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Abstract

Univariate skew symmetric models have been considered by several
authors and a classical example is the skew normal distribution. The
distribution theory literature related to the skew normal distribution
has grown rapidly in recent years, and a number of extensions and
alternative formulations has been put forward. For the first time, we
propose a simple power series expansion for the cumulative distribu-
tion function of the skew normal distribution. We also obtain a power
series expansion for the quantile function of this distribution. We per-
form some numerical studies of these series to determine regions where
they converge rapidly.

Keywords: Skew normal distribution. Skew normal quantile func-
tion. Normal distribution. Normal quantile function. Power series
expansion. Owen’s function.

1 Introduction

The normal distribution plays a vital role in the statistical analysis of contin-
uous distributions. In fact, in most of the theoretical and applied works, it is
assumed that the data follow a normal or nearly normal distribution. For this
reason, the extension of the normal distribution to skewed family of distri-
butions has been received considerable attention in recent years. The skew
normal (SN) distribution was introduced by O’Hagan and Leonard (1976)
and discussed by Azzalini (1985). In this article, we provide a simple elegant
power series expansion for the cumulative distribution of the skew normal
distribution, which includes the classical expansion for the normal distribu-
tion as a particular case. The SN distribution function is usually expressed
in terms of Owen’s function (Owen 1956). Borth (1973), Young and Minder
(1974), Hill (1978) and Thomas (1979) provided different ways to calculate
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Owen’s function and Patefield and Tandy (2000) presented a detailed study
of this function.

A random variable Z has a SN distribution with parameter α, −∞ <
α < ∞, say Z ∼ SN(α), if its probability density function (pdf) has the
form

f(z; α) = 2φ(z)Φ(αz), −∞ < z < ∞, (1)

where φ(.) and Φ(.) are the standard normal density and distribution func-
tions, respectively. One can verify that the normal distribution is recovered
when α = 0, and that the absolute value of the skewness increases as the
absolute value of α increases. The distribution is right skewed if α > 0 and
is left skewed if α < 0 and it has a number of properties resembling those of
the normal distribution.

The cumulative distribution function (cdf) corresponding to (1) is defined
by

F (z; α) = 2

∫ z

−∞

∫ sα

−∞
φ(s)φ(t)dtds. (2)

The calculation of (2) can be obtained from the function T (z; α) studied by
Owen (1956), which represents the integral of the standard normal bivariate
over a region bounded by the curves x = z, y = 0 and y = xα in the plane
(x, y). Then,

F (z; α) = Φ(z)− 2T (z; α), (3)

where T (z; α) is the Owen’s function (also called T -function) defined by

T (z; α) = (2π)−1

∫ α

0

exp
{−1

2
z2(1 + x2)

}

1 + x2
dx, (−∞ < z, α < ∞).

Owen (1956) presented the following series for the T function

T (z; α) = (2π)−1

{
arctan α−

∞∑
j=0

cjα
2j+1

}
,

where

cj = (−1)j 1

2j + 1

{
1− exp

(
−1

2
z2

) j∑
i=0

z2i

2ii!

}
.

This series converges rapidly for small z and α, but converges slowly for large
z and α close to one.
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Patefield and Tandy (2000) discussed different forms to calculate the
Owen’s function. Indeed, it was presented six different methods. In each
method, they used series expansions which rely on the region (z, α) of the
plane to obtain accurate values for T (z; α). However, the computation of
the cdf (3) is complicated according to the region (z, α). In this article, we
obtain a very simple way to calculate the cdf of the SN distribution.

The rest of the paper is organized as follows. In Section 2, we provide some
basic relations between the SN cdf and Owen’s function. In Section 3, we give
a simple power series expansion for the cdf of the SN distribution. Section
4 is devoted to the quantile function and Section 5 gives some numerical
computation of the series. Conclusion remarks are presented in Section 6.

2 Some Basic Relations

Lemma 1. The required range of evaluation of the function T (z; α) can be
reduced from −∞ < z, α < ∞ to 0 < α ≤ 1 and z ≥ 0 by using in turn the
following relations due to Owen (1956)

T (z;−α) = −T (z; α), T (−z; α) = T (z; α) and
T (z; α) = 1

2
{Φ(z) + Φ(αz)} − Φ(z)Φ(αz)− T (αz; 1/α).

