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Resumo

Lidar com séries temporais financeiras traz muitos desafios a modelagem de dados, dada a
existéncia de caudas pesadas e valores extremos de retorno causados por eventos externos,
como eventos politicos, econdmicos, desastres naturais ou por especulacao. Fornecer insights
confidveis e interpretaveis aos agentes do mercado, com base em modelos estatisticos, para
basear decisoes estratégicas na criacao de portfélios de ativos, tomar decisoes de arbitragem
e gerenciar riscos de investimento é crucial para evitar perdas e precificar corretamente os

ativos para o desenvolvimento de estratégias de investimento bem sucedidas.

Rego e Santos (2020) propuseram o Modelo Nao-Gaussiano de Volatilidade Estocastica
com Saltos (NGSVJ) para avaliagdo da volatilidade do mercado, que inclui procedimento
de inferéncia automatica, permitindo que o modelo seja rapido o suficiente para trazer
resultados tangiveis para o usudrio executar operagoes de negociacao. A classe de Modelos
Dindmicos (DM), da qual o NGSVJ faz parte, possui uma estrutura flexivel que permite a
inclusao de novos recursos nos modelos e possui simplicidade de implementacao pela 6tica
computacional. Essa classe de modelos ainda é inexplorada para aplicagoes financeiras
quando comparada as outras classes de modelos comumente usadas na literatura, prin-
cipalmente baseadas nas classes de Volatilidade Estocastica (SV) e Heterocedasticidade
Condicional Autorregressiva Generalizada (GARCH).

Nesta tese, varios desenvolvimentos sao feitos usando como base a classe DM e o modelo
NGSVJ. No ambito de séries temporais financeiras univariadas, desenvolvimentos sao
feitos ao NGSVJ para estimar o grau de liberdade do pardmetro da mistura Gamma e
incluir uma estrutura de Markov Oculto (HMM) para fornecer ao modelo flexibilidade e
interpretabilidade em operagoes de mercado intraday de arbitragem. No ambito de séries
temporais financeiras multivariadas, o Modelo Multivariado de Volatilidade Estocastica com
Saltos (MSVJ) foi desenvolvido para permitir aos agentes financeiros estimar a volatilidade
e correlagao entre os ativos do portfélio simultaneamente e desenvolver estratégias efetivas

de gerenciamento de riscos.

Esta tese fornece um conjunto amplo de modelos estatisticos, baseados na classe DM, que
podem ser usados em financgas para tomar decisoes de arbitragem e investimento, sejam
para analise de um tnico ativo ou portfélio. Sdo apresentados estudos de simulagao, bem
como aplicagoes no indice de mercado S&P 500, derivativos de commodities e taxas de
cambio, para ilustrar o desempenho do modelo. Os modelos propostos tém resultados
altamente interpretaveis, trazendo grandes desenvolvimentos para a classe de modelos DM

e suas aplicagoes em financas.

Palavras-chave: Séries Temporais Financeiras. Modelos Dinamicos. Modelos Estocasticos

Multivariados.



Abstract

Dealing with financial time series brings many challenges to data modeling, given the
existence of heavy tails and extreme return values caused by external events, such as
politics, natural disasters, economical events, or even speculation. Providing reliable
and interpretable insights to market agents, based on statistical models, to base strategic
decisions on building assets portfolios, taking arbitrage decisions, and managing investment
risks is crucial for avoiding losses and correctly pricing assets for developing successful

investment strategies.

Rego and Santos (2020) proposed the Non-Gaussian Stochastic Volatility Model with
Jumps (NGSVJ) for market volatility evaluation, which includes automatic inference
procedure that allows the model to be fast enough to bring tangible results for the user,
using an ordinary home computer, to perform trading operations. The Dynamic Models
(DM) class, on which the NGSVJ is based, has a flexible structure that enables the inclusion
of new features on the models and has implementation simplicity from the computational
perspective. The DM class of models is still unexplored for financial applications when
compared to the other classes of models commonly used on literature, mainly based on
Stochastic Volatility (SV) and Generalized Autoregressive Conditional Heteroskedasticity
(GARCH) classes of models.

In this thesis, several developments are made using as basis the DM class and the NGSVJ
model. For dealing with a single asset, or univariate, financial time series, developments are
made to the NGSVJ to be able to estimate the degree of freedom of the gamma mixture
parameter and include a Hiden Markov (HMM) to give flexibility and interpretability
to the model for applications on arbitrage intraday market operations. For dealing with
multiple assets portfolio, or multivariate, financial time series the Multivariate Stochastic
Volatility Model with Jumps (MSVJ) was developed, based on DM structure, to enable
financial agents to estimate the volatility and correlation between portfolio assets and

effectively develop a risk management strategy.

This thesis provides a wide set of statistical models, based on DM class, that can be used
in finance for taking arbitrage and investment decisions, whether it is used for analyzing
a single asset or a portfolio. Simulation studies are presented as well as applications
on the S&P 500 market index, commodity derivatives, and exchange rates, to illustrate
model performance. The proposed models have highly interpretable results, bringing major
developments to the DM class of models and their applications on finance. The proposed
models are robust in the sense to incorporate several stylized characteristics of return data,

bringing major developments to the NGSVJ and their applications.

Keywords: Financial Time Series. Dynamic Models. Multivariate Stochastic Models.






Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Figure 10 —
Figure 11 —
Figure 12 —

Figure 13 —

Figure 14 —

Figure 15 —

Figure 16 —

Figure 17 —

Figure 18 —

Figure 19 —

List of Figures

S&P 500 dataset: Log-returns time series and histogram. . . . . . . . .

ICE:BRN dataset: Log-returns time series and histogram.. . . . . . . .

