y2, . . . , y9 in the
same order mentioned above.

With exception of HKUS, all assets present excess of returns, as observed by
extreme values on minimum and maximum observations. Mean returns for all assets are
close to 0%, since currency exchange rates tends to be stable on the long run, except
on extreme cases when countries go bankrupt, get involved on long duration wars, etc.
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Exchange rates are closely linked to the countries economy healthy and constant declines
or increases may indicate permanent changes on its economic structure.

Desc. Stats BZUS (y1) CAUS (y2) CHUS (y3) DNUS (y4) HKUS (y5)
Mean 0.0385 0.0140 0.0015 0.0073 0.0003
St. Dev. 0.9397 0.4967 0.1805 0.5533 0.0338
Min -5.2991 -2.9001 -1.2417 -3.0555 -0.4422
Max 8.6670 3.3678 1.8161 2.6461 0.3345
Desc. Stats INUS (y6) JPUS (y7) KOUS (y8) MAUS (y9)
Mean 0.0214 0.0126 -0.0010 0.0136
St. Dev. 0.5007 0.5884 0.5396 0.4507
Min -3.7560 -3.4977 -2.9630 -3.6571
Max 3.7919 3.3428 2.8113 2.7750

Table 17 – Exhange rates log-returns [×100%] descriptive statistics.

5.5.1 Parameters Specification

For a portfolio of q = 9 log-return series, the FFBS related parameters setup was
θ0|D0,Σ0 ∼ N9(0, 100) and Σ0|D0, θ0 ∼ IW (20, I9), with discount parameters ι = 0.99
and β = 0.95, as suggested in Prado and West (2010). For the mixture component γt a
G
(
ν
2 ,

ν
2

)
distribution, with ν = 30, was specified, following Rego and Santos (2020). For

jump related components, µyq , N(0,100) priors were specified, for σ2
yq a IG(0.1,0.1) prior,

an for ρq a Beta(2, 40), for q = 1, . . . , 9, since it is known from previous works in literature
that jump events are uncommon so that, by setting an informative prior, better results
for convergence can be achieved. The threshold was fixed at α = 0.7, following Rego and
Santos (2020).

The results were obtained with a 40,000 iteration chain, a burn-in of 20,000
observations, with a lag of 10 observations, resulting in 2,500 samples. MCMC chain
convergence was verified through graphical methods. All the coding was done in the R
software, using the RcppArmadillo package.

Convergence of MCMC chains was verified trough graphical methods. Residual
analysis results does not show evidence of strong violations of the model hypotheses.

5.5.2 Results

Figures 32, 33 and 34 shows the posterior mean estimates of instantaneous standard
deviation, or volatility, diag(Σt), for exchange rates log-returns. Figures 35 to 40 shows
the correlation between different currencies exchange rates. The MSVJM model is capable
of estimating not only the volatility of log-returns but also the correlation between the
time series. This feature is especially relevant when dealing with an investment portfolio
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that contains several assets, as an investor would like to diversify his portfolio by choosing
negative or non-correlated assets to reduce the portfolio risk.

Higher values of volatility are observed on BZUS, peaking 1.5% in 2016. The period
of higher volatility for Brazilian currency matches a moment of political instability in the
country, which caused the currency to plunge in front of the United States dollar. On the
other hand, the smallest values of volatility are observed on HKUS, mostly under 0.1%.
The reason is that, according to Ranganathan (2018) on Reuters, the Hong Kong dollar
was pegged at a fixed rate of 7.8 to the U.S. dollar in October 1983 and, since May 2005,
it has been allowed to move between 7.75 and 7.85, a narrow range, thus restricting its
volatility. Another example is an increase on volatility observed on early 2013 for JPUS,
which matches political changes in Japan after elections on December 2012. An economic
analysis of volatility causes is out of the scope of this work, with major events being cited
only with illustration purposes.

The increase on estimated volatility on the first periods of CHUS and HKUS series
that contrasts with the subsequent period is caused by the effect of prior specification
that is the same for every time series, since Σ0|D0, θ0 ∼ IW (20, I9). This disadvantage is
easily overcome by increasing the analysis period beyond the desired study time interval
and ignoring the estimates for the first observations in applications where the behavior of
assets volatility is considerable different from one another.

Another point of attention is the increase of volatility in late 2011 and early 2012
for most exchange rates. In this period, the eurozone debt crisis dramatically worsened,
with Portugal requiring a bailout package to stabilize its public finances and Spain, Ireland,
and Greece with rising debt, leading to a substantial downgrade of those countries’ credit
rating, affecting all European Union. In such a scenario, investors tend to look towards
the United States dollar as a safe currency for keeping their capital, causing all exchange
rates to fall in front of the U.S. dollar. This effect can be seen on Figures 35 to 40 as an
increase in correlation between exchange currencies, with exception of JPUS.



5.5. Model application 83

Figure 32 – Posterior mean estimates of instantaneous volatility for Exchange Rates data.
Mean estimates in solid line; and 95% credibility interval is the gray area.
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Figure 33 – Posterior mean estimates of instantaneous volatility for Exchange Rates data.
Mean estimates in solid line; and 95% credibility interval is the gray area.
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Figure 34 – Posterior mean estimates of instantaneous volatility for Exchange Rates data.
Mean estimates in solid line; and 95% credibility interval is the gray area.
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Figure 35 – Posterior mean estimates of instantaneous correlation between Exchange Rates
time series. Mean estimates in solid line; and 95% credibility interval is the
gray area.



5.5. Model application 87

Figure 36 – Posterior mean estimates of instantaneous correlation between Exchange Rates
time series. Mean estimates in solid line; and 95% credibility interval is the
gray area.
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Figure 37 – Posterior mean estimates of instantaneous correlation between Exchange Rates
time series. Mean estimates in solid line; and 95% credibility interval is the
gray area.
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Figure 38 – Posterior mean estimates of instantaneous correlation between Exchange Rates
time series. Mean estimates in solid line; and 95% credibility interval is the
gray area.
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Figure 39 – Posterior mean estimates of instantaneous correlation between Exchange Rates
time series. Mean estimates in solid line; and 95% credibility interval is the
gray area.
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Figure 40 – Posterior mean estimates of instantaneous correlation between Exchange Rates
time series. Mean estimates in solid line; and 95% credibility interval is the
gray area.

Figures 41, 42 and 43 provides jump sizes for each observation. Jumps usually
precede moments of higher volatility, as they are a way of capturing speculative movements
at the market. As the higher the number of jumps, more speculative the currency can be
considered, thus more vulnerable to external shocks it is. HKUS presents only six jumps
on the period of analysis, as expected by the characteristics of this particular currency
mentioned before.
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Figure 41 – Posterior mean estimates of instantaneous jumps Jt. Jumps are represented
by black crosses and log-returns the light gray lines.
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Figure 42 – Posterior mean estimates of instantaneous jumps Jt. Jumps are represented
by black crosses and log-returns the light gray lines.
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Figure 43 – Posterior mean estimates of instantaneous jumps Jt. Jumps are represented
by black crosses and log-returns the light gray lines.

