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Abstract
For the first time, we introduce the so-called beta alpha distribution which gener-

alizes the alpha distribution (Katsav (1968), Wager and Barash (1971)). Expansions
for the cumulative distribution and density functions that do not involve complicated
functions are derived. We obtain expressions for its moments and for the moments of
order statistics. The estimation of parameters is approached by the method of maxi-
mum likelihood and the expected information matrix is derived. The usefulness of the
beta alpha distribution is illustrated in an analysis of a real data set. The new model
is quite flexible in analyzing positive data and it is an important alternative to the
gamma, Weibull, generalized exponential, beta exponential and Birnbaum-Saunders
distributions.

Keywords: Alpha distribution; Beta alpha distribution; Maximum likelihood estima-
tion; Moment; Observed information matrix.

1 Introduction

The alpha distribution generally is used in tool wear problems (Katsav (1968), Wager and
Barash (1971)). Sherif (1983) suggested its use in modeling lifetimes under accelerated
test conditions and Salvia (1985) provided a characterization of the distribution and a
number of accompanying properties. One of the main results of the alpha distribution is
that the mean does not exist. However, this result does not prohibit its use as a model
for accelerated life testing (as, for example, the Cauchy and certain Pareto models). A
Cauchy model provides a symmetric distribution, whereas the Pareto distribution has a
non-increasing probability density function (pdf) and is highly skewed to the right. The
alpha model is also skewed to the right, but (unlike the Pareto) its mode is finite.

A random variable X has an alpha distribution with shape (α > 0) and scale (β > 0)
parameters, if its probability density function (pdf) is

g(x) =
β√

2πx2Φ(α)
exp

{
−1

2

(
α− β

x

)2
}

, x > 0. (1)
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Simple integration shows that the cumulative distribution function (cdf) of the alpha
distribution is easily expressed in terms of the cdf of the standard normal distribution as

G(x) =
Φ

(
α− β

x

)

Φ(α)
. (2)

The hazard rate function corresponding to (1) is

h(x) =
β

√
2πx2

[
Φ(α)− Φ(α− β

x )
] exp

{
−1

2

(
α− β

x

)2
}

. (3)

Plots of the alpha density function for selected parameter values are given in Figure
1. The mode of the distribution is

M = β
(
√

α2 + 8− α)
4

.

The mode M moves to the left (right) as α (β) increases. Figure 2 gives some of the
possible shapes of the alpha cumulative function for selected parameter values. Figure
3 shows that the hazard rate function has an upside-down bathtub-shaped for different
values of the parameters, which increases to a modal value and then decreases slowly.

In this paper, we introduce a new four-parameter distribution, so-called the beta alpha
(BA) distribution, with the hope of wider applications for accelerated life testing in the
area of engineering and other areas of research. This generalization includes the alpha dis-
tribution as special case. The new distribution due to its flexibility seems be an important
model that can be used in a variety of problems in modeling of reliability.

It is interesting to know that there is a similarity between the density (1) and the
inverse normal density function. The similarity is due to the fact that (1) is nothing but
the density function of X = 1/Y if Y has a normal N(µ, σ2) distribution truncated to the
left at zero (for α = µ/σ and β = 1/σ).

The calculations in the paper involve some special functions, including the well-known
error function defined by

erf(x) =
2√
π

∫ x

0
exp(−t2)dt,

the incomplete beta function ratio, i.e. the cdf of the beta distribution with parameters
a > 0 and b > 0, given by

Ix(a, b) =
1

B(a, b)

∫ x

0
ta−1(1− t)b−1dt,

the beta function defined by (Γ(·) is the gamma function)

B(a, b) =
∫ 1

0
wa−1(1− w)b−1dw =

Γ(a)Γ(b)
Γ(a + b)

,

the well-known hypergeometric function (Gradshteyn and Ryzhik, 2000) defined by (for
αk > 0, βk > 0, k = 1, 2, · · · )

pFq(α1, · · · , αp;β1, · · · , βq; x) =
∞∑

k=0

(α1)k · · · (αp)k

(β1)k · · · (βq)k

xk

k!
,
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Figure 1: Plots of the alpha density (1) for some parameter values.
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Figure 2: Plots of the alpha cdf (2) for some parameter values.
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Figure 3: Plots of the alpha hazard rate (3) for some parameter values.
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where (α)i = α(α + 1) . . . (α + i− 1) is the ascending factorial. Two important particular
cases correspond to p = 2 and q = 1 giving 2F1(α, β; γ; x) and p = q = 1 yielding the
confluent hypergeometric function 1F1(α;β;x).

Finally, we require the Laguerre function defined by

L
1/2
p/2

(
α2

2

)
=

Γ(p/2 + 1/2 + 1)
Γ(p/2) 1F 1(p/2; 1/2 + 1;α2/2).