Exchange rates dataset: Log-returns time series and histogram for BZUS.
Exchange rates dataset: Log-returns time series and histogram for CAUS.
Exchange rates dataset: Log-returns time series and histogram for CHUS.
Exchange rates dataset: Log-returns time series and histogram for DNUS.
Exchange rates dataset: Log-returns time series and histogram for HKUS.
Exchange rates dataset: Log-returns time series and histogram for INUS.
Exchange rates dataset: Log-returns time series and histogram for JPUS.
Exchange rates dataset: Log-returns time series and histogram for KOUS.

Exchange rates dataset: Log-returns time series and histogram for MAUS.

MCMC results for degree of freedom parameter v over a simulation
scenario. Right graph shows MCMC effective chain with gray line being
the true value and left graph shows histogram of MCMC sample with

gray dashed line being true value and gray solid line the posterior mean.

Multiple MCMC chain using different start values for one realization of
simulation study, with black solid line being the true value (v = 25). . .
Multiple histograms for posterior distributions for v parameter using
different start values for one realization of a simulation study with
v = 25. Gray dashed line is the true value and gray solid line is the
posterior mean. . . . . . ... ...
Simulation study: Posterior mean estimates for instantaneous volatility
v; for simulated data. True volatility series shown in dashed line; poste-
rior mean estimates ;" in solid line; and 95% credibility interval is the
light gray area. . . . . . . . ... Lo
MCMC results for degree of freedom parameter v. Right graph shows
MCMUC effective chain and left graph shows histogram of MCMC sample.
Grey line is the posterior mean. . . . . . . . . ... ... ... .....
Posterior estimates for instantaneous jumps and jump probabilities for
NGSVJ (a) and NGSVJ-MS (b). Grey line on top graphs is the S&P
500 log-returns series, jumps are the black crosses. . . . . . . .. .. ..
Posterior estimates for instantaneous volatility A\, /2 NGSVJ-MS mean
estimates in solid line and NGSVJ mean estimates in dashed gray line.
Posterior estimates for instantaneous volatility, A\, Y 2, for the S&P500
index. Solid line is the posterior mean. The gray area indicates the 95%

credibility intervals. . . . . . . . . ..o o

22
23
24
24
25
25
26
26
27
27
28

42



Figure 20 —

Figure 21 —

Figure 22 —

Figure 23 —

Figure 24 —

Figure 25 —

Figure 26 —

Figure 27 —

Figure 28 —
Figure 29 —

Figure 30 —

Figure 31 —

Figure 32 —

Histrogram of posterior mean residuals is shown in bars and standard
normal curve in gray solid line. . . . . . .. ... ... 0L 48
Top left graph shows ACF for posterior mean residuals; Top right graph
shows PACF for posterior mean residuals; Bottom left graph shows ACF
for posterior mean squared residuals; Bottom right graph shows ACF
for posterior mean squared residuals. Dashed line is the 5% significance
interval around zero. . . . . ... L Lo Lo 49
HMM classification for market states according to values of log-return,
Y, and mean posterior log volatility, logA. . . . . . . . ... ... ... 60
Simulated log returns data are shown at the top graph, together with
jumps as dots; Mean posterior estimates of spot volatility in percentage
Ar Y2 % 100% at the middle graph in solid line, the gray area is the 95%
credibility interval, the true value is the dashed line; and estimates of
instantaneous Market Regime at the bottom graph. . . . . . . .. . .. 61
Market Regime probability for each observation of simulated log returns
data. Dashed line is the true value of regime. . . . . . . . . . ... ... 62
HMM classification for market states according to values of log-return,
ys, and mean posterior log volatility, logA. . . . . . ... .. ... ... 64
Log returns for intraday ICE:BRN are shown at the top graph, together
with jumps as dots; Mean posterior estimates of spot volatility in
percentage \; Y2 % 100% at the middle graph in solid line and the

gray area is the 95% credibility interval; and estimates of instantaneous

Market Regime at the bottom graph. . . . . ... ... ... ... ... 65
Market Regime probability for each intraday observation of BRN:ICE

log returns. . . . . . oL 66
Simulation study: One simulated realization (n = 1,000). . . . ... .. 7

Simulation study: Posterior mean estimates of instantaneous volatility
v;; for simulated data. True volatility series shown in dashed line;
posterior mean estimates ;;; in solid line; and 95% credibility interval
is the light gray area. . . . . . . . .. ... L oo 78
Simulation study: Posterior estimates of correlation coefficient p, for
simulated data. True value is shown in dashed line; posterior mean
estimates in solid line; and 95% credibility interval is the light gray area. 79
Simulation study: Posterior estimates of instantaneous jumps J; for
simulated data. True values of the time series shown in gray; posterior
mean estimates J; in black. . . . . .. ..o 79
Posterior mean estimates of instantaneous volatility for Exchange Rates
data. Mean estimates in solid line; and 95% credibility interval is the

GTAY ATCA. . .« v v v v e e e e e e e e e e 83



Figure 33 —

Figure 34 —

Figure 35 —

Figure 36 —

Figure 37 —

Figure 38 —

Figure 39 —

Figure 40 —

Figure 41 —

Figure 42 —

Figure 43 —

Figure 44 —

Figure 45 —

Posterior mean estimates of instantaneous volatility for Exchange Rates
data. Mean estimates in solid line; and 95% credibility interval is the

GTAY ATA. .+« v v e e e e e e e e e e e

Posterior mean estimates of instantaneous volatility for Exchange Rates
data. Mean estimates in solid line; and 95% credibility interval is the

GTAY QTCA.  « « v v v v e e e e e e e e e e e

Posterior mean estimates of instantaneous correlation between Exchange
Rates time series. Mean estimates in solid line; and 95% credibility

interval is the gray area. . . . . . . . . . .. ... L.

