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Abstract

The aim of this paper is to propose diagnostic methods to Nor-
mal/Independent (NI) nonlinear regression models for censored data.
This class of models provides a useful generalization of normal nonlinear
censored regression model since the error distribution cover heavy-tailed
distributions such as Student-t, Slash, Contaminated Normal, among
others. In this work, we develop global and local influence tools for
nonlinear censored regression models with NI random errors to show
that the non-normal distributions are more robust than the normal in
presence of outliers. In order analyze the sensitivity of the maximum
likelihood estimators of the parameters of model, we study the global and
local influence methodology under the case-deleted and some perturba-
tion schemes, such as case-weight, scale parameter, explanatory variable
and coefficients of the model. We also present simulation studies that
illustrate the behavior of diagnostic measures proposed. Finally, the re-
sults obtained from the analyzes of a real dataset is presented to illustrate
the developed methodology.

Keywords: Censored regression model, EM algorithm, Local influ-
ence, Normal/Independent distributions.

1 Introduction

Nonlinear censored models with normally distributed random errors have

received considerable contributions in different areas of surveys. In medical

∗∗Corresponding author. Email: icgomes04@yahoo.com.br.
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surveys the relationship between the survival time and age of some patient

which has received certain treatment is often nonlinear. In this case the sur-

vival time is a right-censored variable because the patient can leave the study,

die for other reason than the disease under study or for the end of the study.

In engineering nonlinear censored models were applied in accelerated life tests

studies which are considered right-censored for the end of the study (Heuchenne

and Keilegom, 2007). The linear censored regression model can be seen as a

particular case of the nonlinear model.

In the statistical literature, the censored models with normally distributed

random errors are widely applied in several areas for modeling the symmetric

data. However, it can be inappropriate when the data presents heavier tails

than those expected under normality. An alternative to deal with outliers is

the use of heavy-tailed distributions to represent the behavior of random er-

rors. Some authors have adopted the Normal/Independent distributions (NI)

(Lange and Sinsheimer, 1993) in robust regression models. From a Bayesian

perspective and using this class of distributions, Liu (1996) studied the es-

timation of linear censored regression models, Rosa et al. (2003) estimated

linear mixed models and Lachos et al. (2011) worked with linear and nonlinear

censored mixed models. However, other authors have studied the nonlinear

models with different distributions for the errors, Xie et al. (2009) estimated

the parameter the model by EM algorithm considering skew-normal random

errors and an AR(1) structure. Garay et al. (2011) and Labra et al. (2012)

presented the EM estimation with skew-normal/independent random errors,

where the last have considered heteroscedastic structure for the errors. Vanegas

and Cysneiros (2010) used classical approach and NI distributions for the ran-

dom errors. Wang (2007) and Meza et al. (2012) estimated a nonlinear mixed

model, the first one through Monte Carlo EM methodology and second used

EM algorithm and NI distributions for the random errors. Bayesian estima-

tion was made by Cancho et al. (2011) with skew-normal/independent random

errors and by Cancho et al. (2010), who also presented the classical approach

and used skew-normal errors. The papers which has incorporated censored to

estimation of nonlinear models was Heuchenne and Keilegom (2007), Matos et

al. (2013) e Garay et al. (2015b).

A proper statistical anaylsis requires that when proposing a model to rep-

resent a particular event we should estimate it and present evidences to sup-

port the proposed model. A possible alternative is to use the goodness of fit
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techniques available in most statistical softwares, as parameter significance,

coefficient determination and residual analysis (Montgomery and Peck, 1992).

Moreover, the use of influence diagnostics methods allow to identify influential

observations in the estimation process and evaluate the robustness of the esti-

mates when the model or the data suffers small perturbations (Salgado, 2006;

Cook and Weisberg, 1982). In the framework of influence diagnostics we can

use global and/or local influence tools.

Global influence measures are methods which proposes the elimination of

one or a set of observations and, next, analyze the estimates provided by the

model with and without this data. Cook (1977) presented a measure to identify

influential observations in linear regression models.

Recently, have been often discussed in the literature the local influence ana-

lysis, which goal is to evaluate the influence of small perturbations in the model

or the data about the estimates provided by the model. Cook (1986) proposed

a local influence analysis based on the change of the normal curvature of the

neighborhood of a point where the postulated and perturbed models overlaps.

Zhu and Lee (2001) improved the Cook method working with the conditional

expectation of the log-likelihood function. Lachos (2002) studied diagnostic

analysis of the Grubbs model. Ortega et al. (2003) worked with diagnostic ana-

lysis for censored regression models with Generalized Log-Gama distribution

for the random errors. Zeller et al. (2010) proposed influence diagnostics for

linear mixed models using distributions from the Skew-Normal/Independent

family. Matos et al. (2013) analyzed influence diagnostics in linear and non-

linear censored models with Student-t distribution.

In this work we present the global and local influence analysis for nonlinear

censored regression models with heavy-tailed distributed random errors. For

this purpose we developed with the conditional expectation of the complete

data log-likelihood function (Q function) to obtain the measures. To assess

the global influence we use the Cook distance Cook (1977) and for the local

influence we use the Zhu and Lee (2001) approach and analyze case-weight,

scale, on one explanatory variable and in the coefficients perturbation schemes.

The usefulness of our method is illustrated in simulation studies and in a real

dataset analysis. We also present the influence measures and an application

to the linear case.

The rest of this paper is organized as follows. A brief review of the NI

distributions class is presented in Section 2. In Section 3 we show the nonlinear
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censored regression model with NI random errors and the EM algorithm was

used for this estimation. The influence diagnostic analysis with global and

local influence measures is presented in Section 4. The simulation study and

real dataset application are given in Section 5 e 6. Finally, in Section 7 deals

with some conclusions.

2 Normal/Independent Distributions

The Normal/Independent family of distributions includes symmetric dis-

tributions which extends the Normal case by the inclusion of kurtosis. In the

last years this family has received increasing attention, because these distri-

butions are more adequate to perform robust inference methods. Therefore,

these distributions have been applied in different scientific areas to model data

with atypical observations. A distribution of the NI class is defined as the

distribution of a random variable (rv) Y given by

Y = µ+
Z√
U
, (1)

where U is positive rv independent of a rv Z with Normal distribution (mean

zero and variance σ2) and µ ∈ R is a known constant. From now on this paper,

this rv is denoted by Y ∼ NI (µ, σ2, ν), where ν is the parameter indexing the

distribution of U . The marginal probability density function (pdf) of Y is

given by

f(y) =

∫ ∞
0

e−
u

2σ2
(y−µ)2√u√
2πσ2

dH(u), y ∈ R,

where H(u) is the cumulative distribution function (cdf) of U .

