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Abstract — An overview of the modeling issues and

the related performance evaluation and optimization ap-

proaches is provided in this selective review framed in

a joined manufacturing and product engineering environ-

ment. Queuing networks represent the manufacturing net-

works. The performance of the manufacturing networks is

evaluated using an advanced queueing network analyzer,

the generalized expansion method (GEM). Secondly, differ-

ent model approaches are described and optimized with re-

gards to the key parameters in the network (e.g. buffers,

servers and so on).
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1 INTRODUCTION AND MOTIVATION

OPTIMIZATION of large scale manufacturing systems
and complex production lines has been and con-

tinues to be the focus of numerous studies for decades.
Queueing networks are commonly used to model such
complex systems (Suri, 1985). This review provides an
overview of modeling, performance evaluation, and op-
timization approaches from a queueing theory point of
view1. More specifically, finite buffer queueing net-
works are characterized by blocking that eventually de-
grades the performance, commonly measured via the
throughput of the network.

Product engineering is inevitably connected to the
manufacturing process. Explicitly recognizing the role
of manufacturing in the product engineering phase
could lead to a strong and sustainable competitive ad-
vantage. Following Simchi-Levi, et. al (2008), we adopt
the same approach as in Figure 1. Clearly, the develop-
ment chain (product engineering) and the supply chain
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1Queueing theory is the mathematical study of waiting lines and
enables the mathematical analysis of several related processes, includ-
ing arrivals at the queue, waiting in the queue, and being served by
the server. The theory enables the derivation and calculation of sev-
eral performance measures which can be used to evaluate the perfor-
mance of the queueing system under study.

(product manufacturing) are interacting. In this paper,
we focus on the manufacturing step as it will be impor-
tant to consider its role, its characteristics and the con-
sequences in the product engineering phase.

Finite Queueing Networks

Queueing networks are defined as either open, closed,
or mixed. In open queueing networks, customers enter
the system from outside, receive some service at one or
more nodes and then leave the system. In closed queue-
ing networks, customers never leave or enter the sys-
tem: a fixed number of customers circulate within the
network (Whitt, 1984). Mixed queueing networks are
systems that are open with respect to some customers
and are closed with respect to other customers (Balsamo
et al., 2001). Research in the area of queueing networks
is very active, resulting in a vast amount of journal pa-
pers, books, reports, etc.. For general and more com-
plete discussions on queueing networks, the reader is
referred to e.g. Walrand (1988). In the remainder, we
will focus on finite queueing networks.

The assumption is that the capacity of the buffer space
between two consecutive connected service stations is
finite. As a consequence, each node in the network
might be affected by events at other nodes, leading to
the phenomena of blocking and starvation. In the litera-
ture, two general blocking mechanisms are presented,
which are blocking-after-service and blocking-before-
service.

Blocking-after-service occurs when after service, a
customer sees that the buffer in front of him is full and
as a consequence cannot continue its way in the net-
work. Blocking-before-service implied that a server can
start processing a next customer only if there is a space
available in the downstream buffer. If not, the customer
has to wait until a space becomes available. Most pro-
duction lines operate under the blocking-after-service
system. Moreover, in the literature it is the most com-
monly made assumption regarding the buffer behavior
(Dallery and Gershwin, 1992).

Performance evaluation tools include product form
methods, numerical methods, approximate methods
and simulation. Let’s discuss each of these methods a
bit more in detail. More in-depth information can be

1



Optimization Models van Woensel & Cruz

Figure 1: The development chain versus the supply chain

found in the references mentioned below.

Instead of analyzing the entire system at once, prod-
uct form methods decompose the system into single,
pairs or triplets of nodes (Perros, 1994). Each decom-
posed node can then be treated as an independent ser-
vice provider, for which all results and insights of the
single node queueing models can be used (see e.g. Gross
and Harris, 1998). Jackson (1957, 1963) first showed that
the joint distribution of the entire network is made up of
the product of the marginal distributions at each of the
nodes under some strict conditions (e.g. exponential ar-
rivals/service and no blocking). A decomposition tech-
nique yields exact results for queueing networks with
product form solutions. For networks without a prod-
uct form solution, it gives a good approximation (Bal-
samo et al., 2001).