Posterior mean estimates of instantaneous correlation between Exchange
Rates time series. Mean estimates in solid line; and 95% credibility

interval is the gray area. . . . . . . . .. ... o oL

Posterior mean estimates of instantaneous correlation between Exchange
Rates time series. Mean estimates in solid line; and 95% credibility

interval is the gray area. . . . . . . . .. ... ... L.

Posterior mean estimates of instantaneous correlation between Exchange
Rates time series. Mean estimates in solid line; and 95% credibility

interval is the gray area. . . . . . . . .. ... o oL

Posterior mean estimates of instantaneous correlation between Exchange
Rates time series. Mean estimates in solid line; and 95% credibility

interval is the gray area. . . . . . . . .. ... ... ..

Posterior mean estimates of instantaneous correlation between Exchange
Rates time series. Mean estimates in solid line; and 95% credibility

interval is the gray area. . . . . . .. ... Lo oL

Posterior mean estimates of instantaneous jumps .J;. Jumps are repre-

sented by black crosses and log-returns the light gray lines. . . . . . . .

Posterior mean estimates of instantaneous jumps J;. Jumps are repre-

sented by black crosses and log-returns the light gray lines. . . . . . . .

Posterior mean estimates of instantaneous jumps J;. Jumps are repre-

sented by black crosses and log-returns the light gray lines. . . . . . . .

Simulation study: Posterior mean estimates of instantaneous volatil-
ity v;; for simulated data, using Beta Bartlett evolution for ;. True
volatility series shown in dashed line; posterior mean estimates o;;; in

solid line; and 95% credibility interval is the light gray area. . . . . . .

Simulation study: Posterior mean estimates of correlation coefficient p,
for simulated data, using Beta Bartlett evolution for ;. True value is
shown in dashed line; posterior mean estimates in solid line; and 95%

credibility interval is the light gray area. . . . . . . . .. ... ... ..



Figure 46 —

Figure 47 —

Figure 48 —

Figure 49 —

Figure 50 —

Figure 51 —

Figure 52 —

Figure 53 —

Figure 54 —

Figure 55 —

Figure 56 —

Figure 57 —

Figure 58 —

Simulation study: Posterior mean estimates of instantaneous volatility
and correlation for simulated data, using MSVJM and MSVJB. True
volatility series shown in dashed line; posterior mean estimates for
MSVJB in solid line; and 95% credibility interval is the light gray area;
posterior mean estimates for MSVJM in long dashed red line and 95%
credibility interval is delimited by the dot dashed red lines. . . . . ..
Posterior mean estimates of instantaneous volatility for Exchange Rates
data. Mean estimates in solid line; and 95% credibility interval is the
GTAY ATCA. .« .« v« v e e e e e e e e e e e
Posterior mean estimates of instantaneous volatility for Exchange Rates
data. Mean estimates in solid line; and 95% credibility interval is the
GTAY ATA. . .« v v e e e e e e e e e e e
Posterior mean estimates of instantaneous volatility for Exchange Rates
data. Mean estimates in solid line; and 95% credibility interval is the
GTAY ATA. .« .« v v e e e e e e e e e e e e e
Posterior mean estimates of instantaneous correlation between Exchange
Rates time series. Mean estimates in solid line; and 95% credibility
interval is the gray area. . . . . . . . . . .. .. ... ...
Posterior mean estimates of instantaneous correlation between Exchange
Rates time series. Mean estimates in solid line; and 95% credibility
interval is the gray area. . . . . . . .. ... o oL
Posterior mean estimates of instantaneous correlation between Exchange
Rates time series. Mean estimates in solid line; and 95% credibility
interval is the gray area. . . . . . . . .. ... oL L
Posterior mean estimates of instantaneous correlation between Exchange
Rates time series. Mean estimates in solid line; and 95% credibility
interval is the gray area. . . . . . . . . . ... ... L.
Posterior mean estimates of instantaneous correlation between Exchange
Rates time series. Mean estimates in solid line; and 95% credibility
interval is the gray area. . . . . . . ... ... o oo
Posterior mean estimates of instantaneous correlation between Exchange
Rates time series. Mean estimates in solid line; and 95% credibility
interval is the gray area. . . . . . .. ... L oL
Posterior mean estimates of instantaneous jumps J;. Jumps are repre-
sented by black crosses and log-returns the light gray lines. . . . . . ..
Posterior mean estimates of instantaneous jumps J;. Jumps are repre-
sented by black crosses and log-returns the light gray lines. . . . . . . .
Posterior mean estimates of instantaneous jumps J;. Jumps are repre-

sented by black crosses and log-returns the light gray lines. . . . . . . .



Figure 59 — MCMC chain convergence: trace plot for the static parameters of the
model for simulated time series. . . . . . . ... ... ... ... .. 145

Figure 60 — Density plot for the static parameters of the model for simulated time

SETIES. .+ & v v i e e e e 146
Figure 61 — MCMC chains for effective sample of static parameters. . . . . . . . .. 147
Figure 62 — MCMC chains for effective sample of static parameters. . . . . . . . .. 148
Figure 63 — MCMC chains for effective sample of static parameters. . . . . . . . .. 149
Figure 64 — Density plot for effective sample of static parameters. . . . . . . . . .. 150
Figure 65 — Density plot for effective sample of static parameters. . . . . . . . . .. 151
Figure 66 — Density plot for effective sample of static parameters. . . . . . . . . .. 152
Figure 67 — MCMC chains for effective sample of static parameters. . . . . . . . .. 153
Figure 68 — MCMC chains for effective sample of static parameters. . . . . . . . .. 154
Figure 69 — MCMC chains for effective sample of static parameters. . . . . . . . .. 155
Figure 70 — Density plot for effective sample of static parameters. . . . . . . . . .. 156
Figure 71 — Density plot for effective sample of static parameters. . . . . . . . . .. 157