The rest of the paper is organized as follows. In Section 2, we define the BA dis-
tribution. Probability weighted moments (PWMs) are expectations of certain functions
of a random variable defined when the ordinary moments of the random variable exist.
In Section 3, we derive the PWMs of the alpha distribution. Section 4 provides a gen-
eral expansion for the moments of the BA distribution. Its moment generating function
(mgf) is derived in Section 5. Section 6 is devoted to mean deviations. Section 7 provides
expansions for the BA order statistics. In Section 8, we derive the moments of order
statistics and expansions for the L-moments defined by Hosking (1990) as expectations
of certain linear combinations of order statistics. In Section 9, we discuss maximum like-
lihood estimation and calculate the elements of the observed information matrix. Two
applications to real data in Section 10 illustrate the importance of the BA distribution.
Finally, concluding remarks are given in Section 11.

2 The New Model

The generalization of the alpha distribution is motivated by the work of Eugene et al.
(2002). One major benefit of the class of beta generalized distributions is its ability of
fitting skewed data that can not be properly fitted by existing distributions. Consider
starting from a parent cumulative function G(x), they defined a class of generalized beta
distributions by

F (x) =
1

B(a, b)

∫ G(x)

0
ωa−1(1− ω)b−1dω = IG(x)(a, b), (4)

where a > 0 and b > 0 are two additional parameters whose role is to introduce skewness
and to vary tail weight. The cdf G(x) could be quite arbitrary and F (x) is refereed to the
beta G distribution. If V has a beta distribution with parameters a and b, application of
X = G−1(V ) yields X with cumulative distribution (4).

We can express (4) in terms of the hypergeometric function, since the properties of
this function are well established in the literature. We have

F (x) =
G(x)a

aB(a, b) 2F1(a, 1− b, a + 1;G(x)).

Some generalized beta distributions were discussed in recent literature. Eugene et al.
(2002) defined the beta normal (BN) distribution by taking G(x) to be the cdf of the
normal distribution and derived some of its first moments. Nadarajah and Kotz (2004)
introduced the beta Gumbel (BGu) distribution by taking G(x) to be the cdf of the
Gumbel distribution, provided expressions for the moments, and discussed the asymptotic
distribution of the extreme order statistics and maximum likelihood estimation. Nadarajah
and Gupta (2004) defined the beta Fréchet (BF ) distribution by taking G(x) to be the
Fréchet distribution, derived the analytical shapes of the density and hazard rate functions
and calculated the asymptotic distribution of the extreme order statistics. Nadarajah and

6



Kotz (2005) proposed the beta exponential (BE) distribution and obtained the moment
generating function, the first four cumulants, the asymptotic distribution of the extreme
order statistics and estimated its parameters by the method of maximum likelihood.

The density function corresponding to (4) can be expressed as

f(x) =
g(x)

B(a, b)
G(x)a−1{1−G(x)}b−1, (5)

where g(x) = dG(x)/dx is the density of the parent distribution. The density f(x) will
be most tractable when both functions G(x) and g(x) have simple analytic expressions.
Except for some special choices of these functions, the density f(x) will be difficult to deal
with in generality.

The BA density function with four parameters α, β, a and b, from now on denoted by
BA(α, β, a, b), is given by

f(x) =
β exp

{
−1

2

(
α− β

x

)2
}

√
2πx2B(a, b)Φ (α)a+b−1

Φ
(

α− β

x

)a−1 {
Φ (α)− Φ

(
α− β

x

)}b−1

, x > 0. (6)

Evidently, the density function (6) does not involve any complicated function but
generalizes a few known distributions. The alpha distribution arises as the particular case
for a = b = 1. If b = 1, it leads to a new distribution termed here the exponentiated
alpha (EA) distribution. The BA distribution is easily simulated as follows: if V has
a beta distribution with parameters a and b, then X = β{α − Φ−1(Φ(α)V )}−1 has the
BA(α, β, a, b) distribution.

The cdf and hazard rate function corresponding to (6) are given by

F (x) = I[Φ(α−β
x )

Φ(α)

](a, b) (7)

and

h(x) =
β exp

{
−1

2

(
α− β

x

)2
}

Φ
(
α− β

x

)a−1 {
Φ(α)− Φ

(
α− β

x

)}b−1

√
2πx2B(a, b)Φ (α)a+b−1 [

1− I[Φ(α−β
x )

Φ(α)

](a, b)
] , (8)

respectively.
It is clear that the BA distribution is much more flexible than the alpha distribution.

Plots of the density (6), cumulative distribution (7) and hazard rate function (8) for
selected parameter values are displayed in Figures 4, 5 and 6, respectively.

3 Probability Weighted Moments

First proposed by Greenwood et al. (1979), PWMs are expectations of certain functions of
a random variable whose mean exists. A general theory for PWMs covers the summariza-
tion and description of theoretical probability distributions and observed data samples,
nonparametric estimation of the underlying distribution of an observed sample, estima-
tion of parameters, quantiles of probability distributions and hypothesis tests. The PWM
method can generally be used for estimating parameters of a distribution whose inverse
form cannot be expressed explicitly. For several distributions, such as normal, log-normal
and Pearson type three distributions, the expressions relating PWMs to the parameters of
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Figure 4: Plots of the BA density (6) for some parameter values.
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Figure 5: Plots of the BA cumulative function (7) for some parameter values.
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Figure 6: Plots of the BA hazard rate function (8) for some parameter values.
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the model have the same forms. Such expressions may be readily employed in practice for
estimating the parameters. We calculate the PWMs of the alpha distribution since they
are required to obtain the ordinary moments of the BA distribution.