(4)

Lemma 2. The SN cdf for α ≥ 1 is given by

F (z; α) = 2Φ(z)Φ(αz)− F

(
αz;

1

α

)
.

P roof. If we assume that T (z, α) holds for 0 < α ≤ 1, we can express
T (z, α) for α ≥ 1 as in the last equation of (4). By inserting it in (3) yields

F (z; α) = Φ(z)− 2T (αz; α) = −Φ(αz) + 2Φ(z)Φ(αz) + 2T (αz; 1/α).

Using again (3) for F (αz; 1/α), we have 2T (αz; 1/α) = Φ(αz)− F (αz; 1/α)
and then by inserting in the last equation, the lemma follows. In the special
case α = 1, we obtain F (z; 1) = Φ(z)2.
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3 A Simple Expansion for the Distribution

Function

Theorem 1. Let Z be a SN(α) random variable. For 0 < α < 1, the cdf of
Z can be expressed as

F (z; α) =
1

2
− 1

π
arctan(α) +

∞∑
r=1

crz
r, (5)

where the coefficients cr = cr(α) as functions of α are defined at the end of
the proof.

Proof.
Henze (1986) demonstrated that the cdf of Z can be written as

P (Z ≤ z) = 2

∫ ∞

0

Φ

(
z − pu

q

)
φ(u)du, (6)

where

p = p(α) =
α√

1 + α2
and q = q(α) =

1√
1 + α2

.

Simple differentiation of (6) yields (1).
We use (6) to demonstrate (5). We begin with the well-known power

series expansion for the standard normal cdf

Φ(y) =
1

2

{
1 + erf

(
y√
2

)}
,

where the error function erf(.) is

erf(x) =
2√
π

∞∑

k=0

(−1)kx2k+1

(2k + 1)k!
, |x| < ∞.

Hence, we obtain

Φ

(
z − pu

q

)
=

1

2

{
1 + erf

(
z− pu

q
√

2

)}

and then

Φ

(
z − pu

q

)
=

1

2
+

∞∑

k=0

ak(z − pu)2k+1,
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where the coefficients ak are given by

ak = ak(α) =
(−1)k

√
π(2k + 1)k! (q

√
2)2k+1

.

The binomial expansion leads to

Φ

(
z − pu

q

)
=

1

2
+

∞∑

k=0

ak

2k+1∑
j=0

(
2k + 1

j

)
(−1)j+1p2k+1−jzju2k+1−j. (7)

Inserting (7) into (6) yields

F (z; α) =

∫ ∞

0

φ(u)du +
∞∑

k=0

ak

2k+1∑
j=0

(
2k + 1

j

)
(−1)j+1p2k+1−j

×zj

∫ ∞

0

2u2k+1−jφ(u)du.

Defining

G(m) = 2

∫ ∞

0

xm 1√
2π

exp(−x2/2)dx =
2m/2

√
π

Γ

(
m + 1

2

)
,

where Γ(·) is the gamma function, we can write

F (z; α) =
1

2
+

∞∑

k=0

2k+1∑
j=0

B(k, j)zj. (8)

Here,

B(k, j) = (−1)j+1

(
2k + 1

j

)
p2k+1−j ak G(2k + 1− j), (9)

and ak and G(2k + 1− j) are defined before.

Changing the sums
∑∞

k=0

∑2k+1
j=0 B(k, j)zj by

∞∑

k=0

B(k, 0) + δj

∞∑
j=1

∞∑

k=(j/2)−1

B(k, j)zj + (1− δj)
∞∑

j=1

∞∑

k=(j−1)/2

B(k, j)zj,
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where δj = 1 if j is even and δj = 0 if j is odd, we can write

F (z; α) =
1

2
+

∞∑

k=0

B(k, 0) +
∞∑

r=0

∞∑

k=r

B(k, 2r + 1)z2r+1 +
∞∑

r=0

∞∑

k=r

B(k, 2r)z2r.

(10)
Hence, a power series expansion for the SN cdf can be expressed as

F (z; α) =
1

2
+ c0 +

∞∑
r=1

crz
r,

where the coefficients c0 = c0(α) and cr = cr(α) are given by

c0 =
∞∑

k=0

B(k, 0), c2r+1 =
∞∑

k=r

B(k, 2r + 1), c2r =
∞∑

k=r

B(k, 2r), ∀r ≥ 0.