The Normal distribution is a particular case of this family and occurs when

H is a degenerate probability mass function at one (U = 1 with probability

1). We can easily notice that for each properly choose of U we will have a

different distribution. Some of the most used distributions of this family are

presented are:

Pearson Type VII distribution: Occurs when U ∼ Gamma(δ/2, ν/2), with

ν > 0 and δ > 0, where Gamma(a, b) denote the Gamma distribution

with a/b mean. In this particularly case, if δ = ν we recover the Student-

t distribution. More specifically, if δ = ν = 1 the Cauchy distribution is

obtained.
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Slash distribution: In this case U ∼ Beta(ν, 1), with ν > 0. When ν=1 we

have the standard Slash distribution, and if ν →∞ we have the Normal

distribution Wang and Genton (2006).

Contaminated Normal distribution: For this distribution the mixture vari-

able U is a discrete random variable assuming two values: λ ∈ (0, 1) with

probability ν and 1 with probability 1 − ν. In this case ν can be inter-

preted as the outliers proportion and λ interpreted as a scale factor.

3 Model specification

The Normal/Independent nonlinear regression model is represented by the

following equation

Yi = η(X>i ,β) + εi, i = 1, ..., n, (2)

where εi ∼ NI(0, σ2, ν), η(X>i ,β) is a nonlinear function of β = (β1, ..., βp)
>

that is twice continuously differentiable, Yi is the ith response variable and

X>i = (xi1, ..., xip) is a vector of the values of p explanatory variables. By Eq.

(1), we have that Yi ∼ NI(η(X>i ,β), σ2, ν), for i = 1, ..., n. We call (2) the NI

censored nonlinear regression (CNLNIR) model.

In the linear case, we have

Yi = X>i β + εi, εi ∼ NI(0, σ2, ν), i = 1, ..., n, (3)

where Yi is the ith response, β> = (β1, ..., βp)
> is the parameter vector and

X>i = (Xi1, ..., Xip) is the covariable vector of the ith case. We call (3) the NI

censored linear regression (CLNIR) model.

Without loss of gerenerality, troughout the paper we present our diagnosis

analysis from a right-censored regression framework, extension to left and in-

terval cesoring are straight forward. In a right-cesoring setup, the observations

can take the following values

Y ?
i =

{
κi, if Yi ≥ κi

Yi, if Yi < κi

where Y ?
i is the observed response, Yi is the true value and κi represent a

known cut off point for i = 1, ...n.
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3.1 Parameter estimation

The parameter vector of the NLNICR model is given by θ = (βT , σ2)T . In

this paper we assumed that the degrees of freedom ν is fixed and known as

some authors have treated in their work, see, e.g., Lange et al. (1989); Meza et

al. (2012). Meza et al. (2012) proposed fitting the model with several values

of ν and choose the one which maximizes of log-likelihood function. Lange et

al. (1989) concluded there is an increase in variance of the model when ν is

estimated, comparing to a model in which ν is fixed and known. In our studies

of simulation and in the real dataset application we consider the Meza et al.

(2012) approach. It is important to notice that our main focus is to perform

diagnosis analysis and only use the estimation methodology.

To estimate the parameters of the NLNICR model was used the method-

ology of the EM algorithm Dempster et al. (1977). Supposing that there are

m censored observations of the response variable Y, we can partition Y the

following way, Y = (κ1, ..., κm, Ym+1, ..., Yn), m censored values and n − m

uncensored values. Then the log-likelihood function for the parameters vector

θ can be expressed as

l(θ|Y) =
m∑
i=1

log

[
F

(
η(X>i ,β)− κi

σ

∣∣∣∣0, 1, ν)]
+

n∑
j=m+1

log
[
f
(
yj|η(X>j ,β), σ2, ν

)]
,

where F (.|µ, σ2, ν) denotes the cumulative distribution function (cdf) and

f(.|µ, σ2, ν) probability density function (pdf) of the NI distribution with pa-

rameters (µ, σ2, ν). We consider the censored observations Yi as realizations

of a latent random variable YL ∼ NI(η(X>i ,β), σ2, ν). The augmented data

vector is Yc = (Y,YL,U). Then we can expressed the log-likelihood function

as

l(θ|Yc) =
1

2

n∑
i=1

log(ui)−
n

2
log(2π)− n

2
log(σ2) +

n∑
i=1

log h(ui|ν) (4)

− 1

2σ2

n∑
i=1

(
uiy

2
i − 2uiyiη(X>i ,β) + uiη(X>i ,β)>η(X>i ,β)

)
,

where h(u|ν) denote the pdf of the rv U . In the following, the superscript ’(k)’
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indicates the estimate of the parameter vector in the k stage of the algorithm.

For the E step, we calculate the Q function expressed as

Q(θ|θ(k)) = E
θ(k) [l(θ|Yc)|Y] ,

where E
θ(k) denotes the expectation using the θ(k) estimate to θ. The above

expression is completely determined by the following expectations

Esi(θ(k)) = E
θ(k) [UiY

s
i |Yi] , s = 0, 1, 2, i = 1, ..., n, (5)

since E
θ(k) [log Ui|Yi] and E

θ(k) [log h(ui|ν)|Yi] only depends of ν, known, and

s is the powers of Yi in equation (4). Then we can rewrite the Q function as

Q(θ|θ(k)) = ς − n

2
log(σ2)− 1

2σ2

n∑
i=1

[
E2i(θ

(k))− 2η(X>i ,β)E1i(θ
(k))

+η(X>i ,β)>η(X>i β)E0i(θ
(k))
]

where ς is a constant independent of θ.

For a uncensored observation we have Yi ∼ NI(η(X>i ,β), σ2, ν) and, there-

fore, Esi(θ(k)) = ysiEθ(k)(Ui|Yi), so we can find expression to E
θ(k)(Ui|Yi) for

the distributions in the NI family. For the Student-t, Slash and Contaminated

Normal distributions the expressions were obtained by Garay et al. (2015b).

For a censored observation Yi = κi if Yi ≥ κi, that is, Yi ∈ (κi,∞), i =

1, ..., n. The expressions for the conditional expectations (5) were obtained by

Garay et al. (2015b).

