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Abstract

In this paper we discuss inferential aspects for the Grubbs model when the unknown
quantity x (latent variable) follows a skew-normal distribution, extending early results
given in Arellano-Valle et al. (2005b). Maximum likelihood parameter estimates are
computed via the EM-algorithm. Wald and likelihood ratio type statistics are used for
hypothesis testing and we explain the apparent failure of the Wald statistics in detecting
skewness via the profile likelihood function. The results and methods developed in this
paper are illustrated with a numerical example.

Key Words: skew-normal distribution; EM-algorithm; skewness; Grubbs model; profile
likelihood.

1. Introduction

During the last decade, there has been growing interest for models that provide flex-
ibility in capturing a broad range of non-normal behavior and hence, represent features
of the data as adequately as possible and to reduce unrealistic assumptions. Motivation
originated from data sets presenting clear indication of skewness and multi-modality (not
following the symmetric normal law) in areas, such as, engineering, medicine, psychology
and agriculture.

Although the normality assumption (or symmetry) is adequate in many situations,
it is not appropriate when the data present non-normal behavior such as asymmetry.
This is the case with the data set studied in Barnett (1969) which seems to require data
transformation in order to be better approximated by the normal distribution. Azzalini
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and Capitanio (1999) list several reasons to avoid this method (variable transformation) if
a more suitable theoretical model can be found: (i) it typically will not provide very useful
information on an underlying data generation mechanism, (ii) the transformations are
usually on each component separately, and achievement of joint normality is only hoped
for; (iii) the transformed variables are more difficult to deal with regarding interpretation,
especially when each variable is transformed using a different function; (iv) multivariate
homoscedasticity often requires a different transformation than the one to get normality;
and (v) a model for one set of data may often not be found applicable to subsequent sets.
Thus, in order to accommodating such departures, we pursue a goal toward flexibility
and tractability, adopting a general class of models which comprises the normal one as
a proper element.

The skew-normal family was introduced by Azzalini (1985) in a univariate context,
whereas Azzalini and Dalla-Valle (1996) introduced the multivariate version. In this
family, a shape parameter regulates the skewness of the distribution, allowing for a
continuous transition from non-normality to normality. Since the pioneer work of Azzalini
(1985) we have observed an ever growing interest in the skew-normal distribution and
applications to many different models have flourished in the literature (see Arellano Valle
et al., 2005a, Arellano Valle et al., 2005b; Bazan et al., 2005).

In our work we concentrate on a special case of the so-called fundamental skew-
normal distribution of Arellano-Valle and Genton (2004). Specifically, here we say that a
k-dimensional random vector y has a multivariate skew-normal distribution with location
parameter µ, scale matrix Ψ (positive definite), and skewness parameter vector λ, which
will be denoted by SNk(µ,Ψ, λ), if its probability density function is given by

f(y) = 2φk(y|µ,Ψ)Φ1(λ>Ψ−1/2(y − µ)), y ∈ Rk, (1)

where φk(.|µ,Ψ) stands for the density function (pdf) of the k-variate normal distribution
with mean vector µ and covariate matrix Ψ, Φ1(.) represents the cumulative distribution
function (cdf) of the standard normal distribution, and Ψ−1/2 satisfies Ψ−1/2Ψ−1/2 =
Ψ−1. When λ = 0, we have that y ∼ Nk(µ,Ψ). The stochastic representation of a
skew-normal random variable, which can be used to simulate random realizations from
y, is given by

y d= µ + Ψ1/2(δ|T0|+ (Ik − δδ>)1/2T1), with δ =
λ√

1 + λ>λ
, (2)