Table 18 shows model estimates for each of the static parameters. For most
currencies, jumps are infrequent but have a large magnitude, as can be seen by the large
standard deviation. The computational time was 87.44988 minutes.
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Mean SD Mean SD Mean SD
µy1 -0.0443 0.3380 µy2 0.0465 0.2041 µy3 -0.0006 0.0519
µy4 0.1850 0.2759 µy5 -0.0084 0.0127 µy6 0.1985 0.2556
µy7 0.1985 0.4266 µy8 0.3214 0.3655 µy9 -0.1586 0.3150
σy1 2.3321 0.2853 σy2 1.1035 0.1453 σy3 0.4639 0.0411
σy4 1.1814 0.2099 σy5 0.1163 0.0106 σy6 1.3881 0.2106
σy7 1.8184 0.3136 σy8 1.3599 0.2762 σy9 1.3398 0.2476
ρy1 0.0349 0.0085 ρy2 0.0233 0.0052 ρy3 0.0482 0.0068
ρy4 0.0159 0.0046 ρy5 0.0472 0.0072 ρy6 0.0208 0.0045
ρy7 0.0140 0.0038 ρy8 0.0117 0.0033 ρy9 0.0135 0.0036
log L 647 BIC -1,233 AICc -1,278

Table 18 – Posterior inference of static parameters for MSVJMmodel for currency exchange
rates daily log-returns.
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6 Multivariate Stochastic Model with Jumps
and Beta-Bartlett Evolution

According to Prado and West, the Beta-Bartlett evolution for the inverse of
covariance matrix, Ωt = Σ−1

t , is based on Markov evolution distributions p(Ωt|Ωt−1) in
which random innovations are applied to elements of the Bartlett decomposition of Ωt−1.
The Bartlett decomposition is detailed on Appendix C. Under the Wishart distribution, for
all information available until time t−1, represented by Dt−1, (Ωt−1|Dt−1) ∼ W (ht−1, D

−1
t−1)

at time t− 1, let Pt−1 be the upper triangular Cholesky component of D−1
t−1, so that the

Bartlett decomposition is:

Ωt−1 = P T
t−1U

T
t−1Ut−1Pt−1, (6.1)

where Ut−1 is a upper triangular matrix of random elements ut−1,i,j such that:

1. u2
t−1,i,i ∼ G

(
ht−1−i+1

2 , 1
2

)
, for i = 1 : q;

2. above the diagonal, ut−1,i,j ∼ N(0, 1), for j = (i+ 1) : q and i = 1 : q;

3. the ut−1,i,j are mutually independent.

According to Quintana, Lourdes, Aguilar, and Liu (2003), the Markovian evolution
becomes:

Ωt = β−1P T
t−1
∼
U
T

t

∼
U tPt−1, (6.2)

for a discount factor β ∈ (0, 1) and where the new random matrix
∼
U t is constructed

from Ut−1 using univariate beta-gamma stochastic volatility models, as it was done in the
MSVJM.

∼
U t is upper triangular, has the same upper off-diagonal elements ut−1,i,j as Ut−1,

but has diagonal elements ∼ut,i,j = ut−1,i,jγ
1/2
t , where γt,i are independent beta random

quantiles, all independent of the off-diagonal ut−1,i,j. For i = 1 : q:

(γt,i|Dt−1) ∼ Beta

(
βt,i(ht−1 − i+ 1)

2 ,
(1− βt,i)(ht−1 − i+ 1)

2

)
, (6.3)

where, for each i, βt,i = (βht−1 − i+ 1)/(ht−1 − i+ 1). It follows that

(∼u2
t,i,j|Dt−1) ∼ G

(
βht−1 − i+ 1

2 ,
1
2

)
. (6.4)

The result of this construction is that the evolution in Eq. (6.2) implies:

(Ωt|Dt−1) ∼ W (βht−1, (βDt−1)−1). (6.5)
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that is, the same discounting structure of the Matrix-Beta model, but relaxing the constrains
on β, so it can assume any value β ∈ (0, 1).

Another construction cited by Prado and West (2010) relaxes the dimensionality
supported by the model, without appealing to generating from singular Wisharts, that is,
any degrees of freedom can be generated for the evolved precision or covariance matrix
from the Beta-Bartlett model. In this case, the Eq (6.2) is modified to:

Ωt = b−1
t P T

t−1
∼
U
T

t

∼
U tPt−1, (6.6)

for a constant bt to be chosen, and with the beta distributions of the shocks having
βt,i = (βnt−1 + q − i)/(nt−1 + q − i), for i = 1 : q and nt−1 = ht−1 − q + 1. With this
modification in the evolution equation, Eq.(6.5), the W (nt−1 + q − 1, D−1

t−1) distribution
for Ωt−1 evolves to:

(Ωt|Dt−1) ∼ W (βnt−1 + q − 1, (btDt−1)−1) (6.7)

and by taking bt = (βnt−1 + q − 1)/(nt−1 + q − 1) ensures that the mean of the precision
matrix is unchanged trough the evolution, being fixed at (nt−1 +q−1)D−1

t−1 = ht−1D
−1
t−1, but

now it is possible to generate from from Wishart distribution, without any dimensionality
issues on degrees of freedom parameter, for assets portfolio.

However, despite all advantages above mentioned, Prado and West (2010) states
that there is no retrospective analysis procedure developed for the Beta-Bartlett evolution
structure.

6.1 Retrospective Analysis Procedure
The main challenge on developing a retrospective analysis procedure for the Beta-

Bartlet evolution is that there is no closed-form for the distribution of Ωt−1|Ωt, once the
evolution, in this case, is more complex than the Matrix-Beta evolution, to avoid sampling
the precision matrix directly from a Wishart distribution, thus avoiding issues related to
data dimensionality. However, a smoothed sample can be obtained using the smoothing
procedure presented bellow, taking advantage of Wishart distribution properties to build
an effective algorithm for the retrospective analysis.

According to Leondes et. al. (1970), the smoothing estimation problem is concerned
with finding the best estimate of the value of a time-varying parameter, using information
from related observations taken over a period of time before or after the instant of analysis
t. Smoothing techniques are especially useful when the estimated parameter is noisy, in
order to remove the noisiness of estimation, leading to more precise estimates.

According to Hunter (1986), the exponentially weighted moving average (EWMA)
technique, originated on the early work of econometricians and spread to different areas,
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including engineering, as an effective tool for smoothing. Hunter (1986) states that the
EWMA is a statistic with the characteristic that it gives less and less weight to data
as they get older and older. Hawkins and Maboudou-Tchao (2008), Harris and Yilmaz
(2010) and Shen , Tsung, and Zou (2014) extends applications of the EWMA technique on
smoothing time-varying covariance matrixes.

According to Hawkins and Maboudou-Tchao (2008), multivariate processes mea-
surements benefit from the use of inherently multivariate methods rather than a collection
of univariate methods applied to each of its components, and present the Multivariate
Exponentially Weighted Moving Covariance Matrix (MEWMC), which is an extension of
the EWMA for covariance matrixes. Harris and Yilmaz (2010) apply the EWMA for a
covariance matrix on a financial markets approach on smoothing the covariance matrix for
exchange rates returns.