In the M step of the algorithm we need to maximize Q(θ|θ(k)) over to the

parameters β and σ2. The leading expressions are:

β(k+1) = argmin
β

(τ (k) − µ)>Ê
(k)

0 (τ (k) − µ),

σ2(k+1)

=
1

n

n∑
i=1

[
E2i(θ

(k))− 2µiE1i(θ
(k)) + µ>i µiE0i(θ

(k))
]
,

where Ê
(k)

0 = diag(Ê (k)
01 , ..., Ê

(k)
0n )>, µ = (µ1, ..., µn)>, µi = η(Xi,β), and τ (k) =(

τ
(k)
1 , ..., τ

(k)
n

)>
represents the corrected observed response τ

(k)
i = E1i(θ

(k))/E0i(θ
(k)).

For more details and further calculations, see Garay et al. (2015b). The full

development of the estimation process in the linear case can be seen in Garay
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et al. (2015a).

4 Diagnostic analysis

Diagnostic techniques have been proposed to detected observations that im-

pact on model fitting. These techniques can be considered in two approaches:

case-deletion measures Cook (1977) and local influence Cook (1986); Cook and

Weisberg (1982).

4.1 Global influence

The case-deletion analysis is a the most used technique of global influence

and study the effect of dropping the ith case from a dataset. Let Yc[i] be

the augmented data of the l
(
θ|Yc[i]

)
with the complete-data log-likelihood

function without the ith case and θ̂[i] =
(
β̂
>
[i], σ̂

2
[i]

)>
the EM estimate for θ

in that case, assuming ν as a fixed and known constant.

To assess the influence of the ith observation over θ̂ we calculate the dif-

ference between θ̂[i] and θ̂. If the θ̂[i] is considered far from θ̂, then the ith

case is considered influential.

In order to reduce the computational efforts in the θ̂[i] calculation, Zhu et

al. (2001) proposed to use the Q function instead of the log-likelihood function.

To obtain θ̂[i] we used

θ̂
1

[i] = θ̂ +
[
−Q̈(θ|θ̂)

]−1

Q̇[i](θ|θ̂), (6)

where

Q̈(θ|θ̂) =
∂2Q(θ|θ̂)

∂θ∂θ>

∣∣∣θ=θ̂
and Q̇[i](θ|θ̂) =

∂Q[i](θ|θ̂)

∂θ

∣∣∣θ=θ̂
,

denotes the Hessian matrix and gradient vector of Q function, respectively.

The quantity θ̂
1

[i] is called one step approximation of the estimated parameters

vector without the ith observation.

The adaptation of the Cook distance between θ̂[i] and θ̂ proposed by Cook

and Weisberg (1982) is

GDi =
(
θ̂[i] − θ̂

)> [
−Q̈(θ|θ̂)

] (
θ̂[i] − θ̂

)
, i = 1, ..., n. (7)
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Replacing the expression (6) in equation (7), we have

GD1
i = Q̇[i](θ|θ̂)>

[
−Q̈(θ|θ̂)

]−1

Q̇[i](θ|θ̂).

An observation should be regarded as influential if GDi is greater than

(p + 1)/n, where p is dimension of the β vector and n is the sample size

(Massuia et al., 2014). Note that in this method which will vary from model

to model is the gradient vector and the Hessian matrix.

For the nonlinear case the gradient vector is

∂Q[i](θ|θ̂)

∂β

∣∣∣θ=θ̂
=

1

σ̂2

∑
i 6=j

[
E1j(θ̂)dµj − E0j(θ̂)µjdµj

]
, and

∂Q[i](θ|θ̂)

∂σ2

∣∣∣θ=θ̂
= − n

2σ̂2
+

1

2σ̂4

∑
i 6=j

[
E2j(θ̂)− 2E1j(θ̂)µj + E0j(θ̂)µ2

j

]
.

And the Hessian matrix is

Q̈β(θ|θ̂) =
1

σ̂2

n∑
i=1

[
E1i(θ̂)Dµi − E0i(θ̂)

(
dµidµ

>
i + µi1

>
pDµi

)]
,

Q̈βσ2(θ|θ̂) = − 1

σ̂4

n∑
i=1

[
E1i(θ̂)dµi − E0i(θ̂)µidµi

]
, and

Q̈σ2(θ|θ̂) =
n

2σ̂4
− 1

σ̂6

n∑
i=1

[
E2i(θ̂)− 2E1i(θ̂)µi + E0i(θ̂)µ2

i

]
,

where 1>p is a vector p × 1 with all entries equal to 1, µi = η(Xi, β̂), dµi =

∂η(Xi, β̂)

∂β
, Dµi =

∂2η(Xi, β̂)

∂β∂β>
.

And in the linear case, the gradient vector is

∂Q[i](θ|θ̂)

∂β

∣∣∣θ=θ̂
=

1

σ̂2

∑
i 6=j

[
XjE1j(θ̂)− E0j(θ̂)XjX

>
j β̂
]
, and

∂Q[i](θ|θ̂)

∂σ2

∣∣∣θ=θ̂
= − 1

2σ̂2

∑
i 6=j

[
1− 1

σ̂2

(
E2j(θ̂)− 2(X>j β̂)E1j(θ̂)

+E0j(θ̂)
(
XT
j β̂
)T (

XT
j β̂
))]

.
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And the Hessian matrix is

Q̈β(θ|θ̂) = − 1

σ̂2

n∑
i=1

E0j(θ̂)X>j Xj,

Q̈σ2(θ|θ̂) =
1

2σ̂4

n∑
i=1

[
1− 2

σ̂2

(
E2j(θ̂)− 2(X>j β̂)E1j(θ̂)

+E0j(θ̂)
(
XT
j β̂
)> (

X>j β̂
))]

, and

Q̈βσ2(θ|θ̂) = − 1

σ̂4

n∑
i=1

[
XjE1j(θ̂)− E0j(θ̂)XjX

>
j β̂
]
.