where T0 ∼ N1(0, 1) and T1 ∼ Nk(0, Ik) are independent, and ” d= ” meaning ”distrib-
uted as”. For more details on this approach, see Arellano-Valle and Genton (2005) and
Arellano-Valle et al. (2005a). Note in (1) that when k = 1 we obtain the univariate skew-
normal distribution introduced by Azzalini (1985) and (2) is reduced to the stochastic
representation obtained in Henze (1986).
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The Grubbs model is typically used in method comparison studies to assess the rela-
tive agreement between two or more analytical methods (or instruments) that measure
the same quantity of interest. The primary objective is to see wether the two or more
methods produce the same error in measurement. In this paper we extend the usual
normal structural Grubbs model to a class of skew-normal Grubbs model (henceforth
abbreviated as SN-GM), meaning that the true covariate (quantity of interest) is distrib-
uted according to the skew-normal distribution.

The paper is organized as follows. Section 2 covers model formulation as well as some
inferential results. In Section 3, we present the EM-algorithm for parameter estimation.
In Section 4 we propose testing statistics for some hypothesis of interest. Finally, an
illustrative example previously analyzed under normal Grubbs model (henceforth abbre-
viated as N-GM) is reanalyzed in Section 5.

2. The model

Suppose that we have at our disposal p ≥ 2 instruments for measuring a characteristic
of interest x in a group of n experimental units. Let xi, the unobserved (true) covariate
value corresponding to unit i and yij the measured value obtained with the instrument
j in unit i, i = 1, . . . , n and j = 1, . . . , p. Relating these variables we consider the model
(see Grubbs, 1948, 1973, 1983),

yi = a + 1pxi + εi, (3)

i = 1, . . . , n, where a = (0, α>)> = (0, α2, . . . , αp)> and 1p = (1, . . . , 1)> are p × 1
vectors; yi = (yi1, . . . , yip)> and εi = (εi1, . . . , εip)> (the error vector) are p× 1 random
vectors. In this case, we are supposing that the first instrument is a reference one that
will be compared to the remaining p− 1 instruments. We assume that (xi, ε

>
i )> follows

a (p + 1)-variate skew-normal distribution, that is,

(
xi

εi

)
ind∼ SNp+1

((
µx

0

)
, D(φx, φi),

(
λx

0

))
, (4)

i = 1, . . . , n, where D(φx, φi) denoting a diagonal matrix with elements φx and φ =
(φ1, . . . , φp)>. According to Arellano-Valle and Genton (2004), this formulation implies
that

εi
iid∼ Np(0, D(φ)) and xi

iid∼ SN1(µx, φx, λx), (5)

all independent, i = 1, . . . , n. This model is considering, for instance, in the case of the
data set in Barnett (1969), that the distribution of the vital capacity of the human lung
is not symmetrically distributed in the population and since εi is related to model error,
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is expected to be normally distributed (and with mean zero). Moreover, by supposing
that the true unobserved covariate (x) follows a skew-normal distribution, our model
takes a step beyond a normal structural model.

Classical inference on the parameter vector θ = (α>, φ>, µx, φx, λx)> in this type of
model is based on the marginal distribution for the response yi which, as shown next,
has marginally, a multivariate skew-normal distribution.

Proposition 1. Under the Grubbs model defined in (3)-(5) it follows that the marginal
distribution of yi is given by

f(yi|θ) = 2φp(yi|µ,Σ)Φ1(λ̄
>
x Σ−1/2(yi − µ)), (6)

i = 1, . . . , n, i.e., yi
iid∼ SNp(µ,Σ, λ̄x), with µ = a + 1pµx, Σ = D(φ) + φx1p1>p ,

λ̄x =
λxφxΣ−1/21p√

φx + λ2
xΛx

, where Λx = (φx
−1 + 1>p D−1(φ)1p)−1.

Proof. The proof is direct by using Lemmas 1 and 2 from Arellano-Valle et al. (2005a).