(11)
For the coefficient c0, we obtain from (11)

c0 =
∞∑

k=0

B(k, 0) =
∞∑

k=0

(
2k + 1

0

)
(−1)ak p2k+1G(2k + 1)

=
∞∑

k=0

(−1)k+1 p2k+1(
√

2)2k+1Γ(k + 1)

π(2k + 1)k!(
√

2)2k+1q2k+1
=

1

π

∞∑

k=0

(−1)k+1 k!

(2k + 1)k!

(
p

q

)2k+1

.

Since α = p/q, we have

c0 =
1

π

∞∑

k=0

(−1)k+1

2k + 1
α2k+1 = − 1

π
arctan(α) (12)

The coefficients c2r+1 and c2r in (11) reduce to

c2r+1 =
(1 + α2)r+1/2

α2rπ 2r+1/2

∞∑

k=r

(−1)k
(
2k+1
2r+1

)
α2kΓ ((k − r) + 1/2)

(2k + 1)k!
. (13)

and

c2r =
(1 + α2)r

α2r−1π 2r

∞∑

k=r

(−1)k+1
(
2k+1

2r

)
α2kΓ ((k − r) + 1)

(2k + 1)k!
. (14)

Equations (5), (12), (13) and (14) are the main results of this section.
The theorem is then proved.
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Remark 1. As a special case, we obtain the normal cumulative function if
α → 0. We have limα→0 c0(α) = 0. For calculating c2r and c2r+1, we obtain

B(k, 2r) = −
(

2k + 1

2r

)
p2(k−r)+1akG(2(k − r) + 1)

and

B(k, 2r + 1) =

(
2k + 1

2r + 1

)
p2(k−r)akG(2(k − r)),

where ak and G(2(k−r)) are given before. For k ≥ r, B(k, 2r) vanishes and,
for k > r, B(k, 2r + 1) vanishes since limα→0 p(α) = 0. For the case k = r,
limα→0 p(α) = 0, limα→0 q(α) = 1 and G(0) = 1. So, we have

lim
α→0

c2r+1(α) = arG(0) lim
α→0

p(α)k−r = (−1)r{√π(2r + 1)r! (
√

2)2r+1}−1,

where we used the result limα→0 p(α)0 = 1. Taking the limit when α → 0,
Eq. (5) yields the classical expansion for the normal cdf

lim
α→0

F (z; α) = F (z; 0) =
1

2
+

1√
π

∞∑
r=0

(−1)rz2r+1

(2r + 1)r! 2(2r+1)/2
. (15)

Corollary 1. Let Z be a SN(α) random variable.

1. For α ≥ 1, the cdf of Z can be expressed as

F (z; α) = 2Φ(z)Φ(αz)− F (αz; α−1),

where F (αz; α−1) is given by Theorem 1.

2. For α = 1, the cdf of Z can be written as

F (z; 1) =
∞∑

n=0

hnz
n,

where the coefficients hn (n = 0, 1, · · · ) are defined by

h0 =
1

4
+

1

2π
, h2n+1 =

2(−1)n

√
π(2n + 1)n! (

√
2)2n+1

and

h2n =
(−1)n

π 2n

2n∑
m=0

1

(2m + 1)m![2(n−m) + 1](n−m)!
.

P roof. We only need to use the above results in each case.
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4 Quantile Function

The quantile function (qf) is defined by q = F−1(p; α) = Q(p; α), where
F (p; α) follows (5). We shall use the Lagrange theorem (Markushevich, 1965,
vol 2, pp. 88) to obtain the expansion for the quantile function. If we assume
that the power series expansion holds

w = F (z) = w0 +
∞∑

n=1

fn(z − z0)
n, f1 = F ′(z) 6= 0,

where F (z) is analytic at a point z0 that gives a simple w0−point. Then,
the inverse function F−1(w) exists and is single-valued in the neighborhood
of the point w = w0. The power series inverse z = Q(w) is given by

z = Q(w) = z0 +
∞∑

n=1

gn(w − w0)
n,

where

gn =
1

n!

dn−1

dzn−1
{[ψ(z)]n}

∣∣∣∣
z=z0

and ψ(z) =
z − z0

F (z)− w0

.

