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Abstract

In carcinogenicity experiments with animals where the tumour is not pal-
pable it is common to observe only the time of death of the animal, the cause
of death (the tumour or another independent cause, as sacrifice) and whether
the tumour was present at the time of death. These last two indicator vari-
ables are evaluated after an autopsy. A weighted least squares estimator for
the distribution function of the disease onset was proposed by van der Laan
et al. (1997). Some asymptotic properties of their estimator are established.
A minimax lower bound for the estimation of the disease onset distribution is
obtained, as well as the local asymptotic distribution for their estimator.

1 Introduction

Suppose that in an experiment for the study of onset and mortality from unde-
tectable moderately lethal incurable diseases (occult tumours, e.g.) we observe the
time of death, whether the disease of interest was present at death, and if present,
whether the disease was a probable cause of death. Defining the nonnegative vari-
ables T1 (time of disease onset), T2 (time of death from the disease) and C (time of
death from an unrelated cause), we observe, for the ith individual, (Yi, ∆1,i, ∆2,i),
where Yi = Ci ∧ T2,i = min{Ci, T2,i}, ∆1,i = I (T1,i ≤ Ci), ∆2,i = I (T2,i ≤ Ci), and
I(.) is the indicator function. T1,i and T2,i have an unidentifiable joint distribu-
tion function F such that P (T1,i ≤ T2,i) = 1, Ci has distribution function G and
is independent of (T1,i, T2,i). Current status data can be seen as a particular case
of the survival-sacrifice model above when the disease is nonlethal, i.e., ∆2,i = 0

(i = 1, . . . , n). In this case, Yi = Ci, and F̂2 ≡ 0 for any estimator F̂2 of F2 (the
marginal distribution function of T2). Right-censored data are a special case of the
survival-sacrifice model above when a lethal disease is always present at the moment
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of death, i.e., ∆1,i = 1 (i = 1, . . . n). In this case, F̂1 ≡ 1 for any estimator F̂1 of F1

(the marginal distribution function of T1).

An example of a real data set studied by Dinse & Lagakos (1982) and Turnbull
& Mitchell (1984) is presented in Table 1 and represents the ages at death (in days)
of 109 female RFM mice. The disease of interest is reticulum cell sarcoma (RCS).
These mice formed the control group in a survival experiment to study the effects
of prepubertal ovariectomy in mice given 300 R of X-rays.

Table 1: Ages at death (in days) in unexposed female RFM mice.

∆1 = 1, ∆2 = 1 406,461,482,508,553,555,562,564,570,574,585,588,593,624,626,
629,647,658,666,675,679,688,690,691,692,698,699,701,702,703,
707,717,724,736,748,754,759,770,772,776,776,785,793,800,809,
811,823,829,849,853,866,883,884,888,889

∆1 = 1, ∆2 = 0 356,381,545,615,708,750,789,838,841,875
∆1 = 0, ∆2 = 0 192,234,243,300,303,330,339,345,351,361,368,419,430,430,464,

488,494,496,517,552,554,555,563,583,629,638,642,656,668,669,
671,694,714,730,731,732,756,756,782,793,805,821,828,853

The parameter space for the survival-sacrifice model can be taken to be

Θ = {(F1, F2) : F1 and F2 are distribution functions with F1 <s F2} ,

where F1 <s F2 means that F1(x) ≥ F2(x) for every x ∈ R and F1(x) > F2(x) for
some x ∈ R. The loglikelihood function for this model is

L(F1, F2) =

n∑
i=1

{(1−∆1,i)(1−∆2,i) log (1− F1(Yi))

+ ∆1,i(1−∆2,i) log (F1(Yi)− F2(Yi))

+ (∆1,i∆2,i) log f2(Yi)}+ K(g, G)

where f2(y) = F2(y)−F2(y−) and K(g, G) is a term involving only the distribution
function G and the probability density function g of C. We will assume without
loss of generality that Y1 ≤ Y2 ≤ · · · ≤ Yn.

Kodell et al. (1982) also studied the nonparametric estimation of S1 = 1 − F1

and S2 = 1− F2, but their work is restricted to the case where R(t) = S1(t)/S2(t)
is nonincreasing, an assumption that may not be reasonable, for example, for pro-
gressive diseases whose incidence is concentrated in the early or middle part of the
life span.

Turnbull & Mitchell (1984) proposed an EM algorithm for the joint estimation
of F1 and F2 which converges to the nonparametric maximum likelihood estimator

2



of (F1, F2) provided the support of the initial estimator contains the support of the
maximum likelihood estimator.

Another possible way of estimating F1 is by plugging in the Kaplan-Meier es-
timator F̂2,n of F2 and calculating the nonparametric maximum pseudolikelihood
estimator of F1.