Decomposition methods are also approximations be-
cause the subnetworks are only a part of the whole line
and as such, do not have the same behavior (Dallery
and Gershwin, 1992). Moreover, if obtaining an exact
solution is too expensive in terms of (computer) time,
approximate methods are used. The main challenge with
approximate methods is to be as close as possible to the
exact values. The accuracy of an approximate method
can be tested with numerical solutions (for smaller net-
works) or by using simulation. The main idea of the
decomposition methods is try to generalize the ideas
of independence and product form solutions from the
Jackson networks to more general systems. Reiser and

Kobayashi (1974) and Kuehn (1979) were the first to de-
velop this approach. After them, several researchers
came up with a similar approach (e.g. Buzacott and
Shanthikumar, 1993).

In theory, every Markovian model can be solved us-
ing numerical methods. The problem however with nu-
merical solutions is that the state space of queueing net-
works grows exponentially with the number of nodes,
the number of customers and the number of buffers. As
a consequence, numerical methods consume extensive
computer time to get to the solution. Numerical meth-
ods are sometimes applied to smaller networks (see e.g.
Balsamo et al., 2001). A last way to obtain all relevant
performance measures for a queueing network is mak-
ing use of simulation (Law and Kelton, 2000).

The generalized expansion method (GEM) is used in
this paper as the prime performance evaluation tool.
Consequently, this paper provides a selected review
based on the GEM and does not explicitly consider
other methodologies to obtain the performance mea-
sures. Note that the models described fit any perfor-
mance evaluation tool.

Structure of the paper

The paper is structured as follows. In Section 2, we
present the performance evaluation of the queueing net-
works considered. In this paper, we use the GEM to ob-
tain the relevant performance measures. In Section 3,
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we elaborate on the different optimization models that
exist and discuss some of the optimization tools that
are used to optimize these models. Section 4 gives for
a complex network the results for some selected opti-
mization models. The last section concludes the paper
and gives some pointers for future research.

2 NETWORK PERFORMANCE EVALUATION

In general, we evaluate the performance of the net-
work via its throughput θ. This throughput (and all
other measures) can be obtained via a queueing net-
work representation. This queueing network represen-
tation2 then needs to be ‘solved’ to obtain the perfor-
mance of the given network.

The GEM transforms the queueing network into an
equivalent Jackson network, which can be decomposed
so that each node can be solved independently of each
other (similar to a product form solution approach).
The GEM is an effective and robust approximation tech-
nique to measure the performance of open finite queue-
ing networks. The effectiveness of GEM as a perfor-
mance evaluation tool has been presented in many pa-
pers, including Kerbache and Smith (1987, 1988, 2000),
Jain and Smith (1994), Smith (2003), and Andriansyah
et al. (2010). The GEM uses blocking after service (BAS),
which is prevalent in most production and manufactur-
ing, transportation, and other similar systems. Devel-
oped by Kerbache and Smith (1987), the GEM has be-
come an appealing approximation technique for perfor-
mance evaluation of queueing networks due to its accu-
racy and relative simplicity. Moreover, exact solutions
to performance measurement are restricted only to very
simple networks and simulation requires a considerable
amount of time.

The GEM is basically a combination of two approx-
imation methods, namely repeated trials and node-by-
node decomposition. To evaluate the performance of a
queueing network, the GEM first divides the network
into single nodes with revised service and arrival pa-
rameters. Blocked customers are registered into an ar-
tificial ‘holding node’ and are repeatedly sent to this
node until they are serviced. The addition of the hold-
ing node expands the network and transforms the net-
work into an equivalent Jackson network, where each
node can be solved independently. Generally, the GEM
assumes a type I blocking that is commonly referred to as
transfer blocking. This occurs when the service of a job
is completed at a certain node but it cannot proceed to
the next node because the queue is full.

In the remainder of this section, we will present a
high-level overview of the method. For more detailed
information and applications of the GEM, the reader
is referred to e.g. Kerbache and Smith (1988). The

2In order to refer to the queueing models, we use Kendall’s nota-
tion, in which M/G/1/K means a queueing system with Markovian
arrival rates, General service times, 1 server in the node and K capac-
ity of the node (including the server).