The PWMs of the alpha distribution are formally defined by

τs,r =
∫ ∞

0
xsG(x)rg(x)dx.

Equations (1) and (2) lead to

τs,r = c1

∫ ∞

0
xs−2

{
Φ

(
α− β

x

)}r

exp

{
−1

2

(
α− β

x

)2
}

dx, (9)

where c1 =
β√

2πΦ(α)r+1
. First, we obtain

{
Φ

(
α− β

x

)}r

=
1
2r

{
1 + erf

(
α− βx−1

√
2

)}r

and the binomial expansion implies

{
Φ

(
α− β

x

)}r

=
1
2r

r∑

j=0

(
r

j

)
erf

(
α− βx−1

√
2

)j

.

From the series expansion for the error function erf(.)

erf(x) =
2√
π

∞∑

k=0

(−1)kx2k+1

(2k + 1)k!
,

the last equation becomes
{

Φ
(

α− β

x

)}r

=
1
2r

r∑

j=0

(
r

j

){ ∞∑

k=0

ak(α− βx−1)2k+1

}j

,

where the coefficients ak are given by ak =
(−1)k2(1−2k)/2

√
π(2k + 1)k!

. Hence,

{
Φ

(
α− β

x

)}r

=
1
2r

r∑

j=0

(
r

j

) ∞∑

k1,...,kj=0

A(k1, ..., kj)
(
α− βx−1

)2sj+j
,

where A(k1, . . . , kj) = ak1 . . . akj and sj = k1 + · · ·+ kj . Using the binomial expansion, we
have

{
Φ

(
α− β

x

)}r

=
1
2r

r∑

j=0

(
r

j

) ∞∑

k1,...,kj=0

2sj+j∑

m=0

A(k1, ..., kj)
(

2sj + j

m

)
α2sj+j−m(−βx−1)m.

Inserting the last equation into (9) and interchanging terms, we obtain

τs,r =
c1

2r

r∑

j=0

(
r

j

) ∞∑

k1,...,kj=0

2sj+j∑

m=0

A(k1, ..., kj)
(

2sj + j

m

)
α2sj+j−m(−β)mI(s−m− 2, α, β).(10)
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Here, I(p, α, β) is the integral easily obtained by

I(p, α, β) =
∫ ∞

0
xp exp

{
−1

2

(
α− β

x

)2
}

dx

=
1√
π


2(−3/2−p/2)β(p+1) exp−α2/2


−

1
2

√
2π2αβL

1/2
p/2

(
α2

2

)

√
β2 sin

(p

2
π
)

Γ
(

3
2

+
p

2

)

−1
2

π2(α2 + 1)L1/2
p/2

(
α2

2

)

cos
(p

2
π
)

Γ
(
2 +

p

2

) +
1
2

π2α2L
3/2
p/2

(
α2

2

)

cos
(

1
2
π

)
Γ

(
2 +

p

2

)





 ,

where L
1/2
p/2

(
α2

2

)
and 1F 1(p/2; 1/2 + 1;α2/2) are the Laguerre and confluent hypergeo-

metric functions (see Section 1). Equation (10) for the PWM of the alpha distribution is
the main result of this section.

4 Moments

The cdf F (x) and pdf f(x) of the beta G distribution are usually straightforward to
compute numerically from the baseline functions G(x) and g(x) from equations (4) and
(5) using statistical software with numerical facilities. Here, we provide expansions for
these functions in terms of infinite (or finite) weighted sums of powers of G(x) which will
prove useful in our case where G(x) does not have a simple expression. In subsequent
sections, we use these expansions to obtain formal expressions for the moments of the BA
distribution and for the density of the order statistics and their moments.

For b > 0 real non-integer, the series representation for (1− w)b−1 yields
∫ x

0
wa−1(1− w)b−1dw =

∞∑

j=0

(−1)j
(
b−1
j

)

(a + j)
xa+j , (11)

where the binomial coefficient is defined for any real. If b is an integer, the index j in the
sum (11) stops at b− 1. We define the constants

wj(a, b) =
(−1)j

(
b−1
j

)

(a + j)
.