The EWMA technique can also be used for smoothing, as in Zhou and Lawson
(2008) and Prado and West (2010) uses the exponentially weighted moving average method
for smoothing moments to build a retrospective simulation method for sampling from
states parameters in a space state model. The procedure consists, for a covariance matrix,
of using a single decay factor δ0 so that for a covariance matrix time series, St, t = 1, . . . , n
we have that:

SSt = δ0 SSt+1 + (1− δ0)St (6.8)

or equivalently, using the element wise notation for i = 1, . . . , q and j = 1, . . . , q, as in
Harris and Yilmaz (2010):

sSi,j,t = δ0 sSi,j,t+1 + (1− δ0) si,j,t (6.9)

where the underscript S denotes the smoothed parameter and, for convention, we assume
SSn = Sn.

The same procedure can be applied to the precision matrix Ωt for obtaining a
punctual estimative and the respective credibility interval for the smoothed expectation
for Ωt using the Beta-Bartlet evolution, so we have that:

ΩSt = β ΩSt+1 + (1− β) Ωt (6.10)

where β ∈ (0, 1) is the same discount factor in Eq.(6.5), therefore, the same discount
factor used in Matrix-Beta evolution. By adopting this procedure, the smoothed sampled
obtained has the same expected value from that obtained in the procedure described in
Appendix B.2, applied on MSVJM. The proof follows directly from Wishart distribution
properties, as described bellow.

Based on Wishart distribution properties available in Eaton (1983), for Ω ∼
W (h,D−1), we have that E(Ω) = h ×D−1, and for M ∼ W (h, I) then Ω D= P TMP , so
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that P is a decomposition of D−1 such that P TP = D−1. So we have that, for any given
time t, the expected value of ΩS,t in Eq. (6.10), E(ΩS,t), is given by:

E(ΩSt|Dn) = β E(ΩSt+1) + (1− β)E(Ωt) (6.11)

= β E(βΩSt+2 + (1− β)Ωt+1) + (1− β)× ht ×D−1
t (6.12)

= β2E(ΩSt+2) + β(1− β)× ht+1 ×D−1
t+1 (6.13)

+(1− β)× ht ×D−1
t (6.14)

= βn−t × hn ×D−1
n +

n−t−1∑
i=0

βi(1− β)× ht+i ×D−1
t+i. (6.15)

Note that, directly from Wishart property mentioned before, it follows that for a
positive constant (1−β) and a Wishart distributed random variable Υ ∼ W ((1−β)h,D−1),
the expected value of Υ is given by E(Υ) = (1 − β) × h ×D−1. The smoothed sample
obtained trough the procedure available in Appendix B.2 has, for any given time t, the
expected value E(ΩSt) given by:

E(ΩSt|Dn) = β E(ΩSt+1) + E(Υt) (6.16)

= β E(βΩSt+2 + Υt+1) + (1− β)× ht ×D−1
t (6.17)

= β2E(ΩSt+2) + β(1− β)× ht+1 ×D−1
t+1 (6.18)

+(1− β)× ht ×D−1
t (6.19)

= βn−t × hn ×D−1
n +

n−t−1∑
i=0

βi(1− β)× ht+i ×D−1
t+i. (6.20)

The proposed method for covariance matrix smoothing the in the Beta-Bartlett
evolution model consists of using the EWMA as in Eq. (6.10), using β ∈ (0, 1) is a
smoothing constant used to tune the procedure to different sizes of change, with a small
value of β being used for detecting small shifts, whereas large values of β are used if large
shifts are interested, as in Hawkins and Maboudou-Tchao (2008).

With the proposed procedure it is possible to obtain a smoothed estimative for the
expectation of Ωt, since a closed form for the smoothed distribution of Ωt is not available
using the Beta-Bartlett approach. Since the Beta-Bartlett structure is more flexible on
dealing with high dimensional portfolio applications than the Matrix-Beta, it is still a
good choice of model despite the lack of a smoothing procedure as in Matrix-Beta, that
allows sampling directly from the smoothed distribution. Nevertheless, obtaining estimates
for the smoothed average for precision matrix, with respective intervals, is enough for
practical purposes in financial applications, so that the usage of the proposed method is
justified.
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6.2 Simulation Study

To evaluate the performance of the MSVJB, using Beta-Bartlett evolution, and
the proposed smoothing procedure, we applied the model to the same synthetic data and
model specifications presented in Section 5.4. Results are similar to those found in the
previous section, but now the model relaxes its constrains on dimensionality and range of
discount factor β, giving extra flexibility to the MSVJ.

Figure 44 shows the time series of true instantaneous volatility vi,t, together with
the estimated volatility σ−1

i,i,t, for i = 1, . . . , 3 and Figure 45 shows the estimated correlation
between the time series. True value ρσ is shown in the dashed line. The proposed smoothing
procedure was effective in reducing the noise on the estimation of the correlation matrix
parameter, Σt, while precisely estimating volatility and correlation values. The MSVJ
using Beta Bartlett evolution is able to closely track the latent state. Almost every point
from the true volatility is inside the 95% credibility interval.

Figure 44 – Simulation study: Posterior mean estimates of instantaneous volatility vi,t for
simulated data, using Beta Bartlett evolution for Σt. True volatility series
shown in dashed line; posterior mean estimates σi,i,t in solid line; and 95%
credibility interval is the light gray area.



102 Chapter 6. Multivariate Stochastic Model with Jumps and Beta-Bartlett Evolution

Figure 45 – Simulation study: Posterior mean estimates of correlation coefficient ρσ for
simulated data, using Beta Bartlett evolution for Σt. True value is shown in
dashed line; posterior mean estimates in solid line; and 95% credibility interval
is the light gray area.

Table 19 presents true values and the summary information for the posterior esti-
mates over the 30 replications using MSVJB. As in MSVJM, the jump related parameters
are estimated based only on values recognized by the model as jumps, they tend to have
higher variance and root mean square error when compared to true values. When compared
to MSVJM results in Table 16 the MSVJB can estimate better jump related parameters,
except for the jump probability, that is overestimated. Model selection criteria favors
MSVJB over MSVJM as the former has the advantage of sampling from the covariance
matrix trough univariate distribution, mitigating numerical issues. Also, the main interest
relies on estimating the covariance matrix over time, with statical parameters being used
to capture outlier points.

Table 20 shows a comparison between MSVJM, using Matrix-Beta evolution, and
MSVJB, using Beta-Bartlett evolution, over a simulation scenario of 1,000 observations.
Results are similar for both models, with model selection criteria, pointing a slight
advantage towards the MSVJB model. The similarity between both models is expected,
since the only difference between MSVJM and MSVJB resides on the method applied for
the precision matrix evolution.