4.2 Local influence

Let ω = (ω1, ..., ωg)
> be a perturbation vector varying in an open re-

gion Ω ⊂ Rg and let l (θ,ω|Yc) the complete-data log-likelihood function of

the perturbed model. There is a vector ω0 ∈ Ω such that l (θ,ω0|Yc) =

l (θ|Yc) ∀ θ ∈ Θ ⊆ Rp+1. The influence graph is defined as α(ω) =(
ω>, fQ(ω)

)>
, where fQ(ω) is the Q-displacement function:

fQ(ω) = 2
[
Q(θ̂|θ̂)−Q(θ̂(ω)|θ̂)

]
,

where θ̂(ω) is the estimate of θ which maximizes the Q-function of the per-

turbed model, Q(θ,ω|θ̂). The fQ(ω) function can be seen as a measure of

difference between θ̂ and θ̂(ω). We will use the normal curvature CfQ,d of

α(ω) at ω0 in the direction of some unit vector d to describe the local behav-

ior of the Q-displacement function.

Zhu and Lee (2001) showed that

CfQ,d = −2d>Q̈ω0d and − Q̈ω0 = ∆>ω0

[
−Q̈(θ|θ̂)

]−1

∆ω0 ,

where

∆ω =
∂2Q(θ,ω|θ̂)

∂θ∂ω>

∣∣∣∣∣
θ=θ̂(ω)

and Q̈θ(θ|θ̂) =
∂2Q(θ|θ̂)

∂θ∂θ>

∣∣∣∣∣
θ=θ̂

.

The information provided by the symmetric matrix−2Q̈ω0 is used to detect
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influential observations. For this, we consider the spectral decomposition

−2Q̈ω0 =

g∑
k=1

ζkεkε
T
k ,

where {(ζk, εk), k = 1, .., g} are eigenvalue-eigenvector pairs of −2Q̈ω0 , with

ζ1 ≥ ... ≥ ζp > ζp+1 = ... = ζg = 0, and eigenvectors εk, k = 1, ..., g. Let

ζ̃k =
ζk

ζ1 + ...+ ζg
, ε2

k = (ε2k1, ..., ε
2
kg)
>, and M(0) =

g∑
k=1

ζ̃kε
2
k.

The lth component of M(0) is M(0)l =
∑g

k=1 ζ̃kε
2
kl. The evaluation of

influential observations is based on visual inspection of M(0)l, l = 1, ..., g,

plotted against the index l. The lth case is said to be influential if M(0)l is

greater than a benchmark value. Based on Poon and Poon (1999), Zhu and

Lee (2001) proposed to use the conformal normal curvature, given by

Bfq ,d =
CfQ,d

tr
[
−2Q̈ω0

] . (8)

The computation of the expression (8) is quite simple and it is such that

0 ≤ BfQ,d ≤ 1. Fix dl to be a vector with the lth entry equals to 1 and

all others entries equal to 0. Zhu and Lee (2001) showed that ∀l, M(0)l =

BfQ,dl . Therefore we are able to obtain M(0)l through BfQ,dl . The benchmark

value proposed by Lee and Xu (2004) to M(0) is M(0) + c∗SM(0), where

M(0) and SM(0) be the mean and standard error of M(0), respectively, and

c∗ is a constant. In this paper we use c∗ = 3.5, as made by Massuia et al.

(2014).

We will evaluate the matrix ∆ω0 under the following perturbation schemes:

of case weight, on the scale parameter, in an explanatory variable and in the

coefficients of the model.

4.2.1 Perturbation schemes

In this Section we will detail the building of the matrix ∆ω0 under the

case weight and on the scale parameter perturbations. For each perturbation
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scheme, we use partitioned form ∆ω =
(
∆>β ,∆

>
σ2

)>
, where

∆β =
∂2Q(θ,ω|θ̂)

∂β∂ω>

∣∣∣θ=θ̂(ω)
and ∆σ2 =

∂2Q(θ,ω|θ̂)

∂σ2∂ω>

∣∣∣θ=θ̂(ω)
.

In the nonlinear case we have

Case weight perturbation: Consider the weights to the expected values

of the complete-data log-likelihood function. In this case, let ω = (ω1, ..., ωn)>

and ω0 = (1, ..., 1)> = 1>n . So

∆β =
1

σ̂2

n∑
i=1

[
E1i(θ̂)dµi − E0i(θ̂)µidµi

]
, and

∆σ2 = − n

2σ̂2
− 1

2σ̂4

n∑
i=1

[
E2i(θ̂)− 2E1i(θ̂)µi + E0i(θ̂)µ2

i

]
.

Scale perturbation: To study the effect of perturbing the assumption

over σ2 we consider σ2(ωi) = ω−1
i σ2, ωi > 0, i = 1, ..., n. Under this scheme,

the non-perturbed model occurs when ω0 = 1>n . Therefore, the matrix ∆ω is

∆β =
1

σ̂2

n∑
i=1

[
E1i(θ̂)dµi − E0i(θ̂)µidµi

]
, and

∆σ2 =
1

2σ̂4

n∑
i=1

[
E2i(θ̂)− 2E1i(θ̂)µi + E0i(θ̂)µ2

i

]
.

For the explanatory variable and coefficients perturbation schemes, the

contamination is made inside of the nonlinear function η(Xi,β). Thus we

have to calculate the entries of the ∆ω matrix for each nonlinear function.

The expressions obtained for the application is presented in Appendix.

For the linear case we have

Case-weight perturbation: Consider the weights to the expected values

of the complete-data log-likelihood. In this case, let ω = (ω1, ..., ωn)> and

ω0 = (1, ..., 1)> = 1>n . Such that

∆β =
1

σ̂2

[
X>diag

[
E1(θ̂)

]
−A

]
, and

∆σ2 = − 1

2σ̂2

[
1>n −

1

σ̂2
B>
]
,
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where diag(W) denotes the diagonal of matrix W, A is a matrix defined as

X>Xβ̂E0(θ̂)>, Ei(θ̂) = (Ei1(θ̂), . . . , Ein(θ̂))>, i = 0, 1, 2, X is the design matrix

and B is an n-dimensional vector with coordinates Bi = E2i(θ̂)−2E1i(θ̂)X>i β̂+

E0i(θ̂)(X>i β̂)>(X>i β̂), i = 1, ..., n.

Scale perturbation: To study the effect of perturbing over σ2 we consider

σ2(ωi) = ω−1
i σ2, i = 1, ..., n. Under this scheme, the non-perturbed model

occurs when ω0 = 1>n . Therefore, the matrix ∆ω is

∆β =
1

σ̂2

[
X>diag

[
E1(θ̂)

]
−A

]
, and

∆σ2 = − 1

2σ̂4
B>.