Thus, the log-likelihood function for θ given the observed sample y = (y>1 , . . . ,y>n )>

is given by

`(θ) =
n∑

i=1

`i(θ), (7)

where
`i(θ) = log(2)− p

2
log(2π)− 1

2
log |Σ| − 1

2
di + log(Ki), (8)

i = 1, . . . , n, with di = (yi −µ)>Σ−1(yi −µ), Ki = Φ1(λ̄
>
x Σ−1/2(yi −µ)) and µ, Σ, λ̄x

as in (6).

It is also true (Arellano-Valle and Genton, 2005) that

di = (yi − µ)>Σ−1(yi − µ) iid∼ χ2
p, (9)

i = 1, . . . , n. Such distributional result enables checking the model adequacy in practice,
as seen in Section 4. In the next section we discuss an iterative process for the parameter
estimation, based on the EM algorithm.

3. Likelihood based estimation

Direct maximization of the log-likelihood function (7) through the quasi-Newton
method (BFGS, implemented in Matlab, R and Ox) may sometimes pose difficulties
since it involves terms like log Φ(a), which causes computational problems for negative
a (a < −38, for example). Further, the approach does not seem too robust with respect
to starting values, that is, unless good starting values are used, the direct maximization
approach will typically not converge.
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The EM algorithm (Dempster, et al., 1977) is a popular iterative algorithm for ML
estimation in models with incomplete data. More specifically, let y denote the observed
data and s denote the missing data. The complete data z = (y, s) is y augmented with
s, the missing data. We denote by `c(θ|y, s), θ ∈ Θ, the complete-data log-likelihood
function and by Q(θ, θ(m−1)), the expected value of the complete-data log-likelihood
with respect to the unknown data s given the observed data y and the current parameter
estimates. Hence, let

Q(θ, θ(m−1)) = E[`c(θ|y, s)|y, θ(m−1)],

where θ(m−1) are the current parameters estimates used to evaluate the expectation and
θ are the new parameter values optimized to increase Q.

Each iteration of the EM algorithm involves two steps, the expectation step and the
maximization step:

E-step: Compute Q(θ, θ(m−1)) as a function of θ;

M-step: Find θ(m) such that Q(θ(m), θ(m−1)) = maxθ∈Θ Q(θ, θ(m−1)).

Each iteration of the EM algorithm increases the likelihood function `(θ) and the EM
algorithm typically converges to a local or global maximum of the likelihood function.
Hence, in order to ensure that the true maximum is identified, it is typically recommended
to run the EM algorithm several times with different starting values.

Using the stochastic representation given in (2), the model defined in (3)-(4) can be
written hierarchically as

yi | xi
ind∼ Np(a + 1pxi, D(φ)), (10)

xi | ti
ind∼ N1(µx + φ1/2

x δxti, φx(1− δ2
x)), (11)

and

ti
iid∼ HN1(0, 1), (12)

i = 1, . . . , n, all independent, where HN1(0, 1) denotes the standardized univariate half-
normal distribution and δx = λx/(1+λ2

x)1/2. In the sequel we present the EM algorithm
for the SN-GN by considering that (x, t) are missing data, i.e., using double augmen-
tation, with x = (x1, . . . , xn)> and t = (t1, . . . , tn)>. Hence, under the representation
(10)-(12), with ν2 = φx(1−δ2

x) and ς = φ
1/2
x δx, it follows that the complete log-likelihood

function associated with (y,x, t) is given by

`c(θ|y,x, t) = constant− n

2
log(|D(φ)|)− 1

2

n∑

i=1

(yi − a− 1pxi)>D−1(φ)