Theorem 2. Let Z be a SN(α) random variable. For 0 < α < 1, the qf of
Z can be expressed as

Q(w; α) =
∞∑

n=1

gn

[
w − arctan(α−1)

]n
,

where the coefficients gn = gn(α) are functions of α defined at the end of the
proof.

Proof.
We now rearrange expansion (5)

F (z; α) =
1

2
+ c0 + z[c1 + c2z + c3z

2 + . . .].

Setting fn = fn(α) = cn+1 for n = 0, 1, 2, . . . , the power series expansion for
F (z) becomes

F (z; α) =
1

2
+ c0 + z

∞∑
n=0

fnzn.
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Setting z0 = 0 and w0 = (1/2 + c0) = 1
π

arctan(α−1), we define

ψ(z) =
z

F (z; α)− (1
2

+ c0)
=

1∑∞
n=0 fnzn

.

We can obtain the inverse of the power series
∑∞

n=0 fnz
n using equation

(0.313) from Gradshteyn and Ryzhik (2000). We have

ψ(z) =
1∑∞

n=0 fnzn
=

1

f0

∞∑
n=0

dnzn,

so that dn can be calculated recursively from the coefficients in (13) and (14)
by

d0 = 1 and dn = − 1

c1

n∑

k=1

ck+1dn−k, n ≥ 1

and

f0 = c1 =
(1 + α2)1/2

√
2π

∞∑

k=0

(−1)kα2kΓ (k + 1/2)

(2k + 1)k!
. (16)

We can obtain ψ(z)n from (4)

ψ(z)n =

[
1

c1

∞∑
i=0

diz
i

]n

.

We now use an equation of Gradshteyn and Ryzhik (2000) (Section 0.314)
for power series raised to powers. For any n positive integer, we can write

ψ(z)n =

[
1

c1

∞∑
i=0

diz
i

]n

=
1

cn
1

∞∑
i=0

ci,nz
i,

where the coefficients ci,n (for i = 1, 2, · · · ) can be easily obtained from the
recurrence relation

ci,n =
1

i

i∑
m=1

(nm− i + m)dmci−m,n,

and c0,n = dn
0 = 1. The coefficient ci,n can be obtained from c0,n, . . . , ci−1,n

and therefore from d0, . . . , di. Clearly, ci,n can be given explicitly in terms of
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the quantities di, although it is not necessary for programming numerically
our expansions in any algebraic or numerical software. The power series with
the first (n + 1) terms can be written as

ψ(z)n =
1

cn
1

(c0,n + c1,nz + · · ·+ cn−1,nz
n−1 + cn,nzn + · · · )

The derivative of order (n− 1) is given by

dn−1

dzn−1

{
[ψ(z)]n

}∣∣∣∣
z=0

=
(n− 1)!cn−1,n

cn
1

,

and then

gn = gn(α) =
1

n!

dn−1

dzn−1

{
[ψ(z)]n

}∣∣∣∣
z=0

=
cn−1,n

ncn
1

.

Hence, a power series for the qf can be written as

Q(w) =
∞∑

n=1

gn

[
w − 1

π
arctan(α−1)

]n

.

In a similar manner, we can write the qf of the SN distribution as

Q(w) =
∞∑

k=0

G(k, α)wk,

where

G(k, α) =
∞∑

n=k+1

(−1)n−k

(
n

k

)
gn(α)

[
1

π
arctan(α−1)

]n−k

.

Corollary 2. Let Z be a standard normal random variable. The qf of Z is
given by

Q(w) =
∞∑

n=1

gn

(
w − 1

2

)n

,

where the coefficient gn are constants defined by the Lagrange theorem.

Proof.
The cdf expansion (15) can be rewritten as

F (z) =
1

2
+ z(c1 + c3z

2 + c5z
4 + · · · ) with c2r+1 =

(−1)r

√
π (2r + 1)r!2(2r+1)/2

.