Explanatory variable perturbation: In this case we will perturb a

continue explanatory variable x(,t)(ω) = x(,t) +ω>, where x(,t) ∈ Rn is the tth

column of matrix X and ω ∈ Rn. Then, each line of the design matrix will be

of the form Xi(ω)> = (xi1, ..., xit +ωi, ..., xip) = X>i +ωict
>, where ct denotes

a vector p × 1 with the pth entry equals to 1 and all others entries equal to

equal to 0. As a result, the additive perturbation have ω0 = 0 when t = 0. To

study the local influence we will replace Xi(ω)> = X>i + ωict
> in Q-function.

This way we have

∆β =
1

σ̂2

[
ctE1(θ̂)− 2ctβ̂

>
X>diag

(
E0(θ̂)

)
− 2ctβ̂

>
ctω

> diag
(
E0(θ̂)

)]
,

∆σ2 =
1

σ̂4

[
ct
>β̂β̂

>
X>diag

(
E0(θ̂)

)
+ ct

>β̂β̂
>
ctω

>diag
(
E0(θ̂)

)
−ct

>β̂E1(θ̂)
]
.

Coefficients perturbation: The perturbation in β’s is introduced re-

placing β for β(ω) = βωi, with i = 1, ..., n and ω ∈ Rn in the Q-function.

Then,

∆β =
1

σ̂2

n∑
i=1

[
E1i(θ̂)X>i ωi − E0i(θ̂)ω2

iXiX
>
i β̂
]
, and

∆σ2 =
1

σ̂2

n∑
i=1

[
X>i E1i(θ̂)− 2E0i(θ̂)ωiXiX

>
i β̂
]
.
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5 Simulation studies

Some Monte Carlo simulations have been developed to compare the perfor-

mance of the estimates on nonlinear censored models in the presence of outliers

on the response variable. We consider the nonlinear growth-curve model

Yi =
β1

1 + exp(β2 + β3xi))
+ εi, i = 1, ..., n, (9)

where n = 100, εi ∼ N(0, σ2) to i = 2, 3, ...99, ε1 = −5 and ε100 = 5,

xi ∼ Unif(10; 20), β1 = 330, β2 = 6, 5, β3 = −0, 7 and σ2 = 1. We esti-

mate the model (9) with 10%, 20% and 40% of censure. We observed that for

the different censure scenarios, the diagnosis results obtained were very similar

and the difference was observed in the estimated standard deviations of the

censored regression. For this reason, from now on we focus and present the re-

sults for the simulation study with 20% of censure. The analyzed distributions

were Normal, Student-t (ν = 3), Slash (ν = 2) and Contaminated Normal

(ν = (0.2, 0.5)). The choice of the ν values for the non-normal models were to

maximize the log-likelihood function. The construction of errors determined

the cases #1 and #100 as perturbed. To generate the censored observations

we followed the propose made by Tsuyuguchi (2012). We generate the pro-

posed model (9) and we define the censoring level κi as the rth value of the

ordered vector Y, that is, κi = Y(r), ∀i = 1, ..., r where r = n − n × pc is the

number of censored observations and pc is the percentage of censorship. Thus

Y(r) becomes a censored observation and all values of Y greater or equal to

Y(r) will have the same value of it. The initial values for the parameters were

obtained by the nls function of the package stats, in software R 3.0.2 version

(R Core Team, 2013).

We propose to use as the perturbation vector ω the absolute value of the

ordinary residuals (AOR)

ri =

∣∣∣∣∣yi − β̂1

1 + exp(β̂2 + β̂3xi))

∣∣∣∣∣ , i = 1, ..., n, (10)

where β̂i, i = 1, 2, 3 are the estimators of β’s. We performed a Monte Carlo

study with 1.000 replicates of the proposed models to assess the percentage of

replications in which the contaminated observations was taken as influential,

as well as the mean and standard deviation (SD) of the influence measures in
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these cases for the influence techniques we presented in this paper (see Table 1).

5.1 Global influence

The main interest of this study is evaluate the sensibility of the proposed

model to atypical observations by the global influence techniques. We will

present only the graphics and Monte Carlo study for the global estimation

case, since the results obtained by analysis of β’s and σ were quite similar.

We observed a considerable difference of the Cook distance between the

Normal and non-normal models (see the first four lines in Table 1). We can

see that the contaminated observations were influential for all the Monte Carlo

replications in the Normal model. These cases, however, were not influential for

any replications for Student-t and Slash models. For the Contaminated Nor-

mal model it was influential for some replications, nevertheless with measures

substantially smaller than Normal model. The Figure 1 presents the general-

ized Cook distance for the four proposed models in one of the replications. We

can see the Normal model was highly influenced by these observations, and

the heavy-tailed models seems to be able to accommodate the effects of these

cases.

5.2 Local influence

In this Subsection the main idea is evaluate the robustness of the proposed

models to the outliers by local influence methods. In the Monte Carlo study

(see Table 1) for the case-weight perturbation, we have noticed that the in-

fluence measures were smaller in the non-normal models and the perturbed

observations were influential for almost all the replications to Normal model.

In the Student-t and Slash models these cases were not influential in any repli-

cation and for the Contaminated Normal model it was influential for some

replications, but with measure a somewhat greater than the benchmark value.

We observed a similar behavior in the scale perturbation scheme. In this

case, however, the case #100 was not influential for any replications for the

Contaminated Normal model. In the explanatory variable perturbation scheme

these observations were not influential for any of the four models. For the coef-

ficients perturbations only the case #100 were influential for all replications in

the Normal models and for some replications in Contaminated Normal model,

in this scenario with influence measure quite close between these two models.

Finally, we presented the graphical representation of the results of one repli-

cation. The both contaminated observations were influential to Normal model
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in the case-weight (Figure 2) and on scale (Figure 3) perturbation schemes.

For the explanatory variable and coefficients perturbations (Figures 4 and

5) only the case #100 was influential to Normal model. In the coefficients

perturbation, specifically, the case #24 (not contaminated by our purpose)

appeared as influential for the non-normal models, but with less influence over

the Student-t model.

Our findings suggests the heavy-tailed models were robust against outliers

and the Student-t model was the best model, because it presented lower mea-

sures values.

6 Application

In this section we apply the proposed methodology in two real data for

nonlinear an for linear censored regression models.

6.1 Nonlinear censored regression model

In this Subsection we will work with the low cycle fatigue data from a

strain-controlled test presented in Nelson (2004). This study consists in count

the number of cycles until the failure of 26 specimens of metals submitted to

pseudo stress.