×(yi − a− 1pxi)− n

2
log(ν2)− 1

2ν2

n∑

i=1

(xi − µx − ςti)2.
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Letting x̂i = E[xi|θ = θ̂,yi], x̂2
i = E[x2

i |θ = θ̂,yi], t̂i = E[Ti|θ = θ̂,yi], t̂2i = E[T 2
i |θ =

θ̂,yi] and t̂xi = E[Tixi|θ = θ̂,yi], using double conditional expectations and the mo-
ments of the truncated normal distributions (see Johnson et al., 1994, Section 10.1), we
obtain

t̂i = µ̂Ti + WΦ1(
µ̂Ti

M̂T

)M̂T , (13)

t̂2i = µ̂2
Ti

+ M̂2
T + WΦ1(

µ̂Ti

M̂T

)M̂T µ̂Ti , (14)

x̂i = r̂i + ŝ t̂i, (15)

x̂2
i = T̂x

2
+ r̂2

i + 2r̂i ŝ t̂i + ŝ2 t̂2i , (16)

t̂xi = r̂i t̂i + ŝ t̂2i , (17)

where WΦ1(u) = φ1(u)/Φ1(u), u ∈ R,

M̂2
T =

{
1 + ς̂21>p (D(φ̂) + ν̂21p1>p )−11p

}−1
,

µ̂Ti = ςM̂2
T1>p (D(φ̂) + ν̂21p1>p )−1(yi − â− 1pµ̂x),

T̂x
2

= ν2
{

1 + ν̂21>p D−1(φ̂)1p

}−1
, r̂i = µ̂x + T̂x

2
1>p D−1(φ̂)(yi − â− 1pµ̂x), and

ŝ = ς̂(1− T̂x
2
1>p D−1(φ̂)1p), i = 1, . . . , n.

Using a simple algebra we get

E[`c(θ|y,x, t)|y, θ̂] = constant− n

2
log(|D(φ)|)

−1
2

n∑

i=1

(yi − a− 1px̂i)>D−1(φ)(yi − a− 1px̂i)− 1
2
1>p D−1(φ)1p

n∑

i=1

(x̂2
i − x̂i

2)

−n

2
log(ν2)− 1

2ν2

n∑

i=1

(x̂2
i + µ2

x + ς2t̂2i − 2x̂iµx − 2ςx̂ti + 2ςµxt̂i). (18)

We have then the following EM algorithm:
E-step: Given θ = θ̂, compute t̂i, t̂2i , x̂i, x̂2

i and t̂xi for i = 1, . . . , n, using (13)-(17).
M-step: Update θ̂ by maximizing E[`c(θ|y,x, t)|y, θ̂] in (18) over θ, which leads to

α̂j = ȳj − ¯̂x, φ̂1 =
1
n

n∑

i=1

(y2
i1 − 2x̂iyi1 + x̂2

i ), µ̂x =
1
n

n∑

i=1

(x̂i − ςt̂i),

φ̂j =
1
n

n∑

i=1

(y2
ij + α2

j + x̂2
i − 2αjyij − 2yij x̂i + 2αj x̂i),

ν̂2 =
1
n

n∑

i=1

(x̂2
i + µ2

x + ς2t̂2i − 2µxx̂i − 2ςt̂xi + 2ςµxt̂i), ς̂ =
∑n

i=1(t̂xi − µxt̂i)∑n
i=1 t̂2i

,

where ȳj =
1
n

n∑

i=1

yij , ¯̂x =
1
n

n∑

i=1

x̂i and j = 2, . . . , p. The skewness and scale parameters

of the latent variable (x), can be estimated by noting that ς/ν = λx, and φx = ς2 + ν2.
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Starting values for θ, θ̂0, can be taken from the estimates in the model normal, with
values to λ̂0

x > 0 (λ̂0
x < 0) if the data present positive (negative) skewness, which can be

depicted by looking at a data histogram.

Confidence regions for the parameters can be constructed using asymptotic results,
assuming that the maximum likelihood estimate θ̂ has approximately a N2p+2(θ,J−1(θ))
distribution. In practice, J(θ) is usually unknown and has to be replaced by the MLE
J(θ̂). The matrix J(θ) =

∑n
i=1 Ji(θ) is required to be positive definite, with Ji(θ)

presented in the Appendix. Our experience in estimating the asymptotic variance of the
MLE of λx indicates that it typically is overestimated. We believe that more precise
confidence intervals are obtained by using the likelihood ratio statistics (see Section 5).

