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Summary

We propose a plug-in method to estimate the optimal bandwidth to be used in the

definition of the kernel estimator of a distribution function. The empirical characteristic

function is used to define the estimator. Our method is based on the ideas given by

Chiu (1991). We compared the results of our method with other ones such as Bowman

et al (1998), Sarda (1993) and Altman & Leger (1995). Numerical experiments suggest

that this method exhibits good convergence properties with less variance.
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1. Introduction

There are several approaches to estimate a distribution

function. The kernel estimator has been widely used for this pur-

pose in contraposition to the parametric approach.

If X1, X2, . . . , Xn is a random sample from a random variable

X whose distribuition function is F , the estimator of F , evaluated

at the point x is defined as

F̂n(x) =
1

n

n∑

i=1

W

(
x − Xi

hn

)
(1)

where W is a distribution function called the kernel and hn is called

the bandwidth.

We assume that the density function w of W is bounded,

symmetric, continuosly differentiable, compactly supported and 0 <
∫
t2w(t)dt = k2 < ∞. We will also assume that hn → 0 and

nhn → ∞, when n → ∞. The convergence rate and the smoothing

of the kernel estimator depend on the choosing of hn. In that sense,

it is extremely relevant to study the estimator of the optimal band-

width. From here, just to simplify we will write h instead of hn and

the integrals will be assumed over the real line unless otherwise is

indicated.

This paper will be concentrated on the estimation of the

optimal bandwidth, hopt. Before starting the study of the prob-

lem, we cite some properties of F̂n. More details can be seen in
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Nadaraya (1964) and Bessegato (2002). The expectance and the

variance of F̂n are given by E
[
F̂n

]
= F (x) + h2C2 + o

(
h2
)
, and

V ar
(
F̂n

)
= 1

nF (x)[1 − F (x)] − h
nC1 + o (h/n) respectively where

C1 = 2 F ′(x)
∫
zW (z) w(z)dz and C2 = k2

2
F ′′(x)

We note that the estimator is biased and the bias does not

depend directly on the sample size n, but depend on h.

The variance of the empirical distribution function , F̃n(x) =

1
n#{i : Xi ≤ x} is given by F (x){1−F (x)}

n , where n is the sample

size. From this we see that F̂n has smaller variance and the dom-

inant term in the reduction is C1h/n, with C1 > 0. In fact, as

W (z) > 1/2, for z > 0 and W (z) < 1/2, for z < 0, we can prove

that
∫

z W (z) w(z) dz > 0. This proves that V ar
[
F̂n

]
≤ V ar

[
F̃n

]
.

Looking at E(F̂n) and V ar(F̂n) we can see that the larger the

bandwidth, the smaller will be the variance of the kernel estimator

of F , and the larger will be the bias, and vice versa. So we need to

choose h such that we can make a trade off between variance and

bias. This is the paramount problem in kernel estimation.

In this work we study a plug - in method to estimate the

optimal bandwidth. This method is based on the empirical charac-

teristic function and we consider only the i.i.d. case but we believe

that the method can be extended to other cases. We are working

now in the markovian case to estimate the invariant distribution

function.

Several authors have studied the properties of the estima-
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tor F̂n(x), defined by using the integral of the kernel estimator of

the density function. Nadaraya (1964), Winter (1973) and Yamato

(1973) studied the convergence of F̂n(x) to F (x), with probability

1.

Jones (1990) studied the performance of several kernels to

estimate the distribution function and verified that the choosing of

the kernel does not represent a large impact on the performance of

the estimator F̂n(x). Falk (1983) also investigated whether a given

kernel type estimator of a distribution function at a single point has

asymptotically better performance than the empirical estimator.

In the following section we define the Plug - in Method anal-

ysed in this work. In section 3 we present the theoretical properties

of the proposed estimator. In section 4 we show the results obtained

through simulations. In section 5 we present some applications.