GEM described below assumes that one wants to solve
M/G/c/K queueing networks. Note that the method-
ology is generic such that also M/M/1/K, M/M/c/K,
M/G/1/K, GI/G/1/K, and GI/G/c/K queueing net-
works can be analyzed. Only the relevant equations (e.g.
the blocking probabilities) need to be adapted for these
other cases.

There are three main steps in the GEM:

1. Stage I: network reconfiguration

2. Stage II: parameter estimation

3. Stage III: feedback elimination.

The notation for the GEM, presented in Table 1, will
be used throughout the paper (Kerbache and Smith,
1988). The steps are described as follows.

Table 1: Basic network notation

Variable Description
Λ external Poisson arrival rate to the network;
λj Poisson arrival rate to node j;

λ̃j effective arrival rate to node j;
µj exponential mean service rate at finite node

j;
µ̃j effective service rate at finite node j due to

blocking;
pK blocking probability of finite queue of size

K;
p′K feedback blocking probability in the GEM;
h the artificial holding node created in the

GEM;
c number of servers;
Bj buffer capacity at node j excluding those in

service;
Kj buffer capacity at node j including those in

service;
N number of nodes in the network;
ρ λ/(µc) = traffic intensity;
θ mean throughput rate;
s2 squared coefficient of variation of the ser-

vice time distribution.

Stage I: Network Reconfiguration

For each finite node in the queueing network, an artifi-
cial node is created to register the blocked jobs. By intro-
ducing such artificial node, we also create new routing
probabilities in the network. The result of network re-
configuration can be seen from Figure 2.

There are two possible states of the finite node,
namely saturated and unsaturated. Arriving jobs will try
to access the finite node j. With a probability of (1−pK),
the job will find the the finite node unsaturated, where it
will enter the queue and eventually get serviced. How-
ever, if the finite node is saturated (with a probability of
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Figure 2: The generalized expansion method

pK), then the job will be directed to the artificial hold-
ing node h where it will get a delay. The delay at the
artificial node is modeled using a M/G/∞ queue, rep-
resenting delay time without queueing. Afterward, the
blocked job will try to re-enter the finite queue with a
success probability of (1 − p′K). There is a probability
of p′K that the blocked job still finds the finite node sat-
urated and thus it will be directed again to the artificial
node h. This process repeats until the blocked job is able
to enter the finite node.

Stage II: Parameter Estimation

At this stage, the values for parameters pK , p′K , and µh

are determined.

• In order to determine pK , exact analytical formulas
should be used whenever possible (Kerbache and
Smith, 2000). For cases where exact pK formula is
unavailable, approximations for pK in M/G/c/K
setting provided by Smith (2003) can be used.
These approximations are based on a closed-form
expression derivable from the finite capacity expo-
nential queue (M/M/c/K) using Kimura’s (1996)
two-moment approximation. The following pK for-
mula for M/G/2/K is presented as an example

pK =
2 ρ

2
(2+

√
ρ
e
s2−

√
ρ
e
+B)

2+

√
ρ
e
s2−

√
ρ
e (2µ− λ)

−2 ρ
2
(2+

√
ρ
e
s2−

√
ρ
e
+B)

2+

√
ρ
e
s2−

√
ρ
e λ+ 2µ+ λ

.

• Since no exact method is available to calculate
p′K , an approximation from Labetoulle and Pujolle
(1980), based on diffusion techniques, is used

p
′
K =

[

µj + µh

µh

−

λ
[

(rK2 − rK1 )− (rK−1

2 − rK−1

1 )
]

µh

[

(rK+1

2 − rK+1

1 )− (rK2 − rK1 )
]

]−1

,

in which r1 and r2 are the roots of the polynomial

λ− (λ+ µh + µj)x+ µhx
2 = 0,

in which λ = λj −λh(1−p′K), and λj and λh are the
actual arrival rates to the finite and artificial hold-
ing notes, respectively. Furthermore, it can be ar-
gued that

λj = λ̃i(1− pK) = λ̃i − λh.

• The delay distribution at the holding node h is ac-
tually nothing but the remaining service time of the
finite node j. Based on the renewal theory, one can
formulate the remaining service time distribution
as the following rate µh

µh =
2µj

1 + σ2
jµ

2
j

,

in which σ2
j is the service time variance of the fi-

nite node. At this point, one should notice that if
the service time of the finite node is exponentially
distributed with rate µj , then the memoryless prop-
erty of exponential distribution will hold such that

µh = µj .