The EM algorithm for the normal model arise as a particular case of the above
iterative scheme. All we have to do is to replace λx = 0 in the expressions of the E and
M steps and proceed with the simplifications. Moreover, computation of the observed
information matrix is accomplished by dropping the third summand in the righthand
hand side of (A1). This procedure seems to be important since if λx is suspected to be
close to zero then the information matrix J(θ) can be singular, although this has been
proved only for simpler models (see, DiCiccio and Monti, 2004).

In simulations conducted, we have noted that when using the BFGS method to
maximize directly the log-likelihood function (7), many samples the method converge to
a point for which the observed information matrix J is singular. With the EM algorithm
this problem does not occur.

4. Hypothesis testing

In the context of the Grubbs model the quality of the measurements is assessed
using the additive bias and the precision of the different instruments (the instrument
to be preferred is the one with the smallest bias αj and variance φj , j = 1, . . . , p).
Thus, one hypothesis of interest is to evaluate if the measurements made by the different
instruments are exact, that is, H01 : α2 = . . . = αp = 0. In comparing the precision
of the instruments, the hypothesis of interest is H02 : φ1 = . . . = φp. The hypothesis
that consider both situations is H03 : α2 = . . . = αp = 0, φ1 = . . . = φp. Depending on
the application, these hypotheses can be tested jointly or separately. Moreover, given
rejection in one of these hypothesis, it is frequent to consider testing equality of subsets of
variances and bias. We notice that the above hypotheses can be written more generally
as

H0 : Cθ = d (19)

where C is ar rp × (2p + 2) matrix of rank rC and d is a rC-dimensional vector, C and
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d known. Hypothesis (19) can be tested using the Wald statistic

W = (Cθ̂ − d)>(C>J−1(θ̂)C)−1(Cθ̂ − d). (20)

Under (19) and suitable regularity conditions we have that W
D→ χ2

rC
, as n → ∞. Of

course, it is also of interest testing the normal model hypothesis, that is, Ho : λx = 0.
Although not being formal tests, as in Zhang and Davidian (2001), we compare the
SN-GM and the normal model by inspecting some information criteria. Three criteria
were selected: the Akaike Information Criterion (AIC, −`(θ̂) + P ), Schawarz Bayesian
Information Criterion (BIC, −`(θ̂) + 0.5 log(N)P ), and the Hannan-Quinn Criterion
(HQ, −`(θ̂) + log(log(N))P ), where P is the number of free parameters in the model
and N = p× n. The preferred model is the one with the smallest value of the criterion.
Furthermore, we can look at the likelihood ratio statistic (LR) as an informative tool.

5. Application

Now we give an illustrative example of the methodology developed. Barnett (1969)
presents data on measurements of the vital capacity of the human lung on a common
group of 72 patients, using two instruments (standard and new), operated by skilled and
unskilled operators. We consider the measurements divided by 100 in order to improve
numerical stability. This data set has been extensively treated in the literature, under
using the symmetric structural calibration comparative model of which the Grubbs model
is a particular case.

To the EM algorithm, we consider the following convergence criteria

max
j=1,...,2p+2

∣∣∣
(
θ̂
(m+1)
j − θ̂

(m)
j

)
/θ̂

(m)
j

∣∣∣ ≤ 10−4.