Figure 46 shows posterior mean estimates of instantaneous volatility and correlation
for simulated data, using MSVJM and MSVJB. For volatility models present similar results,
but MSVJB model presents narrower credibility intervals. This phenomena occurs due
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True MCMC Mean SD RMSE
ρy1 0.015 0.0607 0.0072 0.0021
ρy2 0.020 0.0460 0.0062 0.0007
ρy3 0.009 0.0783 0.0119 0.0049
µy1 -2.5 -2.9598 1.3203 1.9002
µy2 -1.0 -0.9567 0.3007 1.1762
µy3 2.0 0.2577 0.3164 0.6480
σy1 4.0 4.1544 0.3124 0.1184
σy2 2.0 1.7338 0.3212 0.1708
σy3 3.0 3.3451 0.2658 0.1876
log L - -3047
BIC - 6261
AICc - 6144

Table 19 – Posterior estimates descriptive estatistics of MSVJB mean posterior static
parameters for simulated daily returns (n = 1,000), over 30 replications.

to the procedure for sampling in the Beta Bartlett evolution, that samples univariate
variables to compose the matrix, instead of sampling the entire matrix as in MSVJM,
leading to a smaller computational variability on results. The difference, however, does
not affect the results substantially for practical purposes. The estimates for correlation are
very similar in both mean and credibility intervals.

True MSVJM MSVJB
ρy1 0.04 0.05838 (0.00830) 0.06813 (0.01011)
ρy2 0.02 0.03836 (0.00713) 0.04322 (0.00940)
ρy3 0.09 0.06753 (0.00899) 0.08119 (0.01518)
µy1 5.0 4.1481 (0.7056) 3.5717(0.6680)
µy2 -2.0 -1.2437 (0.3397) -1.1070 (0.3531)
µy3 0.5 0.6323 (0.5074) 0.4119 (0.4466)
σy1 4.0 4.8262 (0.4831) 4.7248 (0.4288)
σy2 2.0 1.7205 (0.2677) 1.7410 (0.2440)
σy3 3.0 3.9694 (0.3708) 3.7262 (0.3851)
log L - -3196 -3151
BIC - 6557 6467
AICc - 6440 6351

Table 20 – Posterior mean estimates of MSVJM and MSVJB static parameters for one
simulated daily returns (n = 1,000) scenario. Standard deviations are in paren-
thesis.
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Figure 46 – Simulation study: Posterior mean estimates of instantaneous volatility and
correlation for simulated data, using MSVJM and MSVJB. True volatility
series shown in dashed line; posterior mean estimates for MSVJB in solid line;
and 95% credibility interval is the light gray area; posterior mean estimates
for MSVJM in long dashed red line and 95% credibility interval is delimited
by the dot dashed red lines.
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6.3 Model application
The MSVJB model is applied to the exchange rates dataset presented on Section

1.1.1, on which model MSVJM was applied in Section 5.5.

For a portfolio of q = 9 log-return series, the FFBS related parameters setup was
θ0|D0,Σ0 ∼ N9(0, 100) and Σ0|D0, θ0 now follows the Beta-Bartlett evolution structure,
using the relaxed discount factor bt as in Eq. 6.6, with discount parameters ι = 0.99 and
β = 0.95, as suggested in Prado and West (2010). For the mixture component γt a prior
G
(
ν
2 ,

ν
2

)
, with ν = 30, was specified, following Rego and Santos (2020). For jump related

components, µyq , N(0,100) priors were specified, for σ2
yq a IG(0.1,0.1) prior, an for ρq a

Beta(2, 40), for q = 1, . . . , 9, as known from previous works in literature and to keep
results comparable to MSVJM, using Matriz-Beta evolution, in Section 5.5. The threshold
was fixed at α = 0.7, following Rego and Santos (2020).

The results were obtained with a 40,000 iteration chain, a burn-in of 20,000
observations, with a lag of 10 observations, resulting in 2,500 samples. MCMC chain
convergence was verified through graphical methods. All the coding was done in the R
software, using the RcppArmadillo package.

Convergence of MCMC chains was verified trough graphical methods. Residual
analysis results does not show evidence of strong violations of the model hypotheses.

Figures 47, 48 and 49 shows the posterior mean estimates of instantaneous standard
deviation, or volatility, diag(Σt), for exchange rates log-returns, using MSVJB model.
Figures 50 to 55 shows the correlation between different currencies exchange rates. The
MSVJB model results is coherent with the results previously obtained on MSVJM model.
As the results are similar for both models.

MSVJB model results present smaller values for volatility estimates since the
dimensionality correction by using the bt discount factor in Eq. 6.6 mitigates sampling
issues on Wishart distribution. Volatility for HKUS Series is close to zero, as expected by
the government control on the exchange rate. This also affects correlation estimative for
this specific time series. For all other estimatives, MSVJB follows the exact same pattern
of MSVJM, with slightly smaller values for volatility.
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Figure 47 – Posterior mean estimates of instantaneous volatility for Exchange Rates data.
Mean estimates in solid line; and 95% credibility interval is the gray area.
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Figure 48 – Posterior mean estimates of instantaneous volatility for Exchange Rates data.
Mean estimates in solid line; and 95% credibility interval is the gray area.
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Figure 49 – Posterior mean estimates of instantaneous volatility for Exchange Rates data.
Mean estimates in solid line; and 95% credibility interval is the gray area.
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Figure 50 – Posterior mean estimates of instantaneous correlation between Exchange Rates
time series. Mean estimates in solid line; and 95% credibility interval is the
gray area.
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Figure 51 – Posterior mean estimates of instantaneous correlation between Exchange Rates
time series. Mean estimates in solid line; and 95% credibility interval is the
gray area.
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Figure 52 – Posterior mean estimates of instantaneous correlation between Exchange Rates
time series. Mean estimates in solid line; and 95% credibility interval is the
gray area.
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Figure 53 – Posterior mean estimates of instantaneous correlation between Exchange Rates
time series. Mean estimates in solid line; and 95% credibility interval is the
gray area.
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Figure 54 – Posterior mean estimates of instantaneous correlation between Exchange Rates
time series. Mean estimates in solid line; and 95% credibility interval is the
gray area.
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Figure 55 – Posterior mean estimates of instantaneous correlation between Exchange Rates
time series. Mean estimates in solid line; and 95% credibility interval is the
gray area.

Figures 56, 57 and 58 provides jump sizes for each observation. Jumps usually
precede moments of higher volatility, as they are a way of capturing speculative movements
at the market. As the higher the number of jumps, more speculative the currency can be
considered, thus more vulnerable to external shocks it is. The MSVJB model presents
more jumps than MSVJM, since estimatives for volatility are smaller, so that the jump
structure is able to capture the excess of returns.
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Figure 56 – Posterior mean estimates of instantaneous jumps Jt. Jumps are represented
by black crosses and log-returns the light gray lines.



116 Chapter 6. Multivariate Stochastic Model with Jumps and Beta-Bartlett Evolution

Figure 57 – Posterior mean estimates of instantaneous jumps Jt. Jumps are represented
by black crosses and log-returns the light gray lines.
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Figure 58 – Posterior mean estimates of instantaneous jumps Jt. Jumps are represented
by black crosses and log-returns the light gray lines.