A weighted least squares estimator for F1 making F2 = F̂2,n was proposed by
van der Laan et al. (1997) . Their estimator is described in Section 2. The proof of
its consistency is presented in Gomes (2001). Results about the rate of convergence
and the local limit distribution of their estimator are established in Sections 3 and
4, respectively.

2 The Weighted Least Squares Estimator of F1

One possibility for the estimation of F1 is to calculate a weighted least squares
estimator as suggested by van der Laan et al. (1997). Making S1 = 1 − F1 and
S2 = 1−F2, in terms of populations, R(c) = S1(c)/S2(c) is the proportion of subjects
alive at time c who are disease-free (i.e., 1−R(c) is the prevalence function at time
c). It can be written as

R(c) =
S1(c)

S2(c)
=

1− F1(c)

1− F2(c)
=

pr (T1 > c)

pr (T2 > c)

=
pr (T1 > c, T2 > c)

pr (T2 > c)
= pr (T1 > C | C = c, T2 > C)

= E {I (T1 > C) | C = c, T2 > C} = E(1−∆1 | C = c, T2 > C).

So, it is possible to rewrite

S1(c) = R(c)S2(c) = S2(c)E(1−∆1 | C = c, T2 > C)

= E{S2(C) (1−∆1) | C = c, T2 > C}.
Estimating S1 can be viewed, then, as a regression of S2(C) (1−∆1) on the observed
Ci’s under the constraint of monotonicity. If we substitute S2 by its Kaplan-Meier
estimator Ŝ2,n, we automatically have an estimator for S1 minimising

1

n

n∑
i=1

{(1−∆1,i)Ŝ2,n(Yi)− S1(Yi)}2(1−∆2,i)

under the constraint that S1 is nonincreasing. This minimisation problem can be
solved by using results from the theory of isotonic regression (see Barlow et al.,
1972) and its solution is given by

Ŝ1(Ym) = min
l≤m

max
k≥m

∑k
j=l Ŝ2,n(Yj)(1−∆1,j)(1−∆2,j)∑k

j=l(1−∆2,j)
,
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(m = 1, . . . , n).
However, var{S2(C) (1−∆1) | C = c, T2 > C} is not constant. In fact,

var{S2(C) (1−∆1) | C = c, T2 > C}
= S2

2(c)var{(1−∆1) | C = c, T2 > C}
= S2

2(c)pr (T1 > C | C = c, T2 > C) {1− pr (T1 > C | C = c, T2 > C)}
= S2

2(c)E(1−∆1 | C = c, T2 > C){1− E(1−∆1 | C = c, T2 > C)}
= S2

2(c)R(c){1− R(c)}.

We may, then, use a weighted least squares estimator with weights wi inversely pro-
portional to the variance S2

2(Ci)R(Ci){1 − R(Ci)} (i = 1, . . . , n). This expression
for the variance involves the unknown value S1(Ci) that we want to estimate, sug-
gesting the use of an iterative procedure. In each step, the estimate would be given
by

Ŝ1(Ym) = min
l≤m

max
k≥m

∑k
j=l Ŝ2,n(Yj)(1−∆1,j)(1−∆2,j)/[Ŝ2

2,n(Yj)R(Yj){1− R(Yj)}]∑k
j=l(1−∆2,j)/[Ŝ2

2,n(Yj)R(Yj){1−R(Yj)}]

(m = 1, . . . , n). If we use wj = (1 − ∆2,j)/Ŝ
2
2,n(Yj) instead, we have an estimator

with a closed form, as suggested by van der Laan et al. (1997).

The estimators expressed as the solution for an isotonic regression problem have
a geometric interpretation. Consider the least concave majorant determined by the
points (0, 0), (W1, V1), . . . , (Wn, Vn), where Wj =

∑j
i=1 wi and

Vj =

j∑
i=1

wi(1−∆1,i)Ŝ2,n(Yi) =

j∑
i=1

(1−∆1,i)(1−∆2,i)

Ŝ2,n(Yi)
=

j∑
i=1

(1−∆1,i)

Ŝ2,n(Yi)
.

Ŝ1(t) is the slope of the least concave majorant at Wj if t ∈ (Yj−1, Yj]. Barlow et al.
(1972) and Robertson et al. (1988) give a detailed description of these equivalent
representations.

So, we can write

Ŝ1,n(Ym) = min
l≤m

max
k≥m

∑k
j=l(1−∆1,j)/Ŝ2,n(Yj)∑k
j=l(1−∆2,j)/Ŝ2

2,n(Yj)
, (2.1)

(m = 1, . . . , n). It is easy to see that (2.1) reduces to the expression of the non-
parametric maximum likelihood estimator of F ≡ F1 for current status data (see
Groeneboom & Wellner, 1992) when ∆2,i = 0, (i = 1, . . . , n), since in this case

Ŝ2,n ≡ 1.