Figure 72 — Density plot for effective sample of static parameters. . . . . . . . . .. 158






Table 1
Table 2
Table 3
Table 4

Table 5

Table 6

Table 7

Table &
Table 9

Table 10 —
Table 11 —

Table 12 —

Table 13 —
Table 14 —

Table 15 —

Table 16 —

Table 17 —

Table 18 —

Table 19 —

Table 20 —

Table 21 —

List of Tables

S&P 500 dataset: Summary Statistics . . . . . .. ... 22
ICE:BRN dataset: Summary statistics . . . . . .. ... ... ... ... 23
Exchange rates dataset: Summary Statistics . . . . . . . . . . ... ... 28

Summary estimates of the posterior distribution for the degrees of freedom

of the NGSVJ model, v, over 1,000 simulation scenarios. . . . . . . . .. 41
Posterior estimate of MSVJM static parameters for simulated daily
returns (n = 1,000). . . . ... 44

Posterior estimates of static parameters for NGSVJ, and NGSVJ with
Metropolis step for estimating degrees of freedom, v, (NGSVJ - MS) for

S&P500 daily returns. . . . . ... 45
Posterior mean residuals: Summary statistics . . . . . . ... ... ... A7
Jarque-Bera test results . . . . . ... Lo 48
Box-Pierce and Box-Ljung tests results . . . . . ... ... ... .... 49
Posterior inference of static parameters for simulated data. . . .. . .. 59

Posterior means for HMM classifier covariance matrix ¥p,. Standard
deviations are in parenthesis. . . . . . . .. ... ... ... ... .. 60
Posterior transition probability, a; j, means for simulated data, log returns
in an intuitive approach. Standard deviations are in parenthesis. . . . . 60
Posterior inference of static parameters for ICE:BRN. . . . . . ... .. 63
Posterior means for HMM classifier covariance matrix ¥ p,. Standard
deviations are in parenthesis. . . . . . . . .. ... .. ... ... 63
Posterior transition probability, a, ;, means for ICE:BRN, log returns in
an intuitive approach. Standard deviations are in parenthesis. . . . . . . 64
Posterior estimates descriptive estatistics of MSVJM mean posterior
static parameters for simulated daily returns (n = 1,000), over 30 repli-
cations. . . . ... e 80
Exhange rates log-returns [x100%]| descriptive statistics. . . . . . . . . . 81
Posterior inference of static parameters for MSVJM model for currency
exchange rates daily log-returns. . . . . . .. ... ... L. 95
Posterior estimates descriptive estatistics of MSVJB mean posterior static
parameters for simulated daily returns (n = 1,000), over 30 replications. 103
Posterior mean estimates of MSVJM and MSVJB static parameters for
one simulated daily returns (n = 1,000) scenario. Standard deviations
are in parenthesis. . . . . . .. ... L 103
Posterior inference of static parameters for MSVJB model for currency

exchange rates daily log-returns. . . . . . . . . ... ... ... ... .. 118






List of abbreviations and acronyms

ARCH
BIC
BRN
BZUS
CAUS
CHUS
DNUS
HKUS
INUS
JPUS
KOUS
MAUS
DM
DLM
EWMA
FFBS
GARCH
HMM
ICE
log L
MCMC
MEWMC

MH

Autoregressive Conditional Heteroscedasticity
Bayesian Information Criterion

Brent Crude Futures

Brazil / U.S. Foreign Exchange Rate

Canada / U.S. Foreign Exchange Rate
China / U.S. Foreign Exchange Rate
Denmark / U.S. Foreign Exchange Rate
Hong Kong / U.S. Foreign Exchange Rate
India / U.S. Foreign Exchange Rate

Japan / U.S. Foreign Exchange Rate

South Korea / U.S. Foreign Exchange Rate
Malaysia / U.S. Foreign Exchange Rate
Dynamic Model

Dynamic Linear Model

Exponentially Weigthed Moving Average
Forward Filetring Backward Sampling
Generalized Autoregressive Conditional Heteroskedasticity
Hidden Markov Model

Intercontinental Exchange

Log Likelihood

Markov Chain Monte Carlo

Multivariate Exponentially Weighted Moving Covariance Matrix

Metropolis Hastings



MSV Multivariate Stochastic Volatility
MSVJB Multivariate Stochastic Model with Jumps and Beta-Bartlett Evolution

MSVJM Multivariate Stochastic Volatility Model With Jumps and Matrix-Beta

Evolution
NGSVJ Non-Gaussian Stochastic Volatility Model with Jumps

NGSVJ-HMM  Non-Gaussian Stochastic Volatility Model with Jumps and Hidden
Markov Model