10



Let fn = cn+1δn for n = 0, 1, 2, . . . , where δn is the Kronecker delta: δn = 1
if n is even and δn = 0 is n is odd. For n = 0, we have f0 = c1 = 1√

2π
. Hence,

the power series expansion for F (z) becomes

F (z) =
1

2
+ z

∞∑
n=0

fnz
n. (17)

Setting z0 = 0 and w0 = 1
2
, we define

ψ(z) =
z

F (z)− 1
2

=
1∑∞

n=0 fnzn
.

We can obtain the inverse of the power series
∑∞

n=0 fnz
n using equation

(0.313) from Gradshteyn and Ryzhik (2000). We have

ψ(z) =
1∑∞

n=0 fnzn
=

1

c1

∞∑
n=0

dnzn =
√

2π
∞∑

n=0

dnz
n, (18)

so that dn can be calculated recursively from the coefficients in (5) by

d0 = 1 and dn = − 1

c1

n∑

k=1

dn−kck+1δk, n ≥ 1.

We can obtain ψ(z)n from (18)

ψ(z)n = (
√

2π)n

( ∞∑
i=0

diz
i

)n

.

We now use an equation of Gradshteyn and Ryzhik (2000) (Section 0.314)
for power series raised to powers. For any n positive integer, we can write

ψ(z)n = (
√

2π)n

( ∞∑
i=0

diz
i

)n

= (
√

2π)n

∞∑
i=0

ci,nz
i,

where the coefficients ci,n for i = 1, 2, . . . can be easily obtained from the
recurrence relation

ci,n =
1

i

i∑
m=1

(nm− i + m)dmci−m,n,

11



and c0,n = dn
0 = 1. The coefficient ci,n follows from c0,n, . . . , ci−1,n and there-

fore from d0, . . . , di. The power series with the first (n + 1) terms can be
written as

ψ(z)n = (
√

2π)n(c0,n + c1,nz + · · ·+ cn−1,nz
n−1 + cn,nz

n + · · · ).
The derivative of order (n− 1) is given by

dn−1

dzn−1

{
[ψ(z)]n

}∣∣∣∣
z=0

= (n− 1)!(
√

2π)ncn−1,n,

and then

gn =
1

n!

dn−1

dzn−1

{
[ψ(z)]n

}∣∣∣∣
z=0

=
(
√

2π)ncn−1,n

n
.

Hence, the power series quantile function reduces to

Q(w) =
∞∑

n=1

gn

(
w − 1

2

)n

.

An alternative expression for the qf of the SN distribution is

Q(w) =
∞∑

k=0

G(k, α)wk,

where

G(k, α) =
∞∑

n=k+1

(−1)n−k

(
n

k

)
gn

(
1

2

)n−k

.

5 Numerical Computation of the Series

5.1 Computation of F (z, α)

Eq. (8) can be easily evaluated with a software such as Matlab or R (R
Development Core Team, 2009). The serie can be implemented without
direct calculation of the Γ functions and binomial coefficients. Using Γ(z +
1) = zΓ(z) and

(
n

k+1

)
=

(
n
k

)
n−k
k+1

, we have G(m + 1) = mG(m − 1) and the
following recurrence relations for B(k, j):

B(k + 1, j)

B(k, j)
= −α2

(
2k + 1

2k + 3− j

)
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and
B(k, j + 2)

B(k, j)
=

(
1 + α2

α2

)
2k + 1− j

(j + 1)(j + 2)
,

where, using (9) we have, B(0, 0) = −α/π and B(0, 1) = [(1 + α2)/2π]1/2.
In order to verify the convergence of the series (8) and (10), we implemented
the truncated sums

F1(z; α, n) =
1

2
+

n∑

k=0

2k+1∑
j=0

B(k, j)zj.

and

F2(z; α, n,m) =
1

2
+

n∑

k=0

B(k, 0)+
n∑

r=0

m∑

k=r

B(k, 2r+1)z2r+1+
n∑

r=1

m∑

k=r

B(k, 2r)z2r

It is easy to verify that for m = n, the expressions for F1(z; α, n) and
F2(z; α, n,m) are identical. The series converges fast for |z| ≤ 3 and |α| ≤ 0.5.
In this region, we obtain for F1(z; α, n) an relative error <1e–10 for n = 120.
Table 1 gives values for F1(z; α, n = 120) and F (z; α). The missing values
in this table correspond to cases where the convergence is not achieved. The
best numerical results are obtained using F2(z; α, n,m) instead of F1(z; α, n)
(see Table 2). For |z| ≤ 3 and |α| ≤ 0.5, we obtain an relative error <1e–11
using F2(z; α, n, m) with n = 120 and m = 20.