The weighted least squares estimator of F1 proposed by van der Laan et al.
(1997) and the Kaplan-Meier estimator of F2 do not coincide with the nonparametric
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Figure 1: Weighted least squares estimate of F1, Kaplan-Meier estimate of
F2, and nonparametric maximum likelihood estimates of F1 and F2.

maximum likelihood estimators of F1 and F2, respectively. Figure 1 shows those
estimators for the data in Table 1. The smoother picture for the estimates of F2 is
a consequence of the n−1/3 rate of convergence for the estimation of F1 compared to
the n−1/2 rate for the estimation of F2.

3 Minimax Lower Bound

We determine here a minimax lower bound for the estimation of F1(t0). When n
grows, the minimax risk should decrease to zero. The rate δn of this convergence
is the best rate of convergence an estimator can have for the estimation problem
posed.

Let T be a functional and q a probability density in a class G with respect to
a σ-finite measure µ on the measurable space (Ω,A). Let Tq denote a real-valued
parameter and {Tn} , n ≥ 1, be a sequence of estimators of Tq based on samples of
size n, X1, . . . , Xn, generated by q.

En,q {`(| Tn − Tq |)} is the risk of the estimator Tn in estimating Tq when the
loss function is ` : [0,∞) −→ R (` is increasing and convex with `(0) = 0). En,q
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denotes the expectation with respect to the product measure q⊗n associated with
the sample X1, . . . , Xn. For fixed n, the minimax risk

inf
Tn

sup
q∈G

En,q {`(| Tn − Tq |)}

is a way to measure how hard the estimation problem is.

Lemma 3.1 below is quite helpful in deriving asymptotic lower bounds for mini-
max risks (see Groeneboom, 1996, chapter 4, for the proof). It will be used to prove
Theorem 3.1.

Lemma 3.1. Let G be a set of probability densities on a measurable space (Ω,A)
with respect to a σ-finite measure µ, and let T be a real-valued functional on G.
Moreover, let ` : [0,∞) −→ R be an increasing convex loss function, with `(0) = 0.
Then, for any q1, q2 ∈ G such that the Hellinger distance H(q1, q2) < 1,

inf
Tn

max [En,q1 {`(|Tn − Tq1|)} , En,q2 {`(|Tn − Tq2|)}]

≥ `[1
4
|Tq1 − Tq2|

{
1−H2(q1, q2)

}2n
].

In our case, let Xi = (Yi, ∆1,i, ∆2,i), and

q0(y, ∆1, ∆2) = [g(y){1− F1(y)}](1−∆1)(1−∆2)

×[g(y){F1(y)− F2(y)}]∆1(1−∆2)

×[f2(y){1−G(y)}]∆1∆2,

µ = λ×m, where λ is the Lebesgue measure and m is the counting measure on the
set {(0, 0), (0,1),(1, 1)}, Tq0 = F1(t0), and qn is equal to the density corresponding
to the perturbation

F1,n(x) =




F1(x) if x < t0 − n−1/3t
F1(t0 − n−1/3t) if x ∈ [t0 − n−1/3t, t0)
F1(t0 + n−1/3t) if x ∈ [t0, t0 + n−1/3t)
F1(x) if x ≥ t0 + n−1/3t

(3.2)

for a suitably chosen t > 0.

Using the perturbation (3.2) it is seen in the proof of Theorem 3.1 that

H2(qn, q0) ∼ n−1g(t0)f
2
1 (t0)t

3S2(t0)/[S1(t0){S2(t0)− S1(t0)}].

So, as pointed out by Groeneboom (1996) for current status data, we could say that
the Hellinger distance of order n−1/2 between qn and q0 corresponds to a distance of
order n−1/3 between Tqn = F1,n(t0) and Tq0 = F1(t0).

6



The perturbation (3.2) is the worst possible. When maximising in t, we are
taking the worst possible constant.

Theorem 3.1.

n1/3 inf
F̂1,n

max{En,q0(
∣∣∣F̂1,n(t0)− F1(t0)

∣∣∣), En,qn(
∣∣∣F̂1,n(t0)− F1,n(t0)

∣∣∣)}
≥ 1

4
n1/3

∣∣∣F1,n(t0)− F1(t0)
∣∣∣ 1−H2(qn, q0)

}2n

−→ 1

4
f1(t0)t exp

[
− 2S2(t0)g(t0)f

2
1 (t0)t

3

S1(t0){S2(t0)− S1(t0)}
]

and the maximum value of the last expression is

k[f1(t0)S1(t0){S2(t0)− S1(t0)}/{S2(t0)g(t0)}]1/3 (3.3)

where k = 1
4
(6e)−1/3 does not depend on f1, F1 or g.