Table 21 shows model estimates for each of the static parameters. For most
currencies, jumps are infrequent but have a large magnitude, as can be seen by the large
standard deviation. The computational time was 91.91418 minutes. With a higher jump
probability, more observations are considered as jumps, leading to a more precise estimation
for jump related parameters. For HKUS time series jump probability is extremely high,
since volatility estimation is close to zero. Yet, jump magnitude is close to zero, as expected
by the government control of this specific exchange rate, leading to distorted statistics for
this specific time series.

The model selection criteria BIC and AICc strongly favors MSVJB model over
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MSVJM. The MSVJM model has limitations when dealing with higher dimensionality
portfolios, due to the Matrix Beta structure. These limitations are overcome on MSVJB
model, by the usage of the discount factor bt and the Beta-Bartlett evolution structure. Also,
by sampling from the Wishart distribution trough univariate distributions, computational
limitations of directly sampling the entire matrix are mitigated.

On the other hand, a higher computational power is required for using MSVJB
model. As results are similar for practical purposes, it is up to the user to balance pros
and cons for each model and choose the one that better suits its application. If portfolio
dimensionality is small and available computational resourses are limited, MSVJM should
be preferred. For higher dimensionality portfolios MSVJB should be preferred.

Mean SD Mean SD Mean SD
µy1 0.4375 0.4931 µy2 0.2345 0.2693 µy3 0.0335 0.0716
µy4 0.2864 0.3266 µy5 -0.0252 0.0021 µy6 0.2074 0.3056
µy7 0.0851 0.2950 µy8 0.2927 0.2632 µy9 0.2242 0.2514
σy1 1.0612 0.2807 σy2 0.5501 0.1868 σy3 0.2033 0.0510
σy4 0.6522 0.1780 σy5 0.0341 0.0006 σy6 0.6506 0.1557
σy7 0.9289 0.1899 σy8 0.6449 0.1763 σy9 0.5216 0.1370
ρy1 0.06404 0.04096 ρy2 0.06274 0.04502 ρy3 0.06288 0.03802
ρy4 0.06460 0.04528 ρy5 0.97830 0.00337 ρy6 0.06089 0.04188
ρy7 0.07558 0.04299 ρy8 0.06348 0.04024 ρy9 0.06270 0.04383
log L 5,818 BIC -11,453 AICc -11,587

Table 21 – Posterior inference of static parameters for MSVJB model for currency exchange
rates daily log-returns.
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7 Conclusion

This thesis brings major developments for the DM class of models, especially for
applications on market risk and portfolio analysis. The NGSVJ, developed by Rego and
Santos (2020), has implementation and flexibility advantages when compared to the SV
models commonly used on literature, but its application was restricted to univariate data
series.

The inclusion of a procedure for estimating the degrees of freedom of the Student-t
distribution in the gamma mixture for NGSVJ brought extra flexibility to the model by
removing the need to do a grid analysis in order to fix the degree of freedom parameter
ν. The usage of a prior proposed by Kwok-Wah (2012) gave satisfactory results on both
simulation and real data application scenarios.

Another advance that increases the applicability of NGSVJ on practical situations
is the inclusion, inside the model, of a Markov classifier structure, using an HMM. The
NGSVJ-HMM is able to simultaneously estimate the volatility of a financial returns time
series and classify the market regime. Thus, the user can get an interpretable result on
whether the volatility is high or low, related to the overall behavior of the returns of
this specific asset. This feature is especially relevant when the user is developing trading
strategies on speculative markets. Moments of high volatility imply that changes in price are
happening faster then it usually does, so those are good moments for arbitrage operations.

The major contribution of this thesis is extending the NGSVJ to the multivariate
case, the MSVJM or MSVJB, to be applied when the user has several asset portfolio
candidates and needs to estimate both volatilities for individual assets and correlation
between different assets to choose the combination that will reduce risk and increase
the expected return from the portfolio. The MSVJM with evolution Beta matrix has a
simpler implementation structure and is a natural extension of the NGSVJ. However, it
suffers from constraints related to model dimensionality and the discount factor β. As the
dimensionality of the portfolio (q) grows large, a smaller range of discount factors can be
used, and model functionality gets compromised. The model MSVJB with the Beta-Bartlett
evolution releases the MSVJM from those constraints, but its implementation structure is
more complex and no smoothing procedure was yet developed to this structure so that
estimates for volatility were noisy and counter-intuitive. We proposed an EWMA structure,
based on Hawkins and Maboudou-Tchao (2008), to obtain a smoothed estimative of the
covariance matrix Σt. The results are similar to those found when using the Beta-Bartlett
evolution, for the same synthetic data generated on simulation, successfully removing the
noise from estimation and the constrains on model dimensionality.
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We now offer a complete set of DM or space-state class models to be used on
market risk and portfolio analysis. They have the advantage of a simpler implementation
structure; faster convergence, since are mostly based on Gibbs Sampler steps; the flexibility
to implement new structures, given the SSM structure; and highly interpretable results.
Even so, there are some developments left for future works: automatic estimation of
discount factors, so that the user does not need to specify a specific value; inclusion of
a jump structure for volatility; estimation of the degrees of freedom for the multivariate
model; estimating optimal weights for portfolio assets based on MSVJM or MSVJB results;
etc.

With this work, we expect to open whole new usage possibilities for DM class
models in finance, but also to provide the basis for future applications in other areas of
interest, where methods here presented can be applied.
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APPENDIX A – Full Conditional Posterior
Distributions for MSVJ Model

This appendix presents the proof of the conditional posterior distributions for the
variables MSVJ model. For simplifying notation, let Φ = (Yt, θt, Jt, γt,Σt, µy, σ

2
y, ν) be

model parameters, and Φ[−•] be all parameters excluding that on the brackets.

A.1 Full Conditional Posterior Distribution for γt
As the prior

p(γt) ∼ G
(
ν

2 ,
ν

2

)
, thus

p(γt|Dn,Φ[−γt]) ∝ (γt)
ν
2−1e−γt

ν
2 |γ−1

t Σt|−
1
2 exp

(
−1

2(y
∼
t − θ∼ t − Jt)

T (γ−1
t Σt)−1(y

∼
t − θ∼ t − Jt)

)
,

p(γt|Dn,Φ[−γt]) ∝ (γt)
ν
2−1+ q

2 exp

−γt
ν2 +

tr
(

(y
∼
t − θ∼ t − Jt)

T (Σt)−1(y
∼
t − θ∼ t − Jt)

)
2


 ,

p(γt|Dn,Φ[−γt]) ∼ G

ν + q

2 − 1, ν2 +
tr
(

(y
∼
t − θ∼ t − Jt)

T (Σt)−1(y
∼
t − θ∼ t − Jt)

)
2

 .
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A.2 Full Conditional Posterior Distribution for µy

Let µy
∼

be µy = (µy1 , µy2 , . . . , µyp). Then, for each µyp , p = 1, . . . , q, the full
conditional posterior distribution is given by:

As the prior:

p(µyp) ∼ N(m, v), thus

p(µyp |Dn,Φ[−µy ]) ∝ exp
(
− 1

2v (µyp −m)2
)

exp

− 1
2σ2

yp

t∑
i=1
Jp,i 6=0

(ξp,i+1 − µyp)2

 ,

p(µyp |Dn,Φ[−µy ]) ∝ exp
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2v (µyp −m)2 − 1