Stage III: Feedback Elimination

As a result of the feedback loop at the holding node, a
strong dependency on the arrival process is created. In
order to eliminate such dependency, the service rate at
the holding node must be adjusted as follows

µ′

h = (1− p′K)µh.

As a consequence, the service rate at node i preceding
the finite node j is affected as well. One can see that the
mean service time at node i is µ−1

i when the finite node

is unsaturated, and µ−1
i + µ′

h
−1 when the finite node is

saturated. Thus, on average, the mean service time of
node i preceding the finite node j is

µ−1
i = µ−1

i + pKµ′

h
−1

.

The above equations apply to all finite nodes in the
queueing network. To sum up, all performance mea-
sures of the network can be obtained by solving the fol-
lowing equations simultaneously

4



Optimization Models van Woensel & Cruz

λ = λj − λh(1− p
′
K), (1)

λj = λ̃i(1− pK), (2)

λj = λ̃i − λh, (3)

λj = λ̃i − λh, (4)

p
′
K =

[

µj + µh

µh

−

λ
[

(rK2 − rK1 )− (rK−1

2 − rK−1

1 )
]

µh

[

(rK+1

2 − rK+1

1 )− (rK2 − rK1 )
]

]−1

, (5)

z = (λ+ 2µh)
2
− 4λµh, (6)

r1 =
[(λ+ 2µh)− z

1
2 ]

2µh

, (7)

r2 =
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1
2 ]

2µh

, (8)

pK =
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2
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√
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√
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2

(
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√
ρ
e
s2−

√
ρ
e
+B

)
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√
ρ
e
s2−

√
ρ
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. (9)

Note that Eq. (9), for pK , only applies to an M/G/2/K
setting. Other expressions for pK for M/G/c/K queues,
with c = 3 to c = 10, have been developed by Smith
(2003) and can be used in the above set of equations.

3 OPTIMIZATION MODELS

In this section, we review some of the optimization
models found in the literature. Given a network
structure G(V,A) characterized by Poisson arrivals, |V |
nodes with non-negative buffers, multiple servers, a
general service distribution and interconnected with
arcs A, we can optimize on the number of buffers or the
number of servers used in each vertex Vi, the charac-
teristics of the service distribution (e.g. the service rates
and the variability), on the routings used on the arcs A
or any combination of these possible decision variables.

In general, we can write the generic optimization
model as follows:

Z = min f(X), (10)

subject to:

Θ(X) ≥ Θτ , (11)

X ≥ 0, (12)

that minimizes the total allocation f(X) =
∑

i∈V Xi (i.e.
over all vertices i ∈ V ), constrained to provide a mini-
mum throughput of Θτ . A number of specific models
can be specified based on the above generic model:

• When we set X ≡ B, the buffer allocation prob-
lem (BAP) appears. One extra constraint needs
to be added to reflect the integrality condition,

Bi, ∀i ∈ V . The objective function is then ZBAP =
min

∑

i∈V Bi. This is a model formulation pre-
sented in Smith (2004); Smith et al. (2010b).

• The server allocation problem (CAP) appears if we
have X ≡ c. Again, an extra integrality constraint
is needed: ci, ∀i ∈ V . The objective function is then
ZCAP = min

∑

i∈V ci. See Smith et al. (2010a) for
more information.

• Combining the server and buffer allocation prob-
lems by setting X ≡ (B, c) results in the joint buffer
and server allocation problem (BCAP). In this case,
the integrality constraints are Bi, ci, ∀i ∈ V . Next
to this integrality constraint, one more constraint
is needed. It is necessary to ensure that there is at
least one server per vertex, ci ≥ 1, ∀i ∈ V . Note
that buffers can be equal to zero, hence having a
zero-buffer system. Secondly, note that the objec-
tive function needs to be adapted slightly to take
into account the two objectives (i.e. buffers and
servers). We consider two options to rewrite the
objective function depending on how to deal with
the multi-objective issue.