Proof. In the Appendix.

Groeneboom (1987) applied Lemma 3.1 to obtain a minimax lower bound of the
form

c[f(t0)F (t0){1− F (t0)}/g(t0)]
1/3 (3.4)

for the problem of estimating F with current status data. We can easily see that
up to the constants k and c (3.3) reduces to (3.4) if we make F1 ≡ F , f1 ≡ f and
S2 ≡ 1, which are the changes that reduce the survival-sacrifice model studied here
to current status data.

4 Local Limit Distribution

Theorem 4.1 below gives the local asymptotic behavior of the weighted least squares
estimator of F1 proposed by van der Laan et al. (1997).

Theorem 4.1. Suppose C, T1 and T2 have continuous distribution functions G,
T1 and T2, respectively, such that PF1 � PG. Additionally, let t0 be such that
0 < F1(t0) < 1, 0 < G(t0) < 1, and let F1 and G be differentiable at t0, with strictly
positive derivatives f1(t0) and g(t0), respectively. Suppose also that t0 is such that
for some δ > 0 and some M > 0, S2(t0 + M) > δ. Then

n1/3 Ŝ1,n(t0)− S1(t0)[
1
2
f1(t0)S1(t0){S2(t0)− S1(t0)}/{g(t0)S2(t0)}

]1/3
−→ 2Z (4.5)
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in distribution, where Z = arg maxh {B(h)− h2}, and B is a two-sided standard
Brownian Motion starting from 0.

Proof. In the Appendix.

Groeneboom (1989) studied the distribution of the random variable Z, and
Groeneboom & Wellner (2001) calculated its quantiles. That made the construction
of confidence intervals for F1 possible.

As noticed in the introduction, current status data is a particular version of the
present problem when we have ∆2,i = 0, (i = 1, . . . , n). This is equivalent to have
S2(t0) ≡ 1 in the expression above, which would reduce it to the well known result
about the limit distribution of the nonparametric maximum likelihood estimator of
F1 when we have current status data (see Groeneboom & Wellner (1992)).

Notice that the expression in the denominator of (4.5) is proportional to that in
the minimax lower bound in Theorem 3.1.

5 Appendix

5.1 Proof of Theorem 3.1.

Take `(x) =| x |. Since qn and q0 coincide when ∆1 = ∆2 = 1, we have

H2(qn, q0) =

∫ t0

t0−n−1/3

g(c)[{S1(t0 − n−1/3)}1/2 − {S1(c)}1/2]2dc

+

∫ t0+n−1/3

t0

g(c)[{S1(t0 + n−1/3)}1/2 − {S1(c)}1/2]2dc

+

∫ t0

t0−n−1/3

g(c)[{S2(c)− S1(t0 − n−1/3t)}1/2 − {S2(c)− S1(c)}1/2]2dc

+

∫ t0+n−1/3

t0

g(c)[{S2(c)− S1(t0 + n−1/3t)}1/2 − {S2(c)− S1(c)}1/2]2dc
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∼= g(t0)[{S1(t0 − n−1/3t)}1/2 − {S1(t0)}1/2]2n−1/3t/2

+g(t0)[{S1(t0 + n−1/3t)}1/2 − {S1(t0)}1/2]2n−1/3t/2

+ g(t0)[{S2(t0)− S1(t0 − n−1/3t)}1/2 − {S2(t0)− S1(t0)}1/2]2n−1/3t/2

+ g(t0)[{S2(t0)− S1(t0 + n−1/3t)}1/2 − {S2(t0)− S1(t0)}1/2]2n−1/3t/2

∼= 2g(t0)

[
f1(t0)n

−1/3t

2{S1(t0)}1/2

]2
n−1/3t

2
+ 2g(t0)

[
f1(t0)n

−1/3t

2{S2(t0)− S1(t0)}1/2

]2
n−1/3t

2

= g(t0)f
2
1 (t0)n

−1t3/S1(t0) + g(t0)f
2
1 (t0)n

−1t3/{(S2(t0)− S1(t0)}

= g(t0)f
2
1 (t0)n

−1t3S2(t0)/[S1(t0){S2(t0)− S1(t0)}]

Then we have

n1/3 inf
F̂1,n

max{En,q0(
∣∣F̂1,n(t0)− F1(t0)

∣∣), En,qn(
∣∣F̂1,n(t0)− F1,n(t0)

∣∣)}
≥ 1

4
n1/3

∣∣F1,n(t0)− F1(t0)
∣∣ {1−H2(qn, q0)

}2n

∼= 1

4
n1/3

∣∣F1,n(t0)− F1(t0)
∣∣ [1− S2(t0)g(t0)f

2
1 (t0)t

3n−1

S1(t0){S2(t0)− S1(t0)}
]2n

∼= 1

4
n1/3f1(t0)tn

−1/3

[
1− S2(t0)g(t0)f

2
1 (t0)t

3n−1

S1(t0){S2(t0)− S1(t0)}
]2n

−→ 1

4
f1(t0)t exp

[
− 2S2(t0)g(t0)f

2
1 (t0)t

3

S1(t0){S2(t0)− S1(t0)}
]

≡ bt exp(−at3).