2σ2
yp

 t∑
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Jp,i 6=0

(ξp,i+1)2 − 2µypnpξ̄p + npµ
2
yp


 ,

p(µyp |Dn,Φ[−µy ]) ∝ exp
(
− 1

2vσ2
yp

[
(σ2

yp + npv)µ2
yp − 2µyp(mσ2

yp + vnpξ̄p)
])

p(µyp |Dn,Φ[−µy ]) ∝ exp

− 1
2 vσ2

yp

σ2
yp

+npv

µyp − mσ2
yp + vnpξ̄p

σ2
yp + npv

2
 ,

p(µyp |Dn,Φ[−µy ]) ∼ N

mσ2
yp + vnpξ̄p

σ2
yp + npv

,
vσ2

yp

σ2
yp + npv

 .

where np is number of times so that Jp,i 6= 0 and ξ̄p =

∑t
i=1
Jp,i 6=0

ξp,i+1

np
.
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A.3 Full Conditional Posterior Distribution for σ2
y

Let σ2
y
∼

be σ2
y = (σ2

y1 , σ
2
y2 , . . . , σ

2
yp). Then, for each σ2

yp , p = 1, . . . , q, the full condi-
tional posterior distribution is given by:

As the prior:

p(σ2
yp) ∼ IG(α, β), thus

p(σ2
yp |Dn,Φ[−σ2

y ]) ∝
(

1
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e
− β

σ2
yp

(
1
σ2
yp

)np
2

exp
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A.4 Full Conditional Posterior Distribution for ξt+1

Let Σy = diag(σ2
y), that is, Σy = diag(σ2

y1 , σ
2
y2 , . . . , σ

2
yp) and µy = (µy1 , µy2 , . . . , µyp),

p = 1, . . . , q.

As the prior

p(ξt+1) ∼ N(µy,Σy), thus

p(ξt+1|Dn,Φ[−ξt]) ∝ exp
(
−1

2(ξt+1 − µy)T (Σy)−1(ξt+1 − µy)
)

× exp
(
−1

2(y
∼
t − θ∼ t − ξt+1)T (γ−1

t Σt)−1(y
∼
t − θ∼ t − ξt+1)

)
,
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2
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y µy
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× exp
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2
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×exp
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)
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)
.

with V =
(
Σ−1
y + (γ−1Σt)−1

)−1
.
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A.5 Full Conditional Posterior Distribution for ρ

Let ρ be ρ = (ρ1, ρ2, . . . , ρp). Then, for each ρp, p = 1, . . . , q, the full conditional
posterior distribution is given by:

As the prior

p(ρp) ∼ Beta(α, β), thus

p(ρp|Dn,Φ[−ρ]) ∝ ρα−1
p (1− ρp)β−1

n∏
i=1

ρNp,ip (1− ρp)1−Np,i

p(ρp|Dn,Φ[−ρ]) ∝ ρα−1
p (1− ρp)β−1ρ

∑t

i=0 Np,i
p (1− ρp)n−

∑t

i=0 Np,i

p(ρp|Dn,Φ[−ρ]) ∝ ρ
α+
∑t

i=0 Np,i−1
p (1− ρp)β+n−

∑t

i=0 Np,i−1

p(ρp|Dn,Φ[−ρ]) ∼ Beta

(
α +

t∑
i=0

Np,i, β + n−
t∑
i=0

Np,i

)

A.6 Full Conditional Posterior Distribution for Nt+1

P (Np,t+1 = 1|Φ[−Nt]) ∝ ρpP (y
∼
t+1|Np,t+1 = 1,Φ−[Nt])

P (Np,t+1 = 0|Φ[−Nt]) ∝ (1− ρp)P (y
∼
t+1|Np,t+1 = 0,Φ−[Nt])

Since Ny can assume only two values, 0 or 1:

P (Np,t+1 = 1|Φ−[Nt]) =
ρpP (y

∼
t+1|Np,t+1 = 1,Φ−[Nt])

ρpP (y
∼
t+1|Np,t+1 = 1,Φ−[Nt]) + (1− ρp)P (y

∼
t+1|Np,t+1 = 0,Φ−[Nt])

.

Using the idea proposed by Brooks and Prokopczuk (2011), be α a threshold so that:

Np,t+1 =

1 if P (Np,t+1 = 1|Φ−[Nt]) > α

0 if P (Np,t+1 = 1|Φ−[Nt]) ≤ α
.
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A.7 Full Conditional Posterior Distribution for Σt

The full conditional posterior distribution for Σt|Φ[−Σt] is given by:

As the prior

p(Σt) ∼ IW (nt, Dt) thus

p(Σt|Dn,Φ[−Σt]) ∝ |γ−1
t Σt|−

1
2 exp

(
−1

2(y
∼
t − θ∼ t − Jt)

T (γ−1
t Σt)−1y

∼
t − θ∼ t − Jt)

)
×|Σt|−(q+nt)/2etr

(
−1

2Σ−1
t Dt

)
p(Σt|Dn,Φ[−Σt]) ∝ |Σt|−(q+nt+1)/2etr

(
−1

2

[
Σ−1
t Dt + γt(y

∼
t − θ∼ t − Jt)

TΣ−1
t (y
∼
t − θ∼ t − Jt)

])
p(Σt|Dn,Φ[−Σt]) ∝ |Σt|−(q+nt+1)/2etr

(
−1

2Σ−1
t

[
Dt + γt(y

∼
t − θ∼ t − Jt)

T (y
∼
t − θ∼ t − Jt)

])
p(Σt|Dn,Φ[−Σt]) ∼ IW

(
nt + 1, Dt + γt(y

∼
t − θ∼ t − Jt)

T (y
∼
t − θ∼ t − Jt)

)
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APPENDIX B – Matrix-Beta Evolution
Retrospective Analysis

B.1 MSVJM: Sequential Analysis and Smoothing Procedures

In matrix-beta evolution, presented by Prado and West (2010), we have that:

• Posterior at t− 1: (Ωt−1|Dt−1) ∼ W (ht−1, D
−1
t−1),

• Prior at t: (Ωt|Dt−1) ∼ W (βht−1, (βDt−1)−1).

where, for simplifying notation, Dt represents all the available information at time t.

The evolution distribution p(Ωt|Ωt−1,Dt−1) is defined as follows.

Given Ωt−1, set Ωt = UT
t−1ΓtUt−1β

−1, where Ut−1 is the upper triangular Cholesky
component of Ωt−1 and Γt is a q×q matrix random quantity having matrix-beta distribution,
denoted by:

(Γt|Dt−1) ∼ Beta

(
βht−1

2 ,
(1− β)ht−1

2

)
(B.1)

for values of βht−1 and (1− β)ht−1 greater than q − 1.