First, the objective function can be written as a
weighted sum of the two objectives, ZBCAP1 =
minω

∑

i∈V ci + (1 − ω)
∑

i∈V Bi. We assign a cost
of ω to servers and (1 − ω) to buffers. We can then
modify the value of ω, such that 0 < ω < 1, to re-
flect the relative cost of servers versus buffers. As
ω is decreased, the cost of servers will become rela-
tively lower than that of buffers. That is, buffers are
then more expensive than servers. Alternatively,
when the value of ω is increased, the servers be-
come more costly relative to the buffers and there-
fore the servers become more expensive than the
buffers. In this way, we evaluate whether differ-
ent pricing of servers and buffers results in a sig-
nificantly different buffer and server allocation. It
is worthwhile to mention that if ω = 0, the above
problem reduces to the pure buffer allocation prob-
lem and if ω = 1, the pure server allocation problem
is obtained.

Secondly, the objective function can formulated in
a multi-criteria way:

ZBCAP2 = min
[

f1(c), f2(B)
]

, (13)

in which each objective is considered explicitly.
Consequently, one obtains an approximation of the
Pareto set of solutions for the two objectives. As
such, this perspective is more general than the first
objective function formulation. For more informa-
tion, see van Woensel et al. (2010).

• A slightly different formulation, is the routing allo-
cation problem (RAP). Here the routing probabili-
ties αi are determined such that the throughput is
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maximized. Of course, the sum of all routing prob-
abilities αi leaving each vertex i ∈ V should sum
up to one.

ZRAP = maxΘ, (14)

subject to:

0 ≤ αi ≤ 1, ∀i ∈ V, (15)
∑

i

αi = 1, ∀i ∈ V. (16)

The throughput will thus be affected by the effec-
tive routings of jobs through the network, the vari-
ability of the service distribution, the number of
servers and the number of buffers.

• A last variation considered is the profit maximiza-
tion model. The models are thus expanded with fi-
nancial indicators in order to maximize the profit
generated. This profit will be a function of the
quantity one can set in the market (i.e. through-
put Θ(X)) and the costs to realize this through-
put, which could be the buffer and/or server al-
location. The decision variable is thus the invest-
ment in buffers or servers (X). Assume the cost of
the buffers or servers is γ and the gain of a unit of
throughput is equal to φ. Then we can formulate
the objective function as follows:

Zprofit = max
[

φΘ(X)−γ
∑

i∈V

Xi−β⌈Θτ −Θ(X)⌉
]

,

(17)

in which ⌈Θτ − Θ⌉ is either positive or zero.
Penalty costs of size β are charged when the system
throughput does not meet the market demand Θτ .
Penalty costs can include the cost of outsourcing
production to another factory. Figure 3 displays the
behavior of this optimization function for Θτ = 8,
it shows the achieved throughput at the optimal
buffer allocation for different cost settings. When
the operational expense increases (X = γ/φ), it
is more attractive to underachieve market demand
and the optimal throughput decreases. When the
penalty costs increase (Y = β/φ), it becomes less
attractive to underachieve market demand and the
optimal throughput increases.

It is worthwhile to state that the models described
above are difficult non-linear integer programming
problem. Considering the BCAP model, it can be shown
that for a network with N nodes, the complexity in-
volved is:

[

K(K + 1)

2

]N

. (18)

Figure 3: Achieved throughput at the optimal buffer al-
location for Θτ = 8

Clearly, the solution space grows exponentially in the
number of nodes, but not (exponentially) in the capacity
of each node. The complexity of the BCAP model can
thus be written as O(KN ).

3.1 Optimization Methodologies

While the GEM computes the performance measures
for the queueing network, many of the above discussed
models need to be optimized on the decision variables
defined in X. Note that there, of course, exist many
optimization methods. An exhaustive discussion is left
out of this paper, but the interested reader is referred
to Aarts and Lenstra (2003) and the references therein.
We describe two methodologies which have proven to
be successful for the above described models, the Pow-
ell algorithm and a Genetic Algorithm approach. Of
course, small problems can always be enumerated.

The Powell algorithm can be described as an uncon-
strained optimization procedure that does not require
the calculation of first derivatives of the function. Nu-
merical examples have shown that the method is capa-
ble of minimizing a function with up to twenty variables
(Powell, 1964; Himmelblau, 1972)). Powell’s method lo-
cates the minimum of f(x) of a non-linear function by
successive unidimensional searches from an initial start-
ing point x(0) along a set of conjugate directions. These
conjugate directions are generated within the procedure
itself. Powell’s method is based on the idea that if a
minimum of a non-linear function f(x) is found along p
conjugate directions in a stage of the search, and an ap-
propriate step is made in each direction, the overall step
from the beginning to the pth step is conjugate to all of
the p sub-directions of the search.