The last expression is maximised over t by t′ = (1/3a)1/3, yielding the minimax
lower bound

bt′e−1/3 = k [f1(t0)S1(t0){S2(t0)− S1(t0)}/{S2(t0)g(t0)}]1/3

where k = (1/4)(6e)−1/3 does not depend on f1, F1 or g.
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5.2 Proof of Theorem 4.1

In Section 2 we saw that Ŝ1,n(t) is given by the slope of the least concave majorant
at Wj if t ∈ (Yj−1, Yj]. With D = {(t1, t2) ∈ R

2 : 0 ≤ t1 ≤ t2}, I (D × (u, t]) will
denote the indicator function of the set{

(t1, t2, c) ∈ R
3 : 0 ≤ t1 ≤ t2 < ∞, u < c ≤ t

}
.

Let A = {(t1, t2, c) ∈ R
3 : 0 < c < t1} and B = {(t1, t2, c) ∈ R

3 : 0 < c < t2}, and
Pf =

∫
fdP for any probability measure P . Define the processes

Wn(t) = Pn

(
I (B) I (D × (0, t])

{1− F2(c)}2

)
=

∫ t

0

∫ ∫
0<t1<t2

I (t2 > c)

{1− F2(c)}2
dPn (t1, t2, c)

=
1

n

n∑
i=1

I (T2,i > Ci) I (Ci ≤ t)

{1− F2(Ci)}2
= Wj for t ∈ [Yj , Yj+1) , j = 1, . . . , n

and

Vn(t) = Pn

(
I (A) I (D × (0, t])

1− F2(c)

)
=

∫ t

0

∫ ∫
0<t1<t2

I (t1 > c)

1− F2(c)
dPn (t1, t2, c)

=
1

n

n∑
i=1

I (T1,i > Ci) I (Ci ≤ t)

1− F2(Ci)
= Vj for t ∈ [Yj , Yj+1) , j = 1, . . . , n.

Then the function s 7→ Vn ◦ W
−1
n (s) equals the cumulative sum diagram in

Section 2. Since Ŝ1,n(t) is given by the slope of the least concave majorant of the

cumulative sum diagram defined by (Wn, Vn), we have that if Ŝ1,n(t) ≤ a then a line
of slope a moved down vertically from +∞ first hits the cumulative sum diagram to
the left of t (see Figure 2). The point where the line hits the diagram is the point
where Vn is farthest above the line of slope a through the origin. Thus, with ŝn

defined below,

Ŝ1,n(t) ≤ a ⇔ ŝn(a) = arg max
s
{Vn(s)− aWn(s)} ≤ t

and we can derive the limit distribution of Ŝ1,n(t) by studying the locations of the
maxima of the sequence of processes s 7→ Vn(s)− aWn(s) since

pr[n1/3{Ŝ1,n(t0)− S1(t0)} ≤ x] = pr[ŝn{S1(t0) + xn−1/3} ≤ t0].
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Figure 2: A cumulative sum diagram and the corresponding Least Concave
Majorant.

Making the change of variables s → t0 + n−1/3t we obtain

ŝn{S1(t0) + xn−1/3} − t0

= n−1/3 arg max
t

{
Vn(t0 + n−1/3t)− (S1(t0) + xn−1/3)Wn(t0 + n−1/3t)

}

= n−1/3 arg max
t

{∫ t0+n−1/3t

0

∫ ∫
0<t1<t2

I (t1 > c) I (t2 > c)

1− F2(c)
dPn (t1, t2, c)

− (S1(t0) + xn−1/3)

∫ t0+n−1/3t

0

∫ ∫
0<t1<t2

I (t2 > c)

{1− F2(c)}2
dPn (t1, t2, c)

}

= n−1/3 arg max
t

{
PnI(A)I(D × (0, t0 + n−1/3t])/{1− F2(c)}

− S1(t0)PnI(B)I(D × (0, t0 + n−1/3t])/{1− F2(c)}2

− xn−1/3
PnI(B)I(D × (0, t0 + n−1/3t])/{1− F2(c)}2

}
.
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The location of the maximum of a function does not change when the function
is multiplied by a positive constant or shifted vertically. Thus, the arg max above is
also a point of maximum of the process

n2/3

[
(Pn − P )