NGSVJ-MS Non-Gaussian Stochastic Volatility Model with Jumps with Metropolis

Steps
RMSE Root Mean Square Error
SV Stochastic Volatility

VaR Value at Risk



Contents

1 INTRODUCTION . . . . . . e e e e e e e e s 19
1.1 The Data and Motivations . . . . . .. ... ... ... ... ..... 20
1.1.1 Financial Data Sets . . . . . . . . . . . . . ... ... 22
1.1.2 Motivations for Further Developments on NGSVJ . . . . . . . .. .. ... 29
2 THE NGSVJREVISITED . . . . . . . . . . . i it i it 33
2.1 The Non-Gaussian stochastic volatility model with jumps on returns 33
2.2 Bayesian Inference . . . . . . .. ... 34
2.3 General Procedure . . . . . . . ... 36
2.4 Additional Comments . . . . . .. ..o 37
3 ESTIMATING DEGREES OF FREEDOM . . . . . .. .. ... ... 39
3.1 Proposed procedure . . . . . . . ... ..o 40
3.2 Simulation Study . . . . . . ... 41
3.3 Application to S&P log-returns dataset . . . . ... ... ... ... 44
3.4 Additional Comments . . . . . . .. ... 50
4 THE NGSVJ-HMM MODEL . . . .. ... ... .. ... .. .... 51
4.1 Model Structure . . . . . . ... 54
4.2 Bayesian Inference . . . . . . .. ... 56
4.3 General Procedure . . . . . . .. ... 58
4.4 Simulation Study . . . . . ... 59
4.5 Intraday Log-Returns of Brent Crude Oil Futures . . . . . . . . . .. 62
4.6 Additional Comments . . . . . .. ..o 67
5 MULTIVARIATE STOCHASTIC VOLATILITY MODEL WITH JUMPS 69
5.1 Multivariate Stochastic Volatility Model With Jumps and Matrix-

Beta Evolution . . . . . . . ... ... 71
5.2 Bayesian Inference . . . . . . .. ..o 72
5.3 General Procedure . . . . . . . . ... 75
54 Simulation . . . . . . ... 76
5.5 Model application . . . . . ... ..o 80
55.1 Parameters Specification . . . . . . .. ... oL 81
5.5.2 Results . . . . . . . . 81
6 MULTIVARIATE STOCHASTIC MODEL WITH JUMPS AND BETA-

BARTLETT EVOLUTION . .. ... .. ... . .. ... 97



6.1
6.2
6.3

A.l
A.2
A3
A4
A.5
A.6
A7

B.1
B.2

D.1
D.2
D.3

Retrospective Analysis Procedure . . . . . . . .. ... ... ... .. 98
Simulation Study . . . . . ... 101
Model application . . . . . . .. ..o 105
CONCLUSION . . . . . e e e e e e e e e e e 119
BIBLIOGRAPHY . . . . . . e e e e e e 121
APPENDIX 129
APPENDIX A - FULL CONDITIONAL POSTERIOR DISTRIBU-
TIONS FOR MSVJ MODEL . . .. ... ..... 131
Full Conditional Posterior Distribution for v, . . . . . . . .. ... .. 131
Full Conditional Posterior Distribution for p, . . . . . . ... ... .. 132
Full Conditional Posterior Distribution for o> . . . . . . .. ... ... 133
Full Conditional Posterior Distribution for &, . . . . . . . ... ... 134
Full Conditional Posterior Distribution for p . . . . . . ... ... .. 135
Full Conditional Posterior Distribution for N, . . . . . .. .. ... 135
Full Conditional Posterior Distribution for >, . . . . . . . . ... ... 136

APPENDIX B — MATRIX-BETA EVOLUTION RETROSPECTIVE

ANALYSIS . .. .. .. . 137
MSVJM: Sequential Analysis and Smoothing Procedures . . . . . . 137
Sampling algorithm . . . . . . . ... 140
APPENDIX C - BARTLETT DECOMPOSITION . . . .. ... .. 141

APPENDIX D — LIKELIHOOD FUNCTIONS FOR PRESENTED

MODELS . . . ... ... . i 143
NGSVIJ . . 143
NGSVJ-HMM . . . . . 143
MSVIMand MSVUB . . . . . . . ... 144

APPENDIX E - MCMC RESULTS FOR MULTIVARIATE MODEL 145



19

1 Introduction

To understand the behavior of asset prices is essential for capital allocation decisions
between the available investment options. Arbitrage, buying and selling to make gains of
differing prices, catch the attention of several market players by the chance of getting rapid
gains, over other investment options. Several assets can be negotiated in that way, including
stocks, commodities, futures, currencies, etc. On the other hand, some investors prefer to
build a portfolio, containing multiple assets and hold this position for some period of time
to gain from dividends and asset valuation. For such investors, a diversified portfolio is

essential in reducing risks and increase the overall performance of the investment portfolio.

For evaluating market volatility precisely, the model must take into account that
returns usually follow a heavy-tailed distribution and are susceptible to market anomalies,

such as the impact of speculative movements bringing abnormal changes to return of asset.

Concerning the inferential procedure, under the Bayesian perspective, the stochastic
volatility models commonly used are mostly based on intensive computational methods,
e.g., Markov Chain Monte Carlo (MCMC) methods using Metropolis-Hastings algorithms,
that can fail on bringing tangible results on the required time frame, especially when

dealing with high-dimensional data.

Rego and Santos (2020) proposed the Non-Gaussian Stochastic Volatility Model
with Jumps (NGSVJ) for market volatility evaluation, that includes automatic inference
procedure that allows the model to be fast enough to bring tangible results for the user,
using an ordinary home computer, to perform trading operations. The NGSVJ allows
returns to assume non-Gaussian distributions and includes jumps to catch the speculative

movements of the market, preventing their negative impact on overestimating volatility.

Professional traders and investment funds usually rely on statistical models to take
investment and arbitrage decisions, however, non-professional traders usually do not have
access to complex models, and rely mostly on market reports, basic graphic analysis or
even intuition in order to take such decisions. Nevertheless, even if they had access to
those statistical models, most would lack the required knowledge to interpret the output
correctly, since it involves statistical and financial concepts that are not common on the

average user’s daily environment.