2. Bandwidth Selection

The choice of the kernel is not such an important thing as

the choosing of the bandwidth. The last problem has been studied

widely in the literature. As a general rule, h is chosen trying to

minimize the Mean Integrated Squared Error (MISE) of F̂n(x). The

MISE is defined as

MISE(h) = E
∫ {

F̂n(x) − F (x)
}2

dx . (2)

It is difficult to compute the MISE for finite samples. Jones
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(1990) has derived an expression for an approximation of its value.

This expression is given by

MISE(h) = n−1
∫

F (x) [1− F (x)] dx−C3 h n−1+C4 h4+o
(
h n−1 + h4

)
,

(3)

where:

C3 =
∫

W (z) [1 − W (z)] dz and C4 =
k2

2

4

∫ [
F ′′(x)2

]
dx .

From this, the optimal bandwidth is obtained as

hopt =





∫
W (z)[1 − W (z)] dz

[
∫
z2dW (z)]2

∫
[F ′′(x)]2 dx





1/3

n−1/3 (4)

Unfortunately the optimal bandwidth depends on the un-

known distribution. In this work we construct an estimator for

H =
∫

[(F ′′(x)]
2
(x)dx. Then we make a ”plug-in” in the expres-

sion for hopt to get an estimator of the optimal bandwidth. Before

going on we observe that the optimal bandwidth to estimate the

distribution function is of order n− 1

3 , different than the optimal

bandwidth to estimate the density function that is of order n− 1

5 .

There are several methods to estimate the optimal band-

width. Although in practice it is possible to choose this parameter

in a subjective way, we believe that is better to choose the estimator

as a function of the data.

The most studied method in the density function case is the

Cross - validation method, proposed by Rudemo (1982) and Bow-

man (1984). In a way similar to the proposed in the density function
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method, Bowman et al (1998) presented a cross - validation method

to estimate the optimal bandwidth in the distribution function case.

In that method, the choosing of the optimal bandwidth is based on

an unbiased estimator of the MISE.

It is well recognized that, in the density function case, the

cross-validation method is subject to large sample variation. In

simulation studies it was observed that this method chooses band-

widths smaller than those indicated by the asymptotic results.

Another possible approach to estimate the optimal band-

width is the ”Plug - in Method”. This is the method we are going

to study and is based on the estimation of the only unknown quan-

tity in the expression defining the optimal bandwidth, (The integral
∫
[f ′′]2,in the density function case and the integral

∫
[F ′′]2, in the

distribution function case). According to Chiu (1991), apparently

the plug-in method has the advantage that does not need an opti-

mization program.

In the density function case, Chiu (1991) proposed a plug

-in method based on the empirical characteristic function. The

empirical characteristic function is truncated in a value Λ, because

for higher frequencies, the empirical characteristic function does not

add significant information about the distribution and the value

is dominated by noise. The goal of this work is proposing, for

the distribution function case, a similar estimator for the optimal

bandwidth. We shall prove asymptotic results for the proposed
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estimator. Besides the usual assumptions, we assume the additional

conditions 3.1 to 3.3 in the following section.

Based on the mentioned assumptions, we estimate H. Pre-

viously, we find an alternative expression for H. By using the inver-

sion formula (Theorem 6.2.3, in Chung (1974), pag.155), we have

f(x) = 1
2π

∫
e−iλxϕ(λ)dλ. Hence:

f ′(x) = F ′′(x) =
1

2π

∫
(−iλ)e−iλxϕ(λ)dλ

=
1

2π

∫
e−iλx [−iλϕ(λ)] dλ .

Then, by using the Parseval identity (Theorem 9.13, in Rudin

(1987), pag. 187), we obtain:

H =
∫

(F ′′(x))
2
dx

=
1

2π

∫
λ2 |ϕ(λ)|2 dλ . (5)

The estimator of H naturally will be expressed in terms of

the empirical characteristic function ϕ̂(λ) = 1
n

∑n
j=1 ei λ Xj .