{
I (A) S2(c)− I(B)S1(t0)

S2
2(c)

}
I(D × (t0, t0 + n−1/3t])

+ P

{
I(A)S2(c)− I(B)S1(t0)

S2
2(c)

}
I(D × (t0, t0 + n−1/3t])

− xn−1/3
Pn

I(B)I(D × (t0, t0 + n−1/3t])

S2
2(c)

]
= n2/3(M1 + M2 + M3). (5.6)

So the probability of interest is

pr[ŝn{S1(t0) + xn−1/3} ≤ t0] = pr[arg max
t
{n2/3(M1 + M2 + M3)} ≤ 0].

Notice that F2 is unknown and should be substituted by F̂2,n. We will rewrite
the arg max of (5.6) as

arg max
t

n2/3

{(
Pn − P

) [{I(A)Ŝ2,n(c)− I(B)S1(t0)

Ŝ2
2,n(c)

− I(A)S2(c)− I(B)S1(t0)

S2
2(c)

}
I(D × (t0, t0 + n−1/3t])

]

+
(
Pn − P

) [{I(A)S2(c)− I(B)S1(t0)

S2
2(c)

}
I(D × (t0, t0 + n−1/3t])

]

+ P

[{
I(A)Ŝ2,n(c)− I(B)S1(t0)

Ŝ2
2,n(c)

− I(A)S2(c)− I(B)S1(t0)

S2
2(c)

]
I(D × (t0, t0 + n−1/3t])

]

+ P

[{
I(A)S2(c)− I(B)S1(t0)

S2
2(c)

}
I(D × (t0, t0 + n−1/3t])

]

− xn−1/3
(
Pn − P

) [
I(B)

{
1

Ŝ2
2,n(c)

− 1

S2
2(c)

}
I(D × (t0, t0 + n−1/3t])

]

− xn−1/3P

(
I(B)I(D × (t0, t0 + n−1/3t])

S2
2(c)

) }
= arg max

t
n2/3 {I1 + I2 + I3 + I4 + I5 + I6} (5.7)
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We will now analyze each term in the arg max expression separately. For term
I1 we have

n2/3
(
Pn − P

) [
I(t1 > c)

{
1

Ŝ2,n(c)
− 1

S2(c)

}
I(D × (t0, t0 + n−1/3t])

]

+ n2/3
(
Pn − P

)[
I(t2 > c)S1(t0)

{
1

Ŝ2
2,n(c)

− 1

S2
2(c)

}
I(D × (t0, t0 + n−1/3t])

]

and each term converges uniformly in probability to 0. In fact,

sup
0≤t≤t0+M

∣∣∣∣∣n2/3
(
Pn − P

)[
I(A)

{
1

Ŝ2,n(c)
− 1

S2(c)

}
I(D × (t0, t0 + n−1/3t])

]∣∣∣∣∣
+ sup

0≤t≤t0+M

∣∣∣∣∣n2/3
(
Pn − P

)[
I(B)S1(t0)

{
1

Ŝ2
2,n(c)

− 1

S2
2(c)

}

×I(D × (t0, t0 + n−1/3t])

]∣∣∣∣∣
= sup

0≤t≤t0+M

∣∣∣∣∣n1/2
(
Pn − P

)[
n1/6I(A)

{
S2(c)− Ŝ2,n(c)

S2(c)Ŝ2,n(c)

}

×I(c ∈ (t0, t0 + n−1/3t])

]∣∣∣∣∣
+ sup

0≤t≤t0+M

∣∣∣∣∣n1/2
(
Pn − P

) [
n1/6I(B)S1(t0)

{
S2

2(c)− Ŝ2
2,n(c)

S2
2(c)Ŝ

2
2,n(c)

}

×I(c ∈ (t0, t0 + n−1/3t])

]∣∣∣∣∣
≤ n1/2‖Ŝ2,n(c)− S2(c)‖T

0

Ŝ2,n(t0 + M)S2(t0 + M)
n1/6S1(t0)

(
Pn − P

)
I(c ∈ (t0, t0 + n−1/3t)

+
n1/2‖Ŝ2

2,n(c)− S2
2(c)‖T

0

Ŝ2
2,n(t0 + M)S2

2(t0 + M)
n1/6

(
Pn − P

)
I(c ∈ (t0, t0 + n−1/3t])