With that in mind and the simplicity of the NGSVJ, this thesis will explore the
incorporation of a Hidden Markov Model (HMM) to translate the volatility results from a
mathematical language to a user-friendly language, so that it can be used on day-to-day
operation for investment decisions. Furthermore, a natural extension of the NGSVJ is the

multivariate case, to be able to evaluate the risk of an entire asset portfolio.
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In the multivariate case, the main interest is on understanding how one asset affects
the other inside the portfolio since diversification requires that the correlation between
them is weak or even negative to mitigate risks from one specific asset. Thus, estimating
the covariance matrix will provide the needed information to build an investment strategy.
Prado and West (2010) present the Matrix-Beta evolution for a multivariate Dynamic
Model that is effective to small dimensionality, due to strong constraints on both degrees of
freedom from Wishart distribution and discount factor for the covariance matrix evolution.
The Matrix-Beta evolution can be adapted on the NGSVJ to produce a multivariate model
with jumps on returns and heavy tail distribution and take advantage of a retrospective
analysis for sampling the covariance matrix from a smoothed distribution, but also some

development must be made in order to solve the constrains of Matrix-Beta Evolution.

Another alternative is the use of a multivariate dynamic model with the Bartlett
evolution equation. The evolution for the covariance matrix can flexible the constrains
that exist on the Matrix-beta evolution, allowing a higher dimensionality to the model.
Although, a retrospective analysis was still not proposed for this model, which is a big

challenge that will be addressed by this doctoral dissertation.

In summary, the objective of this thesis is to provide a wide set of statistical models
that can be used in finance for taking arbitrage and investment decisions, whether it is
used by a professional or non-professional investor and with a single asset or a portfolio,
the proposed model has highly interpretable results, bringing major developments to the
DM class of models and their applications on finance. The proposed models are robust
in the sense to incorporate several stylized characteristics of return data, bringing major

developments to the NGSVJ and their applications.

1.1 The Data and Motivations

Dealing with financial data brings major challenges to data analysis. The first
challenge, highlighted by Alexander et al. (2017) and Subrahmanyam (2019) is on data
quality. According to Alexander et al. (2017), different financial firms report data differently,
so that it is a challenge to integrate, aggregate, and analyze these data, e.g., financial data
can be reported by transactions or quotes on specific time frames. Also, because financial
data are acquired by different data systems, particularities of those systems can interfere
with data acquisition: specific countries’ holidays, timezone, market open hours, etc, which
is especially relevant when dealing with multivariate data analysis, since data integration

is relevant on granting analysis quality.

In finance applications it is common to use as observations the log-returns time
series. Log-returns are calculated by taking the natural log of the assets price at time ¢
divided by the price at time ¢t — 1, that is, log (

Pil ) By doing so it is assumed that returns
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are compounded continuously rather than discrete, taking advantages of mathematical

properties of its continuity for data modeling.

Furthermore, financial data also brings challenges to data modeling. The most
common methods used for financial log-return modeling rely on statistical methods that
assume a Gaussian distribution for asset price returns, however, empirical studies have
shown that they are better described by heavy-tailed distributions. Jondeau and Rockinger
(2003) investigates the existence and persistence of skewness and kurtosis of various
financial time series taken at the daily frequency, finding that for many series they are
persistent. Resnick (2007) defines a heavy-tail as a characteristic of phenomena where
the probability of huge value is relatively big and exemplifies financial log-returns as
heavy-tailed phenomena. Also, financial log-returns are subject to speculative movements

of the market, which are an additional challenge in modeling its behavior.

In this chapter, we briefly present the financial data used in this thesis and a review
of available models on literature that motivate the development of the NGSVJ, developed
by Rego and Santos (2020).
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1.1.1 Financial Data Sets

The first dataset contains S&P 500 stock index log-returns from January 2, 1980, to
December 31, 1999. Excluding weekends and holidays, there are 5,054 daily observations for
the S&P index. Data were obtained from the Yahoo Finance platform, and the purpose of
using this specific dataset is to keep comparable results to Rego and Santos (2020). Figure
1 shows log-returns time series and histogram, and Table 1 shows summary statistics for
this dataset.

S&P 500 Index Histogram of S&P 500
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Figure 1 — S&P 500 dataset: Log-returns time series and histogram.

Mean Variance | Skewness| Kurtosis | Min Max

S&P500 0.0521 0.9989 -2.6357 | 63.0710 | -22.8997 | 8.7089
Table 1 — S&P 500 dataset: Summary Statistics

The second dataset contains Brent Crude futures, ICE:BRN, intraday log-returns
time series, consisting of Brent Crude futures, ICE:BRN, log returns from August 15,
03:00, 2018 to August 16, 23:59, 2018, in a total of 2,472-minute observations, obtained
from the Yahoo Finance. Figure 2 shows log-returns time series and histogram, and Table

2 shows summary statistics for this dataset.
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ICE:BRN Histogram of ICE:BRN
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Figure 2 — ICE:BRN dataset: Log-returns time series and histogram.

Mean Variance | Skewness| Kurtosis | Min Max
ICE:BRN | -0.0005 | 0.0490 -2.7660 | 64.5076 | -0.9575 | 0.3536

Table 2 — ICE:BRN dataset: Summary statistics

The third dataset contains nine exchange rates against U.S. dollar: Brazilian Reals
(BZUS), Canadian Dollar (CAUS), Chinese Yuan (CHUS), Danish Kroner (DNUS), Hong
Kong Dollar (HKUS), Indian Rupees (INUS), Japanese Yen (JPUS), South Korean Won
(KOUS), Malaysian Ringgit (MAUS), obtained from Federal Reserve of St. Louis website.
The dataset contains 2,020 daily observations from December 2010 to January 2019.
Figures 77 to 77 show log-returns time series and histogram, and Table 3 shows summary

statistics for each time series of this dataset, individually.
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Figure 3 — Exchange rates dataset: Log-returns
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Figure 4 — Exchange rates dataset: Log-returns

time series and histogram for BZUS.
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Figure 5 — Exchange rates dataset: Log-returns
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Figure 6 — Exchange rates dataset: Log-returns

Log Returns [%]

time series and histogram for CHUS.