Combining equations (4) and (11), the cumulative distribution of any beta G can be
written as

F (x) =
1

B(a, b)

∞∑

r=0

wr(a, b)G(x)a+r. (12)

If a is an integer, equation (12) gives the cdf of the beta G distribution as an infinite
sum of powers of G(x). Otherwise, if a is real non-integer, we can expand G(x)a+j using
equation (27) in the Appendix, and then the cumulative function F (x) can be expressed
as an infinite power series expansion of the baseline G(x)

F (x) =
1

B(a, b)

∞∑

r=0

tr(a, b)G(x)r, (13)

12



where

tr(a, b) =
∞∑

l=0

wl(a, b)sr(a + l),

and the quantities sr(a + j) are easily determined from equation (28) in the Appendix.
Expansions for the density of the beta G distribution are immediately obtained by

simple differentiation of equations (12) and (13) for a > 0 integer and a > 0 real non-
integer, respectively. We have

f(x) =
g(x)

B(a, b)

∞∑

r=0

(a + r)wr(a, b)G(x)a+r−1 (14)

and

f(x) =
g(x)

B(a, b)

∞∑

r=0

(r + 1) tr+1(a, b)G(x)r. (15)

Expansions (14) and (15) are the main results of this section. The sth moment of the
beta G distribution can then be written as an infinite sum of convenient PWMs of the
parent distribution G. These expansions are readily computed numerically using standard
statistical software. They (and other expansions in the paper) can also be evaluated in
symbolic computation software such as Mathematica and Maple. These symbolic software
have currently the ability to deal with analytic expressions of formidable size and com-
plexity. In numerical applications, a large natural number N can be used in the sums
instead of infinity.

For a integer, equation (14) yields

E(Xs) =
∞∑

r=0

(a + r)wr(a, b)
B(a, b)

∫ ∞

0
xsG(x)a+r−1g(x)dx

and then

E(Xs) =
∞∑

r=0

(a + r)wr(a, b)
B(a, b)

τs,a+r−1.

For a real non-integer, equation (15) implies

E(Xs) =
∞∑

r=0

(r + 1)tr+1(a, b)
B(a, b)

∫ ∞

0
xsG(x)rg(x)dx

and then

E(Xs) =
∞∑

r=0

(r + 1)tr+1(a, b)
B(a, b)

τs,r.

From these expansions, we can obtain the moments of the BA distribution as infinite sums
of certain PWMs of the alpha distribution.

13



5 Moment generating function

For a > 0 integer, the moment generating function (mgf) of the BA distribution can be
determined from equation (14) as

MX(t) =
∞∑

r=0

(a + r)wr(a, b)
B(a, b)

∫ ∞

0
exp (tx) G(x)a+r−1g(x)dx.

We have
∫ ∞

0
exp (tx) G(x)a+r−1g(x)dx =

∞∑

l=0

tl

l!

∫ ∞

0
xlG(x)a+r−1g(x)dx

and then

MX(t) =
∞∑

r=0

∞∑

l=0

(r + 1)tr+1(a, b)tl

B(a, b)l!
τl,a+r−1.

For a > 0 real non-integer, the mgf is obtained from (15). It reduces to

MX(t) =
∞∑

r=0

(r + 1)tr+1(a, b)
B(a, b)

∫ ∞

0
exp (tx) G(x)rg(x)dx

and then
∫ ∞

0
exp (tx) G(x)rg(x)dx =

∞∑

l=0

tl

l!

∫ ∞

0
xlG(x)rg(x)dx.

Hence,

MX(t) =
∞∑

r=0

∞∑

l=0

(r + 1)tr+1(a, b)tl

B(a, b)l!
τl,r.

6 Mean Deviations

The amount of scatter in a population is evidently measured to some extent by the totality
of deviations from the mean and median. If X has the BA distribution with cdf F (x), we
can derive the mean deviations about the mean µ = E(X) and about the median m from
the relations

δ1 =
∫ ∞

0
|x− µ| f(x)dx and δ2 =

∫ ∞

0
|x−m| f(x)dx.

respectively. The median is the solution of the non-linear equation

I[Φ
(
α− β

m

)

Φ(α)

](a, b) = 1/2.

Defining the integral I(s) =
∫ s
0 xf(x)dx, these measures can be calculated from

δ1 = 2µF (µ)− 2I(µ) and δ2 = E(X)− 2I(m), (16)
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where F (µ) is easily obtained from equation (7). We now derive formulas to obtain the
integral I(s). Setting

ρ(s, r;α, β) =
∫ s

0
xg(x)G(x)rdx,

we can obtain from equation (14) for a > 0 integer

I(µ) =
∞∑

r=0

(a + r) wr(a, b)
B(a, b)

ρ(µ, a + r − 1;α, β)

and from equation (15) for a > 0 real non-integer

I(µ) =
∞∑

r=0

(r + 1) tr+1(a, b)
B(a, b)

ρ(µ, r; α, β).

Combining (2) and (10) and defining

J(s,−m− 1;α, β) =
∫ s

0
x−m−1 exp

{
1
2

(
α− β

x

)2
}

dx,

we can write

ρ(s, r; α, β) =
β√

2π2rΦr+1(α)

r∑

j=0

(
r

j

) ∞∑

k1,...,kj=0

2sj+j∑

m=0

A(k1, ..., kj)

(
2sj + j

m

)
α2sj+j−m(−β)mJ(s,−m− 1;α, β),

where sj and A(k1, . . . , kj) were defined before. Setting t = α − β/x, the last integral
reduces to

J(s,−m− 1;α, β) =
∫ α−β/s

−∞

1
βm

(α− t)m−1 exp
(
− t2

2

)
dt

and using the binomial expansion and interchanging terms, it becomes

J(s,−m− 1;α, β) =
∞∑

l=0

(−1)lαm−1−l

βm

(
m− 1

l

) ∫ α−β/s

−∞
tl exp

(
− t2

2

)
dt.