= Op(1)op(1) + Op(1)op(1)

since the rate of convergence of Ŝ2,n is n−1/2.
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Consider I2 now. Taking

fn,t(t1, t2, c) = n1/6[{I (A)S2(c)− I (B)S1(t0)}/S2
2(c)]I(D × (t0, t0 + n−1/3t])

and Fn(t1, t2, c) = (n1/6/δ2)I(D × (t0, t0 + n−1/3t]) we have, by Theorems 2.11.23
and 2.7.11 in van der Vaart & Wellner (1996),

n2/3
(
Pn − P

)
[{I(A)S2(c)− I(B)S1(t0)}/S2

2(c)]I(D × (t0, t0 + n−1/3t])

converging to a mean zero Gaussian process with covariance function (for 0 < s < t)
given by

(n2/3/n1/2)2E{E([{I(A)S2(C)− I(B)S1(t0)}/S2
2(C)]2

×I(D × (t0 + n−1/3s, t0 + n−1/3t]) | C)}
= n1/3E{([{S2(C)− S1(t0)}/S2

2(C)]2S1(C)

+{S1(t0)/S
2
2(C)}2pr(T1 < C < T2))I(C ∈ (t0 + n−1/3s, t0 + n−1/3t])}

= n1/3

∫ t0+n−1/3t

t0+n−1/3s

([{S2(u)− S1(t0)}/S2
2(u)]2S1(u)

+
{
S1(t0)/S

2
2(u)}2{S2(u)− S1(u)})g(u)du

∼= n1/3([{S2(t0)− S1(t0)}/S2
2(t0)]

2S1(t0)

+{S1(t0)/S
2
2(t0)}2{S2(t0)− S1(t0)})g(t0)n

−1/3 |t− s|

= [{S2(t0)− S1(t0)}S1(t0){S2(t0)− S1(t0) + S1(t0)}g(t0)n
−1/3 |t− s| ]/S4

2(t0)

= {S2(t0)− S1(t0)}S1(t0)g(t0) |t− s| /S3
2(t0)

For term I3 we have

n2/3P

[{
I(A)Ŝ2,n(c)− I(B)S1(t0)

Ŝ2
2,n(c)

−I(A)S2(c)− I(B)S1(t0)

S2
2(c)

}
I(D × (t0, t0 + n−1/3t])

]

= n2/3P

[{
I(A)

Ŝ2,n(c)
− I(A)

S2(c)

}
I(D × (t0, t0 + n−1/3t])

]

−n2/3P

[{
I(B)S1(t0)

Ŝ2
2,n(c)

− I(B)S1(t0)

S2
2(c)

}
I(D × (t0, t0 + n−1/3t])

]
.
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For the first term in the sum above, assuming S1 and g continuous, we have

n2/3P

[{
1

Ŝ2,n(c)
− 1

S2(c)

}
I(A)I(D × (t0, t0 + n−1/3t])

]

≤ n2/3

∫ t0+n−1/3t

t0

∫ ∫
c<t1<t2

| S2(c)− Ŝ2,n(c) |
Ŝ2,n(t0 + n−1/3t)S2(t0 + n−1/3t)

dF (t1, t2)dG(c)

= n2/3

∫ t0+n−1/3t

t0

S1(c) | S2(c)− Ŝ2,n(c) |
Ŝ2,n(t0 + n−1/3t)S2(t0 + n−1/3t)

dG(c)

≤ n2/3‖S1(t)g(t)‖t0+n−1/3t
t0 n−1/3t‖S2(t)− Ŝ2,n(t)‖t0+M

t0

Ŝ2,n(t0 + n−1/3t)S2(t0 + n−1/3t)

=
n2/3O(n−1/3)Op(n

−1/2)

Ŝ2,n(t0 + n−1/3t)S2(t0 + n−1/3t)
= Op(n

−1/6) = op(1) .

Similarly, for the second term, assuming S2 continuous,

n2/3P

([
I(B)S1(t0)

{
1

Ŝ2
2,n(c)

− 1

S2
2(c)

}]
I(D × (t0, t0 + n−1/3t])

)

≤ n2/3

∫ t0+n−1/3t

t0

∫ ∫
c<t2

| S2
2(c)− Ŝ2

2,n(c) |
Ŝ2

2,n(t0 + n−1/3t)S2
2(t0 + n−1/3t)

dF (t1, t2)dG(c)

= n2/3

∫ t0+n−1/3t

t0

S2(c) | S2
2(c)− Ŝ2

2,n(c) |
Ŝ2

2,n(t0 + n−1/3t)S2
2(t0 + n−1/3t)

dG(c)

≤ n2/3
‖S2(t)g(t)‖t0+n−1/3t

t0 n−1/3t‖S2
2(t)− Ŝ2

2,n(t)‖t0+M
t0

Ŝ2
2,n(t0 + n−1/3t)S2

2(t0 + n−1/3t)