Maximum likelihood (ML) estimates and standard errors for the N-GM and SN-GM
are given in Table 1. We note that estimates of α2, α3 and α4 and φj , j = 1, . . . , 4,

(and their standard deviations) do not present remarkable differences with both models.
Comparing the models by looking at the information criteria, we obtain: AIC=756.8,
BIC=773.3 and HQ=755.6 for the SN-GM and AIC=752.9, BIC=771.2 and HQ=751.6
for the normal model. Consequently, the SN-GM outperforms the normal model. The
likelihood ratio statistic to test H : λx = 0, is in accordance with the information criteria
(LR = 9.78 and P-value = 0.0018). Meanwhile, the Wald statistics (W = 2.20 and
P-value=0.13) and the 95% symmetric confidence interval (see Table 1), based on the
normal approximation, are in disagreement with the above results. Further insight on
differences between the models is provided by considering confidence intervals based on
profile likelihoods for each parameter (PCI, Meeker and Escobar, 1995). We note from
Table 1 that the PCI for the parameter λx seems to provide stronger evidence that is
greater that zero and that the PIC for the other parameters are in good agreement
with the one based on the normal approximation (CI). This fact is due that the Wald
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statistic or normal approximation of the ML estimator is only appropriate if the LR is
well approximates by a quadratic function (see Pawitan, 2000 and also Figure 2a).

A notable inferential discrepancy, which does not includes the skewness parameter,
can be seen in Table 2. When testing the hypothesis H04 : α2 = α3 = α4 = −1.2, we
rejected under SN-GM and not rejected under the N-GM at a 5% level (see Table 2).
With the rejection of H05 and the acceptation of H06 we can say that instrument 2 is
better.

Replacing the ML estimates of θ in (9), we present in Figure (1) Q-Q plots and
envelopes (lines represent the 5th percentile, the mean, and the 95th percentile of 100
simulated points for each observation). It seems to us that the plots in Figure 1 provide
even stronger evidence than that from the information criteria, that the SN-GM provides
a better fit to the data set than the normal Grubbs model.

N-GM SN-GM

Parameter Estimate SE Estimate SE CI PCI

µx 22.4611 0.9711 12.1559 1.3918 [ 9.3720; 14.9396] [9.46;14.91]

α2 -0.7042 0.2984 -0.7042 0.2961 [-1.2964; -0.1120] [-1.29; -0.12]

α3 -0.9750 0.3610 -0.9750 0.3649 [ -1.7048; -0.2452] [-1.69;-0.26]

α4 -1.4389 0.3657 -1.4389 0.3693 [-2.1775; -0.7003] [-2.16;-0.71]

φx 62.9065 10.6442 168.9100 39.9448 [89.0191; 248.8071] [129.00;220.00]

φ1 4.9979 0.9947 5.0611 0.9888 [3.0835; 7.0386] [3.49;7.53]

φ2 1.4129 0.5698 1.2516 0.5640 [0.1235; 2.3797] [0.29;2.62]

φ3 4.3831 0.9742 4.5264 0.9997 [2.5271; 6.5258] [2.89;6.95]

φ4 4.6330 1.0321 4.7577 1.0646 [2.6286; 6.8868] [3.02;7.36]

λx - - 5.6763 3.8284 [-1.9818; 13.3350] [2.10; ∞]

log-likelihood -747.7896 -742.8945

Tabela 1: Results of fitting N-GM and SN-GM to the data set in Barnett. SE are the
estimated asymptotic standard errors. CI is the 95% confidence interval based in the
normal approximation of the ML estimates. PCI is the 95% confidence interval based on
the profile likelihood.
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N-GM SN-GM
Hypothesis Value P-value Value P-Value

H01 : α2 = α3 = α4 = 0 16.4007 0.0010 16.1057 0.0011
H02 : φ1 = φ2 = φ3 = φ4 13.9184 0.0009 14.9899 0.0006
H03 : α2 = α3 = αp = 0, φ1 = . . . = φ4 30.3191 0.0000 31.0954 0.000
H04 : λx = 0 - - 2.1977 0.1382
H05 : α2 = α3 = α4 = −1.2 7.6961 0.0587 7.9169 0.0478
H06 : α3 = α4 = −1.2;φ1 = φ3 = φ4 1.8912 0.7558 1.8022 0.7721

Tabela 2: Barnett data set. Result of the Wald statistic to hypothesis of interest.
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Figura 1: Barnett data set. Q-Q plots and simulated envelopes: (a) Skew-normal Grubbs
model and (b) Normal Grubbs model.
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Figura 2: Barnett data set. Likelihood ratio (LR) based on the profile likelihood: (a) λx;
(b) α2; (c) α3 and (d) φ4. The line in each graphic is the 95% limit (χ2

1(0.95) = 3.84).