In Brillinger (1981) it is established that |ϕ̂(λ) − ϕ(λ)|2 is

approximately distributed according to an exponential with mean

1
n

(
1 − |ϕ(λ)|2

)
and the following result is also true:

E
∣∣∣|ϕ̂(λ)|2

∣∣∣ ∼= 1
n

[
(n − 1) |ϕ(λ)|2 + 1

]
. By using that, we can approx-

imate H by

Ĥ =
1

π

∫ Λ

0
λ2

[
|ϕ̂(λ)|2 −

1

n

]
dλ, (6)
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where Λ = min
{
λ : |ϕ̂(λ)|2 ≤ c

n

}
, for some c > 1. The term 1/n

is used to reduce the variation of |ϕ̂(λ)|2 for λ > Λ, identifying the

term not containing information about F or ϕ.

Finally we substitute Ĥ instead of H in the expression (4)

to obtain an estimator ĥopt, for hopt.

3. Strong Consistency of Ĥ

In this section we establish the strong consistency of the

proposed estimator. The prove will be given in the Appendix. Ac-

cording to Chiu (1991), the conditions about f(x) and w(x) are

given below. Since the procedure to estimate the optimal band-

width is based on the empirical characteristic function, the condi-

tions are also given in terms of ϕ(λ) and ϕW(λ):

3.1 There are positive constants M1, M2, K1 e K2, such that

M1|λ|
−K1 ≥ |ϕ(λ)|2 ≥ M2|λ|

−K2 when |λ| → ∞. We also assume

that |ϕ(λ)|2 > 0, for all λ.

3.2 The density f(x) has a uniformly bounded derivative and sat-

isfies the relation

∫
|x|>M f(x) dx ≤ O

(
M−1

)
, when M → ∞.

3.3 The kernel w(x) is a symmetric probability density function

and satisfies
∫
|x|3w(x) dx < ∞. The characteristic function of w(x),

given by ϕw(λ) =
∫
ei λ xw(x) dx, satisfies the following conditions:

ϕw(λ) = O(λ−3) and ϕ′
w(λ) = O(λ−3), when λ → ∞.
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Considering the assumptions cited above, we now cite two re-

sults from Chiu (1991):

Proposition 3.1 Assume the condition 3.1 above, then for any

δ > 0,

P
(
Λ ≤ n1/K1+δ

)
→ 1, when n → ∞ .

This is Lemma 2, from Chiu (1991), page 1900.

Proposition 3.2 Assume the conditions 3.1 and 3.3 above, then

for any δ > 0, P
(
Λ ≥ n1/K2−δ

)
→ 1, when n → ∞.

This result implies that max
0≤λ≤n

|ϕ̂d(λ)| ≤ Mn−1/2+δ .

This is Lema 3, from Chiu (1991), page 1901.

Our main results then follow:

Proposition 3.3 Strong Consistency of Ĥ

Under conditions 3.1 and 3.2, with K1 > 6, Ĥ converges almost

surely to H, when n → ∞.

Since ĥ is a continuous function of Ĥ, an immediate conse-

quence is the following:

Corollary 3.4 Strong Convergency of ĥopt

Under hypotheses 1 and 2, ĥopt converges almost surely to hopt, when

n → ∞.

4. Computational Results

We made computer simulations in C language with the aim

of checking the behavior of the method explained in the previous
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sections, for some well-known distributions. In order to make con-

sistent comparisons with the literature, we opted to use the same

parameters sets that appear in Bowman et al (1998).

For each simulation in the set we conducted the following

steps: (i) Sample generation; (ii) Determination of the limit of in-

tegration Λ; (iii) Ĥ computation; (iv) ĥopt computation; (v) F̂n

computation and graphic display; (vi) ISE(h) computation; (vii)

Computation of the distribution estimation from the density func-

tion estimation.