We now define
G(l) =

∫ ∞

0
xle−x2/2dx = 2(l−1)/2 Γ(l + 1/2).

In order to evaluate the integral in J(s,−m−1;α, β), it is necessary to consider two cases.
If α− β/s < 0, we have

∫ α−β/s

−∞
tl exp(− t2

2
)dt = (−1)lG(l) + (−1)l+1

∫ −(α−β/s)

0
tl exp(− t2

2
)dt.

If α− β/s > 0, we have

∫ α−β/s

−∞
tl exp(− t2

2
)dt = (−1)lG(l) +

∫ α−β/s

0
tl exp(− t2

2
)dt.
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Further, the integrals of the type
∫ q
0 xle−x2/2dx can be easily determined as Whittaker

and Watson (1990).

∫ q

0
xl exp

(
−x2

2

)
dx =

2l/4+1/4ql/2+1/2e−q2/4

(l/2 + 1/2)(l + 3)
Ml/4+1/4,l/4+3/4(q

2/4)

+
2l/4+1/4ql/2−3/2e−q2/4

l/2 + 1/2
Ml/4+5/4,l/4+3/4(q

2/4),

where Mk,m(x) is the Whittaker function. This function can be expressed in terms of the
confluent hypergeometric function 1F 1 (see Section 1) as Mk,m(x) = e−x/2xm+1/2

1F 1(1
2 +

m−k; 1+2m;x). Hence, we have all quantities to calculate J(s,−m−1;α, β), ρ(s, r;α, β),
I(µ) and then the mean deviations (16).

7 Order Statistics

Order statistics make their appearance in many areas of statistical theory and practice.
The density fi:n(x) of the ith order statistic for i = 1, . . . , n from data values X1, . . . , Xn

following the beta G distribution is

fi:n(x) =
1

B(i, n− i + 1)
f(x)F (x)i−1{1− F (x)}n−i

and then

fi:n(x) =
1

B(i, n− i + 1)
f(x)

n−i∑

j=0

(−1)j

(
n− i

j

)
F (x)i+j−1. (17)

Combining (5) and (17), the density of the ith order statistic becomes

fi:n(x) =
g(x)G(x)a−1{1−G(x)}b−1

B(a, b)B(i, n− i + 1)

n−i∑

j=0

(−1)j

(
n− i

j

)
F (x)i+j−1. (18)

By application of an equation in Section 0.314 of Gradshteyn and Ryzhik (2000) for
power series raised to powers, we have for any j positive integer

( ∞∑

i=0

aiu
i

)j

=
∞∑

i=0

cj,iu
i, (19)

where the coefficients cj,i for i = 1, 2, . . . can be easily obtained from the recurrence
equation

cj,i = (ia0)−1
i∑

m=1

(jm− i + m)amcj,i−m, (20)

with cj,0 = aj
0. The coefficient cj,i comes from cj,0, . . . , cj,i−1 and therefore are obtained

from a0, . . . , ai. The coefficients cj,i can be given explicitly in terms of the quantities ai,
although it is not necessary for programming numerically our expansions in any algebraic
or numerical software. We now use equations (19) and (20).
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For a > 0 integer, we have

F (x)i+j−1 =
(

G(x)a

B(a, b)

)i+j−1
( ∞∑

r=0

wrG(x)r

)i+j−1

.

Substituting u = G(x) and using equations (19) and (20) yields

fi:n(x) =
n−i∑

j=0

(−1)j g(x)ua−1(1− u)b−1

B(a, b)i+jB(i, n− i + 1)

(
n− i

j

)
ua(i+j−1)

∞∑

r=0

ci+j−1,ru
r.

For b > 0 real non-integer, we have

fi:n(x) =
n−i∑

j=0

∞∑

r=0

(−1)jci+j−1,r

(
n− i

j

)
g(x)(1− u)b−1ur+a(i+j)−1

B(a, b)i+jB(i, n− i + 1)
,

and then the power series for (1− u)b−1 gives

fi:n(x) =
n−i∑

j=0

∞∑

r,l=0

(−1)j+lci+j−1,r

(
n− i

j

)
g(x)G(x)r+l+a(i+j)−1

B(a, b)i+jB(i, n− i + 1)
, (21)

where

ci+j−1,r = (rw0)−1
r∑

m=1

{(i + j)m− r}wmci+j−1,r−m. (22)

If b is a integer, the index l in the sum (21) stops at b− 1.
For a > 0 real non-integer, we have

F (x)i+j−1 =
(

1
B(a, b)

)i+j−1
( ∞∑

r=0

trG(x)r

)i+j−1

.