Genetic algorithms (GA’s) are optimization algo-
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Figure 4: Combined topology

rithms to perform an approximate global search relay-
ing on the information obtained from the evaluation of
several points in the search space and obtaining a pop-
ulation of these points that converges to the optimum
through the application of the genetic operators muta-
tion, crossover, selection, and elitism. Each of these op-
erators may be implemented in several different ways,
each one of them characterizing a specific instance of
GA. Additionally, convergence of GA’s is guaranteed by
assigning fitness to each population member and pre-
serving diversity at the same front. For instance, re-
cent successful applications of GA’s were reported by
Lin (2008) and Calvete et al. (2008), for single-objective
applications, and by Carrano et al. (2006), for multiple-
objective applications. A wealth of references is given
by these authors. For a direct application of the GA’s to
manufacturing problems, see Andriansyah et al. (2010).

4 RESULTS AND INSIGHTS

In this section, we will focus on one example network
and describe the results for some of the different opti-
mization models discussed above.

We consider a combination of the three basic topolo-
gies (series, split and merge), as shown in Fig. 4. This
network consist of 16 nodes with the processing rate of
servers in each node given in the figure. The network
is adopted from Smith and Cruz (2005). We use exactly
the same values for Λ, µ, s2, and routing probabilities
for the splitting node (#1 and #2). Note that the routing
probability #1 refers to the up tier of the node, while #2
refers to the low tier. Refer to Fig. 4 for the position of
each node in the network.

The Buffer Allocation Problem (BAP)

We reproduce in Table 2 the results from Smith and Cruz
(2005) for this network structure with Λ = 5 and the
routing probabilities equal to 0.5 (Table 29 in their pa-
per). The results are in Table 2. Note that they consid-
ered an M/G/1/K setting and therefore the number of
servers in all nodes is set to 1 while optimizing on the

buffer allocation. Based on the table, we see that the first
node (most congested) is receiving more buffers to cope
with the relatively high arrival rate.

The Server Allocation Problem (CAP)

Let us now fix the number of buffers beforehand and
then optimize on the number of servers used. More
specifically, we set all buffers equal to 1 and look at
the resulting server allocation (Table 3). Interestingly,
we observe the same behavior as for the buffer alloca-
tion. The first node is receiving more resources than
the remaining nodes. On the other hand, the number of
servers added is relatively low compared to the buffers
added (5 versus 8). This is because a server is also acting
as a buffer, but a server adds more value, measured in
throughput.

The joint buffer-server allocation (BCAP)

Before going to the results for the example network,
we analyze the difference between buffers and servers.
We saw that the BAP and CAP give different results in
terms of number of servers versus number of buffers
used.

Let us assume that we have a zero-buffer node with
one server (i.e., K = 1, B = 0, and c = 1), submitted
to an external arrival rate Λ = 1.0, service rate µ = 2.0
and a squared coefficient of variation of the service time
distribution s2 = {0.5, 1.0, 1.5}. Figure 5 gives the per-
centage increase of adding either a server (adding one
to four servers compared to the base case) or a buffer
(adding one to seven buffers compared to the base case)
to the zero buffer base situation.

It is clear that in this case, the first added buffer or
first added server gives the largest contribution to the
throughput value, which is limited by the arrival rate λ.
Note that the addition of the first extra server, gives an
increase in throughput of about 13.4% to 18.6% depend-
ing upon the coefficient of variation s2, while the first
added buffer only gives a 8.2% to 9.2% increase. Impor-
tant to mention is that, in order to achieve the same in-
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Table 2: Results for the BAP (Smith and Cruz, 2005)

s2 c B
∑

i ci
∑

i Bi θ(c,B)

0.5 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) ( 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5) 16 69 4.9899
1.0 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) (10 5 5 5 5 4 4 4 4 4 4 4 4 5 5 5) 16 77 4.9879
1.5 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) (11 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6) 16 87 4.9877

Table 3: Results for the CAP

s2 c B
∑

i ci
∑

i Bi θ(c,B) Zα

0.5 (5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2) (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) 34 16 4.9997 35.29
1.0 (5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2) (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) 36 16 4.9996 35.33
1.5 (5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2) (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) 34 16 4.9996 35.37

crease in throughput by only using buffers, we need five
to six extra buffer spaces, rather than only one server
space.