For a retrospective analysis and to sample from the joint distribution of (Σ1, ...,Σn|Dn),
it is necessary to sample from (Ωt−1|Ωt,Dt−1), we have that:

p(Ωt−1|Ωt,Dt−1) = p(Ωt|Ωt−1,Dt−1)× p(Ωt−1|Dt−1)
p(Ωt|Dt−1) (B.2)

Note that Γt = UT
t−1ΩtUt−1β, so we can write:

p(Ωt−1|Ωt,Dt−1) ∝ |UT
t−1
−1ΩtU

−1
t−1β|

βht−1−(q+1)
2 |Iq − UT

t−1
−1ΩtU

−1
t−1β|

(1−β)ht−1−(q+1)
2 ×

|Ωt−1|
ht−1−(q+1)

2 etr

{
−D

−1
t−1Ωt−1

2

}
× |UT

t−1
−1
U−1
t−1β|

−(q+1)
2 ×

|Ωt|
−βht−1+(q+1)

2 etr

{
βD−1

t−1Ωt

2

}
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p(Ωt−1|Ωt,Dt−1) ∝ |UT
t−1
−1ΩtU

−1
t−1β|

βht−1−(q+1)
2 |Iq − UT

t−1
−1ΩtU

−1
t−1β|

(1−β)ht−1−(q+1)
2 ×

|Ωt−1|
ht−1−(q+1)

2 × |Ωt|−
βht−1−(q+1)

2 × |UT
t−1
−1
U−1
t−1|

−(q+1)
2 ×

etr

{
−D

−1
t−1
2 [Ωt−1 − βΩt]

}

Applying the following matrix properties,

• |AB| = |A||B| = |B||A|;

• |A−1| = 1/|A|;

• (AT )−1 = (A−1)T .

we have that:

|UT
t−1
−1ΩtU

−1
t−1|

βht−1−(q+1)
2 =

(
|UT

t−1
−1| × |Ωt| × |Ut−1

−1|
)βht−1−(q+1)

2

=
(
|Ωt| × |Ut−1

−1UT
t−1
−1|
)βht−1−(q+1)

2

=
(
|Ωt| × |(UT

t−1Ut−1)−1|
)βht−1−(q+1)

2

=
(
|Ωt| × |Ωt−1|−1

)βht−1−(q+1)
2

= |Ωt|
βht−1−(q+1)

2 × |Ωt−1|−
βht−1−(q+1)

2

Then,

p(Ωt−1|Ωt,Dt−1) ∝ |Ωt|
βht−1−(q+1)

2 × |Ωt−1|−
βht−1−(q+1)

2 |Iq − UT
t−1
−1ΩtU

−1
t−1β|

(1−β)ht−1−(q+1)
2

×|Ωt−1|
ht−1−(q+1)

2 × |Ωt|−
βht−1−(q+1)

2 × |Ωt−1|
−(q+1)

2 ×

etr

{
−D

−1
t−1
2 [Ωt−1 − βΩt]

}

= |Ωt−1|−
βht−1−(q+1)

2 |Iq − UT
t−1
−1ΩtU

−1
t−1β|

(1−β)ht−1−(q+1)
2

×|Ωt−1|
ht−1−(q+1)

2 × |Ωt−1|
−(q+1)

2 etr

{
−D

−1
t−1
2 [Ωt−1 − βΩt]

}

Using the aforementioned matrix properties, it can be seen that:
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|Iq − UT
t−1
−1ΩtU

−1
t−1β| = |UT

t−1
−1
UT
t−1||Iq − UT

t−1
−1
βΩtU

−1
t−1||Ut−1U

−1
t−1|

= |UT
t−1
−1||UT

t−1Ut−1 − UT
t−1U

T
t−1
−1
βΩtU

−1
t−1Ut−1||U−1

t−1|

= |U−1
t−1U

T
t−1
−1| × |Ωt−1 − βΩt|

= |Ωt−1|−1 × |Ωt−1 − βΩt|.

Then,

p(Ωt−1|Ωt,Dt−1) ∝ |Ωt−1|−
βht−1−(q+1)

2 (|Ωt−1|−1 × |Ωt−1 − βΩt|)
(1−β)ht−1−(q+1)

2

×|Ωt−1|
ht−1−(q+1)

2 × |Ωt−1|
−(q+1)

2 etr

{
−D

−1
t−1
2 [Ωt−1 − βΩt]

}

For the terms |Ωt−1|, we have that,

|Ωt−1|−
βht−1−(q+1)

2 |Ωt−1|−
(1−β)ht−1−(q+1)

2 × |Ωt−1|
ht−1−(q+1)

2 × |Ωt−1|
−(q+1)

2

|Ωt−1|
−βht−1+(q+1)−(1−β)ht−1+(q+1)+ht−1−(q+1)−(q+1)

2

|Ωt−1|
(1−β)ht−1+2(q+1)−(1−β)ht−1−2(q+1)

2 = 1

Therefore, we conclude that,

p(Ωt−1|Ωt,Dt−1) ∝ |Ωt−1 − βΩt|
(1−β)ht−1−(q+1)

2 etr

{
−D

−1
t−1
2 [Ωt−1 − βΩt]

}
.

Implying that,

(Ωt−1 − βΩt|Dt−1) ∼ W ((1− β)ht−1, D
−1
t−1) (B.3)

or equivalently,

(Ωt − βΩt+1|Dt) ∼ W ((1− β)ht, D−1
t ) (B.4)
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B.2 Sampling algorithm
In order to sample from the posterior distribution of Σt, define Ωt = Σ−1

t and
nt = ht − q + 1, where q is the model dimensionality, a retrospective analysis, Prado and
West (2010), based on the matrix-beta evolution model, is used. For ht > q − 1 and a
discount factor β such that β > q−2

q−1 , at any time t looking back to times t < n a sample
from the joint distribution (Σ|Dn,Φ[−Σt]) can be obtained from the following algorithm:

1. Set t = n and sample Ωn|Dn,Φ[−Ωn] ∼ W (hn, D−1
n );

2. Set t = t− 1 and sample Υt ∼ W
(
(1− β)ht, D−1

t

)
;

3. Make Ωt = βΩt+1 + Υt;

4. If t > 1, go back to step 2; otherwise, the sample from (Ω1, . . . ,Ωn|Dn,Φ[−Σt]) is
complete;

5. Obtain Σt = Ω−1
t for t = 1, . . . , n.
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APPENDIX C – Bartlett Decomposition

In this appendix we detail the Bartlett decomposition as in Kshirsagar (1959),
addapting its notation to become more coherent with this thesis approach. The Bartlett
decomposition is as follows:

Let Ω ∼ Wq(n, Iq), where Iq is the q dimensional identity matrix and n is the
degree of freedom parameter of the Wishart distribution, with n ≥ q and |Ω| > 0. Ω can
be decomposed so that:

Ω = UTU,

So that the random variables ui,j, for 1 ≤ i ≤ j ≤ q are independent with
u2
i,i ∼ χ2

n−i+1, or equivalently, u2
i,i ∼ G

(
n−i+1

2 , 1
2

)
for every i = 1, . . . q, and ui,j ∼ N(0, 1)

for every 1 ≤ i ≤ j ≤ q. That is:

U =


u1,1 u1,2 . . . u1,q

0 u2,2 . . . u2,q
... . . . ...
0 . . . 0 uq,q


so that

u2
i,j ∼ G

(
n− i+ 1

2 ,
1
2

)
, if i = j,

ui,j ∼ N(0, 1), if i < j,

ui,j = 0, if i > j.