In the same way, using equations (19) and (20), it follows

fi:n(x) =
n−i∑

j=0

(−1)j g(x)ua−1(1− u)b−1

B(a, b)i+jB(i, n− i + 1)

(
n− i

j

) ∞∑

r=0

ci+j−1,ru
r

For b > 0 real non-integer, we have

fi:n(x) =
n−i∑

j=0

∞∑

r=0

(−1)jdi+j−1,r

(
n− i

j

)
g(x)(1− u)b−1ur+a−1

B(a, b)i+jB(i, n− i + 1)
,

and the power series for (1− u)b−1 yields

fi:n(x) =
n−i∑

j=0

∞∑

r,l=0

(−1)j+l di+j−1,r

(
n− i

j

)
g(x)G(x)r+l+a−1

B(a, b)i+jB(i, n− i + 1)
, (23)

where

di+j−1,r = (rt0)−1
r∑

m=1

{(i + j)m− r}tmdi+j−1,r−m. (24)

If b is a integer, the index l in the sum (23) stops at b− 1.

Equations (21) (for a > 0 integer) and (23) (for a > 0 real non-integer) are the main
results of this section.
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8 Moments of order statistics

The sth ordinary moment of the ith order statistic, say Xi:n, for a > 0 integer, follows
from equation (21)

E(Xs
i:n) =

n−i∑

j=0

∞∑

r,l=0

(−1)j+lci+j−1,r

(
n−i

j

)

B(a, b)i+jB(i, n− i + 1)
τs,r+a(i+j)+l−1, (25)

where the coefficient ci+j−1,r is defined in equation (22). If b is an integer, the index l in
the above sum stops at b− 1. For a > 0 real non-integer, equation (23) gives

E(Xs
i:n) =

n−i∑

j=0

∞∑

r,l=0

(−1)j+ldi+j−1,r

(
n−i

j

)

B(a, b)i+jB(i, n− i + 1)
τs,r+a+l−1, (26)

where di+j−1,r is defined in equation (24). If b is an integer, the index l in the above sum
stops at b− 1.

Expansions (25) and (26) are the main results of this section. The L-moments are
analogous to the ordinary moments but can be estimated by linear combinations of order
statistics. They are linear functions of expected order statistics defined by Hosking (1990)

λr+1 = r(r + 1)−1
r∑

k=0

(−1)k

k
E(Xr+1−k:r+1), r = 0, 1, . . .

The first four L-moments are λ1 = E(X1:1), λ2 = 1
2E(X2:2−X1:2), λ3 = 1

3E(X3:3−2X2:3+
X1:3) and λ4 = 1

4E(X4:4−3X3:4 +3X2:4−X1:4). The L-moments have the advantage that
they exist whenever the mean of the distribution exists, even though some higher moments
may not exist, and are relatively robust to the effects of outliers. Setting s = 1 in equations
(25) and (26), the L-moments follow easily from the means of the order statistics for a > 0
integer and a > 0 real non-integer, respectively.

9 Estimation and Inference

Consider that X follows the BA distribution and let θ = (α, β, a, b)T be the parameter
vector. The log-likelihood ` = `(α, β, a, b) for a single observation x of X is

` = log(β)− 2 log(x)− log{B(a, b)}+ log
(

φ(t)
Φ(α)

)

+ (a− 1) log
(

Φ(t)
Φ(α)

)
+ (b− 1) log

(
1− Φ(t)

Φ(α)

)
, x > 0,

where t = (α− β/x). The unit score vector U = ( ∂`
∂α , ∂`

∂β , ∂`
∂a , ∂`

∂b)
T has components

∂`

∂α
= −t− φ(α)

Φ(α)
+ (a− 1)

{
φ(t)
Φ(t)

− φ(α)
Φ(α)

}

− (b− 1)
{

φ(t)− φ(α)
Φ(α)− Φ(t)

− φ(α)
Φ(α)

}
,

∂`

∂β
=

1
β

+
t

x
− (a− 1)

{
φ(t)

xΦ(t)

}
+ (b− 1)

[
φ(t)

y {Φ(α)− Φ(t)}
]

,

∂`

∂a
= log

(
Φ(t)
Φ(α)

)
+ ψ(a + b)− ψ(a),

∂`

∂b
= log

(
1− Φ(t)

Φ(α)

)
+ ψ(a + b)− ψ(b).
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The expected value of the score vector vanishes and then

E

{
φ(t)
Φ(t)

}
=

φ(α)
Φ(α)

, E

{
φ(α)− φ(t)
Φ(α)− Φ(t)

}
=

φ(α)
Φ(α)

,

E

{
φ(t)

xΦ(t)

}
= 0 and E

[
φ(t)

x{Φ(α)− Φ(t)}
]

= 0.