The value (c = 3) suggested in Chiu (1991) was adopted as

the choice for the limit of integration Λ. We verified experimentally

that the results were not significantly affected when c remained

in the proposed interval (− log(0.15),− log(0.05)). We used the

Simpson approximation for the numeric integration. See Mathews

(1992). Special care must be taken when dealing with the upper

limits of the truncated improper integral, that must be large enough

to guarantee the correctness of our results. In the special case of

the ISE computations, we simply used rectangular Riemman ap-

proximations for the integrals (with 0.01 sized sub-intervals). That

procedure, which involved the integration of squares of differences,

proved itself to be stable and reliable in our case.

Each simulation in the set consists of 1000 samples of sizes

25, 50, 100 and 200, for the standard normal(0, 1) and gamma(2, 1)

distributions. We verified the behavior of the H estimator, the op-
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timal bandwidth, and the ISE(h) for each sample. Besides, we

compared our estimates with the estimates obtained via the empir-

ical characteristic function and the integral of the density function.

This last one was obtained with the method proposed in Chiu (1991)

and Damasceno (2000). The gaussian kernel was always used wher-

ever necessary in the smoothing kernel techniques, except where

indicated.

The experiments from Bowman et al (1998) were repeated

again here, also with 100 samples for each sample size, in order to

maintain the consistency in our comparisons.

The tables 1 and 2, respectively for the normal(0, 1) and

gamma(2, 1), summarize our results regarding the 1000 samples

simulations.

The values Ĥ and ĥopt for the normal distribution are very

close to the theoretical value, and their variability diminishes as

the sample size increases. From the estimated MISE values, we

verified the good performance of our distribution function’s kernel

estimator method, compared with the empirical function method

and the kernel estimator of the density function integral method.

In the case of the gamma distribution, we note that the discrep-

ancy between the H estimate and its theoretical value induces a

bias in the functional estimate. This happens because we have an

obvious boundary problem, with the second derivative of the func-

tion gamma(2, 1) not defined in zero, jeopardizing the application
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Table 1: Simulation Results - Normal Distribution

n = 25 n = 50 n = 100 n = 200 n = 500

Theoretical 0.1411 0.1411 0.1411 0.1411 0.1411

Ê(Ĥ) 0.1436 0.1395 0,1426 0.1412 0.1413

H σ̂(Ĥ) 0.1814 0.0710 0.0484 0.0313 0.0194

Ê(Ĥ − H)2 0.03289 0.00504 0.00234 0.00098 0.00038

Theoretical 0.5436 0.4315 0.3425 0.2718 0.2003

Ê(ĥopt) 0.5889 0.4500 0.3479 0.2740 0.2007

hopt σ̂(ĥopt) 0.1052 0.0593 0.0339 0.0187 0.0089

Ê(ĥopt − hopt)
2 0.01311 0.00386 0.00117 0.00035 0.00008

F̂n 0.018543 0.009711 0.004724 0.002454 0.000966

̂MISE
∫

f̂n 0.019269 0.010383 0.005189 0.002772 0.001146

F̃ 0.023131 0.011854 0.005698 0.002861 0.001099

Each entry in this table is the mean of 1000 experiments, for each sample size.

F̂n: Distribution kernel estimator;
∫

f̂n: Estimator of F by integration of fn;F̃ : Empirical

distribution function

of the method. The variability of the estimator diminishes slowly

as the sample size increases, the same thing happening with the

differences between the estimates and the theoretical values.

Regarding the original Bowman experiment, we present in

Figures (1) and (2) the box-plot graphics for the sample sizes rel-

ative to the log(ISE). We used the Epanechnikov’s kernel, in the

same way as the paper mentioned above, in order to maintain the

original experiment characteristics. Under these conditions, the nu-

merical experiments suggest a better performance using our pro-

posed estimator.