5.2 The Quantile Function

In order to compare the numerical results of the series with the exact values,
we use the R-base package or a very simple method to compute the values
of the quantiles, similar to a root-finding algorithm secant method:

Numerical method to determine Q(w) given the cdf F (z):
Input: w, number N of iterations, initial interval [a, b], a < b
1. set i = 1, x1 = a, x2 = b
2. while (i ≤ N)
3. wi=mean (x1, x2)
4. if(F (wi) > w) do x2 = wi

5. else x1 = wi

6. i ← i + 1
7. end while
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Table 1: Results of series F (z; α) and F2(z; α, n) for z = ±3 and different values
of α.

α F (z;α)∗ F2(z; α, n = 120) Relative Error
0.50 0.997439859211200 0.997439859211200 <1.00e–15
0.60 0.997369579953320 0.997369579953310 9.68e–15
0.70 0.997331886928160 0.997331886928480 -3.21e–13

z = 3 0.80 0.997313505649600 0.997313502668940 2.99e–09
0.85 0.997308555317360 0.997318822197400 -1.03e–05
0.90 0.997305338324570 1.191330695776200 -1.95e–01
0.95 0.997303294961250 - -
0.50 0.000139655274460 0.000139655274472 -8.94e–11
0.60 0.000069376016579 0.000069376016751 -2.48e–09
0.70 0.000031682991424 0.000031675144105 2.48e–04

z = −3 0.80 0.000013301712867 - -
0.85 0.000008351380616 - -
0.90 0.000005134387833 - -
0.95 0.000003091024513 - -

* Using F (z; α) = Φ(z)− 2T (z, α)

For the quantile expansion Q(w) of the normal cdf, we make a comparison
between (2) and the Steinbrecher and Shaw (2007) expansion

Q(u) =
∞∑

p=0

wp

(2p + 1)
[
√

2π(u− 1/2)]2p+1, (19)

where wp+1 = 1
2

∑p
j=0

wjwp−j

(j+1)(2j+1)
and w0 = 1. Figure 1 shows the behavior of

the series (2) and (19) in the tail region of the normal cdf (w > 0.985).

5.3 Computation of the Quantile Function of the Skew
Normal

For the SN quantile function, we evaluate the convergence of

Q(w; α, m) =
m∑

n=1

gn(α) (w − w0)
n , (20)

where w0 = 1
π

arctan(α−1). This serie converges fast for small values of α.
Using m = 150, we obtain the largest absolute error <1e–10 in 0.1 ≤ α ≤ 0.4
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Table 2: Results of series F (z; α) and F1(z; α, n, m) for z = ±3 and different
values of α.

α F (z; α)∗ F1(z;α, n = 120,m = 20) Relative Error
0.50 0.997439859211200 0.997439859211200 <1.00e–15
0.60 0.997369579953320 0.997369579953400 -8.03e–14
0.70 0.997331886928160 0.997331886882800 4.55e–11

z = 3 0.80 0.997313505649600 0.997313490923360 1.48e–08
0.85 0.997308555317360 0.997308438157650 1.17e–07
0.90 0.997305338324570 0.997305139857720 1.99e–07
0.95 0.997303294961250 0.997313379740450 -1.01e–05
0.50 0.000139655274460 0.000139655274461 -6.59e–12
0.60 0.000069376016579 0.000069376016681 -1.47e–09
0.70 0.000031682991424 0.000031683055923 -2.04e–06

z = −3 0.80 0.000013301712867 0.000013304994166 -2.47e–04
0.85 0.000008351380616 0.000008309054223 5.07e–03
0.90 0.000005134387833 0.000004078414077 2.06e–01
0.95 0.000003091024513 -0.000014789256413 5.78e+00