The biggest advantage of the Bartlett decomposition is that allows to sample from
a Wishart distribution by sampling from univariate distributions, namely Gamma, or
Chi-Squared, and Gaussian distributions.
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APPENDIX D – Likelihood Functions for
Presented Models

In this appendix the likelihood functions for models developed on this thesis are
presented. L(·) represents the likelihood function, Φ represents model parameters, p(·)
represents distribution functions. Model static parameters ϕ are removed from the notation
for clarity.

D.1 NGSVJ
The joint distribution of all model quantities is given by

p(y
∼
, λ
∼
, γ
∼
, Jy
∼
|D0) = p(y

∼
, λ
∼
|γ
∼
, Jy
∼
,D0)

n∏
t=1

pγ(γt)pJ(Jyt ) (D.1)

However,

p(y
∼
, λ
∼
|γ
∼
, Jy
∼
,D0) =

n∏
t=1

p(yt, λt|Dt−1, γ
∼
, Jy
∼

)p(λ0|D0) (D.2)

and the join densities p(yt, λt|Dt−1, γ
∼
, Jy
∼

) can be decomposed as

p(yt|Dt−1, λt)p(λt|λt−1,Dt−1) (D.3)

where the dependence on (γ
∼
, Jy
∼

) was removed from all terms in Eq. D.3 for conciseness.
The densities in Eq. D.3 correspond to the model specifications in Eq. 2.1 and Eq. 2.3
respectively, the jump component is composed by a Gaussian magnitude and a Bernoulli
jump indicator, with priors distributions provided in Eq. 2.9 and Eq. 2.13, and mixing
distribution with prior provided in Eq. 2.6. So, each model component in the distribution
p(y
∼
, λ
∼
, γ
∼
, Jyt
∼
|D0) is uniquely defined.

D.2 NGSVJ-HMM
The joint distribution of all model quantities is given by

p(y
∼
, λ
∼
, γ
∼
, Jy
∼
, s
∼
|D0) = p(y

∼
, λ
∼
|γ
∼
, Jy
∼
, s
∼
,D0)

n∏
t=1

pγ(γt)pJ(Jt)ps(st) (D.4)

However,

p(y
∼
, λ
∼
|γ
∼
, Jyt
∼
, s
∼
,D0) =

n∏
t=1

p(yt, λt|Dt−1, γ
∼
, Jyt
∼
, s
∼

)p(λ0|D0) (D.5)
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and the join densities p(yt, λt|Dt−1, γ
∼
, Jyt
∼
, s
∼

) can be decomposed as

p(yt|Dt−1, λt)p(λt|λt−1,Dt−1) (D.6)

where the dependence on (γ
∼
, Jyt
∼
, s
∼

) was removed from all terms in Eq. D.6 for conciseness.
The densities in Eq. D.6 correspond to the model specifications in Eq. 4.1 and Eq.
4.2 respectively, the jump component is composed by a Gaussian magnitude and a
Bernoulli jump indicator, with priors distributions provided in Eq. 2.9 and Eq. 2.13,
mixing distribution with prior provided in Eq. 2.6, and states probabilities are defined in
??. So, each model component in the distribution p(y

∼
, λ
∼
, γ
∼
, Jyt
∼
, s
∼
|D0) is uniquely defined.

D.3 MSVJM and MSVJB
The joint distribution of all model quantities is given by

p(y
∼
, θ
∼
,Σ
∼
, γ
∼
, ω
∼
, Jy
∼
|D0) = p(y

∼
, θ
∼
,Σ
∼
|γ
∼
, ω
∼
, Jy
∼
,D0)

n∏
t=1

pγ(γt)pω(ωt)pJ(Jyt ) (D.7)

However, p(y
∼
, θ
∼
,Σ
∼
|γ
∼
, ω
∼
, Jy
∼
,D0)∏n

t=1 pγ(γt) =

n∏
t=1

p(yt, θt,Σt|Dt−1, γ
∼
, ω
∼
, Jy
∼

)p(θ0|D0)p(Σ0|D0) (D.8)

and the join densities p(yt, θt,Σt|Dt−1, γ
∼
, ω
∼
, Jy
∼

) can be decomposed as

p(yt|Dt−1, θt,Σt)p(Σt|Σt−1,Dt−1, θ∼
)p(θt|θt−1,Dt−1) (D.9)

where the dependence on (γ
∼
, ω
∼
, Jy
∼

) was removed from all terms in Eq. D.9 for conciseness.
The densities in Eq. D.9 correspond to the model specifications in Eq. 5.1 to Eq. 5.3
respectively for MSVJM, and Beta-Bartlett evolution for p(Σt|Σt−1,Dt−1, θ∼

) described
in Chapter 6 for MSVJB, the jump component is composed by a Multivariate Gaussian
magnitude and a Bernoulli jump indicator, with priors distributions provided in Eq. 5.16
and Eq. 5.20, and mixing distribution with prior provided in Eq. 5.12. In this model,
ω
∼
is defined by a single discount factor. So, each model component in the distribution

p(y
∼
, θ
∼
,Σ
∼
, γ
∼
, ω
∼
, Jy
∼
|D0) is uniquely defined.
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APPENDIX E – MCMC Results for
Multivariate Model

In this appendix MCMC chains for static parameters and density plots for simula-
tions and applications of MSVJ will be presented.

Figure 59 shows MCMC chains for static parameters for simulation in section 5.4.
Convergence was evaluated by graphical methods. Similar results are obtained across
alternative simulation scenarios, using different initial values for the parameters. Figure 60
shows density plot for static parameters.

Figure 59 – MCMC chain convergence: trace plot for the static parameters of the model
for simulated time series.
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Figure 60 – Density plot for the static parameters of the model for simulated time series.
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Figures 61,62 and 63 shows MCMC chains for static parameters in Section 5.5.2.
Convergence was achieved for all static parameters. Figures Figures 64, 65 and 66 shows
density plot for static parameters.

Figure 61 – MCMC chains for effective sample of static parameters.
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Figure 62 – MCMC chains for effective sample of static parameters.
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Figure 63 – MCMC chains for effective sample of static parameters.
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Figure 64 – Density plot for effective sample of static parameters.
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Figure 65 – Density plot for effective sample of static parameters.
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Figure 66 – Density plot for effective sample of static parameters.
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Figures 67 to 72 shows MCMC chains and density plots for static parameters in
Section 6.3. Convergence was achieved for all static parameters.

Figure 67 – MCMC chains for effective sample of static parameters.
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Figure 68 – MCMC chains for effective sample of static parameters.
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Figure 69 – MCMC chains for effective sample of static parameters.
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Figure 70 – Density plot for effective sample of static parameters.
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Figure 71 – Density plot for effective sample of static parameters.



158 APPENDIX E. MCMC Results for Multivariate Model

Figure 72 – Density plot for effective sample of static parameters.
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