The following model was proposed to fit this data:

yi = β1exp(β2xi) + εi, i = 1, ..., 26,

where yi = log10Cycles, xi = 1/(Pseudo-stress) and εi ∼ NI(0, σ2, ν). The

response is right censored because some metals could not fail at the end of the

study. This dataset has 15,4% of censored observations. The Normal, Student-

t (ν = 2.1), Slash (ν = 1.2) and Contaminated Normal (ν = (0.1, 0.3)) models

were tested. The first three lines in Table 3 shows the results. The Student-t is

the model that provided the most accurate estimates (smaller standard error

- SE).

The robustness of the models proposed was assessed by considering the

influence of a single outlying observation on the EM estimate of θ. For this

we replace y10 for y10 + τ , τ between 0 and 5, and we calculate the relative

change (in %) in the estimates. Figure 6 shows the heavy-tailed models were

less influenced by outliers than the Normal model for the β’s parameters.

In the estimation of σ2, the Contaminated Normal model was influenced by

contamination. The Student-t is the model less affected by the contamination,
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providing stable estimates in all cases studied (Table 2).

To identify atypical observations or model misspecification we calculate the

AOR for this model

ri =
∣∣∣yi − β̂1exp(β̂2xi)

∣∣∣ , i = 1, ..., n, (11)

where β̂i’s are the EM estimates for the βi, i = 1, 2.. The observation #5

presented a value of residual far from the others observations. To the following

analysis we consider the perturbation vector ω = AOR and we apply the

global and local influence techniques proposed in Section 4. By Cook distance

(Figure 7) we can see the observation is highly influential to Normal Model and

quite less influential to Contaminated Normal model. The others heavy-tailed

models were not influenced by this observation.

In the local influence diagnostics these observations were influential to Nor-

mal and Contaminated Normal models for the case-weight (Figure 8) and scale

(Figure 9) perturbations schemes. In the explanatory variable (Figure 10) and

coefficients (Figure 11) perturbations schemes there was no observation influen-

tial. The Student-t and Slash models were not influenced by this observations.

Analyzing the observation #5 of the dataset we notice that it was the

metal which failed with smaller number of cycles between the metals submit-

ted to pseudo stress less than 100. We can see the case #5 was influential in

global model estimation and on scale parameter estimation for both Normal

and Contaminated Normal models, although this influence is lower in Contam-

inated Normal model. To assess the impact of this observation we used the

measures total relative changes (TRC) and maximum relative changes (MRC)

suggested by Lee et al. (2006), defined by

TRC =

np∑
i=1

|θ̂i − θ̂oi |
θ̂i

, and

MRC = maxi
|θ̂i − θ̂oi |

θ̂i
,

where θ̂i and θ̂oi are the EM estimates of the model obtained from the data with

and without the influential observation. These measures for the four proposed

models were presented in the last two lines of the Table 3. The impact of this

observation was clearly smaller in the non-normal models.

Comparing the models in estimation and diagnostic analysis, the Student-t
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model is the better one because it provides more precise estimates and it is

more robust than the others non-normal models analyzed (as shown in our

simulation study) in presence of atypical observations.

6.2 Linear censored regression model

We will consider the motorette data reported in Schmee and Hahn (1979).

This study consists in times to failure in hours of 40 motorettes tested at 4

different temperatures: 150◦C, 170◦C, 190◦C and 220◦C.

The following model was proposed to fit this data:

yi = β0 + β1xi + εi, i = 1, ..., 40,

where yi = log10(ti), ti is the ith failure time, xi = 1000/(tempi + 273.2) e

εi ∼ NI(0, σ2, ν). The response is right censored because some motorettes

may not fail at the end of the study. For this dataset we have censoring level

of 57.5%. The Normal, Student-t (ν = 2.1), Slash (ν = 1.2) and Contaminated

Normal (ν = (0.1, 0.3)) models were tested. First three lines in Table 5 shows

the results. The Student-t is the model provides more accurate estimates

(smaller SE).

The robustness of the models proposed was assessed by considering the

influence of a single outlying observation on the EM estimate of θ. For this

we replace y10 for y10 + τ , τ between 0 and 5, and we calculate the relative

change (in %) in the estimates. Figure 12 and Table 4 show the heavy-tailed

models were less influenced by outliers than the Normal model for the β’s

parameters. In the estimation of σ2, the Contaminated Normal model has

been so influenced as the Normal model. The Student-t is the model less

affected by the contamination, providing stable estimates in all cases studied.

To identify atypical observations or model misspecification we calculate the

AOR presented in (11). The observations #21 and #22 presented residuals

lower than -2.5. By Cook distance (Figure 13) we can see the two observa-

tions are influential only for Normal Model, corroborating the analysis of this

datased showed by Zhu et al. (2001). The case #11 presented a value of Cook

distance closer to the benchmark value (0.6) for the Normal model.

In the local influence diagnostics these observations were influential to Nor-

mal model for all the four perturbations schemes analyzed. The heavy-tailed

models were not influenced by this observations (Figures 14-17).
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We can conclude that, for the Normal model, cases #21 and #22 were

highly influential in global model estimation, for both β’s and σ2 estimation. In

addition the values of the explanatory variable for these cases were influential

in estimation process. In the dataset we can see that these two values presented

the lower value of failure time and it were very different of the others failure

times for the 190◦C.

We would like to emphasize that the set of influence techniques do not have

the purpose of exclude the influential cases, but recognize them and choose

a better way to deal with it. To use the Normal model we may suggest the

inspection of this observations to see if it are from measurement errors of typing

errors, and if possible, try to corret it. If these cases were genuine observations

we may propose a more adequate model to accomodate this effects or list this

weakness of the estimation process. The fact the results obtained were highly

dependent of this two observations. In the model estimated without this cases

we observed reduction of 44% in the standard errors of the coefficients and

69% in the scale parameter (see Table 5). For the non-normal models, the

results were robust against these cases.

Comparing the models in estimation and diagnostic analysis, the Student-t

model is the better one because it provides more precise estimates and it is

more robust than the others non-normal models analyzed (as shown in our

simulation study) in presence of atypical observations.

7 Conclusions

In this paper we study nonlinear censored regression models with errors

following distributions of the Normal/Independent family (NLNICR). The pa-

rameters estimation was obtained by EM algorithm through the method pro-

posed by Garay et al. (2015a,b). We present extensions of some diagnostic

methods to NLNICR models based on case-deletion and for the local influence

analyze, we used four perturbations schemes: case weight, scale, covariable

and coefficients. Simulations studies and an application were presented.