=
n2/3O(n−1/3)Op(n

−1/2)

Ŝ2,n(t0 + n−1/3t)S2(t0 + n−1/3t)
= Op(n

−1/6) = op(1) .
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The limit of term I4 can be easily calculated as

n2/3E{E([{I(A)S2(C)− I(B)S1(t0)}/S2
2(C)]I(D × (t0, t0 + n−1/3t]) | C)}

= n2/3E
[{S1(C)S2(C)− S2(C)S1(t0)}I(C ∈ (t0, t0 + n−1/3t])/S2

2(C)
]

= n2/3

∫ t0+n−1/3t

t0

[{F1(t0)− F1(u)}g(u)/S2(u)]du

∼= n2/3 1

2

{
F1(t0)− F1(t0 + n−1/3t)

S2(t0 + n−1/3t)

}
g(t0 + n−1/3t)n−1/3t

∼= −n2/3f1(t0)n
−1/3tg(t0)n

−1/3t/{2S2(t0)} = −f1(t0)g(t0)t
2/{2S2(t0)}

The uniform convergence in probability to zero of term I5 in (5.7) has been
established (up to the constant S1(t0)) in the evaluation of the limit of term I1.

And finally the limit behavior of term I6 is calculated below.

− n2/3xn−1/3
Pn{I(B)I(D × (t0, t0 + n−1/3t])/S2

2(c)}

= − n2/3xn−1/3
(
Pn − P

){I(B)I(D × (t0, t0 + n−1/3t])/S2
2(c)}

− n2/3xn−1/3P{I(B)I(D× (t0, t0 + n−1/3t])/S2
2(c)}

= − n1/2 n1/3

n1/2
x
(
Pn − P

){I(B)I(D × (t0, t0 + n−1/3t])/S2
2(c)}

− n1/3xP{I(B)I(D × (t0, t0 + n−1/3t])/S2
2(c)} .

Taking Fn(t1, t2, c) = xI(D× (t0, t0 +n−1/3t])/(nδ2), Theorems 2.11.23 and 2.7.11 in
van der Vaart & Wellner (1996) imply that the first part of the sum above converges
to a mean zero Gaussian process with covariance function given by

x2(n2/3/n)E(E[{I(B)/S2
2(C)}2I(D × (t0 + n−1/3s, t0 + n−1/3t]) | C])

= (x2/n1/3)E{S2(C)I(C ∈ (t0 + n−1/3s, t0 + n−1/3t])/S4
2(C)}

= (x2/n1/3)

∫ t0+n−1/3t

t0+n−1/3s

{
g(u)/S3

2(u)
}

du ∼= x2n−2/3 g(t0)

S3
2(t0)

|t− s|
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which converges to 0 as n −→∞. The second part gives

− xn1/3P{I(B)I(D× (t0, t0 + n−1/3t])/S2
2(c)}

= − xn1/3E[E{I(B)I(D × (t0, t0 + n−1/3t])/S2
2(C) | C}]

= − xn1/3

∫ t0+n−1/3t

t0

{S2(u)g(u)/S2
2(u)}du ∼= − xn1/3g(t0)tn

−1/3/S2(t0)

= − xg(t0)t/S2(t0)

Exercise 3.2.5, page 308, in van der Vaart & Wellner (1996) states that the ran-
dom variables arg maxt {aB(t)− bt2 − ct} and (a/b)2/3 arg maxt {B(t)− t2}− c/(2b)
are equal in distribution, where {B(t) : t ∈ R} is a standard two-sided Brownian
motion with B(0) = 0, and a, b and c are positive constants. Thus, making
a = [S1(t0)g(t0){S2(t0)− S1(t0)}/S3

2(t0)]
1/2, b = f1(t0)g(t0)/{2S2(t0)} and

c = g(t0)x/S2(t0) we have

pr[n1/3{Ŝ1,n(t0)− S1(t0)} ≤ x] = pr[ŝn{S1(t0) + xn−1/3} ≤ t0]

= pr[arg max
t
{n2/3(M1 + M2 + M3)} ≤ 0] −→ pr[arg max

t
{aB(t)− bt2 − ct} ≤ 0]

= pr[(a/b)2/3 arg max
t
{B(t)− t2} − c/(2b) ≤ 0]

= pr

(
2Z ≤

[
2S2(t0)g(t0)

f1(t0)S1(t0){S2(t0)− S1(t0)}
]1/3

x

)

which implies that

pr

(
n1/3 Ŝ1,n(t0)− S1(t0)

[f1(t0)S1(t0){S2(t0)− S1(t0)}/{2S2(t0)g(t0)}]1/3
≤ z

)
−→ pr(2Z ≤ z).
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