6. Conclusions

We have presented strategies to estimation and hypotheses testing in the Grubbs
model under the skew-normal distribution. Parameter estimation is conducted via max-
imum likelihood, by using the EM algorithm, yielding closed form expressions for the
equations in the M-step, which seems to be more robust with respect to initial values.
Hypothesis testing is approached by using Wald statistics test and we emphasize that it
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can be less efficient than procedures based on the likelihood. The assessment of influence
of data and model assumption on the result of the statistical analysis is a key aspect.
Work is in progress addressing specifically influence local and residual analysis.
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Appendix
Observed information matrix
In this appendix the observed information matrix is obtained for the SN-GM. Letting
di = (yi − µ)>Σ−1(yi − µ) and Ki the last term in (8), we have from (7) that

∂`i(θ)
∂γ

= −1
2

∂log|Σ|
∂γ

− 1
2
diγ +

∂logKi

∂γ
, (A1)

where
∂logKi

∂γ
= WΦ1(Axai)

{
Ax

∂ai

∂γ
+ ai

∂Ax

∂γ

}
,

with WΦ1(u) = φ1(u)/Φ1(u), u ∈ R, of (7) we can rewrite Ki = Φ1(Axai), with Ax =
φx

c
ai = (yi − µ)>D−1(φ)1p and c = 1 + φx1>p D−1(φ)1p, γ = µx,α, φx, φ, λx, and

diγ =
∂di

∂γ
, γ = µx, α, φx, φ, λx,

i = 1, . . . , n. Further, using results related to matrix differentiation (Nel, 1980), it follow
that

∂log|Σ|
∂γ

= 0, γ = µx, α, λx,

∂log|Σ|
∂φx

= c−1 c− 1
φx

,

∂log|Σ|
∂φ

= −φx

c
D−2(φ)1p + D−1(φ)1p,

∂Ax

∂γ
= 0, γ = µx, α,

∂Ax

∂φ
=

(2c + λ2
x)

2λ2
x

A3
xD−2(φ)1p,

∂Ax

∂φx
=

(2c + λ2
x − c2)

2φ2
xλ2

x

A3
x,

∂Ax

∂λx
=

φx

Λ2
xλ3

x

A3
x,

diγ = 0, γ = λx,

diµx = −21p
>Σ−1Xi,
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diα = −2I(p)Σ
−1Xi,

diφx = −c−2a2
i ,

diφ = −D−2(φ)D(Xi)Xi + 2c−1φxaiD
−2(φ)Xi − c−2φ2

xa2
i D

−2(φ)1p,

∂ai

∂γ
= 0, γ = φx, λx,

∂ai

∂µx
= −1>p D−1(φ)1p,

∂ai

∂α
= −D−1(ψ)1p−1,

∂ai

∂φ
= −D−2(φ)Xi,

where Xi = (yi−a−1pµx), I(p) = (0, Ip−1), of dimension (p−1)×p, and ψ = (φ2, ..., φp)>,
i = 1, . . . , n.

From (A1) it follows that the observed, per element, information matrix is given by

Ji(θ) = −∂2`i(θ)
∂γ∂τ>

= −
{
−1

2
∂2log|Σ|
∂γ∂τ>

− 1
2
diγτ> +

∂2logKi

∂γ∂τ>

}
, (A2)

where

∂2logKi

∂γ∂τ>
= WΦ1(Axai)

{
∂Ax

∂γ

∂ai

∂τ>
+ Ax

∂2ai

∂γ∂τ>
+

∂ai

∂γ

∂Ax

∂τ>
+ ai

∂2Ax

∂γ∂τ>

}

+∆Φ1(Axai)
{

Ax
∂ai

∂γ
+ ai

∂Ax

∂γ

}{
Ax

∂ai

∂τ>
+ ai

∂Ax

∂τ>

}
,

∆Φ1(u) = W ′
Φ1

(u) = −WΦ1(u)(u + WΦ1(u)), u ∈ R, and

diγτ> =
∂2di

∂γ∂τ>
, γ, τ = µx, α, φx, φ, λx.