The results for the joint buffer-server allocation are
presented in Table 4. In Table 2, the c/B price ratio
gives an indication of the relative costs of servers com-
pared to buffers. A price ratio of 8:1, for example, means
that servers are 8 times more expensive than buffers.
The results from Table 4, show a higher throughput
than for the pure Buffer Allocation Problem, Table 2,
for every setting. As expected, we found that the op-
timal server allocation in the BCAP is different from the
server settings in the pure BAP. This however depends
strongly upon the price ratio of buffers versus servers.
We found that M/G/1/K is not an optimal configura-
tion for this particular queueing network structure, ex-
cept when buffers are becoming relatively too expen-
sive. For these cases, we found that single-servers are
optimal indeed (see rows where c/B ratio is 8:1).

We observe that (near) zero-buffer configurations are
identified where appropriate, i.e., where the servers are
relatively cheaper compared to buffers. Varying the
coefficient of variation does result in some changes in
the optimal server and buffer allocation, which shows
the importance of models dealing with general service
times. The results show that the number of buffers seem
to be larger with higher variability, which could be ex-
pected, since the increase in the squared coefficient of
variation means a high variability. The extra buffers are
there to handle this increased variability.

5 PRACTICAL ISSUES

In a number of industrial improvement projects carried
out, we observed that the critical issue to be able to use
the above models is related to data availability. More
specifically, processing rates, arrival rates, uncertainty
in the service process, etc., needs to be extracted from
the available databases. An interesting approach to ob-
taining the relevant data is the effective process time
(EPT) point of view.

According to Hopp and Spearman (1996) the random
variable of primary interest in factory physics is the ef-
fective process time (EPT) of a job at a workstation. The

label effective is used because the authors refer to the to-
tal time seen by a job at a station. From a logistical point
of view, it does not matter whether the job is actually
being processed or is being held up because the work-
station is being repaired, undergoing a setup, reworking
the part due to a quality problem, or waiting for an oper-
ator to return from a break. For this reason, it is possible
to combine these effects into one aggregate measure of
variability.

Kock (2008) propose an EPT approach in four steps
(see Figure 6). The first step is to measure realizations
from the manufacturing system. An EPT-realization
represents the time a job consumed capacity from the re-
spective workstation. EPT realizations can be obtained
from event data, such as arrivals and departures of jobs
on workstations. The second step is to describe the EPT
realizations by statistical distributions. The third step is
to build an aggregate model (either simulation or ana-
lytical) from the obtained distributions. The fourth step
is to validate the aggregate model by comparing the
throughput and lead-time as estimated by the model
to the throughput and lead-time observed in the actual
system.

Of course, if the project on-hand is a pure design issue
in a green field study, it is not trivial to find the right
data. In this case, specifications from machine builders,
or from similar situations could be used.

6 CONCLUSIONS AND FUTURE RESEARCH

SUGGESTIONS

This review provided an overview of the different mod-
eling issues, the performance evaluation and optimiza-
tion approaches of the manufacturing systems assum-
ing a queueing theory approach. We discussed the
merits of the GEM as a performance evaluation tool of
the finite queueing networks. This methodology has
proved in the literature to be a valuable approach. Sec-
ondly, different optimization models are discussed, the
buffer allocation problem, the server allocation prob-
lem, the joint buffer and server allocation problem and
some other models. The different optimization mod-
els are shown to be hard non-linear integer program-
ming problems which are able to ‘solved’ with a Powell
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Figure 5: Throughput increase versus added number of buffers and servers