The simulation studies and application showed that the proposed methodol-

ogy is able to correctly detect the influential observations and that the heavy-

tailed models (Student-t, Slash and Contaminated Normal) were less influ-

enced by outlying observations than the Normal model as expected. There-

fore, we conclude that the influential diagnosis presented can provide a tool set

to identify the goodness of fit of nonlinear censored regression models in the
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NI family and that the non-Normal distributions can be required in modeling.

In this case, we suggest the heavy tail distributions in the NI family as an

alternative to model data with outliers without the necessity of the use of any

transformations or deletion of data, which would mean loss of information.
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Appendix

Expressions for the covariable and coefficients perturbations schemes to

application. For the local influence diagnostic we calculate the matrix ∆ω0 to

the covariable and coefficients perturbation schemes.

Covariable perturbation: We disturb the continue covariable xi(ωi) =

xi × ωi, where xi is the ith entry of the vector X. We have ω0 = 1. We had

to replace xi(ω) = xiωi in Q-perturbed function, inside of nonlinear function

η(β, xi) = β1exp(β2xi). This way we have

∆β1 =
1

σ̂2

n∑
i=1

[
E1i(θ̂)β2xiexp(β2xiωi)− 2E0i(θ̂)β1β2xiexp(2β2xiωi)

]
,

∆β2 =
1

σ̂2

n∑
i=1

[
E1i(θ̂)β1xiexp(β2xiωi) + E1i(θ̂)β1β2x

2
iωiexp(β2xiωi)

−E0i(θ̂)β
2
1xiexp(2β2xiωi)− 2E0i(θ̂)β

2
1β2x

2
iωiexp(2β2xiωi)

]
, and

∆σ2 = − 1

σ̂4

n∑
i=1

[
E1i(θ̂)β1β2xiexp(β2xiωi)− E0i(θ̂)β

2
1β2xiexp(2β2xiωi)

]
.

Coefficient perturbation: The perturbation on β’s parameters is intro-

duced replacing β by β(ω) = βωi, i = 1, ..., n ω ∈ Rn in the Q-perturbed

function. In this case

∆β1 =
1

σ̂2

n∑
i=1

[
E1i(θ̂)exp(β2xiωi) + E1i(θ̂)β2ωixiexp(β2xiωi)

−2E0i(θ̂)β1ωiexp(2β2xiωi)− 2E0i(θ̂)β1β2ω
2
i xiexp(2β2xiωi)

]
,

∆β2 =
1

σ̂2

n∑
i=1

[
2E1i(θ̂)β1ωixiexp(β2xiωi) + E1i(θ̂)β1β2ω

2
i x

2
i exp(β2xiωi)

−3E0i(θ̂)β
2
1ω

2
i xiexp(2β2xiωi)− 2E0i(θ̂)β

2
1β2ω

3
i x

2
i exp(2β2xiωi)

]
, and

∆σ2 = − 1

σ̂4

n∑
i=1

[
E1i(θ̂)β1exp(β2xiωi) + E1i(θ̂)β1β2ωixiexp(β2xiωi)

−E0i(θ̂)β
2
1ωiexp(2β2xiωi)− E0i(θ̂)β

2
1β2ω

2
i xiexp(2β2xiωi)

]
.
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Tables

Table 1: Influence analysis for the cases #1 and #100 in the simulations for kind of diagnostic
and model in Monte Carlo study.

Influence
diagnostic

Statistic
Normal Student-t Slash Cont. Normal

#1 #100 #1 #100 #1 #100 #1 #100

Case
deletion

% Influentiala 100% 100% 0% 0% 0% 0% 54% 73%
Mean measure 4.985 4.817 0.045 0.054 0.053 0.055 0.116 0.154
SDb measure (0.692) (0.642) (0.006) (0.002) (0.006) (0.007) (0.048) (0.043)
Benchmark 0.080 0.080 0.080 0.080

Case-
weight

% Influential 98% 95% 0% 0% 0% 0% 88% 69%
Mean measure 0.404 0.446 0.029 0.030 0.035 0.033 0.117 0.111
SD measure (0.031) (0.032) (0.003) (0.002) (0.004) (0.003) (0.024) (0.025)

Mean (SD) Benchmark 0.219 (0.005) 0.042 (0.003) 0.049 (0.005) 0.094 (0.009)

Scale

% Influential 100% 100% 0% 0% 0% 0% 94% 0%
Mean measure 0.444 0.414 0.019 0.001 0.025 0.010 0.182 0.002
SD measure (0.022) (0.030) (0.002) (0.000) (0.004) (0.003) (0.043) (0.001)

Mean (SD) Benchmark 0.229 (0.005) 0.054 (0.006) 0.062 (0.010) 0.086 (0.011)

Explanatory
variable

% Influential 0% 100% 0% 0% 0% 0% 0% 0%
Mean measure 0.001 0.866 0.001 0.005 0.001 0.004 0.000 0.002
SD measure (0.003) (0.028) (0.000) (0.004) (0.000) (0.004) (0.000) (0.004)

Mean (SD) Benchmark 0.313 (0.010) 0.109 (0.010) 0.113 (0.001) 0.128 (0.022)

Coefficients

% Influential 0% 100% 0% 0% 0% 0% 0% 56%
Mean measure 0.011 0.980 0.003 0.001 0.008 0.002 0.007 0.837
SD measure (0.002) (0.025) (0.003) (0.002) (0.010) (0.001) (0.004) (0.068)

Mean (SD) Benchmark 0.353 (0.002) 0.196 (0.045) 0.101 (0.005) 0.317 (0.022)

a % Influential: this statistic presents the percentage of Monte Carlo replicates in which the observation was regarded
as influential (exceeded the benchmark value).
b SD is the abbreviation of standard deviation.
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Table 2: Parameters estimation (SE in brackets) for the model without the
#10 case and for different contamination level τ .