For a random sample x = (x1, . . . , xn) of size n from X, the total log-likelihood is `n =
`n(α, β, a, b) =

∑n
i=1 `(i), where `(i) is the log-likelihood for the ith observation (i =

1, . . . , n). The total score function is Un =
∑n

i=1 U (i), where U (i) has the form given
before for i = 1, . . . , n. The MLE θ̂ of θ is obtained numerically from the nonlinear
equations Un = 0. For interval estimation and hypothesis testing on the parameters in θ
we require the 4× 4 unit information matrix

K = K(θ) =




κα,α κα,β κα,a κα,b

κβ,α κβ,β κβ,a κβ,b

κa,α κa,β κa,a κa,b

κb,α κb,β κb,a κb,b


 .

We define the following expectations mr,s = E
[

1
yr

{
φ(t)
Φ(t)

}s]
for r = 0, . . . , 3 and s = 1, 2

and nr,s,t = E
[

φ(t)s

yr{Φ(α)−Φ(t)}t

]
for r = 0, . . . , 3 and s, t = 1, 2 which can be obtained by

numerical integration. The elements of the information matrix K are given by

κα,α = 1−
[

αφ(α)
Φ(α)

+
{

φ(α)
Φ(α)

}2
]

+ (a + b− 1)
{

φ(α)
Φ(α)

}2

+ (a− 1)m2
0,1

+ (b− 1)E
{

φ(α)− φ(t)
Φ(α)− Φ(t)

}2

,

κα,β = −
{

α +
φ(α)
Φ(α)

}
1
β

+ (a− 1)β m2,1 − (a− 1)m1,2 − (b− 1)β n2,1,2

+ (b− 1)φ(α) n0,1,2 − (b− 1)n0,2,2,

κα,a = 0, κα,b = 0,

κβ,β =
1
β2

+
1
β

[
1− α

{
α +

φ(α)
Φ(α)

}]
+ (a− 1) (α m2,1 − β m3,1)− (b− 1)

× (α n2,1,1 + β n3,1,1 + n2
1,1,1),

κβ,a = 0, κβ,b = 0, κa,a = ψ′(a)− ψ′(a + b), κb,b = ψ′(b)− ψ′(a + b),
κa,b = −ψ′(a + b).

Under conditions that are fulfilled for parameters in the interior of the parameter space
but not on the boundary, the asymptotic distribution of

√
n(θ̂ − θ) is N4(0,K(θ)−1).

The asymptotic multivariate normal N4(0, Kn(θ̂)−1) distribution of θ̂ can be used to con-
struct approximate confidence intervals and confidence regions for the parameters and for
the hazard and survival functions. An asymptotic confidence interval with significance
level γ for each parameter θi is

ACI(θi, 100(1− γ)%) = (θ̂i − zγ/2

√
κθi,θi , θ̂i + zγ/2

√
κθi,θi),
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where κθi,θi is the ith diagonal element of Kn(θ)−1 for i = 1, . . . , 4 and zγ/2 is the quantile
1− γ/2 of the standard normal distribution.

The likelihood ratio (LR) statistic is useful for testing goodness of fit of the BA dis-
tribution and for comparing this distribution with some of its special sub-models. If we
consider the partition θ = (θT

1 , θT
2 )T , tests of hypotheses of the type H0 : θ1 = θ

(0)
1 versus

HA : θ1 6= θ
(0)
1 can be performed via LR tests. The LR statistic for testing the null hy-

pothesis H0 is w = 2{`(θ̂) − `(θ̃)}, where θ̂ and θ̃ are the MLEs of θ under HA and H0,
respectively. Under the null hypothesis, w

d→ χ2
q , where q is the dimension of the vector

θ1 of interest. The LR test rejects H0 if w > ξγ , where ξγ denotes the upper 100γ% point
of the χ2

q distribution. For example, we can check if the fit using the BA distribution is
statistically “superior” to a fit using the alpha distribution for a given data set by testing
H0 : a = b = 1 versus HA : H0 is not true.

10 Application

In this section we compare the results of fitting the BA distribution, alpha and Birnbaum-
Saunders (BS) to two real data sets.

10.1 Data set Glass fibres

The data set studied by Smith, Naylor (1987), which represent the strengths of 1.5 cm
glass fibres, measured at the National Physical Laboratory, England. Unfortunately, the
units of measurement are not given in the paper. The data set is: 0.55, 0.93, 1.25, 1.36,
1.49, 1.52, 1.58, 1.61, 1.64, 1.68, 1.73, 1.81, 2 ,0.74, 1.04, 1.27, 1.39, 1.49, 1.53, 1.59, 1.61,
1.66, 1.68, 1.76, 1.82, 2.01, 0.77, 1.11, 1.28, 1.42, 1.5, 1.54, 1.6, 1.62, 1.66, 1.69, 1.76, 1.84,
2.24, 0.81, 1.13, 1.29, 1.48, 1.5, 1.55, 1.61, 1.62, 1.66, 1.7, 1.77, 1.84, 0.84, 1.24, 1.3, 1.48,
1.51, 1.55, 1.61, 1.63, 1.67, 1.7, 1.78, 1.89.