Histogram of DNUS

Log Returns [%]

time series and histogram for DNUS.



26 Chapter 1. Introduction
HKUS Histogram of HKUS
[ oo
o =
2 o
5 o z 2 -
3
)] (]
o
—
o™~
o
7 o -
=T
g
T o 4
T T T T T T T T T T T T 1
2010 2013 2015 2017 2019 -0.4 -0.2 0.0 02
Year Log Returns [%]

Log-Returns

Figure 7 — Exchange rates dataset: Log-returns
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Figure 8 — Exchange rates dataset: Log-returns time series and histogram for INUS.
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Figure 10 — Exchange rates dataset: Log-returns
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Figure 11 — Exchange rates dataset: Log-returns time series and histogram for MAUS.

Mean Variance | Skewness| Kurtosis | Min Max
BZUS 0.0385 0.9397 0.2370 8.9720 -5.2991 | 8.6670
CAUS 0.0140 0.4967 0.0513 5.8700 -2.9001 | 3.3678
CHUS 0.0015 0.1805 0.4244 14.0396 | -1.2417 | 1.8161
DNUS 0.0073 0.5534 0.0130 4.8866 -3.0555 | 2.6461
HKUS 0.0004 0.0338 -1.0342 | 32.4697 | -0.4422 | 0.3345
INUS 0.0215 0.5007 0.1921 10.8799 | -3.7560 | 3.7919
JPUS 0.0127 0.5885 0.1102 6.9096 -3.4977 | 3.3428
KOUS -0.0010 | 0.5397 0.0488 5.5663 -2.9630 | 2.8113
MAUS 0.0136 0.4507 -0.3009 | 8.7820 -3.6571 | 2.7750

Table 3 — Exchange rates dataset: Summary Statistics

A remarkable characteristic of the datasets here presented is the presence of heavy
tails, evidenced by the kurtosis statistical measure. For S&P500 and ICE:BRN log-returns

kurtosis is over 60, which strongly indicates the presence of heavy tails. Exchange rates

dataset time series also have kurtosis higher then what was expected to assume a Gaussian

distribution. Also, some degree of asymmetry can be detected in some time series, such as
S&P500, ICE:BRN and, HKUS, as evidenced by skewness statistical measure. Another

characteristic of the financial data here presented is the existence of extreme values, e.g.,

the minimum log-return of -22.8997 on S&P 500 log-returns time series, which presents

another challenge on data modeling.
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1.1.2 Motivations for Further Developments on NGSVJ

According to Ozturk and Richard (2015), the volatility of asset returns has been a
focus of financial econometrics for the last three decades, with the majority of available
models developed on ARCH-GARCH and SV classes of models. Those models have a
wide range of features for data modeling: The inclusion of jumps for capturing speculative
movements of the market was introduced by Eraker, Johannes and Polson (2003) and
further developed in earlier works as Gong and Zhuang (2016), Kirkby, Nguyen and Cui
(2017) and Chaim and Laurini (2018); Omori et al. (2007) develop the leverage effect for the
SV class of models, as Engle and Siriwardane (2018) for the GARCH class; The heavy-tail
modeling is discussed by Nakajima and Omori (2009) and also Warty, Lopes and Polson
(2018), with the inclusion of a Gamma process for volatility to capture the excess of returns,
while Jondeau and Rockinger (2003) develop the GARCH model to capture skewness
and kurtosis by modeling residuals as a generalized Student-t distribution; Feunou and
Tédongap (2012) develop the SV model for dealing with the skewness by allowing current
asset returns to be asymmetric conditional on current factors and past information, what
we term contemporaneous asymmetry; Smith (2002) reviews the inclusion of Markov-
switching structure on GARCH and SV classes of models for modeling volatility according

to current market state.

Generalizations were also made for the ARCH-GARCH and stochastic volatility
(SV) to extend their usage to the multivariate case for dealing with a portfolio risk
management challenge. Harvey, Ruiz, and Shephard (1994), however, highlight that such
generalizations to multivariate series can be difficult to estimate and interpret. According
to Yu and Meyer (2006), the multivariate ARCH models have attracted a lot of attention
in modern finance theory and enjoyed voluminous empirical applications as presented on a
survey made by Bauwens et al. (2006) on multivariate GARCH models. Yet more limited
due to the complexity of implementation and computational sampling issues, Yu and Meyer
(2006) state that developments were also made for the SV class of model for extending
to the multivariate case. Chib, Omori, and Asai (2009) present a collection of works
in multivariate stochastic volatility (MSV) models available on literature that includes
leverage effects, a mean factor MSV model and the inclusion of dynamic correlations
trough a Wishart Process on the MSV model. Another common approach is the usage of
copula methods, as explored by Dias and Embrechts (2004), Lee and Long (2009), Patton
(2013), and Nasri and Rémillard (2019), which also has a complex implementation.

Another class of models that can be used for modeling volatility is the dynamic
models (DM) in which the NGSVJ, developed by Rego and Santos (2020), resides. As
discussed by Rego and Santos (2020) this approach has the advantage of a simpler
implementation and a flexible model structure since the model is written in the space state

form. Also, the DM class of models is relatively unexplored when compared to works on
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ARCH and SV classes, rising the possibility of developing extensions and new applications

to expand the usage of DM models.