Parameters
Estimates

Without #10 τ = 1 τ = 2 τ = 3 τ = 4 τ = 5

Normal model

β1
2.427 2.366 2.271 2.173 2.080 1.991

(0.317) (0.356) (0.509) (0.701) (0.907) (1.119)

β2
62.994 66.241 71.409 77.090 82.733 88.314

(31.178) (34.658) (49.418) (67.978) (87.921) (18.480)
σ2 0.078 0.101 0.208 0.397 0.667 1.017

Student-t model

β1
2.382 2.370 2.374 2.377 2.377 2.378

(0.185) (0.215) (0.221) (0.222) (0.221) (0.222)

β2
65.980 66.615 66.309 66.211 66.166 66.140

(18.222) (20.973) (21.545) (21.647) (21.631) (21.688)
σ2 0.018 0.024 0.026 0.026 0.026 0.026

Slash model

β1
2.380 2.370 2.375 2.377 2.377 2.378

(0.183) (0.209) (0.209) (0.209) (0.210) (0.211)

β2
66.096 66.631 66.314 66.237 66.203 66.183

(18.467) (20.872) (20.888) (20.858) (10.930) (21.025)
σ2 0.010 0.013 0.013 0.013 0.013 0.013

Contaminated Normal model

β1
2.390 2.385 2.360 2.329 2.321 2.330

(0.194) (0.203) (0.269) (0.352) (0.410) (0.505)

β2
65.671 66.000 67.028 68.303 68.569 68.102

(19.350) (20.030) (26.041) (34.455) (39.929) (49.189)
σ2 0.015 0.017 0.037 0.064 0.107 0.161

The estimation of the models with τ = 0 is in the first three lines of the Table 3.

Table 3: Parameters estimation by EM algorithm and impact measures of influential
observation.

Description Parameter
Normal Student-t Slash Contaminated Normal

Estimate (SE a) Estimate (SE) Estimate (SE) Estimate (SE)

Full data
β1 2.445 (0.312) 2.395 (0.203) 2.396 (0.209) 2.405 (0.201)
β2 62.049 (30.536) 65.232 (19.892) 65.168 (20.969) 64.987 (19.956)
σ2 0.077 0.022 0.013 0.016

Without
#5

β1 2.366 (0.224) 2.388 (0.175) 2.388 (0.184) 2.375 (0.186)
β2 65.959 (22.030) 65.649 (17.280) 65.635 (18.705) 66.121 (18.672)
σ2 0.039 0.016 0.009 0.012

Impact
measures

TRC 0.589 0.282 0.318 0.279
MRC 0.494 0.273 0.308 0.250

a SE is the standard error of the estimates.
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Table 4: Parameters estimation (SE in brackets) for the model without
the #10 case and for different contamination level τ .

Parameters
Estimates

Without #10 τ = 1 τ = 2 τ = 3 τ = 4 τ = 5

Normal model

β0
-5.938 -7.026 -8.511 -10.090 -11.696 -13.313
(0.709) (0.976) (1.633) (2.412) (3.230) (4.062)

β1
4.273 4.805 5.547 6.338 7.144 7.956

(0.321) (0.444) (0.749) (1.111) (1.492) (1.879)
σ2 0.067 0.114 0.255 0.487 0.807 1.216

Student-t model

β0
-5.607 -5.682 -5.640 -5.631 -5.627 -5.624
(0.419) (0.434) (0.417) (0.416) (0.415) (0.415)

β1
4.107 4.141 4.119 4.115 4.113 4.112

(0.190) (0.197) (0.189) (0.188) (0.188) (0.188)
σ2 0.014 0.013 0.012 0.012 0.012 0.012

Slash model

β0
-5.593 -5.989 -5.815 -5.776 -5.758 -5.747
(0.544) (0.870) (0.819) (0.811) (0.813) (0.803)

β1
4.106 4.301 4.217 4.198 4.190 4.185

(0.247) (0.399) (0.376) (0.372) (0.373) (0.368)
σ2 0.016 0.028 0.026 0.026 0.025 0.025

Contaminated Normal model

β0
-5.589 -5.839 -6.190 -6.572 -6.920 -7.271
(0.471) (0.717) (0.942) (1.291) (1.728) (2.282)

β1
4.099 4.224 4.403 4.593 4.770 4.950

(0.214) (0.330) (0.431) (0.594) (0.800) (1.062)
σ2 0.013 0.019 0.071 0.113 0.160 0.217

The estimation of the models with τ = 0 is in the first three lines of the Table ??.
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Table 5: Parameters estimation by EM algorithm.

Description Parameter
Normal Student-t Slash Contaminated Normal

Estimate (SE a) Estimate (SE) Estimate (SE) Estimate (SE)

Full data
β0 -6.019 (0.695) -5.635 (0.407) -5.600 (0.511) -5.614 (0.462)
β1 4.311 (0.314) 4.120 (0.184) 4.107 (0.231) 4.111 (0.209)
σ2 0.067 0.014 0.010 0.013

Without

#21 b

β0 -5.775 (0.572) -5.608 (0.383) -5.563 (0.453) -5.571 (0.389)
β1 4.189 (0.258) 4.109 (0.173) 4.089 (0.206) 4.092 (0.176)
σ2 0.046 0.013 0.009 0.012

Without
#21 and
#22

β0 -5.422 (0.387) -5.524 (0.358) -5.538 (0.413) -5.527 (0.360)
β1 4.028 (0.175) 4.072 (0.162) 4.077 (0.188) 4.073 (0.163)
σ2 0.021 0.014 0.007 0.011

a SE is the standard error of the estimates.
b The observations #21 and #22 are equal (see Table ??).
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Figure 1: Global influence: generalized Cook distance in simulation study.
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Figure 2: Local influence: case weight perturbation in simulation study.
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Figure 3: Local influence: scale perturbation in simulation study.
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Figure 4: Local influence: on explanatory variable perturbation in simulation
study.
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Figure 5: Local influence: coefficients perturbation in simulation study.
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Figure 6: Relative changes in estimates for contamination level.
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Figure 7: Global influence: generalized Cook distance in application.
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Figure 8: Local influence: case weight perturbation in application.
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Figure 9: Local influence: scale perturbation in application.
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Figure 10: Local influence: on explanatory variable perturbation in application.
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Figure 11: Local influence: coefficients perturbation in application.
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Figure 12: Relative changes in estimates for contamination level for censored linear
model.
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Figure 13: Global influence: generalized Cook distance for censored linear model.
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Figure 14: Local influence: case weight perturbation for censored linear model.
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Figure 15: Local influence: scale perturbation for censored linear model.
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Figure 16: Local influence: explanatory variable perturbation for censored linear
model.
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Figure 17: Local influence: coefficients perturbation for censored linear model.
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