The MLEs and the maximized log-likelihood l̂BA for the BA distribution are

α̂ = 0.0100, β̂ = 6.5302, â = 0.1542, b̂ = 900.2565 and l̂BA = −22.0736,

whereas the MLEs and the maximized log-likelihood l̂A for the alpha distribution are

α̂ = 3.0217, β̂ = 4.2616 and l̂A = −45.6037

and the MLEs and the maximized log-likelihood l̂BS for the BS distribution are

α̂ = 0.2621, β̂ = 1.4566 and l̂B−S = −28.5305.

The LR statistic for testing the hypotheses H0 : alpha × HA : BA is w = 2{−22.0736−
(−45.6037)} = 47.0602 (p-value = 6.0401 × 10−11) and, therefore, we reject the alpha
distribution in favor of the BA distribution at significance level of 5%.

We also compute the values of the Akaike information criterion (AIC) and Bayesian
information criterion (BIC) for the BA, alpha and BS models. We obtain the values
AIC = 52.1473 and BIC = 60.7198 for the BA model, AIC = 95.2073 and BIC =
99.4936 for the alpha model and AIC = 61.0606 and BIC = 65.3473 for the BS model.
These results indicate that the BA model has the lowest values for the AIC and BIC
statistics among the fitted models, and therefore it could be chosen as the best model.
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10.2 Data set Cattle of Nelore

The data set is obtained from Gusmão (2008). The commercial production of beef cattle
in Brazil, which usually comes from cattle of Nelore, seeks to optimize the process trying
to get a short time to reach cattle the specific weight in the period from birth to weaning
or from weaning to slaughter.For the data with 155 bulls of the Nelore study time (in
days) until the animals reach a weight of 160kg for the period from birth to weaning, we
use only 69 of these 155 animals. The data set is: 138, 140, 141, 143, 145, 146, 146, 148,
148, 149, 149, 150, 151, 151, 151, 151, 152, 152, 153, 153, 153, 155, 156, 156, 157, 158,
158, 159, 159, 159, 159, 159, 159, 160, 161, 161, 161, 162, 163, 163, 163, 163, 164, 164,
164, 164, 165, 166, 166, 166, 166, 167, 167, 170, 170, 172, 172, 173, 174, 176, 179, 179,
180, 183, 184, 185, 187, 189, 197.

The MLEs and the maximized log-likelihood l̂BA for the BA distribution are

α̂ = 3.90479, β̂ = 331.20523, â = 241.7684, b̂ = 8.5502 and l̂BA = −269.4547,

whereas for the alpha distribution are

α̂ = 13.4166, β̂ = 2155.7369 and l̂A = −272.5163

and for the BS distribution are

α̂ = 0.0100, β̂ = 170.6750 and l̂BS = −3208.401.

The LR statistic for testing the hypotheses H0 : alpha × HA : BA is 6.1232 (p-value=
0.0468) and, therefore, we reject the alpha distribution in favor of the BA distribution
at significance level of 5%. The values AIC = 542.9094 and BIC = 548.1396 for the
BA distribution, AIC = 546.9094 and BIC = 553.5008 for the alpha distribution and
AIC = 6420.802 and BIC = 6425.27 for the BS distribution indicate once again that the
BA model has the lowest AIC and BIC values and then it could be taken as the best
model.

11 Conclusions

We introduce the four-parameter beta alpha (BA) distribution which generalizes the alpha
distribution proposed by Salvia (1985). This is achieved by (the well known technique)
following the idea of the cumulative distribution function of the class of beta generalized
distributions proposed by Eugene et al. (2002). The new distribution is quite flexible
in analyzing positive data in place of gamma, Weibull, Birnbaum-Saunders, generalized
exponential and beta exponential distributions. It is useful to model asymmetric data to
the right and uni-modal distributions. We provide a mathematical treatment of the distri-
bution including expansions for the cumulative and density functions, moment generating
function, ordinary moments, mean deviations, moments of order statistics and L-moments.
The estimation of parameters is approached by the method of maximum likelihood and
the expected information matrix is derived. Two applications of the BA distribution are
given to show that this distribution could give better fit than other statistical models
widely used in lifetime analysis.

21



Appendix

We derive an expansion for G(x)ρ which holds for ρ > 0 real non-integer. We can write

G(x)ρ = [1− {1−G(x)}]ρ =
∞∑

j=0

(
ρ

j

)
(−1)j{1−G(x)}j

and then

G(x)ρ =
∞∑

j=0

j∑

r=0

(−1)j+r

(
ρ

j

)(
j

r

)
G(x)r.

We can substitute
∑∞

j=0

∑j
r=0 for

∑∞
r=0

∑∞
j=r to obtain

G(x)ρ =
∞∑

r=0

∞∑

j=r

(−1)j+r

(
ρ

j

)(
j

r

)
G(x)r.

and then

G(x)ρ =
∞∑

r=0

sr(ρ)G(x)r, (27)

where

sr(ρ) =
∞∑

j=r

(−1)r+j

(
ρ

j

)(
j

r

)
. (28)

Equations (27) and (28) are used in Section 4.
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