* Using F (z;α) = Φ(z)− 2T (z, α)
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Figure 1: Quantil function Q(w) for: (a) 0.98 ≤ w ≤ 0.99 (solid line) (b)
using the first 150 terms of the expansion (2) (dotted line) (c) using the first
150 terms of the Steinbrecher-Shaw expansion (19) (dashed line).
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and 0.1 ≤ z ≤ 0.9. For some values of w in the region w > 0.6 and α > 0.5,
the convergence is very slow. Figure 2 shows Q(w, α, m) for 0.001 ≤ w ≤ 0.05
and α = 0.3. Tables 3 and 4 give Q(w; α,m = 150) for some values of w
and α. The missing values correspond to cases where the convergence is not
achieved.
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Figure 2: Quantil function of the skew normal distribution for: (a) α = 0.3
and 0.001 ≤ w ≤ 0.05 (solid line) (b) using the expansion (20) with m = 40
(dashed line) and (c) using m = 80 (dotted line).

Table 3: Relative errors of the quantil function Q(w; α, m = 150) for some values
of α and w.

α ↓ w = 0.01 w = 0.1 w = 0.2 w = 0.3 w = 0.4 w = 0.5
0.05 3.96e–07 1.92e–07 7.96e–08 2.97e–08 1.00e–08 3.07e–09
0.10 1.68e–12 3.41e–13 4.78e–14 4.36e–15 1.80e–15 -2.12e–15
0.20 -1.33e–16 4.38e–16 1.65e–16 -3.76e–16 8.74e–16 -1.55e–15
0.30 -2.15e–16 2.50e–16 -3.07e–16 -7.88e–16 6.74e–16 -2.05e–15
0.40 -6.79e–16 -3.21e–16 -1.03e–15 -9.75e–15 -5.28e–16 1.43e–15
0.50 3.37e–14 1.00e–16 3.55e–16 8.51e–16 1.32e–15 1.26e–15
0.60 6.37e–16 6.69e–16 6.83e–16 1.17e–15 4.14e–16 5.65e–16
0.70 -6.26e-16 1.11e–15 -1.65e–16 6.01e–16 1.10e–10 4.16e–04
0.80 1.31e-16 9.67e–16 1.14e–11 3.79e–05 - -
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Table 4: Relative errors of the quantil function Q(w; α, m = 150) for some values
of α and w.

α ↓ w = 0.6 w = 0.7 w = 0.8 w = 0.9 w = 0.95 w = 0.99
0.05 8,57e–10 2,19e–10 5,16e–11 7,86e–12 -1,38e–07 -
0.1 8,84e–16 1,48e–15 -1,47e–15 -4,98e–12 -2,68e–07 -
0.2 -4,65e–16 1,33e–15 -2,15e–15 -9,11e–12 -4,03e–07 -1,10e–003
0.3 -1,75e–15 9,11e–15 1,46e–14 1,43e–11 7,85e–07 2,92e–003
0.4 1,12e–15 2,47e–16 1,86e–15 -4,21e–12 -1,52e–07 -
0.5 8,23e–16 1,00e–16 2,28e–15 3,16e–09 3,00e–06 -
0.6 1,44e–11 4,48e–05 - - - -
0.7 - - - - - -

The convergence of the coefficients c2r(α) and c2r+1(α) in (13) and (14)
is very fast. For w > 0.6 approximately, the convergence of Q(w; α, m) is
strongly associated with the behavior of the terms (w−wo)

n in (20). Figure
3 (a) shows Q(w; α, m) =

∑m
n=1 gn(α) (w − w0)

n versus m, for w = 0.60 and
α = 0.7, whereas Figure 3 (b) shows that for α = 0.7 but with w = 0.65. In
this case, the convergence is not achieved.

(a) (b)

0 20 40 60 80 100
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0.
65

0.
70

m

0 20 40 60 80 100

−
20

0
0

10
0

20
0

m

Figure 3: Graphics of convergence and not convergence the quantile function
of the skew-normal distribution when: (a) w = 0.60, α = 0.7 and (b) w =
0.65, α = 0.7, respectively.
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6 Conclusions

We provide a new power series expansion for the cumulative distribution of
the skew normal (SN) distribution. From this expansion, we obtain as a spe-
cial case the classical power series expansion for the cumulative distribution
of the normal distribution. Following our approach, we derive a power series
expansion for the quantile function of the SN distribution. We provide some
numerical studies on the adequacy of both expansions.
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