After lengthy algebric manipulations we arrive at

∂2log|Σ|
∂τ∂γ>

= 0, τ = µx, α, λx; γ = µx, α, φx, φ, λx,

∂2log|Σ|
∂φx∂φx

= − 1
c2φ2

x

(c− 1)2,

∂2log|Σ|
∂φx∂φ>

= −c−21p
>D−2(φ),

∂2log|Σ|
∂φ∂φ>

= −D−2(φ)− c−2φ2
xD−1(φ)MD−1(φ) + 2c−1φxD−3(φ),

∂2Ax

∂φx∂φx
= −λ2

x + 1
λ2

xφ3
x

A3
x +

3(2c + λ2
x − c2)2

4λ4
xφ4

x

A5
x,
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∂2Ax

∂φx∂φ>
= [

(c− 1)
λ2

xφx
A3

x +
3(2c + λ2

x)(2c + λ2
x − c2)

4λ4
xφ2

x

A5
x]1p

>D−2(φ),

∂2Ax

∂φx∂λx
=

c− 2
λ3

xΛxφx
A3

x +
3(2c + λ2

x − c2)
2λ5

xΛ2
xφx

A5
x,

∂2Ax

∂φ∂φ>
= [−φx

λ2
x

A3
x +

3(2c + λ2
x)2

4λ4
x

A5
x]D−1(φ)MD−1(φ)

−2c + λ2
x

λ2
x

D−3(φ)A3
x,

∂2Ax

∂φ∂λx
=

φxA3
x

2λ5
xΛ2

x

[3A2
x(2c + λ2

x)− 4λ2
xΛx]D−2(φ)1p,

∂2Ax

∂λx∂λx
= − 3φx

λ4
xΛ2

x

A3
x +

3φ2
x

λ6
xΛ4

x

A5
x,

diµxµx = 21p
>Σ−11p,

diµxα> = 21p
>Σ−1I>(p),

diµxφx = 2
(c− 1)
c2φx

ai,

d
iµxφ

> = 2c−1X>
i Σ−1D−1(φ),

diαα> = 2I(p)Σ
−1I>(p),

diαφx = 2c−2aiD
−1(ψ)1p−1,

d
iαφ> = 2I(p)Σ

−1D−1(φ)[D(Xi)− c−1φxai],

diφxφx = 2
c−3

φx
(c− 1)a2

i ,

d
iφxφ

> = (−2c−3φxa2
i D

−2(φ)1p + 2c−2aiD
−2(φ)Xi)>,

d
iφφ> = 2D−3(φ)D2(Xi)− 4c−1φxaiD

−3(φ)D(Xi)

−2c−1φxD−2(φ)XiX
>
i D−2(φ)

+2c−2φ2
xD−2(φ)XiX

>
i MD−1(φ)

+2c−2φ2
xa2

i D
−3(φ)− 2c−3φ3

xa2
i D

−1(φ)MD−1(φ)

+2c−2φ2
xD−1(φ)MXiX

>
i D−2(φ),

∂2ai

∂γ∂τ>
= 0, γ = φ, τ = φx, λx,

∂2ai

∂µx∂φ>
= 1p

>D−2(φ),

∂2ai

∂α∂φ>
= I(p)D

−2(φ),

∂2ai

∂φ∂φ>
= 2D(Xi)D−3(φ).

i = 1, . . . , n, where M = D−1(φ)1p1>p D−1(φ).
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