Triantafyllopoulos (2008) develops a Bayesian procedure for estimation and fore-
casting of the volatility of multivariate time series using a matrix-variate DLM for volatility.
This approach allows the estimation of the covariance matrix for an entire assets portfolio
simultaneously, but lacks of structures to accommodate log-returns of financial time series,
such as jumps and a heavy tail structure. In a latter work, Triantafyllopoulos (2014) pro-
poses a particle filter algorithm for sequential estimation of volatility and cross-correlation
of multivariate financial time series, including a structure so that innovations assume a
Skew-T distribution to capture the heavy tails and asymmetry of financial returns, and
the inverse of the volatility covariance matrix is modeled via a Wishart autoregressive

process.

Lopes, McCulloch and Tsay (2016) present a normal dynamic linear model proposing
flexible priors for applications on space-state models, so that posterior can be computed
using the Gibbs sampler. However, this model uses univariate DLM for estimating states in
each equation rather than using a multivariate structure to jointly draw the states, which
increases computational complexity for the proposed algorithm. Nasri and Rémillard (2019)
propose a time-dependent and time-independent copula model and univariate dynamic

models to couple several log-returns time series for a multivariate approach.

West (2020) presents the Dynamic dependence network models (DDNM) that use
the DLM structure together with a graphically structured space-state model, using hyper-
inverse Wishart distributions for estimating the correlation between assets log-returns. This
model however has its usage limited to lower-dimensional time series, since computational

challenges arise as dimensionality grows.

The NGSVJ proposed by Rego and Santos (2020) has the notable advantage of
its computational simplicity and a structure that grants an automatic sampling process
for parameters, that allows sampling the volatility in a block via Gibbs sampler. This
structure allows model parameters to achieve convergence with less MCMC iterations
when compared to other SV models on literature, as stated by Rego and Santos (2020),
providing fast and reliable estimates and allowing the model to be used in practical
situations. Naturally, extensions and the implementation of new features arise to expand
its applications and develop the model as a relevant new class on the literature for extensive

use on the market.

The NGSVJ model is a Dynamic Model that considers the volatility as being
stochastic. The Non-Gaussian comes from the mixture on volatility that leads to a heavy
tailed distribution, with the inclusion of a jump component to capture extreme values
from observations. Thus, the model is called NGSVJ, not to be confused to a model from

the SV class, since it belongs to DM class.
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The NGSVJ proposed by Rego and Santos (2020) includes jumps on returns to
capture speculative movements, together with a Gamma mixture on volatility to capture
the excess of kurtosis of returns, using an estimation procedure entire based on Gibbs
Sampling, achieving convergence in fewer iterations, when compared to other methods.
Yet, other possibilities were left unexplored, as the estimation of the degree of freedom
parameter and the inclusion of a classifier for market states, which has a lot of practical
appeal on financial markets, especially for the model interpretability by the final user.
Another natural extension of the model is the multivariate case, to evaluate multiple
time series jointly, as proposed by Rego and Santos (2020), since most applications on
the financial market require a portfolio analysis, instead of a single asset, keeping the
implementation and computational simplicity as a remarkable characteristic, in the same

way in which the NGSVJ was proposed.

This thesis will address these challenges, which have an immediate impact on
the the extensiveness of the model application and its usability, and is a larger step on
developing the NGSVJ as a complete alternative to other models extensively explored in
the literature, as the ARCH and SV classes models. On next chapter the NGSVJ model
will be revisited to review the basis needed to understand further developments made on
this thesis. On Chapter 3 the inclusion of a procedure for estimating degree of freedom
will be addressed. Chapter 4 discusses the inclusion of the HMM structure on NGSVJ.

Chapters 5 and 6 deal with the expansion to the multivariate case.
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2 The NGSVJ Revisited

In this chapter, we revisit the Non-Gaussian Stochastic Volatility Model with
Jumps on returns (NGSVJ), developed by Rego and Santos (2020) in order to build the
theoretical basis needed to understand the models further developed in this thesis. The
model has already presented advances, for example, it has a heavy tail with known degrees
of freedom and jumps. Although, the model do not incorporate the HMM model and

estimated degrees of freedom of Student-t distribution.

2.1 The Non-Gaussian stochastic volatility model with jumps on

returns

The NGSVJ for log-return time series {y;};_, is given by:

Yi = Mt Jty + vy, Ut|”Yt ~ N(077;1)‘;1>> (2~1)
A= BTN, G| Di—1, ¢ ~ Beta(fai_1, (1 — B)as_1), (2.2)
v v
~ — —). 2.
w o~ G(5.7) (23)

where,
J{ = €f+1NEJ+1 7€ty+1 ~ N(,Uyagi)a PT(NEJH =1)= Py, and PT(Nty-H =0)=1-p,

In this model y; follows the DLM defined by {1,v;, A\;,7:}. y; represents the log-
return in percentage, defined as y; = 100 x (log(P;) — log(P;—1)), where P, is the asset
price at time t or continuous return. The jump, J/, is composed by the jump indicator

N/iy € {0,1} and magnitude &\, ~ N(u,,0;), following the same idea proposed by

Eraker, Johannes and Polson (2003). y, represents the equilibrium log-return of y; on time
distribution of errors is a t,(0, 1) distribution, A; ! is the volatility of returns, initialized

t. v, is the variance mixture component, so that using v, ~ G(%,%), the unconditional
as \g|Dy ~ G(ap,by), where Dy is the set of initial information. ¢ = {3, v} is the vector
of static parameters, where [ is a discount factor and is, in general, specified, since it
is a parameter of complex estimation, requiring more intensive computational methods
that were out of the initial scope of Rego and Santos (2020) of keeping the estimation
procedure more automatic via Gibbs Sampling. The problem of estimating of the degree of
freedom parameter is addressed on this thesis, since a grid analysis was originally made to
specify v. a;_1 is the shape parameter of the filtering distribution of \;, which is described

on details in Gamerman, Santos and Franco (2013) and Rego and Santos (202