Table 4: Results for the BCAP

Λ s2 c/B c K
∑

i ci
∑

i Ki

∑
i Bi θ(c,B) Zα

5.0 0.5 1:8 (3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3) (3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3) 48 48 0 4.9996 5.76
1:4 (3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3) (3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3) 48 48 0 4.9996 10.0
1:2 (3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3) (3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3) 48 48 0 4.9996 16.4
1:1 (5 3 3 3 3 2 2 2 2 2 2 2 2 3 3 5) (5 3 3 3 3 2 2 2 2 2 2 2 2 3 3 5) 44 44 0 4.9998 22.2
2:1 (2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2) (5 3 3 3 3 2 2 2 2 2 2 2 2 3 3 5) 32 44 12 4.9989 26.5
4:1 (3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3) (3 5 5 5 5 3 3 3 3 3 3 3 3 5 5 3) 20 60 40 4.9974 26.6
8:1 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) (11 6 6 6 6 4 4 4 4 4 4 4 4 6 6 11) 16 90 74 4.9994 23.0

1.0 1:8 (3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3) (3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3) 48 48 0 4.9994 5.94
1:4 (5 3 3 3 3 2 2 2 2 2 2 2 2 3 3 5) (5 3 3 3 3 2 2 2 2 2 2 2 2 3 3 5) 44 44 0 4.9997 9.09
1:2 (5 3 3 3 3 2 2 2 2 2 2 2 2 3 3 5) (5 3 3 3 3 2 2 2 2 2 2 2 2 3 3 5) 44 44 0 4.9997 15.0
1:1 (5 3 3 3 3 2 2 2 2 2 2 2 2 3 3 5) (5 3 3 3 3 2 2 2 2 2 2 2 2 3 3 5) 44 44 0 4.9997 22.3
2:1 (3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3) (3 3 3 3 3 2 2 2 2 2 2 2 2 3 3 3) 34 40 6 4.9984 26.2
4:1 (2 2 2 2 2 1 1 1 1 1 1 1 1 2 2 3) (6 3 3 3 3 4 4 4 4 4 4 4 4 3 3 4) 25 60 35 4.9989 28.1
8:1 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) (13 6 6 6 6 4 4 4 4 4 4 4 4 6 6 13) 16 94 78 4.9987 24.1

1.5 1:8 (5 3 3 3 3 2 2 2 2 2 2 2 2 3 3 5) (5 3 3 3 3 2 2 2 2 2 2 2 2 3 3 5) 44 44 0 4.9996 5.24
1:4 (5 3 3 3 3 2 2 2 2 2 2 2 2 3 3 5) (5 3 3 3 3 2 2 2 2 2 2 2 2 3 3 5) 44 44 0 4.9996 9.15
1:2 (5 3 3 3 3 2 2 2 2 2 2 2 2 3 3 5) (5 3 3 3 3 2 2 2 2 2 2 2 2 3 3 5) 44 44 0 4.9996 15.0
1:1 (5 3 3 3 3 2 2 2 2 2 2 2 2 3 3 5) (5 3 3 3 3 2 2 2 2 2 2 2 2 3 3 5) 44 44 0 4.9996 22.4
2:1 (3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3) (3 3 3 3 3 2 2 2 2 2 2 2 2 3 3 3) 34 40 6 4.9979 26.8
4:1 (2 2 2 2 2 1 1 1 1 1 1 1 1 2 2 3) (6 3 3 3 3 4 4 4 4 4 4 4 4 3 3 4) 25 60 35 4.9983 28.7
8:1 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1) (15 7 7 7 7 4 4 4 4 4 4 4 4 7 7 15) 16 104 88 4.9986 25.4

heuristic. The paper ended with an overview of some
results for the different models considered on a complex
queueing network.

Future Research Suggestions

In this paper, we considered the throughput as the main
performance measure. Instead of the throughput, it
would be interesting to evaluate the behavior of the
models based on cycle time, WIP or other performance
measures.

The advantage of the EPT approach is that various
types of disturbances on the shop-floor are aggregated
into EPT distributions, this enables effective model-
ing. However, it is important to note that, disturbances
which are aggregated into the EPT distribution can-
not be analyzed afterwards. Hence, shop-floor reali-
ties or disturbances which are modeled explicitly and
excluded from aggregation in the EPT are defined be-
forehand.

Topics for future research on the queueing part, in-
clude the analysis and optimization of networks with
cycles, e.g., to model many important industrial systems
that have loops, such as systems with captive pallets
and fixtures or reverse streams of products due to re-
work, or even the extension to GI/G/c/c queueing net-
works, i.e. including generally distributed and indepen-
dent arrivals.
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