12



Table 2: Simulation Results - Gamma Distribution

n = 25 n = 50 n = 100 n = 200 n = 500

Theoretical 0.2500 0.2500 0.2500 0.2500 0.2500

Ê(Ĥ) 0.1202 0.1277 0.14324 0.1570 0.1731

H σ̂(Ĥ) 0.1697 0.0872 0.0693 0.0549 0.0410

Ê(Ĥ − H)2 0.04561 0.02255 0.0.01621 0.01166 0.00759

Theoretical 0.4486 0.35604 0.2826 0.2243 0.1653

Ê(ĥopt) 0.6589 0.47807 0.3541 0.2680 0.1889

hopt σ̂(ĥopt) 0.1549 0.0851 0.0474 0.0276 0.0.0137

Ê(ĥopt − hopt)
2 0.06823 0.02211 0.00735 0.00267 0.00075

F̂n 0.025181 0.013025 0.006593 0.003309 0.001386

̂MISE
∫

f̂n 0.093018 0.044311 0.020821 0.010013 0.003834

F̃ 0.029735 0.015122 0.007471 0.003698 0.001510

Each entry in this table is the mean of 1000 experiments, for each sample size

F̂n: Distribution kernel estimator;
∫

f̂n: Estimator so F by integration of fn; F̃ : Empirical

distribution function

5. Aplication

Tajima (1989) proposed a method to test the neutral mu-

tation hypothesis problem (see details in the reference). That method

is based on the comparison of two estimators of the parameter

θ = 4Nµ where N is the effective population, µ is the mutation

rate per generation. A statistic W is defined as a function of those

two estimators. The Tajima test is based on the assumption that,

under the null hypothesis, such statistic has a beta distribution.

Atuncar & Silva (2002) observed that for some values of sam-
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Figure 1: Normal sample Box-plot

Figure 2: Gamma sample Box-plot

ple sizes,n and θ, the beta distribution is not appropriate to model

the statistic W. For each pair of values (n, θ) with n = 10, 15, ..., 50

and θ = 1, 2, 3, ..., 50, Silva (2001) simulated 7,000 genealogical trees
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under the neutral hypothesis and for each tree, he got the corre-

sponding value of W. From this data, the density function of W

was estimated by using the kernel estimator and a new critical re-

gion was defined by integration of the kernel estimator of the density

function. The new critical region improved significatively the test.

Table 3: Estimated critical points, under neutrality hypothesis

From Silva Dist. kernel estimator

N θ D̂0,025 D̂0,975 D̂0,025 D̂0,975

10 1 -1.614 1.772 -1.623 1.804

5 -1.795 1.751 -1.751 1.693

20 1 -1.695 1.884 -1.642 1.832

5 -1.803 1.822 -1.776 1.793

40 1 -1.650 1.975 -1.630 2.069

5 -1.730 1.873 -1.750 1.832

50 1 -1.659 2.003 -1.618 1.958

5 -1.740 1.906 -1.703 1.808

In our work, we estimated directly the distribution function

of W by using the samples simulated by Silva. Considering the

significance level of 5%, the critical points W (0.025) and W (0.975)

were estimated,where:

W0,025 = min{w : F (w) ≥ 0, 025} and

W0,975 = min{w : F (w) ≥ 0, 975}

The results are displayed on Table [3]. On the same table we

present, for comparison, the results gotten by Silva. We observe
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that our values are close to the corresponding Silva’s values and

they are better than those obtained by Tajima.
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Appendix

Proof of Proposition 3.3

From (5) and (6), we have that:

πĤ − πH =
∫ Λ

0
λ2

[
|ϕ̂(λ)|2 −

1

n

]
dλ −

∫ ∞

0
λ2 |ϕ(λ)|2 dλ

=
∫ Λ

0
λ2

[
|ϕ̂(λ)|2 −

1

n

]
dλ −

∫ Λ

0
λ2 |ϕ(λ)|2 dλ + B1 ,

(7)

where

B1 = −
∫ ∞

Λ
λ2 |ϕ(λ)|2 dλ (8)

Defining ϕ̂d(λ) = ϕ̂(λ) − ϕ(λ), we have:

|ϕ̂(λ)|2 = |ϕ̂d(λ) + ϕ(λ)|2 = |ϕ(λ)|2 + |ϕ̂d(λ)|2 + 2 Re [ϕ(λ) ϕ̂d(−λ)]

So, the expression(7) becomes:
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πĤ − πH =
∫ Λ

0
λ2

[
|ϕ̂d(λ)|2 −

1

n

]
dλ + 2 Re

∫ Λ

0
λ2ϕ(λ)ϕ̂d(−λ) dλ + B1 .

(9)

Define now

B2 = 2 Re
∫ Λ

0
λ2ϕ(λ)ϕ̂d(−λ) dλ , (10)

B3 =
∫ Λ

0
λ2

[
|ϕ̂d(λ)|2 −

1

n

]
dλ . (11)

Convergence of B1

By proposition 3.1 we have that P
(
Λ ≥ n1/K2−δ

)
→ 1, when

n → ∞.

Since
∫∞
Λ λ2 |ϕ(λ)|2 dλ = g1(Λ) is a continuous and decreasing func-

tion in Λ, we have that P
[
g1(Λ) ≤ g1(n

1/K2−δ)
]
→ 1 almost surely.

This implies:

∫ ∞

Λ
λ2 |ϕ(λ)|2 dλ ≤

∫ ∞

n1/K2−δ
λ2 |ϕ(λ)|2 dλ . (12)

By using the condition 3.1, we obtain

|B1| ≤
∫ ∞

n1/K2−δ
λ2 |ϕ(λ)|2 dλ ≤

∫ ∞

n1/K2−δ
M1λ

−K1+2 dλ = An

≤
M1

−3 + K1
n(1/K2−δ)(−K1+3) .

With K1 > 3, we choose δ such that (1/K2 − δ) (−K1 + 3) < 0.

Define An =
∣∣∣
∫∞
n1/K2−δ λ2 |ϕ(λ)|2 dλ

∣∣∣. We will prove that An → 0

almost surely.
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Let ε be a positive number. Since An ≤ M1

k1−3n
α, for some

α < 0, there exists n0 such that An < ε , ∀n > n0. Then

∞∑

n=1

P (An > ε) =
n0∑

n=1

P (An > ε) < ∞ .

Hence, by the Borel-Cantelli lemma , An → 0 almost surely and as

a consequence, B1 → 0 almost surely.

Convergency of B2

Since |ϕ(λ)| ≤ 1, from proposition 3.2, we have that |ϕ̂d(−λ)| ≤

max
0≤λ≤n

|ϕ̂d(λ)| ≤ Mn−1/2+δ . So,

2 Re
∫ Λ

0
λ2ϕ(λ)ϕ̂d(−λ) dλ ≤ 2

∫ Λ

0
λ2Mn−1/2+δ dλ .

This proves that B2 → 0 almost surely.

In fact, define Bn =
∫ n1/K1+δ

0 λ2M n−1/2+δ dλ. We take K1 > 6

and choose δ such that (3/K1− 1/2+4δ) < 0. Then Bn < nα, with

α < 0. So, applying the Borel-Cantelli lemma as before, we prove

that B2 → 0 almost surely.

Convergence of B3

|B3| =

∣∣∣∣∣

∫ Λ

0
λ2

[
|ϕ̂d(λ)|2 −

1

n

]
dλ

∣∣∣∣∣ ≤
∫ Λ

0
λ2

∣∣∣∣∣

[
|ϕ̂d(λ)|2 −

1

n

]∣∣∣∣∣ dλ ≤

∫ Λ

0
λ2

∣∣∣∣∣

[
|ϕ̂d(λ)|2 +

1

n

]∣∣∣∣∣ dλ ≤
∫ Λ

0
λ2 |ϕ̂d(λ)|2 dλ +

∫ Λ

0
λ2 1

n
dλ

By Proposition 3.1, we have that for δ > 0, P
(
Λ ≤ n1/K1+δ

)
→ 1,

when n → ∞. This proves that B3 → 0 almost surely.

We have already verified that B1, B2 and B3 converge almost

surely to zero. Then, Ĥ converges almost surely to H.
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